TWI769574B - 記憶體裝置、積體晶片及其形成方法 - Google Patents

記憶體裝置、積體晶片及其形成方法 Download PDF

Info

Publication number
TWI769574B
TWI769574B TW109138525A TW109138525A TWI769574B TW I769574 B TWI769574 B TW I769574B TW 109138525 A TW109138525 A TW 109138525A TW 109138525 A TW109138525 A TW 109138525A TW I769574 B TWI769574 B TW I769574B
Authority
TW
Taiwan
Prior art keywords
layer
diffusion barrier
data storage
top electrode
barrier layer
Prior art date
Application number
TW109138525A
Other languages
English (en)
Other versions
TW202135063A (zh
Inventor
鍾嘉文
蔡正原
海光 金
潘興強
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202135063A publication Critical patent/TW202135063A/zh
Application granted granted Critical
Publication of TWI769574B publication Critical patent/TWI769574B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/828Current flow limiting means within the switching material region, e.g. constrictions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8416Electrodes adapted for supplying ionic species
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

一些實施例關於一種記憶體裝置。所述記憶體裝置包括 上覆在基底之上的底部電極。資料儲存層上覆在底部電極之上。頂部電極上覆在資料儲存層之上。在資料儲存層內可選擇性地形成導電橋,以將底部電極耦合到頂部電極。擴散阻擋層設置在資料儲存層與頂部電極之間。

