TWI765950B - 一種包含第4族過渡金屬前驅體之含第4族過渡金屬之成膜組成物、一種在基板上沉積含第4族過渡金屬之膜之方法、以及一種在基板上沉積形成含第4族過渡金屬之保形膜之方法 - Google Patents

一種包含第4族過渡金屬前驅體之含第4族過渡金屬之成膜組成物、一種在基板上沉積含第4族過渡金屬之膜之方法、以及一種在基板上沉積形成含第4族過渡金屬之保形膜之方法 Download PDF

Info

Publication number
TWI765950B
TWI765950B TW106146269A TW106146269A TWI765950B TW I765950 B TWI765950 B TW I765950B TW 106146269 A TW106146269 A TW 106146269A TW 106146269 A TW106146269 A TW 106146269A TW I765950 B TWI765950 B TW I765950B
Authority
TW
Taiwan
Prior art keywords
group
transition metal
nme
containing film
precursor
Prior art date
Application number
TW106146269A
Other languages
English (en)
Other versions
TW201833123A (zh
Inventor
金大玹
加提紐諭子
盧沅泰
朱利安 伽蒂諾
珍 馬克 吉拉德
Original Assignee
法商液態空氣喬治斯克勞帝方法研究開發股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 filed Critical 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司
Publication of TW201833123A publication Critical patent/TW201833123A/zh
Application granted granted Critical
Publication of TWI765950B publication Critical patent/TWI765950B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Formation Of Insulating Films (AREA)
  • Electromagnetism (AREA)

Abstract

揭示含第4族過渡金屬之成膜組成物。該等含第4族過渡金屬之成膜組成物包含具有式L2-M-(R)C5R3-[(ER2)2-NR]-之第4族過渡金屬前驅體,其中M為以η5鍵結模式鍵結至Cp基團之Ti、Zr或Hf;各E獨立地為C、Si、B或P;各R獨立地為氫或C1-C4烴基;且各L獨立地為選自由以下組成之群的-1陰離子配位體:NR' 2、OR'、Cp、脒基、β-二酮或酮亞胺,其中R'為H或C1-C4烴基且相鄰R'可接合以形成烴基環;其限制條件為該Cp上之至少一個R為C1至C4。亦揭示合成並使用所揭示之前驅體以經由氣相沉積製程在一或多個基板上沉積含第4族過渡金屬之膜的方法。