Description

記憶體裝置、積體晶片及其形成方法
本發明實施例是關於記憶體裝置、積體晶片及其形成方法。
許多現代電子裝置包含電子記憶體。電子記憶體可為揮發性記憶體(volatile memory)或非揮發性記憶體(non-volatile memory)。非揮發性記憶體能夠在沒有電力的情況下保留其所儲存的資料,而揮發性記憶體在斷電時會丟失其所儲存的資料。可程式化金屬化單元(programmable metallization cell,PMC)隨機存取記憶體(random access memory,RAM)(其也可被稱為導電橋接RAM(conductive bridging RAM,CBRAM)、奈米橋或電解記憶體)因優於當前電子記憶體的優點而作為下一代非揮發性電子記憶體的一個有希望的候選者。與當前非揮發性記憶體(例如,快閃隨機存取記憶體)相比,PMCRAM通常具有更好的性能及可靠性。與當前揮發性記憶體(例如,動態隨機存取記憶體(dynamic random-access memory,DRAM)及靜態隨機存取記憶體(static random-access memory,SRAM))相比,PMCRAM通常具有更好的性能及密度且具有更低的功耗。
在各種實施例中,本申請提供一種記憶體裝置,所述記憶體裝置包括基底;底部電極,上覆在基底之上;資料儲存層,上覆在底部電極之上;頂部電極,上覆在資料儲存層之上,其中在資料儲存層內能夠選擇性地形成導電橋,以將底部電極耦合到頂部電極;以及擴散阻擋層,設置在資料儲存層與頂部電極之間。
在各種實施例中,本申請提供一種積體晶片,所述積體晶片包括基底;底部電極通孔,上覆在基底之上;以及可程式化金屬化單元,上覆在底部電極通孔之上,其中可程式化金屬化單元包括頂部電極、資料儲存層、活性金屬層及擴散阻擋層,其中頂部電極包含擴散性物種,其中頂部電極對氧的反應性比活性金屬層低,其中活性金屬層設置在頂部電極與資料儲存層之間,且其中擴散阻擋層下伏在頂部電極之下並被配置成防止擴散性物種擴散到資料儲存層。
在各種實施例中,本申請提供一種形成記憶體裝置的方法,所述方法包括:在基底之上形成下部導電線;在下部導電線之上形成底部電極通孔;在所述底部電極通孔之上形成儲存單元層堆疊,其中所述儲存單元層堆疊包括底部電極、資料儲存層、擴散阻擋層及頂部電極,其中擴散阻擋層設置在資料儲存層與頂部電極之間,其中頂部電極包含擴散性物種,且其中擴散阻擋層被配置成阻擋擴散性物種的擴散;以及將儲存單元層堆疊圖案化,由此界定可程式化金屬化單元。
100、200、300:記憶體裝置
102:基底
104:半導體裝置
106:源極/汲極區
108:閘極介電層
110:閘電極
112:側壁間隔件結構
114:下部導通孔
116:下部導電線
118:內連線介電結構
120:介電結構
120a:下部介電層
120b:上部介電層
122:底部電極通孔
124:導電襯層
126:導電結構
128:底部電極
128a:第一底部電極層
128b:第二底部電極層
130:資料儲存層
131:區
132:擴散阻擋層
134:活性金屬層
136:頂部電極
140:可程式化金屬化單元
142:上部導通孔
144:上部導電線
302:上部擴散阻擋層
400:剖視圖
500:積體晶片
502:內連線結構
504:導通孔
506:導電線
600、700、800、900、1000、1100、1200:俯視圖
702:下部層間介電(ILD)結構
1002:儲存單元層堆疊
1004:罩幕層
1202:上部ILD結構
1300:方法
1302、1304、1306、1308、1310、1312:動作
BL:位元線
SL:源極線
WL:字元線
結合附圖閱讀以下詳細說明會最好地理解本公開的各個方面。注意,根據本行業中的標準慣例,各種特徵並非按比例繪製。事實上,為論述清晰起見,可任意增大或減小各種特徵的尺寸。
圖1示出具有可程式化金屬化單元的記憶體裝置的一些實施例的剖視圖,所述可程式化金屬化單元包括上覆在資料儲存層之上的擴散阻擋層。
圖2示出具有可程式化金屬化單元的記憶體裝置的一些實施例的剖視圖,所述可程式化金屬化單元包括上覆在活性金屬層之上的擴散阻擋層。
圖3示出具有可程式化金屬化單元的記憶體裝置的一些實施例的剖視圖,所述可程式化金屬化單元包括第一擴散阻擋層及第二擴散阻擋層。
圖4示出包括上覆在活性金屬層之上的擴散阻擋層的儲存單元的一些實施例的剖視圖。
圖5示出具有包括擴散阻擋層的可程式化金屬化單元的積體晶片的一些實施例的剖視圖,其中可程式化金屬化單元設置在內連線結構內。
圖6示出由圖5中的線指示的圖5所示積體晶片的一些替代實施例的俯視圖。
圖7到圖12示出形成記憶體裝置的方法的一些實施例的剖視圖,所述記憶體裝置具有包括擴散阻擋層的可程式化金屬化單元。
圖13示出包括形成記憶體裝置的方法的一些實施例的流程 圖格式的方法,所述記憶體裝置具有包括擴散阻擋層的可程式化金屬化單元。
本公開提供用於實施本公開內容的不同特徵的許多不同實施例或實例。以下闡述元件及佈置的具體實例以簡化本公開內容。當然,這些僅為實例且不旨在進行限制。例如,以下說明中將第一特徵形成在第二特徵“之上”或第二特徵“上”可包括其中第一特徵及第二特徵被形成為直接接觸的實施例,且也可包括其中第一特徵與第二特徵之間可形成附加特徵、進而使得所述第一特徵與所述第二特徵可不直接接觸的實施例。另外,本公開內容可能在各種實例中重複使用參考編號和/或字母。這種重複使用是出於簡潔及清晰的目的,而不是自身表示所論述的各種實施例和/或配置之間的關係。
此外,為易於說明,本文中可能使用例如“在...之下”、“在...下方”、“下部的”、“在...上方”、“上部的”等空間相對性用語來闡述圖中所示一個元件或特徵與另一(其他)元件或特徵的關係。所述空間相對性用語旨在除圖中所繪示的取向外還囊括裝置在使用或操作中的不同取向。設備可被另外取向(旋轉90度或處於其他取向),且本文中所用的空間相對性描述語可同樣相應地進行解釋。
可程式化金屬化單元一般包括佈置在頂部電極與底部電極之間的資料儲存層。活性金屬層可設置在資料儲存層與頂部電極之間。在設定操作期間,在頂部電極與底部電極兩端施加設定 電壓,使得在資料儲存層內形成導電橋(例如,導致低電阻狀態)。在施加設定電壓時,離子可從活性金屬層行進到資料儲存層,從而在資料儲存層內形成導電橋。在重設操作期間,在頂部電極與底部電極兩端施加重設電壓,使得導電橋可至少部分地從資料儲存層移除(例如,導致高電阻狀態)。在施加重設電壓時,離子可從資料儲存層行進到活性金屬層,從而至少部分地溶解資料儲存層內的導電橋。
頂部電極可為或可包含擴散性物種,例如鈦、鉭、前述物種的氮化物等。在可程式化金屬化單元的操作之前(即,在施加設定電壓和/或重設電壓之前),可對可程式化金屬化單元執行烘烤製程,以驗證可程式化金屬化單元在高溫(例如,約400攝氏度)下的資料保持。烘烤製程的高溫可導致例如造成擴散性物種從頂部電極擴散到活性金屬層和/或資料儲存層等問題。在執行烘烤製程之後,可對可程式化金屬化單元執行設定和/或重設操作。在設定操作期間,擴散性物種可與來自活性金屬層的離子對準,以在資料儲存層內形成導電橋。然而,在一些實施例中,重設電壓可能無法從資料儲存層移除擴散性物種,因而在施加重設電壓之後,導電橋的至少一部分可保留在資料儲存層內。因此,可程式化金屬化單元可能無法在高電阻狀態與低電阻狀態之間切換。此外,擴散性物種在資料儲存層內積聚可有效地減小資料儲存層的有效厚度,從而減小可程式化金屬化單元的擊穿電壓和/或造成不期望的向高電阻狀態的切換。此外,由於導電橋的形成和/或移除,高熱量可能在資料儲存層與頂部電極之間聚積。高熱量可進一步增加擴散性物種向資料儲存層中的擴散,從而進一步降低可 程式化金屬化單元的性能和/或耐久性。
本公開的一些實施例關於一種可程式化金屬化單元,所述可程式化金屬化單元包括設置在資料儲存層與頂部電極之間的擴散阻擋層。資料儲存層設置在頂部電極與底部電極之間。活性金屬層設置在頂部電極與資料儲存層之間。頂部電極及底部電極各自對氧的反應性比活性金屬層低。頂部電極可包含擴散性物種(例如,鈦、鉭、前述物種的氮化物等)。擴散阻擋層被配置成防止和/或阻擋擴散性物種從頂部電極和/或活性金屬層擴散到資料儲存層中。因此,擴散阻擋層會減輕和/或消除擴散性物種在資料儲存層中的積聚,使得重設電壓可溶解資料儲存層內的導電橋。這又會增加可程式化金屬化單元的性能、耐久性和/或可靠性。
圖1示出具有可程式化金屬化單元140的記憶體裝置100的一些實施例的剖視圖,可程式化金屬化單元140包括上覆在資料儲存層130之上的擴散阻擋層132。可程式化金屬化單元140例如可為陽離子型電阻隨機存取記憶體(resistive random-access memory,RRAM)單元或一些其他合適類型的RRAM單元。注意,陽離子型RRAM單元可例如被稱為可程式化金屬化單元(PMC)或導電橋接隨機存取記憶體(CBRAM)單元。
記憶體裝置100包括基底102及上覆在基底102之上的可程式化金屬化單元140。內連線介電結構118上覆在基底102之上。下部導通孔114設置在內連線介電結構118內並上覆在基底102之上。在一些實施例中,半導體裝置104可設置在基底102內和/或基底102之上。在一些實施例中,半導體裝置104可例如被配置為電晶體。在此種實施例中,半導體裝置104包括源極/汲 極區106、閘極介電層108、閘電極110及側壁間隔件結構112。在一些實施例中,下部導通孔114上覆在半導體裝置104的源極/汲極區106之上。
下部導電線116設置在內連線介電結構118內並上覆在下部導通孔114之上,使得下部導電線116電耦合到半導體裝置104。介電結構120沿著下部導電線116的上表面設置。介電結構120包括下部介電層120a及上部介電層120b。可程式化金屬化單元140設置在內連線介電結構118內並上覆在底部電極通孔122之上。底部電極通孔122可包括導電襯層124及導電結構126,其中導電襯層124橫向圍繞導電結構126。在一些實施例中,可程式化金屬化單元140包括底部電極128、資料儲存層130、擴散阻擋層132、活性金屬層134及頂部電極136。上部導通孔142上覆在頂部電極136之上,且上部導電線144上覆在上部導通孔142之上。在一些實施例中,活性金屬層134可被配置為離子貯存層(ion reservoir layer)。
在可程式化金屬化單元140的操作期間,可在資料儲存層130的區131內重覆形成及溶解導電橋,以使可程式化金屬化單元140在低電阻狀態與高電阻狀態之間改變。在形成導電橋時,在頂部電極136與底部電極128之間施加設定電壓。設定電壓可引起活性金屬層134的氧化並形成金屬陽離子。此外,由設定電壓形成的電場使金屬陽離子遷移到資料儲存層130並還原到區131內的導電橋中。在溶解或移除導電橋時,在頂部電極136與底部電極128之間施加重設電壓。重設電壓可引起導電橋的氧化並形成金屬陽離子。此外,由重設電壓形成的電場使金屬陽離子遷 移到活性金屬層134並還原到活性金屬層134中。
頂部電極136及底部電極128以及活性金屬層134是導電的。然而,與頂部電極136及底部電極128相比,活性金屬層134具有電化學活性。因此,頂部電極136及底部電極128與氧的反應性比活性金屬層134低,且頂部電極136及底部電極128依賴於比活性金屬層134更多的能量來氧化。例如,頂部電極136及底部電極128可依賴於5電子伏特(electron volt,eV)或大於5電子伏特來氧化,而活性金屬層134可依賴於3eV或小於3eV來氧化。然而,其他eV值也是適合的。頂部電極136和/或底部電極128例如可為或可包含鈦、鉭、氮化鈦、氮化鉭、一些其他合適的材料或前述材料的任何組合。
資料儲存層130可為用於由活性金屬層134的氧化產生的金屬陽離子的固體電解質。例如,在活性金屬層134是或包含鋁的情況下,資料儲存層130可為用於鋁陽離子的固體電解質。在一些實施例中,資料儲存層130是或包含氧化矽(例如,SiO2)、氧化鉿(例如,HfO2)、氮化矽(例如,SiNx)、氧化鋁(例如,Al2O3)、氧化鋯(例如,ZrO2)、氧化鉭(例如,TaOx)、氧化鈦(例如,TiOx)、氮化鋁、一些其他合適的電介質或前述物種的任何組合。此外,在一些實施例中,資料儲存層130是或包含鍺硫(例如,GeS)、鍺硒(例如,GeSe)、鍺碲(例如,GeTe)、金屬氧化物、非晶矽、一些其他合適的電解質或前述物種的任何組合。
在一些實施例中,頂部電極136可為或可包含擴散性物種(例如,鈦、鉭、前述物種的金屬氮化物等)。在再一些實施例中,擴散阻擋層132例如可為或可包含釕、銥、鎢、一些其他合 適的擴散阻擋材料等。在一些實施例中,擴散阻擋層132可為或可包含單一材料(例如,釕、銥或鎢),使得擴散阻擋層132是單一材料的連續層。在一些實施例中,擴散阻擋層132是導電的和/或被配置成阻擋或以其他方式減緩擴散性物種擴散到資料儲存層130和/或活性金屬層134。在一些實施例中,擴散阻擋層132包含低擴散率材料(例如,釕、銥或鎢),所述低擴散率材料阻擋或以其他方式減緩擴散性物種的擴散。例如,由於擴散阻擋層132包括低擴散率材料的單一連續層,因此其可具有比頂部電極136的晶粒大小小的晶粒大小,使得擴散性物種可不穿過擴散阻擋層132的晶粒邊界行進到資料儲存層130。在再一些實施例中,擴散阻擋層132可不包括晶粒邊界(例如,擴散阻擋層132可具有非晶結構),從而增加頂部電極136的擴散性物種的擴散路徑複雜性。作為另一選擇,在一些實施例中,擴散阻擋層132具有單晶結構,且頂部電極136的金屬晶粒是等軸晶粒,從而增加擴散性物種的擴散路徑複雜性。因此,擴散阻擋層132會增加擴散性物種的擴散路徑複雜性,從而阻擋或減緩擴散性物種從頂部電極136擴散到資料儲存層130。
在一些實施例中,頂部電極136可具有低擴散活化溫度(例如,低於約400攝氏度)。擴散活化溫度可為其中來自結構和/或層的原子可從所述結構和/或層擴散到另一結構的溫度。在再一些實施例中,擴散阻擋層132可具有高擴散活化溫度(例如,高於約400攝氏度)。在一些實施例中,在製作可程式化金屬化單元140之後,可對可程式化金屬化單元140執行烘烤製程,以驗證可程式化金屬化單元140在高溫(例如,約400攝氏度)下的資料 保持。在一些實施例中,高溫高於低擴散活化溫度。然而,由於高擴散活化溫度,在烘烤製程期間,來自擴散阻擋層132的原子可不擴散出擴散阻擋層。此外,擴散阻擋層132可防止或減輕在烘烤製程期間擴散性物種從頂部電極136擴散到資料儲存層130。通過防止擴散性物種的擴散,擴散阻擋層132會增加可程式化金屬化單元140的離散資料狀態,並增加可對可程式化金屬化單元140執行的設定和/或重設操作的數量。因此,擴散阻擋層132提高可程式化金屬化單元140的性能、耐久性及可靠性。