Description

一種包含第4族過渡金屬前驅體之含第4族過渡金屬之成膜組成物、一種在基板上沉積含第4族過渡金屬之膜之方法、以及一種在基板上沉積形成含第4族過渡金屬之保形膜之方法 〔相關申請案之交叉參考〕
本申請案主張2016年12月30日申請之美國申請案第15/396,159號之權益,該申請案出於所有目的以全文引用的方式併入本文中。
揭示含第4族過渡金屬之成膜組成物,其包含具有式L2-M-C5R4-[(ER2)2-NR]-之第4族過渡金屬前驅體,其中M為以η5鍵結模式鍵結至Cp基團之Ti、Zr或Hf;各E獨立地為C、Si、B或P;各R獨立地為氫或C1-C4烴基;相鄰R可接合成烴基環;且各L獨立地為選自由以下組成之群的-1陰離子配位體:NR' 2、OR'、Cp、脒基、β-二酮或酮亞胺,其中R'為H或C1-C4烴基且相鄰R'可接 合以形成烴基環;其限制條件為Cp上之至少一個R為C1至C4。亦揭示合成並使用所揭示之前驅體以經由氣相沉積製程在一或多個基板上沉積含第4族過渡金屬之膜的方法。
已知合成Cp橋連之第4族金屬化合物。舉例而言,J Okuda揭示具有經鍵聯醯胺基-環戊二烯基配位體之金屬有機催化劑,諸如Ti(R-Cp-SiMe2-NR-)(NR2)2(J Okuda,「Linked Amido-CycIopentadienyl Complexes of Group 3 and 4 Metals:The First「Post-Metallocenes」Metalorganic Catalysts for Synthesis and Polymerization,第200-211頁,1999)。Herrmann等人揭示作為潛在催化劑製備的Cp(CH2CH2-O-)Zr(NMe2)2(Herrmann等人,「Doubly Bridged vac-Metallocenes of Zirconium and Hafnium」,Angewandte.Chem.Int.Ed.Eng,1994,33(19),第1946-1949頁)。Kim等人揭示(Me4Cp-CH2-NtBu)Zr(NEt2)2及(1,3-Me2C5H2-CHPh-NtBu-κN)Zr(NMe2)2之合成(Kim等人,「sp3-C1-Bridged 1,3-Me2Cp/Amido Titanium and Zirconium Complexes and Their Reactivities towards Ethylene Polymerization」,Eur.J.Inorg.Chem.2004,第1522-1529頁)。Jesus Cano及Klaus Kunz揭示一些含有P、C、Si之Cp-胺基橋連化合物的合成(Jesus Cano,Klaus Kunz,「How to synthesize a constrained geometry catalyst(CGC)-A survey」,Journal of Organometallic Chemistry 692,2007,第4411-4423頁)。碳橋連之環戊二烯基醯胺基第4族金屬錯合物之合成係於1999年報導於Piet-Jan Sinnema之PhD論文中(Piet-Jan Sinnema,「Carbon-Bridged Cyclopentadienyl Amido Group 4 Metal Complexes」,格羅寧根大學(University of Groningen),1999)。
環戊二烯基(Cp)橋連之第4族金屬化合物亦已作為前驅體用 於含第4族金屬之膜之CVD及/或ALD。舉例而言,Ahn等人之US 8,946,096揭示在CVD或ALD中利用之第4族金屬有機化合物,其具有式
Figure 106146269-A0305-02-0006-2
其中M為Ti、Zr或Hf,R1為C1至C4烷基,R2及R3獨立地為C1至C6烷基。
Cho等人之US 2015/0255276揭示作為沉積來源用於CVD及ALD製程中之有機金屬前驅體,其由Xn(M)(R1)m(R2)k之化學式表示,其中M為Ti、Zr或Hf。X為M及以下中之一者的配位體:6,6-二甲基富烯基(6,6-dimethylfulvenyl)、茚基、環戊二烯基及經胺基取代之環戊二烯基。R1及R2為M之配位體,且各自獨立地為胺基或伸乙基二胺基。各n、m及k為正整數,且n+m+k=3或4。
Castle等人之KR10-2014-0078534揭示金屬前驅體及用金屬前驅體製備之含金屬薄膜,該等金屬前驅體包括具有以下結構式之第4族錯合物:
Figure 106146269-A0305-02-0006-3
其中M選自由Zr、Hf及Ti組成之群,Xa及Xb各自獨立地為NRaRb或ORc,Xc為(NRd)或O,Ra至Rd各自獨立地為氫原子或C1至C5烷基,R各自獨立地為氫原子或C1至C5烷基,且m為0至4之整數。
Kang等人揭示使用(CpN)Ti(NMe2)2及氧氣遠程電漿形成TiO2薄膜(Kang等人,「Growth behavior and structural characteristics of TiO2 thin films using(CpN)Ti(NMe2)2 and oxygen remote Plasma」,Phys.Status Solidi A,2014,212,第3期,第674-679頁)。
因此,熟習此項技術者繼續尋求適用於氣相薄膜沉積之在高溫下具有受控制之厚度及組成的熱穩定第4族化合物。
揭示含第4族過渡金屬之成膜組成物。含第4族過渡金屬之成膜組成物包含具有式L2-M-C5R4-[(ER2)2-NR]-之第4族過渡金屬前驅體,參看以下結構式:
Figure 106146269-A0305-02-0007-4
其中M為以η5鍵結模式鍵結至Cp基團之Ti、Zr或Hf;各E獨立地為C、Si、B或P;各R獨立地為氫或C1-C4烴基;相鄰R可接合成烴基環;且各L獨立地為選自由以下組成之群的-1陰離子配位體:NR' 2、OR'、Cp、脒基、β-二酮或酮亞胺,其中R'為H或C1-C4烴基且相鄰R'可接合以形成烴基環;其限制條件為Cp上之至少一個R為C1至C4
所揭示之含第4族過渡金屬成之膜組成物可進一步包括以下態樣中之一或多者:●M為Ti; ●M為Zr;●M為Hf;●各E獨立地為C、Si、B或P;●各E為C;●各E為Si;●各E為B;●各E為P;●各R獨立地為H、Me、Et、 n Pr、 i Pr、 n Bu、 s Bu、 i Bu或 t Bu;●各R獨立地為H、Me或Et;●各R獨立地為H或Me;●L為NMe2;●L為NMeEt;●L為NEt2●L為NHMe;●L為NHEt;●L為OMe;●L為OEt;●L為O n Pr;●L為O i Pr;●L為O n Bu;●L為O i Bu;●L為O s Bu;●L為O t Bu;●L為Cp; ●L為RxCp,其中x=1-5且R=C1-C3烷基;●L為MeCp;●L為脒基;●L為β-二酮;●L為酮亞胺;●Cp基團為經甲基取代之Cp基團;●Cp基團為經乙基取代之Cp基團;●第4族過渡金屬前驅體為(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe)-;●第4族過渡金屬前驅體為(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NEt)-;●第4族過渡金屬前驅體為(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NtBu)-;●第4族過渡金屬前驅體為(Me2N)2-Zr-(Et)C5H3-(CH2-CH2-NMe)-;●第4族過渡金屬前驅體為(Me2N)2-Zr-(iPr)C5H3-(CH2-CH2-NMe)-;●第4族過渡金屬前驅體為(Me2N)2-Hf-(Me)C5H3-(CH2-CH2-NMe)-;●第4族過渡金屬前驅體為(Me2N)2-Hf-(Me)C5H3-(CH2-CH2-NEt)-;●第4族過渡金屬前驅體為(Me2N)2-Hf-(Me)C5H3-(CH2-CH2-NtBu)-;●第4族過渡金屬前驅體為(Me2N)2-Hf-(Et)C5H3-(CH2-CH2-NMe)-;●第4族過渡金屬前驅體為(Me2N)2-Hf-(iPr)C5H3-(CH2-CH2-NMe)-;●第4族過渡金屬前驅體為(Me2N)(Cp)-Zr-(Me)C5H3-(CH2-CH2-NMe)-;●第4族過渡金屬前驅體為(Me2N)(Cp)-Zr-(Et)C5H3-(CH2-CH2-NMe)-;●第4族過渡金屬前驅體為(Me2N)(Cp)-Zr-(iPr)C5H3-(CH2-CH2-NMe)-;●第4族過渡金屬前驅體為(Me2N)(Cp)-Hf-(Me)C5H3-(CH2-CH2-NMe)-;●第4族過渡金屬前驅體為(Me2N)(Cp)-Hf-(Et)C5H3-(CH2-CH2-NMe)-;●第4族過渡金屬前驅體為(Me2N)(Cp)-Hf-(iPr)C5H3-(CH2-CH2-NMe)-;●含第4族過渡金屬之成膜組成物包含在大致0.1莫耳%與大致35莫耳%之 間的第4族過渡金屬前驅體;●含第4族過渡金屬之成膜組成物包含在大致0.1莫耳%與大致40莫耳%之間的第4族過渡金屬前驅體;●含第4族過渡金屬之成膜組成物包含在大致0.1莫耳%與大致50莫耳%之間的第4族過渡金屬前驅體;●含第4族過渡金屬之成膜組成物包含在大致0.1莫耳%與大致60莫耳%之間的第4族過渡金屬前驅體;●含第4族過渡金屬之成膜組成物包含在大致0.1莫耳%與大致65莫耳%之間的第4族過渡金屬前驅體;●含第4族過渡金屬之成膜組成物包含大致0.1莫耳%至大致35莫耳%的一種第4族過渡金屬前驅體及大致0.1莫耳%至大致65莫耳%的第二第4族過渡金屬前驅體的異構體混合物;●含第4族過渡金屬之成膜組成物包含大致0.1莫耳%至大致40莫耳%的一種第4族過渡金屬前驅體及大致0.1莫耳%至大致60莫耳%的第二第4族過渡金屬前驅體的異構體混合物;●含第4族過渡金屬之成膜組成物包含大致0.1莫耳%至大致45莫耳%的一種第4族過渡金屬前驅體及大致0.1莫耳%至大致55莫耳%的第二第4族過渡金屬前驅體的異構體混合物;●含第4族過渡金屬之成膜組成物包含大致0.1莫耳%至大致50莫耳%的一種第4族過渡金屬前驅體及大致0.1莫耳%至大致50莫耳%的第二第4族過渡金屬前驅體的異構體混合物;●含第4族過渡金屬之成膜組成物之黏度在大致1與大致30cps之間,較佳在大致5與大致20cps之間;●含第4族過渡金屬之成膜組成物包含在大致95% w/w至大致100% w/w之 間的第4族過渡金屬前驅體;●含第4族過渡金屬之成膜組成物包含在大致99% w/w至大致100% w/w之間的第4族過渡金屬前驅體;●含第4族過渡金屬之成膜組成物包含在大致0% w/w至大致5% w/w之間的M(RCp)2反應物;●含第4族過渡金屬之成膜組成物包含在大致0% w/w至大致1% w/w之間的M(RCp)2反應物;●含第4族過渡金屬之成膜組成物包含在大致0% w/w至大致5% w/w之間的M(NR2)4反應物;●含第4族過渡金屬之成膜組成物包含在大致0% w/w至大致1% w/w之間的M(NR2)4反應物;●含第4族過渡金屬之成膜組成物進一步包含溶劑;●含第4族過渡金屬之成膜組成物包含在大致0% w/w與5% w/w之間的烴溶劑;●溶劑選自由以下組成之群:飽和或不飽和C1-C16烴、酮、醚、乙二醇二甲醚、酯、四氫呋喃(THF)、草酸二甲酯(DMO)及其組合;●溶劑為C1-C16烴;●溶劑為四氫呋喃(THF);●溶劑為DMO;●溶劑為醚;●溶劑為乙二醇二甲醚;或●第4族過渡金屬前驅體之沸點與溶劑之沸點之間的差小於100℃。
亦揭示含第4族過渡金屬之成膜組成物遞送裝置,其包含具有入口導管及出口導管之罐,且含有上文所揭示之含第4族過渡金屬之成膜組成物中之任一 者。所揭示之遞送裝置可包括以下態樣中之一或多者:●第4族過渡金屬前驅體為(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe)-;●第4族過渡金屬前驅體為(Me2N)2-Hf-(Me)C5H3-(CH2-CH2-NMe)-;●含第4族過渡金屬之成膜組成物之非第4族金屬污染物的總濃度小於10ppmw,●入口導管之一端位於含第4族過渡金屬之成膜組成物之表面上方,且出口導管之一端位於含第4族過渡金屬之成膜組成物之表面上方;●入口導管末端之一端位於含第4族過渡金屬之成膜組成物之表面上方,且出口導管之一端位於含第4族過渡金屬之成膜組成物之表面下方;或●入口導管末端之一端位於含第4族過渡金屬之成膜組成物之表面下方,且出口導管之一端位於含第4族過渡金屬之成膜組成物之表面上方。
亦揭示在一或多個基板上沉積含第4族過渡金屬之膜的方法。將至少一種上文所揭示之含第4族過渡金屬之成膜組成物引入裏面安置至少一個基板之反應器中。第4族過渡金屬前驅體的至少一部分沉積於基板上以形成含第4族過渡金屬之膜。所揭示之方法可進一步包括以下態樣中之一或多者:●基板為平面的;●基板為圖案化的;●圖案化基板具有縱橫比在大致10:1至大致200:1範圍內的特徵;●圖案化基板具有縱橫比在大致20:1至大致100:1範圍內的特徵;●將至少一種反應物引入反應器中;●反應物經電漿處理;●反應物經遠程電漿處理;●反應物不經電漿處理;●反應物選自由以下組成之群:H2、NH3、肼(諸如N2H4、MeHNNH2、 MeHNNHMe)、有機胺(諸如NMeH2、NEtH2、NMe2H、NEt2H、NMe3、NEt3、環狀胺如吡咯啶或嘧啶)、二胺(諸如乙二胺、二甲基伸乙基二胺、四甲基伸乙基二胺)、胺基醇(諸如乙醇胺[HO-CH2-CH2-NH2]、雙乙醇胺[HN(C2H5OH)2]或參乙醇胺[N(C2H5OH)3])、吡唑啉及吡啶;●反應物選自由以下組成之群:(SiH3)3N、氫化矽烷(諸如SiH4、Si2H6、Si3H8、Si4H10、Si5H10、Si6H12)、氯矽烷及氯聚矽烷(諸如SiHCl3、SiH2Cl2、SiH3Cl、Si2Cl6、Si2HCl5、Si3Cl8)、烷基矽烷(諸如Me2SiH2、Et2SiH2、MeSiH3、EtSiH3)及胺基矽烷(諸如參二甲胺基矽烷、雙二乙胺基矽烷、二異丙基胺基矽烷及其他單胺基矽烷、雙胺基矽烷或參胺基矽烷);●反應物選自由以下組成之群:NH3、N(SiH3)3、胺基矽烷及其混合物;●反應物選自三烷基鋁、鹵化二烷基鋁、鋁之烷胺基及烷氧基衍生物及其混合物;●反應物為NH3;●反應物選自由以下組成之群:O2、O3、H2O、H2O2、NO、N2O、NO2、醇、二醇(諸如乙二醇)、其氧自由基及其混合物;●反應物為H2O;●反應物為O2;●反應物為經電漿處理之O2;●反應物為O3;●將含第4族過渡金屬之成膜組成物及反應物同時引入反應器中;●反應器經組態用於化學氣相沉積;●反應器經組態用於電漿增強型化學氣相沉積;●將含第4族過渡金屬之成膜組成物及反應物依序引入腔室中;●反應器經組態用於原子層沉積; ●反應器經組態用於電漿增強型原子層沉積;●反應器經組態用於空間原子層沉積;●含第4族過渡金屬之膜為第4族過渡金屬氧化物(MnOm,其中M為第4族過渡金屬且n及m中之每一者為包括端點在1至6範圍內之整數);●含第4族過渡金屬之膜為TiO2、ZrO2或HfO2;●含第4族過渡金屬之膜為TiO2;●含第4族過渡金屬之膜為ZrO2;●含第4族過渡金屬之膜為HfO2;●含第4族過渡金屬之膜為保形TiO2;●含第4族過渡金屬之膜為保形ZrO2;●含第4族過渡金屬之膜為保形HfO2;●含第4族過渡金屬之膜為MM' iOx,其中i在0至1範圍內;x在1至6範圍內;且M'選自第3族元素、不同的第4族元素(亦即M≠M')、第5族元素、鑭系元素、Si、Al、B、P或Ge;或●含第4族過渡金屬之膜為MM' iNyOx,其中i在0至1範圍內;x及y在1至6範圍內;且M'選自第3族元素、不同的第4族元素(亦即M≠M')、第5族元素、鑭系元素、Si、Al、B、P或Ge。
1:含Si成膜組成物遞送裝置
2:容器
3:入口導管
4:出口導管
5:配件
6:閥
7:閥
8:入口導管300之末端
9:出口導管400之末端
10:控制閥
11:含Si成膜組成物
12:出口管
14:加熱元件
15:可密封頂部
18:密封部件
20:墊片
30:內部盤片
31:開口/外部氣體通道
33:容器
34:內部盤片
35:外部氣體通道
36:內部盤片
37:外部氣體通道
40:同心壁
41:同心壁
42:同心壁
44:內部盤片
45:外部氣體通道
47:同心槽
48:同心槽
49:同心槽
50:支腳
51:內部通道
52:氣體窗
55:汲取管末端
56:內部氣體通道
58:容器底部
59:氣體過道
61:外壁
62:外部盤片
64:環形槽
65:環形槽
66:環形槽
68:壁
69:壁
70:壁
78:外部盤片
79:內部氣體通道
82:外部盤片
83:內部氣體通道
86:外部盤片
87:開口/內部氣體通道
90:控制閥
92:汲取管
95:配件
100:昇華器
為進一步理解本發明之性質及目標,應結合附圖參考以下實施方式,其中:圖1為液體含第4族過渡金屬之成膜組成物遞送裝置1之一個具體實例之側視圖;圖2為含第4族過渡金屬之成膜組成物遞送裝置1之第二具體實例之側視 圖;圖3為用於使含第4族過渡金屬之成膜組成物昇華之固體前驅體昇華器100的一例示性具體實例;圖4為實施例1之反應產物之1H NMR光譜;圖5為熱解重量分析(TGA)/差熱分析(DTA)曲線圖,其顯示在溫度提高時實施例1之反應產物之重量損失百分比(實線)及溫差(點線);圖6為差示掃描熱量測定(DSC)曲線圖,其顯示實施例1之反應產物及Zr(NMe2)4之相轉移;圖7為顯示實施例1之反應產物之蒸氣壓的壓力-溫度曲線圖:圖8為TGA曲線圖,其說明儲存於100℃下之實施例1之反應產物之樣品的重量損失百分比。
圖9為TGA曲線圖,其說明儲存於120℃下之實施例1之反應產物之樣品的重量損失百分比;圖10為顯示實施例3之製程之流程圖;圖11為藉由圖10之步驟1產生之O-封端基板的示意性側視圖;圖12為在圖10之步驟2開始時基板之示意性側視圖;圖13為與基板之反應之示意性側視圖,及藉由圖10之步驟2產生之反應副產物;圖14為藉由圖10之步驟3產生之基板之示意性側視圖;圖15為在圖10之步驟4期間基板之示意性側視圖;圖16為針對使用O3及實施例1之反應產物生長之ALD ZrO2膜,生長速率相對於溫度之曲線圖;圖17為ZrO2膜中C(圓形)、O(正方形)、Zr(三角形)及N(x)之原子%相對於晶圓溫度之X射線光電子光譜測定(XPS)曲線圖; 圖18A為在300℃下獲得之實施例3之ZrO2膜的步階覆蓋之掃描電子顯微鏡(SEM)照片;圖18B為在325℃下獲得之實施例3之ZrO2膜的步階覆蓋之SEM照片;圖19為實施例4之反應產物之1H NMR光譜;圖20為TGA/DTA曲線圖,其說明在溫度提高時實施例4之反應產物之重量損失百分比(實線)及溫差(點線);圖21為實施例4之反應產物的相對於溫度之蒸氣壓曲線;圖22為TGA曲線圖,其說明儲存於100℃下之實施例4之反應產物之樣品的重量損失百分比;圖23為TGA曲線圖,其說明儲存於120℃下之實施例4之反應產物之樣品的重量損失百分比;圖24為實施例5之反應產物之1H NMR光譜;圖25為TGA/DTA曲線圖,其顯示在溫度提高時實施例5之反應產物之重量損失百分比(實線)及溫差(點線);圖26為實施例5之反應產物的相對於溫度之蒸氣壓曲線;圖27為實施例6之反應產物之1H NMR光譜;圖28為TGA/DTA曲線圖,其顯示在溫度提高時實施例6之反應產物之重量損失百分比(實線)及溫差(點線);圖29為實施例6之反應產物的相對於溫度之蒸氣壓曲線;圖30為實施例7之反應產物之1H NMR光譜;圖31為TGA/DTA曲線圖,其顯示在溫度提高時實施例7之反應產物之重量損失百分比(實線)及溫差(點線);圖32為實施例7之反應產物的相對於溫度之蒸氣壓曲線;圖33為TGA/DTA曲線圖,其說明在溫度提高時實施例9之反應產物之重量 損失百分比(實線)及溫差(點線);圖34為實施例9之反應產物的相對於溫度之蒸氣壓曲線;圖35為針對使用O3及實施例9之反應產物生長之ALD HfO2膜,生長速率相對於溫度之曲線圖;圖36A為在350℃下獲得之實施例10之HfO2膜的步階覆蓋之掃描電子顯微鏡(SEM)照片;且圖36B為在375℃下獲得之實施例10之HfO2膜的步階覆蓋之SEM照片。
記法及命名法
在以下說明書及申請專利範圍通篇中使用某些縮寫、符號及術語,且包括:如在所揭示之具體實例中所使用,不定冠詞「一(a/an)」」意謂一或多個/種。
如在所揭示之具體實例中所使用,本文或申請專利範圍中之「約(about)」或「大約(around)」或「大致(approximately)」意謂±10%之所陳述值。
如在所揭示之具體實例中所使用,術語「獨立地(independently)」在描述R基團之上下文中使用時,應理解為表示目標R基團不僅相對於帶有相同或不同下標或上標之其他R基團獨立地選擇,而且相對於相同R基團之任何其他物種獨立地選擇。舉例而言,在式MR1 x(NR2R3)(4-x)(其中x為2或3)中,兩個或三個R1基團可(但無需)彼此相同或與R2或R3相同。此外,應理解,除非另外具體陳述,否則當用於不同式中時R基團之值彼此獨立。
如在所揭示之具體實例中所使用,術語「烴基(hydrocarbyl group)」係指含有碳及氫之官能基;術語「烷基(alkyl group)」係指排他性地含有碳及氫原子之飽和官能基。烴基可為飽和或不飽和的。任一術語係指直鏈、分支鏈或環狀基團。直鏈烷基之實例包括但不限於甲基、乙基、丙基、丁基等。分支鏈烷基之實例包括但不限於第三丁基。環狀烷基之實例包括但不限於環丙基、環戊基、環己基等。
如在所揭示之具體實例中所使用,縮寫「Me」係指甲基;縮寫「Et」係指乙基;縮寫「Pr」係指丙基;縮寫「 n Pr」係指「正」或直鏈丙基;縮寫「 i Pr」係指異丙基;縮寫「Bu」係指丁基;縮寫「 n Bu」係指「正」或直鏈丁基;縮寫「 t Bu」係指第三丁基,亦稱為1,1-二甲基乙基;縮寫「 s Bu」係指第二丁基,亦稱為1-甲基丙基;縮寫「 i Bu」係指異丁基,亦稱為2-甲基丙基;且縮寫「Cp」係指環戊二烯基。
如在所揭示之具體實例中所使用,化學式L2-M-C5R4-[(ER2)2-NR]-係指具有以下結構式之化合物:
Figure 106146269-A0305-02-0018-5
其中M為以η5鍵結模式鍵結至Cp基團之Ti、Zr或Hf;各E獨立地為C、Si、B或P;各R獨立地為氫或具有1至4個碳原子之烴基;相鄰R可接合以形成烴基環;且各L獨立地為選自由以下組成之群的-1陰離子配位體:NR' 2、OR'、Cp、脒基、β-二酮及酮亞胺,其中各R'獨立地為H或C1-C4烴基且相鄰R'可接合以形 成烴基環;其限制條件為Cp上之至少一個R為C1至C4。本文中,η5為5之哈普托數(hapticity)之記法,其表示芳族Cp環基團之π電子與M原子的π電子之間的鍵結。
如在所揭示之具體實例中所使用,化學式(Me2N)2-M-C5H3-1-Me-3-(CH2-CH2-NMe)-、(Me2N)2-M-C5H3-1-Et-3-(CH2-CH2-NMe)-及(Me2N)2-M-C5H3-1-iPr-3-(CH2-CH2-NMe)-係指分別具有以下結構式之化合物:
Figure 106146269-A0305-02-0019-6
其中M為以η5鍵結模式鍵結至Cp基團之Ti、Zr或Hf;鍵結至Cp基團之C可經Si、B或P置換;且NMe2基團中之一者可經Cp基團置換。
如在所揭示之具體實例中所使用,化學式(Me2N)2-M-C5H3-1-Me-2-(CH2-CH2-NMe)-、(Me2N)2-M-C5H3-1-Et-2-(CH2-CH2-NMe)-及(Me2N)2-M-C5H3-1-iPr-2-(CH2-CH2-NMe)-係指分別具有以下結構式之化合物:
Figure 106146269-A0305-02-0019-7
其中M為以η5鍵結模式鍵結至Cp基團之Ti、Zr或Hf;鍵結至Cp基團之C可經Si、B或P置換;且NMe2基團中之一者可經Cp基團置換。
在所揭示之具體實例中使用來自元素週期表之元素之標準縮寫。應理解,元素可藉由此等縮寫提及(例如,Mn係指錳,Si係指矽,C係指 碳等)。另外,第3族係指週期表之第3族(亦即,Sc、Y、La或Ac)。類似地,第4族係指週期表之第4族(亦即,Ti、Zr或Hf)且第5族係指週期表之第5族(亦即,V、Nb或Ta)。
無關於是否使用術語「包括端點(inclusively)」,所揭示之具體實例中所敍述之任何及所有範圍包括其端點(亦即,x=1至4或x在1至4範圍內包括x=1、x=4及x=其間之任何數值)。
請注意,所沉積之膜或層,諸如氧化矽或氮化矽,可貫穿說明書及申請專利範圍列出,而不提及其正確的化學計算量(亦即,SiO2、SiO3、Si3N4)。層可包括純(Si)層、碳化物(SioCp)層、氮化物(SikNl)層、氧化物(SinOm)層或其混合物,其中k、l、m、n、o及p在1至6範圍內,包括端點。舉例而言,氧化矽為SinOm,其中n在0.5至1.5範圍內且m在1.5至3.5範圍內。更佳地,氧化矽層為SiO2。此等膜亦可含有氫,典型地為0at%至15at%的氫。然而,由於不是常規地量測,因此除非另外明確地規定,否則所給出的任何膜組成物均忽略其H含量。
另外,膜可為平面或圖案化的。圖案化膜可包括凹入特徵,諸如通孔、孔口、溝槽、通道孔、閘極溝槽等。此等特徵可具有在10:1至200:1範圍內之縱橫比。縱橫比為特徵之高度與特徵之寬度(或直徑)之比率。保形膜可沉積於此等特徵上。保形膜具有沿著特徵在各處相同之厚度。
揭示含第4族過渡金屬之成膜組成物。含第4族過渡金屬之成膜組成物包含具有以下化學式L2-M-C5R4-[(ER2)2-NR-]之第4族過渡金屬前驅體,參看以下結構式:
Figure 106146269-A0305-02-0021-8
其中M為以η5鍵結模式鍵結至Cp基團之Ti、Zr或Hf;各E獨立地為C、Si、B或P;各R獨立地為氫或具有高達4個碳原子之烴基;相鄰R可接合以形成烴基環;且各L獨立地為選自由以下組成之群的-1陰離子配位體:NR' 2、OR'、Cp、脒基、β-二酮及酮亞胺,其中各R'獨立地為H或C1-C4烴基且相鄰R'可接合以形成烴基環;其限制條件為Cp上之至少一個R為C1至C4
各E為C之例示性第4族過渡金屬前驅體具有式L2-M-C5R4-[(CR2)2-NR-]。具體實例包括但不限於(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)、(Me2N)2-Zr-(Et)C5H3-(CH2-CH2-NMe-)、(Me2N)2-Zr-(iPr)C5H3-(CH2-CH2-NMe-)、(Me2N)(Cp)-Zr-(Me)C5H3-(CH2-CH2-NMe-)、(Me2N)(Cp)-Zr-(Et)C5H3-(CH2-CH2-NMe-)、(Me2N)(Cp)-Zr-(iPr)C5H3-(CH2-CH2-NMe-)、(Me2N)2-Hf-(Me)C5H3-(CH2-CH2-NMe-)、(Me2N)2-Hf-(Et)C5H3-(CH2-CH2-NMe-)、(Me2N)2-Hf-(iPr)C5H3-(CH2-CH2-NMe-)、(Me2N)(Cp)-Hf-(Me)C5H3-(CH2-CH2-NMe-)、(Me2N)(Cp)-Hf-(Et)C5H3-(CH2-CH2-NMe-)或(Me2N)(Cp)-Hf-(iPr)C5H3-(CH2-CH2-NMe-)。
本發明人認識到,與US 8,946,096之例如具有穩定的熱穩定性及高蒸氣壓之Cp-胺基橋連前驅體相比,具有上文結構,亦即在Cp基團與第4族過渡金屬之間具有橋、一種氮配位體在橋中之第4族過渡金屬前驅體可提供類似或更好的熱穩定性。另外,所揭示之第4族過渡金屬前驅體之液態可用於直接液體注入(DLI),其中前驅體以液態饋入,且接著在將其引入反應器中之前 汽化。
第4族過渡金屬前驅體可展現(i)充分的揮發性,以自儲存其之容器快速且可再現地遞送於反應室中,(ii)高的熱穩定性,以避免在儲存期間在罐中分解,且使得能夠在高溫、典型地>275℃下以ALD模式自我限制地生長,(iii)朝向基板終端功能且與反應氣體之適當反應性,以易於轉化成所期望之膜,及(iv)高純度以獲得具有低雜質之膜。
雖然前驅體理想地為液體且在鼓泡器或直接液體注入系統中汽化,但使用昇華器,諸如Xu等人之PCT公開案WO2009/087609中所揭示之昇華器,將固體前驅體用於ALD及CVD前驅體汽化亦為有可能的。對於直接液體注入,液體之黏度具有在大致1cps至大致30cps、較佳大致5cps至大致20cps範圍內之黏度。替代地,固體前驅體可混合或溶解於溶劑中以達至直接液體注入系統所使用之可用熔點及黏度。
較佳地,含第4族過渡金屬之前驅體中之R為Cp基團上之H、Me或 i Pr,因為前驅體之極佳汽化產生大氣壓熱解重量分析,留下少量最終殘餘物。
所揭示之含第4族過渡金屬之前驅體可藉由以下方式合成:在低溫下,使對應之鹵化含第4族過渡金屬之R基團化合物(亦即,(RCp)MX3,其中R及M如上文所定義且X為Cl、Br或I)與對應烷醇胺(亦即,HO-R-NH2)及烷胺(亦即NR3)於適合溶劑諸如二氯甲烷、THF或醚中反應。RMX3、烷醇胺及烷胺可商購。完成添加後,在攪拌下混合物升溫至室溫。在真空下移除溶劑。將殘餘物溶解於溶劑諸如甲苯中。過濾所得混合物。溶劑之移除產生粗的含第4族過渡金屬之前驅體。
替代地,所揭示之含第4族過渡金屬之前驅體可藉由以下方式合成:在低溫下,使對應之含第4族過渡金屬之烷氧基及R基團化合物(亦即, (CpR)M(OR)3),其中R及M如上文所定義)與對應烷醇胺於適合溶劑諸如庚烷、二氯甲烷、THF或醚中反應。RM(OR)3及烷醇胺可商購。完成添加後,在攪拌下混合物升溫至室溫。在真空下移除溶劑以產生粗的含第4族過渡金屬之前驅體。
在另一替代方案中,所揭示之含第4族過渡金屬之前驅體可藉由以下方式合成:在低溫下,使對應之含第4族過渡金屬之醯胺及R基團化合物(亦即,(CpR)M(NR2)3),其中R及M如上文所定義)與對應烷醇胺於適合溶劑諸如庚烷、二氯甲烷、THF或醚中反應。(CpR)M(NR2)3及烷醇胺可商購。完成添加後,在攪拌下混合物升溫至室溫。在真空下移除溶劑以產生粗的含第4族過渡金屬之前驅體。
在另一替代方案中,所揭示之含第4族過渡金屬之前驅體可藉由以下方式合成:在低溫下,使對應之含第4族過渡金屬之醯胺(亦即,M(NR2)4,其中M及R如上文所定義)與對應之含Cp胺(亦即,RNH(CH2)nCpR)於適合溶劑諸如甲苯、庚烷、二氯甲烷、THF或醚中反應。M(NR2)4可商購。RNH(CH2)nCpR可藉由以下方式合成:使SOCl2與烷醇胺反應以形成氯胺之鹽(亦即,RNH(CH2)nCl.HCl),且使氯胺與鹼性RCp反應。此反應產生兩種異構體:RNH(CH2)n-2-Cp-1-R及RNH(CH2)n-3-Cp-1-R。因此,反應產物亦含有兩種異構體。異構體混合物典型地難以用於半導體行業中,因為若一種異構體隨時間推移而富集,則異構體混合物傾向於在製程中產生漂移。申請人已觀測到,含Cp胺(亦即,RNH(CH2)nCpR)之異構體比幾乎與反應產物中之異構體比一致。因此,為進一步確保在氣相沉積製程期間無製程漂移,應在此合成步驟期間監測並控制含Cp胺之異構體比。異構體比可藉由嚴格地維持一致的製程條件,諸如反應時間、化學計算量、體積、溶劑量、反應物雜質水準等來控制。1H NMR、13C NMR及/或GC/MS可用以使用峰值積分來監測比 率。
完成添加後,在攪拌下混合物升溫至室溫。在真空下移除溶劑以產生粗的含第4族過渡金屬之前驅體。下文實施例中提供含有其他細節之例示性合成方法。
如上文所論述,此製程產生異構體混合物。更明確而言,L2-M-C5R3-1-R-2-[(CR2)2-NR-]及L2-M-C5R3-1-R-3-[(CR2)2-NR-]均藉由此合成製程產生。更明確而言,反應產物含有35-50%之間的一種異構體及50-65%之第二異構體(如藉由1H NMR峰值積分所確定)。如以下實施例中所示,(NMe2)2-M-C5R3-1-Me-2-[(CH2)2-NMe-]及(NMe2)2-M-C5R3-1-Me-3-[(CH2)2-NMe-](其中M=Hf或Zr)之異構體混合物提供改良之製程參數。另外,如以下實施例中所示,由於異構體化合物之特性類似,因此對任一異構體化合物之分離將太困難且昂貴。
至少一個E為Si之例示性第4族過渡金屬前驅體包括但不限於L2-M-C5R4-[CR2-SiR2-NR]-、L2-M-C5R4-[SiR2-CR2-NR]-或L2-M-C5R4-[(SiR2)2-NR]-,其中M為以η5鍵結模式鍵結至Cp基團之Ti、Zr或Hf;各R獨立地為氫或具有高達4個碳原子之烴基,且相鄰R可接合以形成烴基環;且各L獨立地為選自由以下組成之群的-1陰離子配位體:NR' 2、OR'、Cp、脒基、β-二酮及酮亞胺,其中R'為H或C1-C4烴基且相鄰R'可接合以形成烴基環;其限制條件為Cp上之至少一個R為C1至C4。具體實例包括但不限於(Me2N)2-Zr-C5H4-[CH2-SiH2-N(Me)-]、(Me2N)2-Zr-C5H4-1-Me-3-[CH2-SiH2-N(Me)-]、(Me2N)2-Zr-C5H4-2-Me-3-[CH2-SiH2-N(Me)-]、(Me2N)2-Zr-C5H4-[SiH2-CH2-N(Me)-]、(Me2N)2-Zr-C5H4-1-Me-3-[SiH2-CH2-N(Me)-]、(Me2N)2-Zr-C5H4-2-Me-3-[SiH2-CH2-N(Me)-]、(Me2N)2-Zr-C5H4-[(SiH2)2-N(Me)-]、(Me2N)2-Zr-C5H4-1-Me-3-[(SiH2)2-N(Me)-]、(Me2N)2-Zr-C5H4-2-Me-3-[(SiH2)2-N(Me)-]、(Me2N)2-Hf-C5H4-[CH2-SiH2-N(Me)-]、(Me2N)2- Hf-C5H4-1-Me-3-[CH2-SiH2-N(Me)-]、(Me2N)2-Hf-C5H4-2-Me-3-[CH2-SiH2-N(Me)-]、(Me2N)2-Hf-C5H4-[SiH2-CH2-N(Me)-]、(Me2N)2-Hf-C5H4-1-Me-3-[SiH2-CH2-N(Me)-]、(Me2N)2-Hf-C5H4-2-Me-3-[SiH2-CH2-N(Me)-]、(Me2N)2-Hf-C5H4-[(SiH2)2-N(Me)-]、(Me2N)2-Hf-C5H4-1-Me-3-[(SiH2)2-N(Me)-]、(Me2N)2-Hf-C5H4-2-Me-3-[(SiH2)2-N(Me)-]及其組合。
所揭示之含第4族過渡金屬之前驅體可藉由以下方式合成:在低溫下,使對應之含第4族過渡金屬之醯胺(亦即,M(NR2)4,其中M如上文所定義且R為C1-C6烷基)與對應之含Cp胺(亦即,RNH-SiH2-CH2-(RCp))於適合溶劑諸如甲苯、庚烷、二氯甲烷、THF或醚中反應。M(NR2)4及含Cp胺可商購或可由一般熟習此項技術者合成。完成添加後,在攪拌下混合物升溫至室溫。在真空下移除溶劑以產生粗的含第4族過渡金屬之前驅體。
至少一個E為B之例示性第4族過渡金屬前驅體包括但不限於L2-M-C5R4-[CR2-BR-NR]-、L2-M-C5R4-[BR-CR2-NR]-、L2-M-C5R4-[(BR)2-NR]-,其中M為以η5鍵結模式鍵結至Cp基團之Ti、Zr或Hf;各R獨立地為氫或具有高達4個碳原子之烴基,且相鄰R可接合以形成烴基環;且各L獨立地為選自由以下組成之群的-1陰離子配位體:NR' 2、OR'、Cp、脒基、β-二酮及酮亞胺,其中R'為H或C1-C4烴基且相鄰R'可接合以形成烴基環;其限制條件為Cp上之至少一個R為C1至C4。具體實例包括但不限於(Me2N)2-Zr-C5H4-[CH2-B(Me)-N(Me)-]、(Me2N)2-Zr-C5H4-1-Me-3-[CH2-B(Me)-N(Me)-]、(Me2N)2-Zr-C5H4-2-Me-3-[CH2-B(Me)-N(Me)-]、(Me2N)2-Zr-C5H4-[B(Me)-CH2-N(Me)-]、(Me2N)2-Zr-C5H4-1-Me-3-[B(Me)-CH2-N(Me)-]、(Me2N)2-Zr-C5H4-2-Me-3-[B(Me)-CH2-N(Me)-]、(Me2N)2-Zr-C5H4-[(B(Me))2-N(Me)-]、(Me2N)2-Zr-C5H4-1-Me-3-[(B(Me))2-N(Me)-]、(Me2N)2-Zr-C5H4-2-Me-3-[(B(Me))2-N(Me)-]、(Me2N)2-Hf-C5H4-[CH2-B(Me)-N(Me)-]、(Me2N)2-Hf-C5H4-1-Me-3-[CH2-B(Me)-N(Me)-]、(Me2N)2-Hf-C5H4-2- Me-3-[CH2-B(Me)-N(Me)-]、(Me2N)2-Hf-C5H4-[B(Me)-CH2-N(Me)-]、(Me2N)2-Hf-C5H4-1-Me-3-[B(Me)-CH2-N(Me)-]、(Me2N)2-Hf-C5H4-2-Me-3-[B(Me)-CH2-N(Me)-]、(Me2N)2-Hf-C5H4-[(B(Me))2-N(Me)-]、(Me2N)2-Hf-C5H4-1-Me-3-[(B(Me))2-N(Me)-]、(Me2N)2-Hf-C5H4-2-Me-3-[(B(Me))2-N(Me)-]及其組合。
所揭示之含第4族過渡金屬之前驅體可藉由以下方式合成:在低溫下,使對應之含第4族過渡金屬之醯胺(亦即,M(NR2)4,其中M如上文所定義且R為C1-C6烷基)與對應之含Cp硼胺(亦即,MeHN-B(Me)-CH2-MeCpH)於適合溶劑諸如甲苯、庚烷、二氯甲烷、THF或醚中反應。M(NR2)4及含Cp硼胺可商購或可由一般熟習此項技術者合成。完成添加後,在攪拌下混合物升溫至室溫。在真空下移除溶劑以產生粗的含第4族過渡金屬之前驅體。