在再一些實施例中,底部電極128可包含與頂部電極136不同的材料。例如,底部電極128可為或可包含擴散阻擋層132的相同材料,使得底部電極128被配置成防止擴散性物種擴散到資料儲存層130。在一些實施例中,擴散阻擋層132和/或活性金屬層134可各自實質上不含擴散性物種。在進一步的實施例中,擴散阻擋層132和/或活性金屬層134內的擴散性物種(例如,鈦、鉭和/或氮)的原子百分比可為約0%、小於1%、小於3%或小於約5%,使得擴散阻擋層132和/或活性金屬層134可各自實質上不含擴散性物種。
圖2示出根據圖1的記憶體裝置100的一些替代實施例的記憶體裝置200的一些實施例的剖視圖。
在一些實施例中,擴散阻擋層132設置在活性金屬層134與頂部電極136之間。擴散阻擋層132被配置成防止和/或減輕擴散性物種從頂部電極136擴散到活性金屬層134和/或資料儲存層130。在進一步的實施例中,擴散阻擋層132的底表面直接接觸活性金屬層134的頂表面,且擴散阻擋層132的頂表面直接接觸頂 部電極136的底表面。
介電結構120圍繞可程式化金屬化單元140與下部導電線116之間的底部電極通孔122。在一些實施例中,介電結構120是包括下部介電層120a及上覆在下部介電層120a之上的上部介電層120b的多層膜。下部介電層120a與上部介電層120b是不同的材料。在一些實施例中,下部介電層120a例如可為或可包含碳化矽、碳氧化矽或另一種合適的介電材料。在進一步的實施例中,上部介電層120b例如可為或可包含氧化矽(例如,SiO2)、氮化矽或另一種合適的介電材料。在替代實施例中,介電結構120是單層。
圖3示出根據圖1的記憶體裝置100的一些替代實施例的記憶體裝置300的一些實施例的剖視圖。
記憶體裝置300包括設置在資料儲存層130與活性金屬層134之間的擴散阻擋層132、以及設置在活性金屬層134與頂部電極136之間的上部擴散阻擋層302。在一些實施例中,上部擴散阻擋層302例如可為或可包含釕、鎢、銥等,和/或上部擴散阻擋層302被配置為擴散阻擋層132。在一些實施例中,上部擴散阻擋層302被配置成防止擴散性物種(例如,鈦、鉭、氮)從頂部電極136擴散到活性金屬層134。在再一些實施例中,上部擴散阻擋層302包含與擴散阻擋層132相同的材料。因此,上部擴散阻擋層302可進一步減輕和/或防止擴散性物種擴散到資料儲存層130,從而進一步提高可程式化金屬化單元140的性能、耐久性及可靠性。
在進一步的實施例中,底部電極128包括第一底部電極 層128a及上覆在第一底部電極層128a之上的第二底部電極層128b。在一些實施例中,第二底部電極層128b可被配置為擴散阻擋層132,使得第二底部電極層128b被配置成防止和/或阻擋擴散性物種從第一底部電極層128a和/或其他下伏層/結構擴散到資料儲存層130。在一些實施例中,第一底部電極層128a例如可為或可包含鈦、鉭、氮化鈦、氮化鉭或另一種合適的導電材料。在進一步的實施例中,第二底部電極層128b例如可為或可包含釕、鎢、銥等,和/或可具有介於約10埃到30埃範圍內的厚度。因此,在一些實施例中,第二底部電極層128b可被配置為底部電極擴散阻擋層,且可進一步提高可程式化金屬化單元140的性能、耐久性及可靠性。儘管在圖3中示出第二底部電極層128b,但可以理解,圖1、圖2、圖4、圖5或圖10到圖12的底部電極128可各自被配置為圖3的底部電極128。因此,圖1、圖2、圖4、圖5或圖10到圖12的底部電極128可各自包括上覆在第一底部電極層128a之上的第二底部電極層128b,使得第二底部電極層128b被配置為擴散阻擋層132並阻擋擴散性物種的擴散。
圖4示出圖2的可程式化金屬化單元140的一些實施例的剖視圖400。
在一些實施例中,資料儲存層130的厚度小於擴散阻擋層132的厚度。在進一步的實施例中,擴散阻擋層132的厚度小於底部電極128的厚度和/或頂部電極136的厚度。在再一些實施例中,擴散阻擋層132的厚度小於活性金屬層134的厚度。
在一些實施例中,資料儲存層130的厚度處於約10埃到50埃的範圍內。在進一步的實施例中,如果資料儲存層130的厚 度小於約10埃,則可程式化金屬化單元140的擊穿電壓可增加。在再一些實施例中,如果資料儲存層130的厚度大於50埃,則可增加設定和/或重設電壓,以在資料儲存層130內形成或溶解導電橋,因而會增加可程式化金屬化單元140的功耗。在各種實施例中,擴散阻擋層132的厚度處於約埃10到30埃的範圍內。在一些實施例中,如果擴散阻擋層132的厚度小於約10埃,則擴散阻擋層132防止和/或阻擋擴散性物種的能力可被降低。在進一步的實施例中,如果擴散阻擋層132的厚度大於約30埃,則可增加設定和/或重設電壓以形成和/或溶解導電橋,因而會增加可程式化金屬化單元140的功耗。
圖5示出具有內連線結構502及可程式化金屬化單元140的積體晶片500的一些實施例的剖視圖,可程式化金屬化單元140包括擴散阻擋層132。可程式化金屬化單元140設置在內連線結構502內。在一些實施例中,可程式化金屬化單元140被配置為圖1、圖2或圖3的可程式化金屬化單元140。
積體晶片500包括上覆在基底102之上的內連線結構502。在一些實施例中,基底102例如可為塊狀基底(例如,塊狀矽基底)、絕緣體上矽(silicon-on-insulator,SOI)基底或另一合適的基底,和/或可包括第一摻雜類型(例如,p型)。在一些實施例中,半導體裝置104設置在基底102內/基底102上。在進一步的實施例中,半導體裝置104可被配置為存取電晶體。在此種實施例中,半導體裝置104包括源極/汲極區106、閘極介電層108、閘電極110及側壁間隔件結構112。源極/汲極區106設置在基底102內,且可包括與第一摻雜類型(例如,p型)相反的第二摻雜 類型(例如,n型)。在一些實施例中,第一摻雜類型是p型,而第二摻雜類型是n型,或反之亦然。源極/汲極區106可設置在閘電極110的相對側上。閘極介電層108設置在閘電極110與基底102之間。此外,側壁間隔件結構112橫向圍繞閘極介電層108的側壁及閘電極110的側壁。在一些實施例中,閘極介電層108例如可為或可包含二氧化矽、高介電常數介電材料或另一種合適的介電材料。在進一步的實施例中,閘電極110例如可為或可包含多晶矽、金屬(例如鋁、鈦、另一種合適的金屬)等。在再一些實施例中,側壁間隔件結構112例如可為或可包含氮化矽、碳化矽、另一種合適的介電材料或前述材料的任何組合。
內連線結構502包括內連線介電結構118、多個導通孔504及多個導電線506。所述多個導通孔504及所述多個導電線506設置在內連線介電結構118內,且被配置成將設置在積體晶片500內的裝置(例如,半導體裝置104及可程式化金屬化單元140)電耦合在一起。內連線介電結構118可為或可包括多個層間介電(inter-level dielectric,ILD)層。在一些實施例中,所述多個ILD層例如可分別為或可分別包含二氧化矽、低介電常數介電材料、極低介電常數介電層等。在進一步的實施例中,所述多個導通孔504和/或導電線506例如可分別為或可分別包含鋁、銅、鎢、另一種合適的導電材料或前述材料的組合。可程式化金屬化單元140設置在內連線結構502內、導電線506的下層與導電線506的上層之間。
在一些實施例中,半導體裝置104的閘電極110電耦合到字元線(word line,WL)。半導體裝置104的源極/汲極區106 通過內連線結構502電耦合到源極線(source line,SL)。此外,可程式化金屬化單元140通過上覆導通孔504及上覆導電線506電耦合到位元線(bit line,BL)。在進一步的實施例中,BL和/或可程式化金屬化單元140的輸出可在向WL施加適當的WL電壓時在SL處被存取。在再一些實施例中,通過對BL、SL和/或WL施加適當的偏壓條件,可對可程式化金屬化單元140執行設定操作和/或重設操作,從而可在可程式化金屬化單元140的資料儲存層130內形成或溶解導電橋。擴散阻擋層132被配置成防止或減輕擴散性物種(例如,鈦)從頂部電極136和/或活性金屬層134擴散到資料儲存層130。這可增加可對可程式化金屬化單元140執行的設定和/或重設操作的數量。
圖6示出沿圖5中的線截取的圖5的積體晶片500的一些替代實施例的俯視圖600。
在一些實施例中,如圖6所示,當從上方觀察時,可程式化金屬化單元140和/或頂部電極136可各自具有矩形形狀或正方形形狀。在進一步的實施例中,當從上方觀察時,可程式化金屬化單元140可具有圓形形狀或當從上方觀察時為橢圓形狀(未示出)。
圖7到圖12示出形成記憶體裝置的方法的一些實施例的剖視圖700到1200,所述記憶體裝置具有包括擴散阻擋層的可程式化金屬化單元。儘管圖7到圖12所示剖視圖700到1200是參考一種方法來闡述的,但應理解,圖7到圖12所示結構不限於所述方法,而是可獨立於所述方法。儘管圖7到圖12闡述為一系列動作,然而應理解這些動作不進行限制,這是因為所述動作的次 序可在其他實施例中被改變,且所公開的方法也適用於其他結構。在其他實施例中,所示和/或所述的一些動作可全部或部分地被省略。
如圖7的剖視圖700所示,在基底102之上形成下部層間介電(ILD)結構702,且在下部ILD結構702內形成下部導電線116。此外,在下部ILD結構702之上形成介電結構120。在一些實施例中,下部ILD結構702和/或介電結構120可例如各自通過化學氣相沉積(chemical vapor deposition,CVD)、物理氣相沉積(physical vapor deposition,PVD)、原子層沉積(atomic layer deposition,ALD)或另一種合適的沉積或生長製程來沉積。在進一步的實施例中,下部導電線116可通過單鑲嵌製程或雙鑲嵌製程形成。在一些實施例中,介電結構120可包括下部介電層120a及上覆在下部介電層120a之上的上部介電層120b。在一些實施例中,下部ILD結構702例如可為或可包含二氧化矽、低介電常數介電材料、極低介電常數介電材料、前述材料的組合等。在進一步的實施例中,下部介電層120a例如可為或可包含碳化矽、碳氧化矽等。在再一些實施例中,上部介電層120b例如可為或可包含氧化矽、氮化矽等。
如圖8的剖視圖800所示,在下部導電線116之上形成導電襯層124及導電結構126。在一些實施例中,在形成導電襯層124及導電結構126之前,將介電結構120圖案化以形成底部電極通孔開口,從而暴露出下部導電線116的上表面。在形成底部電極通孔開口之後,將導電襯層124沉積在下部導電線116及介電結構120之上,使得導電襯層124至少部分地對底部電極通孔開 口進行加襯。在進一步的實施例中,在形成導電襯層124之後,將導電結構126沉積在導電襯層124之上。在一些實施例中,導電結構126填充底部電極通孔開口的其餘部分。在進一步的實施例中,導電襯層124和/或導電結構126可例如各自通過CVD、PVD、無電鍍覆、電鍍、濺射或另一種合適的生長或沉積製程來沉積。在一些實施例中,導電襯層124例如可為或可包含氮化鉭和/或一些其他合適的導電襯層材料。在進一步的實施例中,導電結構126例如可為或可包含氮化鈦和/或一些其他合適的導電材料。
如圖9的剖視圖900所示,對導電襯層124及導電結構126執行平坦化製程,直到到達介電結構120的上表面,從而界定底部電極通孔122。在一些實施例中,平坦化製程可包括執行化學機械平坦化(chemical mechanical planarization,CMP)製程。
如圖10的剖視圖1000所示,在介電結構120及底部電極通孔122之上形成儲存單元層堆疊1002。在一些實施例中,儲存單元層堆疊1002包括底部電極128、資料儲存層130、擴散阻擋層132、活性金屬層134及頂部電極136。在進一步的實施例中,擴散阻擋層132可設置在資料儲存層130與頂部電極136之間。在一些實施例中,以使頂部電極136包含擴散性物種(例如,鈦、鉭、氮、前述物種的組合等)的方式形成頂部電極136。擴散阻擋層132被配置成防止擴散性物種從頂部電極136和/或活性金屬層134擴散到資料儲存層130。在一些實施例中,儲存單元層堆疊1002內的每一層可例如通過CVD、PVD、ALD、濺射、共濺射或另一種合適的生長或沉積製程來沉積。此外,在沉積儲存單元層 堆疊1002的層之後,可在儲存單元層堆疊1002之上形成罩幕層1004。在一些實施例中,罩幕層1004可為或可包括光阻、硬罩幕層等。
如圖11的剖視圖1100所示,根據罩幕層(圖10的1004)將儲存單元層堆疊1002圖案化,從而界定可程式化金屬化單元140。在一些實施例中,圖案化製程包括將儲存單元層堆疊1002內的層的未罩幕區暴露於一種或多種刻蝕劑,且隨後執行移除製程以移除罩幕層(圖10的1004)。
如圖12的剖視圖1200所示,在介電結構120及可程式化金屬化單元140之上形成上部ILD結構1202。在一些實施例中,上部ILD結構1202可通過例如CVD、PVD、ALD或另一種合適的沉積或生長製程來形成。在進一步的實施例中,上部ILD結構1202例如可為或可包含二氧化矽、低介電常數介電材料、極低介電常數介電材料或另一種合適的介電材料。此外,在可程式化金屬化單元140之上形成上部導通孔142及上部導電線144。在一些實施例中,上部導通孔142和/或導電線144例如可分別為或可分別包含鋁、銅、鎢、另一種合適的介電材料或前述材料的組合。在進一步的實施例中,上部導通孔142和/或上部導電線144可各自通過單鑲嵌製程或雙鑲嵌製程形成。
在一些實施例中,在形成可程式化金屬化單元140之後,對可程式化金屬化單元140執行烘烤製程,以驗證可程式化金屬化單元140在高溫下的資料保持。此外,在執行烘烤製程之後,可對可程式化金屬化單元140執行設定和/或重設操作。在一些實施例中,烘烤製程可達到約400攝氏度的高溫和/或可維持高溫約 30分鐘的持續時間。在一些實施例中,例如,如果省略擴散阻擋層132(未示出),則烘烤製程可引起擴散性物種從頂部電極136擴散到活性金屬層134和/或資料儲存層130。這又可導致可對可程式化金屬化單元140執行的設定和/或重設操作的數量減少,和/或可減小資料儲存層130的有效厚度。然而,根據本公開的實施例,擴散阻擋層132設置在資料儲存層130與頂部電極136之間,且被配置成防止在烘烤製程期間擴散性物種從頂部電極136擴散到資料儲存層130。這部分地可能是由於擴散阻擋層132會增加擴散性物種的擴散路徑複雜性,使得擴散性物種可不穿過擴散阻擋層132到達資料儲存層130。此外,擴散阻擋層132的擴散活化溫度高於烘烤製程的高溫(例如,約400攝氏度),使得擴散阻擋層132內的原子在烘烤製程期間不擴散出擴散阻擋層132。