至少一個E為P之例示性第4族過渡金屬前驅體包括但不限於L2-M-C5R4-[CR2-PR-NR]-、L2-M-C5R4-[PR-CR2-NR]-、L2-M-C5R4-[(PR)2-NR]-,其中M為以η5鍵結模式鍵結至Cp基團之Ti、Zr或Hf;各R獨立地為氫或具有高達4個碳原子之烴基,且相鄰R可接合以形成烴基環;且各L獨立地為選自由以下組成之群的-1陰離子配位體:NR' 2、OR'、Cp、脒基、β-二酮及酮亞胺,其中R'為H或C1-C4烴基且相鄰R'可接合以形成烴基環;其限制條件為Cp上之至少一個R為C1至C4。具體實例包括但不限於(Me2N)2-Zr-C5H4-[CH2-P(Me)-N(Me)-]、(Me2N)2-Zr-C5H4-1-Me-3-[CH2-P(Me)-N(Me)-]、(Me2N)2-Zr-C5H4-2-Me-3-[CH2-P(Me)-N(Me)-]、(Me2N)2-Zr-C5H4-[P(Me)-CH2-N(Me)-]、(Me2N)2-Zr-C5H4-1-Me-3-[P(Me)-CH2-N(Me)-]、(Me2N)2-Zr-C5H4-2-Me-3-[P(Me)-CH2-N(Me)-]、(Me2N)2-Zr-C5H4-[(P(Me))2-N(Me)-]、(Me2N)2-Zr-C5H4-1-Me-3-[(P(Me))2-N(Me)-]、(Me2N)2-Zr-C5H4-2-Me-3-[(P(Me))2-N(Me)-]、(Me2N)2-Hf-C5H4-[CH2-P(Me)-N(Me)-]、(Me2N)2-Hf-C5H4-1-Me-3-[CH2-P(Me)-N(Me)-]、(Me2N)2-Hf-C5H4-2-Me-3-[CH2-P(Me)-N(Me)-]、(Me2N)2-Hf-C5H4-[P(Me)-CH2-N(Me)-]、(Me2N)2-Hf- C5H4-1-Me-3-[P(Me)-CH2-N(Me)-]、(Me2N)2-Hf-C5H4-2-Me-3-[P(Me)-CH2-N(Me)-]、(Me2N)2-Hf-C5H4-[(P(Me))2-N(Me)-]、(Me2N)2-Hf-C5H4-1-Me-3-[(P(Me))2-N(Me)-]、(Me2N)2-Hf-C5H4-2-Me-3-[(P(Me))2-N(Me)-]及其組合。
所揭示之含第4族過渡金屬之前驅體可藉由以下方式合成:在低溫下,使對應之含第4族過渡金屬之醯胺(亦即,M(NR2)4,其中M如上文所定義且R'''為C1-C6烷基)與對應之含Cp磷胺(亦即,MeHN-P(Me)-CH2-MeCpH)於適合溶劑諸如甲苯、庚烷、二氯甲烷、THF或醚中反應。M(NR2)4及含Cp磷胺可商購或可由一般熟習此項技術者合成。完成添加後,在攪拌下混合物升溫至室溫。在真空下移除溶劑以產生粗的含第4族過渡金屬之前驅體。
為了確保製程可靠性,在使用之前含第4族過渡金屬之成膜組成物可藉由連續或部分分批蒸餾或昇華純化至在大致93% w/w至大致100% w/w範圍內,較佳在大致99% w/w至大致100% w/w範圍內之純度。含第4族過渡金屬之成膜組成物可含有以下雜質中之任一者:非所需同屬物種;溶劑;氯化金屬化合物;或其他反應產物。在一個替代方案中,此等雜質之總量低於0.1% w/w。
純化之含第4族過渡金屬之成膜組成物中,己烷、戊烷、二甲醚或苯甲醚中之每一者之濃度可在大致0% w/w至大致5% w/w、較佳大致0% w/w至大致0.1% w/w範圍內。溶劑可用於組成物的合成。若兩者具有類似沸點,則可能難以自前驅體分離溶劑。冷卻混合物可在液態溶劑中產生固體前驅體,其可藉由過濾分離。亦可使用真空蒸餾,其限制條件為前驅體產物不加熱至高於大致其分解點。
在一個替代方案中,所揭示之含第4族過渡金屬之成膜組成物含有小於5% v/v、較佳小於1% v/v、更佳小於0.1% v/v且甚至更佳小於0.01% v/v的其非所需同屬物種、反應物或其他反應產物中之任一者。例示性雜質包括 M(RCp)2及M(NR2)4。此替代方案可提供更好的製程可重複性。此替代方案可藉由蒸餾含第4族過渡金屬之前驅體來產生。
在另一替代方案中,特定地當混合物提供改良之製程參數或對目標化合物之分離太困難或昂貴時,所揭示之含第4族過渡金屬之成膜組成物可含有在5% v/v與50% v/v之間的同屬含第4族過渡金屬之前驅體、反應物或其他反應產物中之一或多者。舉例而言,兩種第4族過渡金屬前驅體之混合物可產生適用於氣相沉積之穩定的液體混合物。
純化之含第4族過渡金屬之成膜組成物中痕量金屬及類金屬之濃度可各自在大致0ppb至大致100ppb且更佳大致0ppb至大致10ppb範圍內。此等金屬雜質包括但不限於鋁(Al)、砷(As)、鋇(Ba)、鈹(Be)、鉍(Bi)、鎘(Cd)、鈣(Ca)、鉻(Cr)、鈷(Co)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉿(Hf)、鋯(Zr)、銦(In)、鐵(Fe)、鉛(Pb)、鋰(Li)、鎂(Mg)、錳(Mn)、鎢(W)、鎳(Ni)、鉀(K)、鈉(Na)、鍶(Sr)、釷(Th)、錫(Sn)、鈦(Ti)、鈾(U)、釩(V)及鋅(Zn)。
亦揭示用於使用氣相沉積製程在基板上形成含第4族過渡金屬之層的方法。該方法可適用於製造半導體、光伏打、LCD-TFT或平板型裝置。所揭示之含第4族過渡金屬之成膜組成物可用以使用熟習此項技術者已知之任何沉積方法來沉積薄的含第4族過渡金屬之膜。適合之氣相沉積方法之實例包括化學氣相沉積(CVD)或原子層沉積(ALD)。例示性CVD方法包括熱CVD、電漿增強型CVD(PECVD)、脈衝型CVD(PCVD)、低壓CVD(LPCVD)、低於大氣壓CVD(SACVD)或大氣壓CVD(APCVD)、熱絲CVD(HWCVD,亦稱為催化CVD,其中熱絲用作沉積製程之能量來源)、自由基併入型CVD及其組合。例示性ALD方法包括熱ALD、電漿增強型ALD (PEALD)、空間分離型ALD、熱絲ALD(HWALD)、自由基併入型ALD及其組合。亦可使用超臨界流體沉積。沉積方法較佳為ALD、空間ALD或PE-ALD,以提供適合的步階覆蓋及膜厚度控制。另外,所揭示之含第4族過渡金屬之成膜組成物特定地適用於ALD製程,因為其熱穩定性能夠實現完美的自限制生長。
申請者相信,N-M鍵可穩定前驅體,使其熱穩固,此可在保形ALD沉積期間在高縱橫比結構方面起幫助。當R為Cp(經取代或未經取代)時,申請人相信Cp可如同傘一般保持在表面上之M原子上方且確保完美的自我ALD生長。
所揭示之含第4族過渡金屬之成膜組成物可以純形式供應或可進一步包含適合之溶劑,諸如乙苯、二甲苯、均三甲苯、癸烷及/或十二烷。所揭示之第4族過渡金屬前驅體可以不同濃度存在於溶劑中。
藉由習知構件,諸如管道及/或流量計,將純或摻合之含第4族過渡金屬之成膜組成物以蒸氣形式引入反應器中。可藉由經由習知汽化步驟(諸如直接汽化、蒸餾)汽化純或摻合之組成物,或藉由鼓泡或藉由使用昇華器(諸如Xu等人之PCT公開案WO2009/087609中所揭示之昇華器),來產生蒸氣形式。組成物可以液態饋至汽化器(直接液體注入或「DLI」),在汽化器中其經汽化,之後將其引入反應器中。替代地,可藉由使運載氣體穿入含有組成物之容器中或藉由使運載氣體鼓泡至化合物中來汽化組成物。運載氣體可包括但不限於Ar、He、N2及其混合物。用運載氣體鼓泡亦可移除存在於純或摻合之化合物溶液中之任何溶解氧。接著將運載氣體及組成物之蒸氣形式作為蒸氣引入反應器中。
必要時,可將容器加熱至准許組成物呈其液相且具有足夠蒸氣壓之溫度。容器可維持在例如大致50℃至大致180℃範圍內之溫度下。熟習此 項技術者認識到可以已知方式調節容器之溫度以控制組成物之汽化量。
含第4族過渡金屬之成膜組成物可藉由所揭示之含第4族過渡金屬之成膜組成物遞送裝置而遞送至半導體加工工具。圖1及圖2展示所揭示之遞送裝置1之兩個具體實例。
圖1為含第4族過渡金屬之成膜組成物遞送裝置1之一個具體實例之側視圖。在圖1中,所揭示之含第4族過渡金屬之成膜組成物11含於容器2內,該容器具有至少兩個導管-入口導管3及出口導管4。一般熟習前驅體技術者將認識到,製造容器2、入口導管3及出口導管4以防止甚至在高溫及高壓下氣態形式之含第4族過渡金屬之成膜組成物11逸出。
適合之閥包括彈簧負載型或連接型隔膜閥。閥可進一步包含限流孔(restrictive flow orifice;RFO)。遞送裝置1應連接至氣體歧管且處於殼體中。氣體歧管應准許當替代遞送裝置1時可能暴露於空氣之管道被安全抽空及淨化,使得任何殘餘量的物質不發生反應。
遞送裝置1必須防洩漏且配備有關閉時不准許即使微小量之物質逸出之閥。遞送裝置1經由閥67流體連接至半導體加工工具之其他組件,諸如上文所揭示之氣體櫃。較佳地,容器2、入口導管3、閥6、出口導管4及閥7典型地由316L EP不鏽鋼製成。
圖1中,入口導管3之末端8位於含第4族過渡金屬之成膜組成物11之表面上方,而出口導管4之末端9位於含第4族過渡金屬之成膜組成物11之表面下方。在此實施例中,含第4族過渡金屬之成膜組成物11較佳呈液體形式。可將惰性氣體,包括但不限於氮氣、氬氣、氦氣及其混合物,引入至入口導管3中。惰性氣體使容器2加壓,以迫使液體含第4族過渡金屬之成膜組成物11通過出口導管4且到達半導體加工工具中之組件(圖中未示)。半導體加工工具可包括汽化器,其使用或不使用運載氣體諸如氦氣、氬氣、氮氣或其混合 物,將液體含第4族過渡金屬之成膜組成物11轉變成蒸氣,以便將蒸氣遞送至定位有待修復晶圓且處理以氣相發生之腔室中。替代地,液體含第4族過渡金屬之成膜組成物11可作為噴射流或氣溶膠直接遞送至晶圓表面。
圖2為含第4族過渡金屬之成膜組成物遞送裝置1之第二具體實例之側視圖。在圖2中,入口導管3之末端8位於含第4族過渡金屬之成膜組成物11之表面下方,而出口導管4之末端9位於含第4族過渡金屬之成膜組成物11之表面上方。圖2亦包括視情況選用之加熱元件14,其可增加含第4族過渡金屬之成膜組成物11之溫度。含第4族過渡金屬之成膜組成物11可呈固體或液體形式。將惰性氣體,包括但不限於氮氣、氬氣、氦氣及其混合物,引入至入口導管3中。惰性氣體流過含第4族過渡金屬之成膜組成物11,且將惰性氣體與汽化之含第4族過渡金屬之成膜組成物11的混合物帶至出口導管4及半導體加工工具中之組件。
圖1及2均包括閥67。一般熟習此項技術者將認識到,可將閥67置於打開或閉合位置以允許分別流過導管34。若含第4族過渡金屬之成膜組成物11呈蒸氣形式或若固相/液相上方存在足夠蒸氣壓,則可使用圖1或2中之遞送裝置1,或單一導管終止於所存在之任何固體或液體表面上方之較簡單的遞送裝置。在此情況下,簡單地藉由分別打開圖1中之閥6圖2中之7,將含第4族過渡金屬之成膜組成物11以蒸氣形式遞送通過導管34。可例如藉由使用視情況選用之加熱元件14,將遞送裝置1維持在適合溫度下,以向待以蒸氣形式遞送之含第4族過渡金屬之成膜組成物11提供足夠蒸氣壓。
雖然圖12揭示含第4族過渡金屬之成膜組成物遞送裝置1之兩個具體實例,但一般熟習此項技術者將認識到,入口導管3及出口導管4均可位於含第4族過渡金屬之成膜組成物11之表面上方而不背離本文中之揭示內容。此外,入口導管3可為填充口。
當含第4族過渡金屬之成膜組成物為固體時,可使用昇華器將其蒸氣遞送至反應器。圖3顯示適合之昇華器100之一個具體實例。昇華器100包含容器33。容器33可為圓柱形容器,或替代地可為任何形狀而不加以限制。容器33由諸如以下之材料構成而不加以限制:不鏽鋼、鎳及其合金、石英、玻璃及其他可化學相容之材料。在某些情況下,容器33由另一金屬或金屬合金構成而不加以限制。在某些情況下,容器33之內徑為約8公分至約55公分,且替代地,內徑為約8公分至約30公分。如由熟習此項技術者所理解,替代性組態可具有不同尺寸。
容器33包含可密封頂部15、密封部件18及墊片20。可密封頂部15經組態以密封容器33而與外部環境隔開。可密封頂部15經組態以允許進入容器33。另外,可密封頂部15經組態用於使導管通入容器33中。替代地,可密封頂部15經組態以准許流體流入容器33中。可密封頂部15經組態以接受且使包含汲取管92之導管穿過以保持與容器33流體接觸。具有控制閥90及配件95之汲取管92經組態用於使運載氣體流入容器33中。在某些情況下,汲取管92沿容器33之中心軸線向下延伸。此外,可密封頂部15經組態以接受且使包含出口管12之導管穿過。經由出口管12自容器33去除運載氣體及含第4族過渡金屬之成膜組成物之蒸氣。出口管12包含控制閥10及配件5。在某些情況下,出口管12流體耦接至氣體遞送歧管,以將來自昇華器100之運載氣體傳導至膜沉積腔室。
容器33及可密封頂部15藉由至少兩個密封部件18;替代地藉由至少約四個密封部件密封。在某些情況下,藉由至少約八個密封部件18使可密封頂部15密封至容器33。如由熟習此項技術者所理解,密封部件18以可釋放方式使可密封頂部15耦接至容器33,且與墊片20形成耐氣體密封件。密封部件18可包含熟習此項技術者已知的用於密封容器33之任何適合構件。在某些情況下,密封部件18包含指撚螺釘(thumbscrew)。
圖3中所示,容器33進一步包含至少一個安置於其中之盤片。對於固體材料而言,盤片包含擱架或水平支架。在某些具體實例中,內部盤片30環狀安置在容器33內,使得盤片30包括小於容器33之內徑或圓周的外徑或圓周,形成開口31。外部盤片86周向性地安置在容器33內,使得盤片86包含與容器33之內徑相同、大致相同或通常一致之外徑或圓周。外部盤片86形成安置於盤片中心處之開口87。複數個盤片安置於容器33內。盤片以交替方式堆疊,其中內部盤片30343644豎直堆疊在容器內,同時與外部盤片62788286交替。在具體實例中,內部盤片30343644向外環狀延伸,且外部盤片62788286朝向容器33之中心環狀延伸。如圖3之具體實例中所示,內部盤片30343644不與外部盤片62788286實體接觸。
經組裝之昇華器100包含內部盤片30343644(其包含經對準且耦接之支腳50)、內部通道51、同心壁404142及同心槽474849。內部盤片30343644豎直堆疊,且圍繞汲取管92環狀定向。另外,昇華器包含外部盤片62788286。如圖3中所示,外部盤片62788286應緊緊地裝配在容器33中以提供良好接觸以使熱量自容器33傳導至盤片62788286。較佳地,外部盤片62788286耦接至容器33之內壁或與該內壁實體接觸。
如所示,外部盤片62788286及內部盤片30343644堆疊於容器33內部。當組裝於容器33中以形成昇華器100時,內部盤片30343644在經組裝之外部盤片62788286之間形成外部氣體通道31353745。此外,外部盤片62788286與內部盤片30343644之支腳形成內部氣體通道56798387。內部盤片30343644之壁404142形成用於容納固體前驅體之溝槽。外部盤片62788286包含用於容納固體前驅體之壁686970。在裝配期間,將固體前驅體裝入內部盤片30343644之環形槽474849及外部盤片62788286之環形槽646566中。
儘管圖3揭示能夠將任何固體含第4族過渡金屬之成膜組成物之蒸氣遞送至反應器的昇華器之一個具體實例,但一般熟習此項技術者將認識到,在不背離本文中之教示的情況下,其他昇華器設計亦可為適合的。最終,一般熟習此項技術者將認識到,可在不背離本文中之教示的情況下使用諸如Jurcik等人之WO 2006/059187中所揭示之安瓿的其他遞送裝置,將所揭示之含第4族過渡金屬之成膜組成物11遞送至半導體加工工具。
反應室可為進行沉積方法之裝置的任何殼體或腔室,諸如但不限於平行板型反應器、冷壁型反應器、熱壁型反應器、單晶圓反應器、多晶圓反應器或其他此類類型之沉積系統。所有此等例示性反應室均能夠充當ALD反應室。反應室可維持在約0.5毫托至約20托範圍內、較佳約0.1托與約5托之間的壓力下。另外,反應室內之溫度可在約50℃至約600℃範圍內。一般熟習此項技術者將認識到,可以實驗方式確定含各第IV族過渡金屬之前驅體之理想沉積溫度範圍,以獲得所期望之結果。
反應器含有一或多個上面將沉積有薄膜之基板。基板一般定義為在其上進行製程之材料。基板可為用於半導體、光伏打、平板或LCD-TFT裝置製造之任何適合基板。適合基板之實例包括晶圓,諸如矽、SiGe、二氧化矽、玻璃或Ge。亦可使用諸如聚(3,4-伸乙二氧基噻吩)聚(苯乙烯磺酸)[PEDOT:PSS]之塑膠基板。基板亦可具有一或多個已自先前製造步驟沉積於其上之不同材料層。舉例而言,晶圓可包括矽層(結晶、非晶形、多孔等)、氧化矽層、氮化矽層、氮氧化矽層、摻碳氧化矽(SiCOH)層或其組合。另外,晶圓可包括銅、鈷、釕、鎢及/或其他金屬層(例如,鉑、鈀、鎳、釕或金)。晶圓可包括障壁層或電極,諸如鉭、氮化鉭等。亦可使用諸如聚(3,4-伸 乙二氧基噻吩)聚(苯乙烯磺酸)[PEDOT:PSS]之塑膠層。該等層可為平面或圖案化的。基板可為有機圖像化光阻膜。基板可包括在MIM、DRAM或FeRam技術中用作介電材料(例如,ZrO2類材料、HfO2類材料、TiO2類材料、稀土氧化物類材料、三元氧化物類材料等)或來自用作電極之氮化物類膜(例如,TaN、TiN、NbN)的氧化物層。所揭示之製程可將含第IV族層直接沉積在晶圓上或直接沉積在晶圓頂部上之一或多個而非一個(當圖案化層形成基板時)層上。此外,一般熟習此項技術者將認識到,本文所用之術語「膜(film)」或「層(layer)」係指塗抹或散佈於表面上之一些材料之厚度且該表面可為溝槽或線條。在說明書及申請專利範圍通篇中,將晶圓及其上之任何相關層稱為基板。所利用之實際基板亦可視所利用之特定前驅體具體實例而定。不過在許多情況下,所利用之較佳基板將選自TiN、NbN、Ru、Si及SiGe型基板,諸如多晶矽或結晶矽基板。舉例而言,第4族金屬氧化物膜可沉積於TiN基板上。在後續加工中,TiN層可沉積於第4族金屬氧化物層上,形成用作DRAM電容器之TiN/第4族金屬氧化物/TiN堆疊。金屬氧化物層本身可由各種金屬氧化物之若干層的堆疊製成,該等金屬氧化物一般選自第4族金屬氧化物、第5組金屬氧化物、Al2O3、SiO2及MoO2
反應器內之溫度及壓力保持在適用於氣相沉積之條件下。換言之,在將汽化組成物引入腔室中後,腔室內之條件使得汽化之含第4族過渡金屬之前驅體的至少一部分沉積於基板上,以形成含第4族過渡金屬膜。舉例而言,反應器中之壓力視每個沉積參數需要可保持在約1Pa與約105Pa之間,更佳在約25Pa與約103Pa之間。同樣,反應器中之溫度可保持在約100℃與約500℃之間,較佳在約200℃與約450℃之間。一般熟習此項技術者將認識到,「汽化之含第4族過渡金屬之前驅體的至少一部分沉積」意謂前驅體中之一些或全部與基板反應或與基板黏附。