在一些實施例中,在執行烘烤製程之後,資料儲存層130和/或活性金屬層134可各自實質上不含擴散性物種。例如,資料儲存層130和/或活性金屬層134內的擴散性物種(例如,鈦、鉭和/或氮)的原子百分比可為約0%、小於1%、小於3%或小於5%,使得資料儲存層130和/或活性金屬層134各自實質上不含擴散性物種。在進一步的實施例中,擴散阻擋層132內的擴散性物種(例如,鈦、鉭和/或氮)的原子百分比可為約0%、小於1%、小於3%或小於5%,使得在烘烤製程之後擴散阻擋層132實質上不含擴散性物種。因此,在烘烤製程期間,擴散性物種可不從頂部電極136擴散。在再一些實施例中,底部電極128可包括被配置為擴散阻擋層132(例如,參見圖3)的底部電極擴散阻擋層(未示出),使得在烘烤製程期間阻擋擴散性物種從底部電極128擴散到資料 儲存層130。
在進一步的實施例中,包含擴散性物種(例如,鈦)及擴散阻擋層132的材料(例如,鎢、釕或銥)的合金的形成溫度高於烘烤製程的高溫(例如,400攝氏度)。這部分地進一步防止和/或減輕擴散性物種擴散到擴散阻擋層132和/或下伏在擴散阻擋層132之下的層/結構中。在一些實施例中,鈦-釕(Ti-Ru)合金的形成溫度、鈦-銥(Ti-Ir)合金的形成溫度和/或鈦-鎢(Ti-W)合金的形成溫度分別高於400攝氏度。
圖13示出根據本公開形成具有可程式化金屬化單元的記憶體裝置的方法1300,所述可程式化金屬化單元包括擴散阻擋層。儘管方法1300被示出和/或闡述為一系列動作或事件,但應理解,所述方法不限於所示的排序或動作。因此,在一些實施例中,這些動作可以不同於圖示的次序實施,和/或可同時實施。此外,在一些實施例中,圖示的動作或事件可被細分為多個動作或事件,所述動作或事件可在單獨的時間實施或者與其他動作或子動作同時實施。在一些實施例中,可省略一些示出的動作或事件,且可包括其他未示出的動作或事件。
在動作1302中,在基底之上形成下部導電線。圖7示出對應於動作1302的一些實施例的剖視圖700。
在動作1304中,在下部導電線之上形成介電結構。圖7示出對應於動作1304的一些實施例的剖視圖700。
在動作1306中,在下部導電線之上形成底部電極通孔,使得底部電極通孔延伸穿過介電結構並接觸下部導電線。圖8及圖9示出對應於動作1306的一些實施例的剖視圖800及900。
在動作1308中,在底部電極通孔之上形成儲存單元層堆疊。儲存單元層堆疊包括頂部電極、資料儲存層及設置在頂部電極與資料儲存層之間的擴散阻擋層。圖10示出對應於動作1308的一些實施例的剖視圖1000。
在動作1310中,將儲存單元層堆疊圖案化,由此界定可程式化金屬化單元。圖11示出對應於動作1310的一些實施例的剖視圖1100。
在動作1312中,在可程式化金屬化單元之上形成上部導通孔及上部導電線。圖12示出對應於動作1312的一些實施例的剖視圖1200。
因此,在一些實施例中,本申請關於包括底部電極、資料儲存層、頂部電極及擴散阻擋層的可程式化金屬化單元,其中擴散阻擋層被配置成防止擴散性物種擴散到資料儲存層。
在各種實施例中,本申請提供一種記憶體裝置,所述記憶體裝置包括基底;底部電極,上覆在基底之上;資料儲存層,上覆在底部電極之上;頂部電極,上覆在資料儲存層之上,其中在資料儲存層內能夠選擇性地形成導電橋,以將底部電極耦合到頂部電極;以及擴散阻擋層,設置在資料儲存層與頂部電極之間。
在一些實施例中,所述頂部電極包含擴散性物種,其中所述擴散阻擋層被配置成防止所述擴散性物種從所述頂部電極擴散到所述資料儲存層。在一些實施例中,所述擴散阻擋層實質上不含所述擴散性物種,且其中所述擴散性物種為鈦。在一些實施例中,更包括:設置在所述資料儲存層與所述頂部電極之間的活性金屬層,其中所述活性金屬層包含第一導電材料,且所述頂部 電極包含與所述第一導電材料不同的第二導電材料。在一些實施例中,所述擴散阻擋層設置在所述資料儲存層與所述活性金屬層之間。在一些實施例中,更包括:設置在所述活性金屬層與所述頂部電極之間的上部擴散阻擋層,其中所述上部擴散阻擋層與所述擴散阻擋層包含相同的材料。在一些實施例中,所述擴散阻擋層設置在所述活性金屬層與所述頂部電極之間,其中所述活性金屬層直接接觸所述資料儲存層。在一些實施例中,所述擴散阻擋層的厚度大於所述資料儲存層的厚度。在一些實施例中,所述頂部電極的側壁、所述資料儲存層的側壁及所述擴散阻擋層的側壁分別對準。
在各種實施例中,本申請提供一種積體晶片,所述積體晶片包括基底;底部電極通孔,上覆在基底之上;以及可程式化金屬化單元,上覆在底部電極通孔之上,其中可程式化金屬化單元包括頂部電極、資料儲存層、活性金屬層及擴散阻擋層,其中頂部電極包含擴散性物種,其中頂部電極對氧的反應性比活性金屬層低,其中活性金屬層設置在頂部電極與資料儲存層之間,且其中擴散阻擋層下伏在頂部電極之下並被配置成防止擴散性物種擴散到資料儲存層。
在一些實施例中,所述擴散性物種為鈦,其中所述擴散阻擋層包含釕、鎢或銥。在一些實施例中,所述擴散阻擋層的底表面直接接觸所述資料儲存層的頂表面,其中所述擴散阻擋層的頂表面直接接觸所述活性金屬層的底表面。在一些實施例中,所述擴散阻擋層的底表面直接接觸所述活性金屬層的頂表面,其中所述擴散阻擋層的頂表面直接接觸所述頂部電極的底表面。在一 些實施例中,所述活性金屬層包含與所述擴散性物種不同的第一導電材料,且其中所述擴散阻擋層包含與所述第一導電材料及所述擴散性物種不同的第二導電材料。在一些實施例中,所述擴散阻擋層及所述活性金屬層分別實質上不含所述擴散性物種。在一些實施例中,所述底部電極通孔在所述可程式化金屬化單元的側壁之間橫向地間隔開。在一些實施例中,所述資料儲存層的厚度小於所述擴散阻擋層的厚度,其中所述擴散阻擋層的所述厚度小於所述活性金屬層的厚度。
在各種實施例中,本申請提供一種形成記憶體裝置的方法,所述方法包括:在基底之上形成下部導電線;在下部導電線之上形成底部電極通孔;在所述底部電極通孔之上形成儲存單元層堆疊,其中所述儲存單元層堆疊包括底部電極、資料儲存層、擴散阻擋層及頂部電極,其中擴散阻擋層設置在資料儲存層與頂部電極之間,其中頂部電極包含擴散性物種,且其中擴散阻擋層被配置成阻擋擴散性物種的擴散;以及將儲存單元層堆疊圖案化,由此界定可程式化金屬化單元。
在一些實施例中,在執行所述圖案化之後,所述頂部電極的側壁、所述資料儲存層的側壁及所述擴散阻擋層的側壁分別對準。在一些實施例中,更包括:對所述可程式化金屬化單元執行烘烤製程,其中所述烘烤製程達到約400攝氏度的高溫,其中在執行所述烘烤製程之後所述資料儲存層實質上不含所述擴散性物種。
以上概述了若干實施例的特徵,以使所屬領域中的技術人員可更好地理解本公開的各個方面。所屬領域中的技術人員應 理解,其可容易地使用本公開作為設計或修改其他製程及結構的基礎來施行與本文中所介紹的實施例相同的目的和/或實現與本文中所介紹的實施例相同的優點。所屬領域中的技術人員還應認識到,這些等效構造並不背離本公開的精神及範圍,而且他們可在不背離本公開的精神及範圍的條件下對其作出各種改變、代替及變更。
100:記憶體裝置
102:基底
104:半導體裝置
106:源極/汲極區
108:閘極介電層
110:閘電極
112:側壁間隔件結構
114:下部導通孔
116:下部導電線
118:內連線介電結構
120:介電結構
120a:下部介電層
120b:上部介電層
122:底部電極通孔
124:導電襯層
126:導電結構
128:底部電極
130:資料儲存層
131:區
132:擴散阻擋層
134:活性金屬層
136:頂部電極
140:可程式化金屬化單元
142:上部導通孔
144:上部導電線

Claims (10)

  1. 一種記憶體裝置,包括:基底;底部電極,上覆在所述基底之上;資料儲存層,上覆在所述底部電極之上;頂部電極,上覆在所述資料儲存層之上,其中在所述資料儲存層內能夠選擇性地形成導電橋,以將所述底部電極耦合到所述頂部電極;以及擴散阻擋層,設置在所述資料儲存層與所述頂部電極之間,其中所述擴散阻擋層包括導電材料。
  2. 如請求項1所述的記憶體裝置,其中所述頂部電極包含擴散性物種,其中所述擴散阻擋層被配置成防止所述擴散性物種從所述頂部電極擴散到所述資料儲存層,其中所述擴散性物種包括金屬或金屬氮化物。
  3. 如請求項1所述的記憶體裝置,其中所述擴散阻擋層的晶粒尺寸小於所述頂部電極的晶粒尺寸。
  4. 如請求項1所述的記憶體裝置,更包括:設置在所述資料儲存層與所述頂部電極之間的活性金屬層,其中所述活性金屬層包含第一導電材料,且所述頂部電極包含與所述第一導電材料不同的第二導電材料。
  5. 如請求項4所述的記憶體裝置,其中所述擴散阻擋層設置在所述資料儲存層與所述活性金屬層之間,且所述擴散阻擋層具有非晶結構或單晶結構。
  6. 如請求項5所述的記憶體裝置,更包括: 設置在所述活性金屬層與所述頂部電極之間的上部擴散阻擋層,其中所述上部擴散阻擋層與所述擴散阻擋層包含相同的材料。
  7. 如請求項4所述的記憶體裝置,其中所述擴散阻擋層設置在所述活性金屬層與所述頂部電極之間,其中所述活性金屬層直接接觸所述資料儲存層。
  8. 一種積體晶片,包括:基底;底部電極通孔,上覆在所述基底之上;以及可程式化金屬化單元,上覆在所述底部電極通孔之上,其中所述可程式化金屬化單元包括頂部電極、資料儲存層、活性金屬層及擴散阻擋層,其中所述頂部電極包含擴散性物種,其中所述頂部電極對氧的反應性比所述活性金屬層低,其中所述活性金屬層設置在所述頂部電極與所述資料儲存層之間,且其中所述擴散阻擋層下伏在所述頂部電極之下並被配置成防止所述擴散性物種擴散到所述資料儲存層,其中所述擴散阻擋層包括導電材料。
  9. 如請求項8所述的積體晶片,其中所述擴散性物種為鈦,其中所述擴散阻擋層包含釕、鎢或銥。
  10. 一種形成記憶體裝置的方法,所述方法包括:在基底之上形成下部導電線;在所述下部導電線之上形成底部電極通孔;在所述底部電極通孔之上形成儲存單元層堆疊,其中所述儲存單元層堆疊包括底部電極、資料儲存層、擴散阻擋層及頂部電極,其中所述擴散阻擋層設置在所述資料儲存層與所述頂部電極之間,且所述擴散阻擋層包括導電材料,其中所述頂部電極包含 擴散性物種,且其中所述擴散阻擋層被配置成阻擋所述擴散性物種的擴散;以及將所述儲存單元層堆疊圖案化,由此界定可程式化金屬化單元。
TW109138525A 2020-03-03 2020-11-05 記憶體裝置、積體晶片及其形成方法 TWI769574B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/807,600 2020-03-03
US16/807,600 US11594678B2 (en) 2020-03-03 2020-03-03 Diffusion barrier layer in programmable metallization cell