可藉由控制基板固持器之溫度或控制反應器壁之溫度來控制反應器溫度。用於加熱基板之裝置在此項技術中已知。加熱反應器壁至充足溫度以獲得在充足生長速率下且具有所期望之物理狀態及組成的所期望之膜。反應器壁可加熱達到之非限制性例示性溫度範圍包括大致100℃至大致500℃。當利用電漿沉積製程時,沉積溫度可在大致50℃至大致400℃之範圍內。替代地,當進行熱製程時,沉積溫度可在大致200℃至大致450℃範圍內。
除所揭示之含第4族過渡金屬之成膜組成物以外,亦可將反應物引入反應器中。反應物可為氧化氣體,諸如O2、O3、H2O、H2O2、NO、N2O、NO2中之一者;二醇(諸如乙二醇或水合六氟丙酮);含氧自由基,諸如O‧或OH‧、NO、NO2;羧酸、甲酸、乙酸、丙酸及其混合物。較佳地,氧化氣體選自由以下組成之群:O2、O3、H2O、H2O2、其含氧自由基(諸如O-或OH-)及其混合物。
替代地,反應物可為H2、NH3、肼(諸如N2H4、MeHNNH2、Me2NNH2、MeHNNHMe、苯肼)、有機胺(諸如NMeH2、NEtH2、NMe2H、NEt2H、NMe3、NEt3、(SiMe3)2NH、環狀胺如吡咯啶或嘧啶)、二胺(諸如乙二胺、二甲基伸乙基二胺、四甲基伸乙基二胺)、胺基醇(諸如乙醇胺[HO-CH2-CH2-NH2]、雙乙醇胺[HN(C2H5OH)2]或參乙醇胺[N(C2H5OH)3])、吡唑啉、吡啶、其自由基或其混合物。較佳地,反應物為H2、NH3、其自由基或其混合物。
在另一替代方案中,反應物可為(SiH3)3N、氫化矽烷(諸如SiH4、Si2H6、Si3H8、Si4H10、Si5H10或Si6H12)、氯矽烷及氯聚矽烷(諸如SiHCl3,SiH2Cl2,SiH3Cl,Si2Cl6,Si2HCl5或Si3Cl8)、烷基矽烷(諸如Me2SiH2、Et2SiH2、MeSiH3、EtSiH3或苯基矽烷)及胺基矽烷(諸如參二甲胺基矽烷、雙二乙胺基矽烷、二異丙基胺基矽烷或其他單胺基矽烷、雙胺基矽烷或參胺基矽 烷)、其自由基或其混合物。較佳地,反應物為(SiH3)3N或胺基矽烷。
反應物可經電漿處理,以便使反應物分解成其自由基形式。當用電漿處理時N2亦可用作還原氣體。舉例而言,可產生功率在約50W至約2500W、較佳約100W至約400W範圍內之電漿。電漿可產生或存在於反應器自身內。替代地,電漿一般可位於自反應器中移除之位置,例如處於遠程定位的電漿系統中。熟習此項技術者將認識到適用於此類電漿處理之方法及裝置。
舉例而言,可將反應物引入在反應室中產生電漿之直接電漿反應器中,以在反應室中產生經電漿處理之反應物。例示性的直接電漿反應器包括Trion Technologies所產生之TitanTM PECVD系統。可在電漿加工之前將反應物引入且保持在反應室中。替代地,電漿加工可與反應物之引入同時發生。原位電漿典型地為13.56MHz RF感應耦合電漿,其產生於簇射頭與基板固持器之間。視是否發生正離子碰撞而定,基板或簇射頭可為供電電極。原位電漿產生器中典型的施加功率為大致30W至大致1000W。在所揭示之方法中,較佳使用大致30W至大致600W之功率。更佳地,功率在大致100W至大致500W範圍內。使用原位電漿之反應物解離典型地小於對於相同功率輸入使用遠程電漿源達成之解離,且因此在反應物解離中不如遠程電漿系統有效,此可有益於在易受電漿損害之基板上沉積含第4族過渡金屬之膜。
替代地,經電漿處理之反應物可在反應室外部產生。MKS Instruments之ASTRONi®反應氣體產生器可用於在反應物傳送至反應室中之前處理反應物。在2.45GHz、7kW電漿功率及大致0.5托至大致10托範圍內之壓力下操作,反應物O2可分解成兩個O自由基。較佳地,可產生功率在約1kW至約10kW、更佳約2.5kW至約7.5kW範圍內之遠程電漿。
腔室內之氣相沉積條件允許所揭示之含第IV族過渡金屬之成膜組成物及反應物反應,且在基板上形成含第4族過渡金屬之膜。在一些具體實 例中,申請人相信電漿處理反應物可為反應物提供需要與所揭示之組成物反應之能量。
視期望沉積之膜的類型而定,可將額外前驅體化合物引入反應器中。前驅體可用以向含第4族過渡金屬之膜提供額外元素。額外元素可包括鑭系元素(例如,鐿、鉺、鏑、釓、鐠、鈰、鑭、釔)、鍺、矽、鋁、硼、磷、第3族元素(亦即Sc、Y、La或Ac)、不同的第4族元素或第5族元素(亦即V、Nb或Ta)或此等之混合物。當利用額外之前驅體化合物時,沉積於基板上之所得膜含有第4族過渡金屬以及至少一種額外元素。
含第4族過渡金屬之成膜組成物及反應物可同時(化學氣相沉積)、依序(原子層沉積)或其不同組合引入反應器中。在引入組成物與引入反應物之間可用惰性氣體淨化反應器。替代地,反應物及組成物可混合在一起以形成反應物/化合物混合物,且接著以混合物形式引入至反應器。另一實例為連續引入反應物且藉由脈衝(脈衝型化學氣相沉積)引入含第4族過渡金屬之成膜組成物。
汽化組成物及反應物可依次或同時脈衝(例如脈衝型CVD)至反應器中。組成物之各脈衝可持續在約0.01秒至約100秒、替代地約0.3秒至約30秒、替代地約0.5秒至約10秒範圍內之時間段。亦可將反應物脈衝於反應器中。在此類具體實例中,各氣體之脈衝可持續約0.01秒至約100秒,替代地約0.3秒至約30秒,替代地約0.5秒至約10秒。在另一替代方案中,汽化組成物及一或多種反應物可自簇射頭同時噴霧,在該簇射頭下固持若干晶圓之基座自旋(空間ALD)。
視特定製程參數而定,沉積可進行不同時間長度。一般而言,可使沉積持續所期望或所需長度之時間以產生具有必需特性之膜。視特定沉積製程而定,典型的膜厚度可在幾埃至幾百微米範圍內變化。沉積製程亦可進行 獲得所期望之膜所必需之次數。
在一種非限制性例示性CVD型製程中,將所揭示之含第4族過渡金屬之成膜組成物的氣相及反應物同時引入反應器中。兩者反應以形成所得含第4族過渡金屬之薄膜。當此例示性CVD製程中之反應物經電漿處理時,該例示性CVD製程變為例示性PECVD製程。反應物可在引入室中之前或之後經電漿處理。
在一種非限制性例示性ALD型製程中,將所揭示之含第4族過渡金屬之成膜組成物的氣相引入反應器中,其中含第4族過渡金屬之前驅體以物理或化學方式吸附於基板上。可隨後藉由淨化及/或抽空反應器自反應器移除過量組成物。將所期望之氣體(例如O3)引入反應器中,在反應器中其與以物理或化學方式吸附之前驅體以自限制方式反應。藉由淨化及/或抽空反應器自反應器移除任何過量的還原氣體。若所期望之膜為第4族過渡金屬膜,則此兩步製程可提供所期望之膜厚度,或可重複直到已獲得具有必需厚度之膜。
替代地,若所期望之膜含有第4族過渡金屬及第二元素,則在上文之兩步製程後,可將額外前驅體化合物之蒸氣引入反應器中。額外前驅體化合物將基於所沉積之第4族過渡金屬膜之性質來選擇。在引入反應器中之後,使額外前驅化合物與基板接觸。藉由淨化及/或抽空反應器自反應器移除任何過量的前驅體化合物。再次,可將所期望之氣體引入反應器中以與前驅體化合物反應。藉由淨化及/或抽空反應器自反應器移除過量氣體。若已達成所期望之膜厚度,則可終止製程。然而,若需要較厚膜,則可重複整個四步驟製程。藉由交替提供含第4族過渡金屬之化合物、額外前驅體化合物及反應物,可沉積具有所期望之組成及厚度之膜。
當此例示性ALD製程中之反應物經電漿處理時,例示性ALD製程變為例示性PEALD製程。反應物可在引入室中之前或之後經電漿處理。
在第二非限制性例示性ALD型製程中,將所揭示之含Zr前驅體中之一者(例如Me5CpZr((-O-CH2-CH2-)3N))之氣相引入反應器中,在反應器中其與TiN基板接觸。接著可藉由淨化及/或抽空反應器自反應器移除過量的含Zr前驅體。將所期望之氣體(例如O3)引入反應器中,在反應器中其與經吸收之含Zr前驅體以自限制方式反應以形成ZrO2膜。藉由淨化及/或抽空反應器自反應器移除任何過量的氧化氣體。可重複此等兩個步驟直到ZrO2膜獲得所期望之厚度。可在DRAM電容器中使用所得TiN/ZrO2/TiN堆疊。ZrO2金屬氧化物膜可包括在含有各種金屬氧化物之層壓物之更複雜的堆疊內。典型地,使用ZrO2/Al2O3/ZrO2堆疊,且亦使用TiO2/ZrO2/Al2O3/ZrO2、ZrO2/Nb2O3/ZrO2、ZrO2/HfO2/TiO2/ZrO2等。
由上文所論述之製程產生的含第4族過渡金屬之膜可包括第4族過渡金屬氧化物(MM' iOx,其中i在0至1範圍內;x在1至6範圍內;且M'選自第3族元素、不同的第4族元素(亦即M≠M')、第5族元素、鑭系元素、Si、Al、B、P或Ge)或第4族過渡金屬氮氧化物(MM' iNyOx,其中i在0至1範圍內;x及y在1至6範圍內;且M'選自第3族元素、不同的第4族元素(亦即M≠M')、第5族元素、鑭系元素、Si、Al、B、P或Ge)。一般熟習此項技術者將認識到,藉由公平選擇適當的所揭示化合物、視情況選用之前驅體化合物及反應物物種,可獲得所期望之膜組成物。
獲得所期望之膜厚度之後,膜可經受進一步的加工,諸如熱退火、爐退火、快速熱退火、UV或電子束固化及/或電漿氣體暴露。熟習此項技術者認識到用以進行此等額外加工步驟之系統及方法。舉例而言,在惰性氛圍、含H氛圍、含N氛圍、含O氛圍或其組合下,含第4族過渡金屬之膜可暴露於在大致200℃至大致1000℃範圍內之溫度,持續在大致0.1秒至大致7200秒範圍內之時間。最佳地,在含H氛圍或含O氛圍下400℃溫度持續3600秒。所得膜 可含有較少雜質且因此可具有產生改良之洩漏電流之改良密度。可在進行沉積製程之相同反應室中進行退火步驟。替代地,可自反應室移除基板,且在獨立設備中進行退火/急驟退火製程。已發現以上處理後方法中之任一者(但尤其熱退火)有效降低含第4族過渡金屬之膜之碳及氮污染。此舉又傾向於改良膜之電阻率。
實施例
以下實施例說明結合本文中之揭示內容進行之實驗。該等實施例不意欲包括所有且不意欲限制本文所述之本發明範疇。
實施例1:合成(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)
步驟1:在配備有250mL滴液漏斗、冷凝器及N2入口之1L 3頸燒瓶中,添加101mL(1.38mol)SOCl2及大致150mL CH2Cl2以形成溶液。將該溶液冷卻至0℃。經由滴液漏斗將107mL(1.33mol)MeNHCH2CH2OH添加至經冷卻CH2Cl2/SOCl2溶液中。每次滴落時形成白色煙。使混合物達至室溫且攪拌隔夜以產生混濁之褐色懸浮液。接著將懸浮液置於-20℃冰箱中隔夜以用於再結晶。白色固體/晶體經由玻璃料(中等)過濾並收集,用無水醚洗滌,且在室溫下在真空下乾燥。將濾液合併,濃縮,且置於冰箱中用於另一批次之再結晶。MeNHCH2CH2Cl.HCl之合併產量為138.55g(80% mol/mol)。
步驟2:在-78℃下將70g(0.54mol)MeNHCH2CH2Cl.HCl添加至大致400mL四氫呋喃(THF)中。由在-78℃下在大致400mL THF中使86.84g(1.08mol)新裂解並蒸餾之MeCpH與440mL(2.5M己烷)Li(nBu)反應來製備Li(MeCp)溶液。將Li(MeCp)溶液逐滴添加至MeNHCH2CH2Cl.HCl/THF溶液中。使所得混濁混合物升溫至室溫且攪拌1天。過濾混合物以產生褐色溶液且在真空下蒸發溶劑及揮發物。在36-62℃(頂部)/10托下使所得褐色液體經歷真空蒸餾以產生31.93g(43% mol/mol)MeNHCH2CH2(MeCp)微黃色液體。對 其他合成製程之後續分析揭露MeNHCH2CH2-2-(Cp-1-Me)及MeNHCH2CH2-3-(Cp-1-Me)均在此排斥中形成。
步驟3:將3g(11.21mmol)Zr(NMe2)4添加至大致50mL甲苯中且冷卻至-78℃。將含3.6g(23.8mmol)MeNHCH2CH2(MeCp)微黃色液體的大致50mL甲苯添加至冷卻之Zr(NMe2)4/甲苯混合物中。使混合物達至室溫且攪拌隔夜以產生濃黃色溶液。藉由真空蒸發溶劑及揮發物以產生黃色油狀物。在84-92℃(頂部)/20毫托下使黃色油狀物經歷真空蒸餾以產生2.9g(79% mol/mol)(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)黃色油狀物。圖4為(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)反應產物之1H NMR光譜。如可看出,形成幾乎等量之(Me2N)2-Zr-C5H3-1-Me-2-(CH2-CH2-NMe-)及(Me2N)2-Zr-C5H3-1-Me-3-(CH2-CH2-NMe-)。藉由U形玻璃管黏度測定法所量測,產物在26℃下之黏度為16.7厘泊(cP)。
特性化:對(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)反應產物進行開杯熱解重量分析/差熱分析(TGA/DTA)、蒸氣壓分析及差示掃描熱量測定(DSC)。結果顯示於圖5(TGA/DTA)、圖6(蒸氣壓)及圖7(DSC)中。
圖5為說明溫度提高時的重量損失百分比(實線)及溫差(點線)之TGA/DTA曲線圖。以10℃/min之溫度上升速率量測,在大氣壓開杯TGA後留下大致4%的殘餘質量。異構體混合物典型地難以用於半導體行業中,因為若一種異構體隨時間推移而富集,則異構體混合物傾向於在製程中產生漂移。然而,如圖5中可見,由於TGA曲線為平穩的,因此異構體(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)均同時蒸發。因此,平穩徹底的蒸發證實異構體混合物適用於氣相沉積製程。
圖6為(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)反應產物之相對於溫度之蒸氣壓曲線,顯示蒸氣壓隨著55℃至140℃內之溫度增加而線性增加。 圖7為(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)及ZrCp(NMe2)3之熱流通量相對於溫度之比較差示掃描熱量測定曲線圖,顯示-40℃至300℃之間曲線幾乎是平直的。平坦曲線意謂在該溫度範圍內不發生分解。
針對氣相沉積應用,藉由TGA結果證實之低量殘餘物、高蒸氣壓及藉由DSC證實之熱穩定性為有前景的。
實施例2:(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)之熱穩定性
將實施例1之(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)反應產物儲存於在氮氣下密封之若干玻璃管中。將一些管加熱至100℃。將其他管加熱至120℃。藉由1H NMR及TGA在1、2、3、4、10及20週時分析樣品。1H NMR未觀測到急劇的變化。圖8為說明儲存於100℃下之樣品之重量損失百分比的TGA曲線圖。圖9為說明儲存於120℃下之樣品之重量損失百分比的TGA曲線圖。此等結果表明(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)為熱穩定的。對於蒸氣遞送前驅體而言熱穩定性極其重要,因為前驅體可在高溫下維持延長之時間段。當高溫導致前驅體自我分解時製程效能明顯受損。
實施例3:(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)之ALD結果
使用O3及實施例1之(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-),對ZrO2膜於Si基板上之ALD沉積進行100次循環。圖10為顯示ALD製程之流程圖。在步驟1中,將1秒O3脈衝引入含有Si基板之反應室(圖中未示)中,且與基板反應以產生圖11之O-封端基板(亦即,以形成SiO2)。在0.5托下將反應器維持在275℃、300℃、325℃、350℃、360℃、370℃、375℃及400℃下。在1秒O3脈衝之後為30秒Ar淨化脈衝以去除任何過量O3或反應副產物。一般熟習此項技術者將認識到,O3脈衝不必為所揭示之ALD製程中之步驟1。舉例而言,可在Si基板上形成原生氧化物層且因而第一步驟可為步驟2。替代地,可藉由ALD或CVD在層堆疊上形成SiO2層且因而第一步驟可為步驟2。一般熟習此項 技術者將進一步認識到,使用類似或不同反應機制,所揭示之(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)前驅體亦可與其他基板同樣很好地反應。
圖10之步驟2中,將(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)前驅體之蒸氣形式之9秒脈衝引入反應室中。將實施例1之液體(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)前驅體置於加熱並維持在75℃下之容器中以產生蒸氣形式。容器利用圖2之遞送方法,其中入口導管之末端低於表面且出口導管之末端位於含Zr之成膜組成物之表面上方。
圖12為步驟2開始時基板之示意性側視圖。
圖13為(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)前驅體與基板之間的反應之示意性側視圖以及潛在反應副產物(例如,NH2Me、NHMe2)。一般熟習此項技術者將認識到,表面反應機制難以使用原位量測結果來分析。前驅體可在不與任何表面物種反應的情況下以化學方式完整吸附於基板上(化性吸附)。替代地,前驅體之金屬中心可鍵結至一個反應性位點而其完整配位體中之一些鍵聯至基板(解離)。在另一替代方案中,前驅體之配位體可與反應性表面位點(例如,-OH基團)交換(配位體交換)。在此機制中,配位體中之一些可以氫化形式完整地釋放。在另一替代方案中,前驅體可與基板反應且釋放更少的揮發性副產物(分解)。在另一替代方案中,臭氧反應物之經吸附氧原子可與前驅體反應且部分地燃燒其配位體並釋放燃燒副產物。In situ characterization of ALD processes and study of reaction mechanisms for high-k metal oxide formation,Tomczak Academic Dissertation,赫爾辛基大學(University of Helsinki),2014之章節2.4。
因NMe2基團之高kPa所致,申請人相信兩個NMe2基團中之一或兩者與表面O-或OH-基團反應以形成NHMe2、NH2Me及具有橋連-Cp配位體之經吸附Zr物種。流出物之四極質譜(QMS)測試可用以確認此信念。如所顯示, 此反應機制進一步確保使用所主張之前驅體,異構體富集不應為難以解決的。
圖10之步驟3中,40秒氬氣脈衝自反應室淨化任何過量的(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)前驅體及反應副產物以產生圖14之基板。
圖10之步驟4中,若尚未藉由引入步驟1之1秒O3脈衝獲得所期望之膜厚度,則可重複該製程。圖15圖14之基板與圖10之步驟1的O3反應物之間的反應之示意性側視圖以及反應副產物,諸如CO2、Cp、MeCp、MeEtCp、CO2、NO2、O2等。如在步驟2中,流出物之QMS測試可用以確認反應副產物。在1秒O3脈衝之後為30秒Ar淨化脈衝以去除任何過量O3或反應副產物。
圖16為生長速率相對於晶圓溫度之曲線圖。生長速率為每次循環0.8埃且ALD窗高達370℃。
藉由X射線光電子光譜測定(XPS)分析所得ZrO2膜。圖17為ZrO2膜中C(圓形)、O(正方形)、Zr(三角形)及N(x)之原子%相對於晶圓溫度之XPS曲線圖。如可看出,ZrO2膜中之C及N濃度較低。
亦在300℃及325℃下在2.7托下在具有1:40縱橫比之圖案化Si晶圓上進行ZrO2 ALD沉積。在兩次溫度下,觀測到100%步階覆蓋。圖18A為在300℃下獲得之步階覆蓋之掃描電子顯微鏡(SEM)照片。如所顯示,所得ZrO2膜之厚度在31.5nm(頂部)及30.7nm(底部)範圍內。圖18B為在325℃下獲得之步階覆蓋之SEM照片。如所顯示,所得ZrO2膜之厚度在29.4nm(接近頂部)及30.2nm(底部)範圍內。
實施例1-3之結果證實(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)前驅體證實了優異的ALD前驅體特性。
實施例4:合成(Me2N)2-Zr-C5H4-(CH2-CH2-NMe-)
步驟1:如實施例1之步驟1中所描述合成MeNHCH2CH2Cl.HCl。
步驟2:在0℃下將88.2g(0.68mol)MeNHCH2CH2Cl.HCl添加至大致250mL四氫呋喃(THF)中。製備NaCp於678mL THF中之2.0M溶液。將NaCp溶液逐滴添加至MeNHCH2CH2Cl.HCl/THF溶液中。使所得混濁混合物升溫至室溫且加熱至回流,持續6小時。過濾混合物以產生褐色溶液且在真空下蒸發溶劑及揮發物。在40-58℃(頂部)/10托下使所得褐色液體經歷真空蒸餾以產生21.8g(26-28% mol/mol)MeNHCH2CH2Cp微黃色液體。
步驟3:將50g(0.19mol)Zr(NMe2)4添加至大致200mL甲苯中且冷卻至-78℃。將含32g(0.26mol)MeNHCH2CH2Cp微黃色液體的大致100mL甲苯逐滴添加至冷卻之Zr(NMe2)4/甲苯混合物中。使混合物達至室溫且攪拌隔夜以產生濃黃色溶液。藉由真空蒸發溶劑及揮發物以產生黃色油狀物。在50-80℃(頂部)/20毫托下使黃色油狀物經歷真空蒸餾以產生25g(45% mol/mol)(Me2N)2-Zr-C5H4-(CH2-CH2-NMe-)黃色油狀物。圖19為(Me2N)2-Zr-C5H4-(CH2-CH2-NMe-)反應產物之1H NMR光譜。產物之黏度為13厘泊(cP)。
特性化:對(Me2N)2-Zr-C5H4-(CH2-CH2-NMe-)反應產物進行開杯熱解重量分析/差熱分析(TGA/DTA)及蒸氣壓分析。結果顯示於圖20(TGA/DTA)及圖21(蒸氣壓)中。圖20為說明溫度提高時的重量損失百分比(實線)及溫差(點線)之TGA/DTA曲線圖。以10℃/min之溫度上升速率量測,在大氣壓開杯TGA後留下大致6%的殘餘質量。圖21為化合物之相對於溫度之蒸氣壓曲線,顯示蒸氣壓隨著45℃至135℃內之溫度增加而線性增加。針對氣相沉積應用,藉由TGA結果證實之低量殘餘物及高蒸氣壓為有前景的。
實施例5:(Me2N)2-Zr-C5H4-(CH2-CH2-NMe-)之熱穩定性
將實施例4之(Me2N)2-Zr-C5H4-(CH2-CH2-NMe-)反應產物儲存於 在氮氣下密封之若干玻璃管中。將一些管加熱至100℃。將其他管加熱至120℃。藉由1H NMR及TGA在1、2、3、4、10及20週時分析樣品。在100℃下在20週後觀測到一些額外小峰。在120℃下在20週後可見更多的峰。圖22為說明儲存於100℃下之樣品之重量損失百分比的TGA曲線圖。圖23為說明儲存於120℃下之樣品之重量損失百分比的TGA曲線圖。此等結果表明(Me2N)2-Zr-C5H4-(CH2-CH2-NMe-)比(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)具有更小的熱穩定性。對於蒸氣遞送前驅體而言熱穩定性極其重要,因為前驅體可在高溫下維持延長之時間段。當加熱導致前驅體分解時製程可靠性明顯受損。
實施例6:合成(Me2N)2-Zr-(iPr)C5H3-(CH2-CH2-NMe-)
步驟1:如實施例1之步驟1中所描述合成MeNHCH2CH2Cl.HCl。
步驟2:在0℃下將實施例1之步驟1中所產生之15g(0.11mol)MeNHCH2CH2Cl.HCl添加至大致150mL THF中。將含34g(0.26mol)Na(iPrCp)的大致200mL THF逐滴添加至MeNHCH2CH2Cl.HCl/THF漿液中。使所得混濁混合物升溫至室溫且攪拌隔夜。過濾混合物以產生紅紫色溶液且在真空下蒸發溶劑及揮發物。在60-92℃(頂部)/10托下使所得紅紫色液體經歷真空蒸餾以產生4.5g(24% mol/mol)MeNHCH2CH2(iPrCp)反應物。類似於實施例1中之步驟2,申請人相信MeNHCH2CH2-2-(Cp-1-iPr)及MeNHCH2CH2-3-(Cp-1-iPr)均在此步驟中形成。
步驟3:將6.3g(23.55mmol)Zr(NMe2)4添加至大致70mL甲苯中且冷卻至-78℃。將含4.3g(26.04mmol)MeNHCH2CH2(iPrCp)反應物的大致80mL甲苯逐滴添加至冷卻之Zr(NMe2)4/甲苯混合物中。使混合物達至室溫且攪拌隔夜以產生濃黃色溶液。藉由真空蒸發溶劑及揮發物以產生黃色油狀物。在90℃(頂部)/20毫托下使黃色油狀物經歷真空蒸餾以產生4.3g(53% mol/mol)(Me2N)2-Zr-(iPr)C5H3-(CH2-CH2-NMe-)黃色油狀物。圖24為(Me2N)2-Zr-(iPr)C5H3-(CH2-CH2-NMe-)反應產物之1H NMR光譜。類似於實施例1中之步驟3,1H NMR結果證實(Me2N)2-Zr-C5H3-1-iPr-2-(CH2-CH2-NMe-)及(Me2N)2-Zr-C5H3-1-iPr-3-(CH2-CH2-NMe-)均在此步驟中形成。
特性化:對(Me2N)2-Zr-(iPr)C5H3-(CH2-CH2-NMe-)反應產物進行開杯熱解重量分析/差熱分析(TGA/DTA)及蒸氣壓分析。結果顯示於圖25(TGA/DTA)及圖26(蒸氣壓)中。圖25為說明溫度提高時的重量損失百分比(實線)及溫差(點線)之TGA/DTA曲線圖。以10℃/min之溫度上升速率量測,在大氣壓開杯TGA後留下大致5%的殘餘質量。圖26為反應產物之相對於溫度之蒸氣壓曲線,顯示自80℃至140℃,蒸氣壓線性增加。針對氣相沉積應用,藉由TGA結果證實之低量殘餘物及高蒸氣壓為有前景的,但與實施例1之(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)及實施例4之(Me2N)2-Zr-C5H4-(CH2-CH2-NMe-)相比,蒸氣壓將更需要加熱。
實施例7:合成(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NtBu-)
步驟1:在配備有250mL滴液漏斗及冷凝器/N2入口之500mL 2頸燒瓶中,添加41mL(0.56mol)SOCl2及大致150mL CH2Cl2以形成溶液。將該溶液冷卻至0℃。經由滴液漏斗將60g(0.52mol)tBuNHCH2CH2OH添加至冷卻之CH2Cl2/SOCl2中。每次滴落時形成白色煙。使混合物達至室溫且攪拌隔夜以產生混濁之褐色懸浮液。接著將懸浮液置於-20℃冰箱中隔夜以用於再結晶。白色固體/晶體經由玻璃料(中等)過濾並收集,用無水醚洗滌,且在室溫下在真空下乾燥。將濾液合併,濃縮,且置於冰箱中用於另一批次之再結晶。tBuNHCH2CH2Cl.HCl反應物之合併產量為71g(80.1% mol/mol)。
步驟2:在0℃下將13g(75.54mmol)tBuNHCH2CH2Cl.HCl反應物添加至大致100mL四氫呋喃(THF)中。由在-78℃下在大致300mL THF 中使13.4g(167.23mol)新裂解並蒸餾之MeCpH與68mL(2.5M己烷)Li(nBu)反應來製備Li(MeCp)溶液。將Li(MeCp)溶液逐滴添加至tBuNHCH2CH2Cl.HCl/THF溶液中。使所得混濁混合物升溫至室溫且攪拌1天。過濾混合物以產生褐色溶液且在真空下蒸發溶劑及揮發物。在60-70℃(頂部)/10托下使所得褐色液體經歷真空蒸餾以產生3.15g(23% mol/mol)tBuNHCH2CH2(MeCp)無色液體。類似於實施例1中之步驟2,申請人相信tBuNHCH2CH2-2-(Cp-1-Me)及tBuNHCH2CH2-3-(Cp-1-Me)均在此步驟中形成。
步驟3:將3.2g(11.96mmol)Zr(NMe2)4添加至大致30mL甲苯中且冷卻至-78℃。將含3.1g(17.29mmol)tBuNHCH2CH2(MeCp)無色液體的大致40mL甲苯逐滴添加至冷卻之Zr(NMe2)4/甲苯混合物中。使混合物達至室溫且攪拌隔夜以產生黃色液體。藉由真空蒸發溶劑及揮發物以產生黃色液體。在88-94℃(頂部)/20毫托下使黃色液體經歷真空蒸餾以產生0.2g(4.3% mol/mol)(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NtBu-)黃色液體。圖27為(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NtBu-)反應產物之1H NMR光譜。類似於實施例1中之步驟3,1H NMR結果證實(Me2N)2-Zr-C5H3-1-Me-2-(CH2-CH2-NtBu-)及(Me2N)2-Zr-C5H3-1-Me-3-(CH2-CH2-NtBu-)均在此步驟中形成。然而,比率似乎更接近於40%之一種異構體及60%之另一異構體。
特性化:對(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NtBu-)反應產物進行開杯熱解重量分析/差熱分析(TGA/DTA)及蒸氣壓分析。結果顯示於圖28(TGA/DTA)及圖29(蒸氣壓)中。圖28為說明溫度提高時的重量損失百分比(實線)及溫差(點線)之TGA/DTA曲線圖。以10℃/min之溫度上升速率量測,在大氣壓開杯TGA後留下大致29%的殘餘質量。圖29為反應產物之相對於溫度之蒸氣壓曲線,顯示自80℃至140℃,蒸氣壓線性增加。藉由TGA結果證實之大量殘餘物證實此具體實例用於氣相沉積應用的前景較小。
實施例8:合成(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NEt-)
步驟1:在配備有250mL滴液漏斗及冷凝器/N2入口之500mL 2頸燒瓶中,添加26mL(0.36mol)SOCl2及大致150mL CH2Cl2以形成溶液。將該溶液冷卻至0℃。經由滴液漏斗將30g(0.34mol)EtNHCH2CH2OH添加至冷卻之CH2Cl2/SOCl2中。每次滴落時形成白色煙。使混合物達至室溫且攪拌隔夜以產生混濁之褐色懸浮液。接著將懸浮液置於-20℃冰箱中隔夜以用於再結晶。白色固體/晶體經由玻璃料(中等)過濾並收集,用無水醚洗滌,且在室溫下在真空下乾燥。將濾液合併,濃縮,且置於冰箱中用於另一批次之再結晶。EtNHCH2CH2Cl.HCl反應物之合併產量為33g(68% mol/mol)。
步驟2:在0℃下將15g(0.10mol)EtNHCH2CH2Cl.HCl反應物添加至大致100mL四氫呋喃(THF)中。由在-78℃下在大致300mL THF中使19.33g(0.24mol)新裂解並蒸餾之MeCpH與97mL(2.5M己烷)Li(nBu)反應來製備Li(MeCp)溶液。將Li(MeCp)溶液逐滴添加至EtNHCH2CH2Cl.HCl/THF溶液中。使所得混濁混合物升溫至室溫且攪拌1天。過濾混合物以產生褐色溶液且在真空下蒸發溶劑及揮發物。在80-85℃(頂部)/10托下使所得褐色液體經歷真空蒸餾以產生3.6g(23% mol/mol)EtNHCH2CH2(MeCp)微黃色液體。類似於實施例1中之步驟2,申請人相信EtNHCH2CH2-2-(Cp-1-Me)及EtNHCH2CH2-3-(Cp-1-Me)均在此步驟中形成。
步驟3:將3g(11.21mmol)Zr(NMe2)4添加至大致50mL甲苯中且冷卻至-78℃。將含3.6g(23.8mmol)EtNHCH2CH2(MeCp)微黃色液體的大致50ml甲苯逐滴添加至冷卻之Zr(NMe2)4/甲苯混合物中。使混合物達至室溫且攪拌隔夜以產生濃黃色溶液。藉由真空蒸發溶劑及揮發物以產生黃色油狀物。在84-92℃(頂部)/20毫托下使黃色油狀物經歷真空蒸餾以產生2.9g(79% mol/mol)(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NEt-)黃色油狀物。圖30為(Me2N)2-Zr- (Me)C5H3-(CH2-CH2-NEt-)反應產物之1H NMR光譜。類似於實施例1中之步驟3,1H NMR結果證實(Me2N)2-Zr-C5H3-1-Me-2-(CH2-CH2-NEt-)及(Me2N)2-Zr-C5H3-1-Me-3-(CH2-CH2-NEt-)均在此步驟中形成。
特性化:對(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NtBu-)反應產物進行開杯熱解重量分析/差熱分析(TGA/DTA)及蒸氣壓分析。結果顯示於圖31(TGA/DTA)及圖32(蒸氣壓)中。圖31為說明溫度提高時的重量損失百分比(實線)及溫差(點線)之TGA/DTA曲線圖。以10℃/min之溫度上升速率量測,在大氣壓開杯TGA後留下大致9%的殘餘質量。圖32為反應產物之相對於溫度之蒸氣壓曲線,顯示自80℃至140℃,蒸氣壓線性增加。藉由TGA結果證實之大量殘餘物證實此具體實例用於氣相沉積應用的前景較小。
結論:
如在下表中可見,(Me2N)2-Zr-(Me)C5H3-(CH2-CH2-NMe-)前驅體展現優於所有其類似物之優異特性。
Figure 106146269-A0305-02-0051-9
實施例9:合成(Me2N)2-Hf-(Me)C5H3-(CH2-CH2-NMe-)
步驟1:如實施例1之步驟1中所描述合成MeNHCH2CH2Cl.HCl。
步驟2:在-78℃下將70g(0.54mol)MeNHCH2CH2Cl.HCl反應物添加至大致400mL四氫呋喃(THF)中。由在-78℃下在大致400mL THF中使86.84g(1.08mol)新裂解並蒸餾之MeCpH與440mL(2.5M己烷)Li(nBu)反應來製備Li(MeCp)溶液。將Li(MeCp)溶液逐滴添加至 MeNHCH2CH2Cl.HCl/THF溶液中。使所得混濁混合物升溫至室溫且攪拌1天。過濾混合物以產生褐色溶液且在真空下蒸發溶劑及揮發物。在36-62℃(頂部)/10托下使所得褐色液體經歷真空蒸餾以產生31.93g(43% mol/mol)MeNHCH2CH2(MeCp)微黃色液體。類似於實施例1中之步驟2,申請人相信MeNHCH2CH2-2-(Cp-1-Me)及MeNHCH2CH2-3-(Cp-1-Me)均在此步驟中形成。
步驟3:將72.7g(0.205mol)Hf(NMe2)4添加至大致300mL甲苯中且冷卻至-78℃。將含42.2g(0.31mol)MeNHCH2CH2(MeCp)微黃色液體的大致200mL甲苯逐滴添加至冷卻之Hf(NMe2)4/甲苯混合物中。使混合物達至室溫且攪拌隔夜以產生濃黃色液體。藉由真空蒸發溶劑及揮發物以產生黃色油狀物。在80-100℃(頂部)/20毫托下使黃色油狀物經歷真空蒸餾以產生69g(83.7% mol/mol)(Me2N)2-Hf-(Me)C5H3-(CH2-CH2-NMe-)黃色油狀物。類似於實施例1中之步驟3,1H NMR結果證實(Me2N)2-Hf-C5H3-1-Me-2-(CH2-CH2-NMe-)及(Me2N)2-Hf-C5H3-1-Me-3-(CH2-CH2-NMe-)均在此步驟中形成。
特性化:對(Me2N)2-Hf-(Me)C5H3-(CH2-CH2-NMe-)反應產物進行開杯熱解重量分析/差熱分析(TGA/DTA)及蒸氣壓分析。結果顯示於圖33(TGA/DTA)及圖34(蒸氣壓)中。圖33為說明溫度提高時的重量損失百分比(實線)及溫差(點線)之TGA/DTA曲線圖。以10℃/min之溫度上升速率量測,在大氣壓開杯TGA後留下大致5.17%的殘餘質量。圖34為反應產物之相對於溫度之蒸氣壓曲線,顯示自100℃至190℃,蒸氣壓線性增加。
實施例10:(Me2N)2-Hf-(Me)C5H3-(CH2-CH2-NMe-)之ALD結果
使用O3及實施例9之(Me2N)2-Hf-(Me)C5H3-(CH2-CH2-NMe-),對HfO2膜於Si基板上之ALD沉積進行100次循環。在以下各者下證實沉積:275與425℃之間的晶圓溫度、0.5托之腔室壓力、170sccm下之Ar運載氣體、95℃罐溫度、500sccm(300g/m3)之臭氧流動速率(15秒前驅體;30秒Ar淨化;1秒 O3反應物;30秒Ar淨化)。圖35為生長速率相對於晶圓溫度之曲線圖。生長速率為每次循環大致0.7埃且ALD窗高達375℃。
亦在350℃及375℃下在2.7托下在具有1:40縱橫比之圖案化Si晶圓上進行HfO2 ALD沉積。在兩次溫度下,觀測到100%步階覆蓋。圖36A為在350℃下獲得之步階覆蓋之掃描電子顯微鏡(SEM)照片。如所顯示,在結構之頂部及底部,所得HfO2膜之厚度為32.8nm。圖36B為在375℃下獲得之步階覆蓋之SEM照片。如所顯示,在結構之頂部及底部,所得HfO2膜之厚度為46.1nm。
實施例9-10之結果證實(Me2N)2-Hf-(Me)C5H3-(CH2-CH2-NMe-)前驅體證實了優異的ALD前驅體特性。
將理解,在如所附申請專利範圍中所表述之本發明原理及範疇內,熟習此項技術者可對本文中已描述且說明以便解釋本發明之性質的細節、材料、步驟及部件配置作出許多其他改變。因此,本發明並不意欲限於上文及/或隨附圖式中給出之實施例中的特定具體實例。
Figure 106146269-A0305-02-0003-1
1:含Si成膜組成物遞送裝置
2:容器
3:入口導管
4:出口導管
6:閥
7:閥
8:入口導管300之末端
9:出口導管400之末端
11:含Si成膜組成物