Publications (2)

Publication Number Publication Date
TW202135063A TW202135063A (zh) 2021-09-16
TWI769574B true TWI769574B (zh) 2022-07-01

Family

ID=77389206

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109138525A TWI769574B (zh) 2020-03-03 2020-11-05 記憶體裝置、積體晶片及其形成方法

Country Status (5)

Country Link
US (3) US11594678B2 (zh)
KR (1) KR102332876B1 (zh)
CN (1) CN113346011A (zh)
DE (1) DE102020107107A1 (zh)
TW (1) TWI769574B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230134560A1 (en) * 2021-10-29 2023-05-04 Taiwan Semiconductor Manufacturing Company, Ltd. Diffusion barrier to mitigate direct-shortage leakage in conductive bridging ram (cbram)
CN116075212B (zh) * 2023-03-06 2023-07-14 昕原半导体(上海)有限公司 电阻式随机存取存储器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110291066A1 (en) * 2010-06-01 2011-12-01 In-Gyu Baek Nonvolatile Memory Devices Having Cells with Oxygen Diffusion Barrier Layers Therein and Methods of Manufacturing the Same
TW201436317A (zh) * 2013-03-13 2014-09-16 Macronix Int Co Ltd 電阻式記憶體裝置與其製造方法
US8866122B1 (en) * 2012-06-14 2014-10-21 Adesto Technologies Corporation Resistive switching devices having a buffer layer and methods of formation thereof
US20160064664A1 (en) * 2014-08-28 2016-03-03 Taiwan Semiconductor Manufacturing Co., Ltd. High K Scheme to Improve Retention Performance of Resistive Random Access Memory (RRAM)
US20190165266A1 (en) * 2017-11-24 2019-05-30 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and formation method of memory device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748557B1 (ko) 2006-05-26 2007-08-10 삼성전자주식회사 상변화 메모리 장치
US7997791B2 (en) 2007-07-24 2011-08-16 Qimonda Ag Temperature sensor, integrated circuit, memory module, and method of collecting temperature treatment data
JP5708930B2 (ja) 2011-06-30 2015-04-30 ソニー株式会社 記憶素子およびその製造方法ならびに記憶装置
US8941089B2 (en) 2012-02-22 2015-01-27 Adesto Technologies Corporation Resistive switching devices and methods of formation thereof
US9252359B2 (en) 2013-03-03 2016-02-02 Adesto Technologies Corporation Resistive switching devices having a switching layer and an intermediate electrode layer and methods of formation thereof
US10693062B2 (en) 2015-12-08 2020-06-23 Crossbar, Inc. Regulating interface layer formation for two-terminal memory
KR20180134123A (ko) 2017-06-08 2018-12-18 에스케이하이닉스 주식회사 저항 변화 메모리 소자
US10504963B2 (en) * 2017-08-30 2019-12-10 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM memory cell with multiple filaments
KR102607117B1 (ko) * 2018-08-24 2023-11-29 삼성전자주식회사 가변 저항 메모리 소자 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110291066A1 (en) * 2010-06-01 2011-12-01 In-Gyu Baek Nonvolatile Memory Devices Having Cells with Oxygen Diffusion Barrier Layers Therein and Methods of Manufacturing the Same
US8866122B1 (en) * 2012-06-14 2014-10-21 Adesto Technologies Corporation Resistive switching devices having a buffer layer and methods of formation thereof
TW201436317A (zh) * 2013-03-13 2014-09-16 Macronix Int Co Ltd 電阻式記憶體裝置與其製造方法
US20160064664A1 (en) * 2014-08-28 2016-03-03 Taiwan Semiconductor Manufacturing Co., Ltd. High K Scheme to Improve Retention Performance of Resistive Random Access Memory (RRAM)
US20190165266A1 (en) * 2017-11-24 2019-05-30 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and formation method of memory device

Also Published As

Publication number Publication date
US20230413696A1 (en) 2023-12-21
KR102332876B1 (ko) 2021-12-01
CN113346011A (zh) 2021-09-03
TW202135063A (zh) 2021-09-16
DE102020107107A1 (de) 2021-09-09
US11778931B2 (en) 2023-10-03
US20220367801A1 (en) 2022-11-17
KR20210112206A (ko) 2021-09-14
US11594678B2 (en) 2023-02-28
US20210280780A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
US8084760B2 (en) Ring-shaped electrode and manufacturing method for same
US6951805B2 (en) Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US11611038B2 (en) Method for forming RRAM with a barrier layer
TWI426632B (zh) 交點自對準縮減胞元尺寸相變記憶體
US11778931B2 (en) Diffusion barrier layer in programmable metallization cell
TWI792079B (zh) 記憶單元、其製造方法和記憶元件
TW201836181A (zh) 電阻式隨機存取記憶體結構及其形成方法
US11716915B2 (en) Top-electrode barrier layer for RRAM
US20230345847A1 (en) Data storage structure for improving memory cell reliability
US11258009B2 (en) Switching atomic transistor and method for operating same
CN113451507A (zh) 存储器器件、用于形成其的方法及集成芯片
TWI752717B (zh) 記憶體裝置、積體晶片與用於形成記憶體裝置的方法
TWI755256B (zh) 記憶裝置及其形成方法
CN110660908B (zh) 存储器装置及其制造方法
US20230180640A1 (en) Stacked cross-point phase change memory
KR102527200B1 (ko) 수직 원자 트랜지스터 및 이의 동작방법
JP2023168319A (ja) 改良された耐久特性を提供するためのポストパターン化処理されたメモリ膜を有する抵抗変化型ランダムアクセスメモリ、及びその形成方法
KR20220015823A (ko) 저항 변화 소자 및 이의 제조방법
TW202107679A (zh) 記憶體單元