Claims (15)

  1. 一種含第4族過渡金屬之成膜組成物,其包含具有式L 2-M-C 5R 4-[(ER 2) 2-NR]-之第4族過渡金屬前驅體,參看以下結構式:
    Figure 106146269-A0202-13-0001-13
    其中M為以η 5鍵結模式鍵結至Cp基團之Ti、Zr或Hf;各E獨立地為C、Si、B或P;各R獨立地為氫或C 1-C 4烴基;且各L獨立地為-1陰離子配位體;其限制條件為該Cp上之至少一個R為C 1至C 4
  2. 如請求項1所述之含第4族過渡金屬之成膜組成物,其中各L獨立地選自由以下組成之群:NR ' 2、OR '、Cp、脒基、β-二酮及酮亞胺,其中R '為H或C 1-C 4烴基。
  3. 如請求項2所述之含第4族過渡金屬之成膜組成物,其中E為C。
  4. 如請求項1至3中任一項所述之含第4族過渡金屬之成膜組成物,其中M為Zr。
  5. 如請求項4所述之含第4族過渡金屬之成膜組成物,其中該第4族過渡金屬前驅體選自由以下組成之群:(Me 2N) 2-Zr-(Me)C 5H 3-(CH 2-CH 2-NMe-)、(Me 2N) 2-Zr-(Et)C 5H 3-(CH 2-CH 2-NMe-)、(Me 2N) 2-Zr-(iPr)C 5H 3-(CH 2-CH 2-NMe-)、(Me 2N)(Cp)-Zr-(Me)C 5H 3-(CH 2-CH 2-NMe-)、(Me 2N)(Cp)-Zr-(Et)C 5H 3-(CH 2-CH 2-NMe-)、(Me 2N)(Cp)-Zr-(iPr)C 5H 3-(CH 2-CH 2-NMe-)及其組合。
  6. 如請求項5所述之含第4族過渡金屬之成膜組成物,其中該第4族過渡金屬前驅體為(Me 2N) 2-Zr-(Me)C 5H 3-(CH 2-CH 2-NMe-)。
  7. 如請求項1至3中任一項所述之含第4族過渡金屬之成膜組成物,其中M為Hf。
  8. 如請求項7所述之含第4族過渡金屬之成膜組成物,其中該第4族過渡金屬前驅體選自由以下組成之群:(Me 2N) 2-Hf-(Me)C 5H 3-(CH 2-CH 2-NMe-)、(Me 2N) 2-Hf-(Et)C 5H 3-(CH 2-CH 2-NMe-)、(Me 2N) 2-Hf-(iPr)C 5H 3-(CH 2-CH 2-NMe-)、(Me 2N)(Cp)-Hf-(Me)C 5H 3-(CH 2-CH 2-NMe-)、(Me 2N)(Cp)-Hf-(Et)C 5H 3-(CH 2-CH 2-NMe-)、(Me 2N)(Cp)-Hf-(iPr)C 5H 3-(CH 2-CH 2-NMe-)及其組合。
  9. 如請求項8所述之含第4族過渡金屬之成膜組成物,其中該第4族過渡金屬前驅體為(Me 2N) 2-Hf-(Me)C 5H 3-(CH 2-CH 2-NMe-)。
  10. 一種在基板上沉積含第4族過渡金屬之膜之方法,其包含以下步驟:將如請求項1至3中任一項所述之含第4族過渡金屬之成膜組成物的蒸氣引入裏面安置基板之反應器中,及將該含第4族過渡金屬之前驅體的至少一部分沉積於該基板上。
  11. 如請求項10所述之方法,其中該第4族過渡金屬前驅體為(Me 2N) 2-Zr-(Me)C 5H 3-(CH 2-CH 2-NMe-)。
  12. 如請求項10所述之方法,其中該第4族過渡金屬前驅體為(Me 2N) 2-Hf-(Me)C 5H 3-(CH 2-CH 2-NMe-)。
  13. 一種在基板上沉積形成含第4族過渡金屬之保形膜之方法,其包含以下步驟:將如請求項1至3中任一項所述之含第4族過渡金屬之成膜組成物的蒸氣引入反應器中,該反應器具有安置其中之縱橫比在大致10:1至大致200:1範圍內之圖案化晶圓基板,及將該含第4族過渡金屬之前驅體的至少一部分沉積於該基板上。
  14. 如請求項13所述之方法,其中該第4族過渡金屬前驅體為(Me 2N) 2-Zr-(Me)C 5H 3-(CH 2-CH 2-NMe-)。
  15. 如請求項13所述之方法,其中該第4族過渡金屬前驅體為(Me 2N) 2-Hf-(Me)C 5H 3-(CH 2-CH 2-NMe-)。
TW106146269A 2016-12-30 2017-12-28 一種包含第4族過渡金屬前驅體之含第4族過渡金屬之成膜組成物、一種在基板上沉積含第4族過渡金屬之膜之方法、以及一種在基板上沉積形成含第4族過渡金屬之保形膜之方法 TWI765950B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/396,159 US10364259B2 (en) 2016-12-30 2016-12-30 Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
US15/396,159 2016-12-30

Publications (2)

Publication Number Publication Date
TW201833123A TW201833123A (zh) 2018-09-16
TWI765950B true TWI765950B (zh) 2022-06-01

Family

ID=58523564

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106146269A TWI765950B (zh) 2016-12-30 2017-12-28 一種包含第4族過渡金屬前驅體之含第4族過渡金屬之成膜組成物、一種在基板上沉積含第4族過渡金屬之膜之方法、以及一種在基板上沉積形成含第4族過渡金屬之保形膜之方法

Country Status (6)

Country Link
US (1) US10364259B2 (zh)
JP (1) JP7022752B2 (zh)
KR (1) KR20190100269A (zh)
CN (1) CN110073474B (zh)
TW (1) TWI765950B (zh)
WO (1) WO2018122612A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10364259B2 (en) * 2016-12-30 2019-07-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
US10465289B2 (en) 2016-12-30 2019-11-05 L'Air Liquide, Société Anonyme pour l'Etude at l'Exploitation des Procédés Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
US10337104B2 (en) 2016-12-30 2019-07-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
KR102358527B1 (ko) * 2017-12-17 2022-02-08 어플라이드 머티어리얼스, 인코포레이티드 선택적 증착에 의한 실리사이드 막들
CN118027087A (zh) * 2018-02-07 2024-05-14 Up化学株式会社 含第ⅳ族金属元素化合物、其制备方法、含其的膜形成用前体组合物及用其的膜形成方法
KR102327450B1 (ko) * 2019-10-29 2021-11-17 한국화학연구원 4족 전이금속 화합물, 이의 제조방법 및 이를 포함하는 박막증착용 조성물
CN114746573B (zh) * 2019-11-20 2024-05-10 默克专利有限公司 用于选择性形成含金属膜的化合物及方法
KR102574475B1 (ko) * 2022-05-13 2023-09-06 주식회사 유피케미칼 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물, 및 이를 이용한 막 형성 방법
WO2024049843A1 (en) * 2022-09-02 2024-03-07 Entegris, Inc. Indenyl precursors
KR20240073582A (ko) 2022-11-18 2024-05-27 에스케이트리켐 주식회사 아미디네이트 리간드를 포함하는 4족 전이금속 함유 박막 형성용 전구체, 이를 이용한 4족 전이금속 함유 박막 형성 방법 및 상기 4족 전이금속 함유 박막을 포함하는 반도체 소자.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532252A (ja) * 2009-07-01 2012-12-13 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 蓄電池用のLixMyOz材料のためのリチウム前駆体
KR20140078534A (ko) * 2012-12-17 2014-06-25 솔브레인씨그마알드리치 유한회사 금속 전구체 및 이를 이용하여 제조된 금속 함유 박막
CN103930431A (zh) * 2011-03-15 2014-07-16 株式会社Mecharonics 新型第4b族金属有机化合物及其制备
TW201630921A (zh) * 2014-12-23 2016-09-01 液態空氣喬治斯克勞帝方法研究開發股份有限公司 用於含鋯膜氣相沈積的含鋯成膜組成物
US20160273103A1 (en) * 2015-03-20 2016-09-22 SK Hynix Inc. Film-forming composition and method for fabricating film by using the same

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1312069C (en) 1987-06-17 1992-12-29 Richard E. Campbell, Jr. Catalyst and process for preparation of syndiotactic polystyrene
NZ235032A (en) 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
US5383778A (en) 1990-09-04 1995-01-24 James River Corporation Of Virginia Strength control embossing apparatus
US5322813A (en) * 1992-08-31 1994-06-21 International Business Machines Corporation Method of making supersaturated rare earth doped semiconductor layers by chemical vapor deposition
DE4416876A1 (de) 1994-05-13 1995-11-16 Basf Ag Verfahren zur Herstellung von verbrückten Halbsandwichkomplexen
US5665818A (en) 1996-03-05 1997-09-09 Union Carbide Chemicals & Plastics Technology Corporation High activity staged reactor process
KR20000005030A (ko) 1996-03-27 2000-01-25 그레이스 스티븐 에스. 헤테로사이클릭 금속 착체 및 올레핀 중합 방법
US5693727A (en) 1996-06-06 1997-12-02 Union Carbide Chemicals & Plastics Technology Corporation Method for feeding a liquid catalyst to a fluidized bed polymerization reactor
CA2330529A1 (en) 1998-06-12 1999-12-16 Univation Technologies Llc Olefin polymerization process using activated lewis acid-base complexes
US6238734B1 (en) * 1999-07-08 2001-05-29 Air Products And Chemicals, Inc. Liquid precursor mixtures for deposition of multicomponent metal containing materials
JP3598055B2 (ja) * 2000-11-08 2004-12-08 田中貴金属工業株式会社 ビス(アルキルシクロペンタジエニル)ルテニウムの製造方法及びその製造方法により製造されるビス(アルキルシクロペンタジエニル)ルテニウム並びにルテニウム薄膜又はルテニウム化合物薄膜の製造方法
JP4672897B2 (ja) * 2001-04-13 2011-04-20 田中貴金属工業株式会社 ビス(シクロペンタジエニル)ルテニウム誘導体の製造方法
JP2004059544A (ja) * 2002-07-31 2004-02-26 Tosoh Corp 置換シクロペンタジエニル銅錯体及びその製造方法
JP2004292767A (ja) * 2003-03-28 2004-10-21 Fuji Photo Film Co Ltd 絶縁膜形成材料及びそれを用いた絶縁膜
JP4004983B2 (ja) * 2003-03-28 2007-11-07 富士フイルム株式会社 絶縁膜形成材料及びそれを用いた絶縁膜
JP4696454B2 (ja) * 2003-04-24 2011-06-08 東ソー株式会社 新規有機イリジウム化合物、その製造方法、及び膜の製造方法
JP2005132756A (ja) * 2003-10-29 2005-05-26 Tosoh Corp タンタル化合物、その製造方法およびタンタル含有薄膜の形成方法
US20060013955A1 (en) * 2004-07-09 2006-01-19 Yoshihide Senzaki Deposition of ruthenium and/or ruthenium oxide films
US20090035946A1 (en) * 2007-07-31 2009-02-05 Asm International N.V. In situ deposition of different metal-containing films using cyclopentadienyl metal precursors
EP2191034B1 (en) 2007-09-14 2013-03-13 Sigma-Aldrich Co. LLC Methods of preparing thin films by atomic layer deposition using monocyclopentadienyl triamino zirconium precursors
US8092870B2 (en) * 2008-04-11 2012-01-10 Air Products And Chemicals, Inc. Preparation of metal oxide thin film via cyclic CVD or ALD
US8636845B2 (en) * 2008-06-25 2014-01-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal heterocyclic compounds for deposition of thin films
US8952188B2 (en) * 2009-10-23 2015-02-10 Air Products And Chemicals, Inc. Group 4 metal precursors for metal-containing films
US8592606B2 (en) * 2009-12-07 2013-11-26 Air Products And Chemicals, Inc. Liquid precursor for depositing group 4 metal containing films
US20120196449A1 (en) 2011-01-27 2012-08-02 Advanced Technology Materials, Inc. Zirconium, hafnium and titanium precursors for atomic layer deposition of corresponding metal-containing films
KR101263454B1 (ko) 2011-03-15 2013-11-27 주식회사 메카로닉스 지르코늄 금속을 함유하는 신규한 유기금속화합물 및 그 제조방법
JP2012248813A (ja) * 2011-05-31 2012-12-13 Elpida Memory Inc ルチル結晶構造を備えた酸化チタン膜の製造方法
KR102251989B1 (ko) 2014-03-10 2021-05-14 삼성전자주식회사 유기 금속 전구체 및 이를 이용한 박막 형성 방법
KR101598485B1 (ko) 2014-06-20 2016-02-29 주식회사 유진테크 머티리얼즈 성막용 전구체 조성물 및 이를 이용한 박막 형성 방법
KR101684660B1 (ko) 2016-07-08 2016-12-09 (주)이지켐 지르코늄 박막 형성용 전구체 조성물 및 이를 이용한 지르코늄 박막의 형성 방법
US10465289B2 (en) 2016-12-30 2019-11-05 L'Air Liquide, Société Anonyme pour l'Etude at l'Exploitation des Procédés Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
US10337104B2 (en) 2016-12-30 2019-07-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
US10364259B2 (en) * 2016-12-30 2019-07-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
US20170107612A1 (en) 2016-12-30 2017-04-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532252A (ja) * 2009-07-01 2012-12-13 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 蓄電池用のLixMyOz材料のためのリチウム前駆体
CN103930431A (zh) * 2011-03-15 2014-07-16 株式会社Mecharonics 新型第4b族金属有机化合物及其制备
KR20140078534A (ko) * 2012-12-17 2014-06-25 솔브레인씨그마알드리치 유한회사 금속 전구체 및 이를 이용하여 제조된 금속 함유 박막
TW201630921A (zh) * 2014-12-23 2016-09-01 液態空氣喬治斯克勞帝方法研究開發股份有限公司 用於含鋯膜氣相沈積的含鋯成膜組成物
US20160273103A1 (en) * 2015-03-20 2016-09-22 SK Hynix Inc. Film-forming composition and method for fabricating film by using the same

Also Published As

Publication number Publication date
JP7022752B2 (ja) 2022-02-18
JP2020504903A (ja) 2020-02-13
TW201833123A (zh) 2018-09-16
CN110073474B (zh) 2023-09-01
US20170107623A1 (en) 2017-04-20
US10364259B2 (en) 2019-07-30
WO2018122612A1 (en) 2018-07-05
CN110073474A (zh) 2019-07-30
KR20190100269A (ko) 2019-08-28

Similar Documents

Publication Publication Date Title
TWI765950B (zh) 一種包含第4族過渡金屬前驅體之含第4族過渡金屬之成膜組成物、一種在基板上沉積含第4族過渡金屬之膜之方法、以及一種在基板上沉積形成含第4族過渡金屬之保形膜之方法
US10895012B2 (en) Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
JP2020524905A (ja) ニオブ含有膜形成用組成物及びニオブ含有膜の蒸着
US20200149165A1 (en) Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
US10584039B2 (en) Titanium-containing film forming compositions for vapor deposition of titanium-containing films
JP2018503247A (ja) ジルコニウム含有膜を蒸着するためのジルコニウム含有膜形成組成物
US11168099B2 (en) Titanium-containing film forming compositions for vapor deposition of titanium-containing films
US20200032397A1 (en) Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
US20210221830A1 (en) Methods for vapor deposition of group 4 transition metal-containing films using group 4 transition metal-containing films forming compositions