TWI761570B - 將環狀伸烷基脲轉變成其相應之伸烷基胺之多重步驟方法 - Google Patents

將環狀伸烷基脲轉變成其相應之伸烷基胺之多重步驟方法 Download PDF

Info

Publication number
TWI761570B
TWI761570B TW107127377A TW107127377A TWI761570B TW I761570 B TWI761570 B TW I761570B TW 107127377 A TW107127377 A TW 107127377A TW 107127377 A TW107127377 A TW 107127377A TW I761570 B TWI761570 B TW I761570B
Authority
TW
Taiwan
Prior art keywords
amine
alkylene
removal step
urea
amines
Prior art date
Application number
TW107127377A
Other languages
English (en)
Other versions
TW201920065A (zh
Inventor
凱特 安都 傑考柏 班瑞德 譚
麥可 喬瑟夫 湯瑪士 雷吉美克斯
卡爾 弗雷德里克 雷克
艾克 尼可拉斯 肯哲
絲萊維莎 喬維克
羅夫 克里斯特 艾德恩森
艾納 艾勒斯
戴姆 漢德里克 凡
任斯 維尼曼
Original Assignee
荷蘭商安科智諾貝爾化學國際公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商安科智諾貝爾化學國際公司 filed Critical 荷蘭商安科智諾貝爾化學國際公司
Publication of TW201920065A publication Critical patent/TW201920065A/zh
Application granted granted Critical
Publication of TWI761570B publication Critical patent/TWI761570B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/62Preparation of compounds containing amino groups bound to a carbon skeleton by cleaving carbon-to-nitrogen, sulfur-to-nitrogen, or phosphorus-to-nitrogen bonds, e.g. hydrolysis of amides, N-dealkylation of amines or quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/86Separation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/14Amines containing amino groups bound to at least two aminoalkyl groups, e.g. diethylenetriamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • B01D2252/2021Methanol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20447Cyclic amines containing a piperazine-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本發明關於一種用於將包含環狀伸烷基脲之原料轉變成其相應之伸烷基胺的方法,其包含 - CO2移除步驟,其中藉由使環狀伸烷基脲在液相中與水反應,同時移除CO2,來將環狀伸烷基脲轉變成其相應之伸烷基胺, - 胺移除步驟,其中藉由與沸點比在該方法期間形成之該等伸烷基胺高的選自一級胺或二級胺之群的胺化合物反應,來在反應性分離法中將環狀伸烷基脲轉變成其相應之伸烷基胺。 已發現CO2移除步驟及胺移除步驟之組合使得有可能用高效方式以較高反應速率將伸烷基脲轉變成相應之胺。

Description

將環狀伸烷基脲轉變成其相應之伸烷基胺之多重步驟方法
本發明關於一種用於將環狀伸烷基脲轉變成其相應之伸烷基胺的方法,尤其關於一種多重步驟方法。
環狀伸烷基脲為包含兩個氮原子藉由羰基部分及伸烷基部分連接之化合物。舉例而言,根據下式,環狀伸乙基脲為包含其中兩個氮原子藉由羰基部分及伸乙基部分連接之環狀伸乙基脲部分的化合物:
Figure 02_image001
可藉由移除CO基團且添加兩個氫原子來將環狀伸烷基脲化合物轉變成相應之伸烷基胺。自商業視點來看,伸烷基胺、特定言之伸乙基胺、具體言之尤其二伸乙基三胺(DETA)及高碳數伸乙基胺(諸如(線性)三伸乙基四胺(L-TETA)及四伸乙基五胺(L-TEPA))為有吸引力之產物。則環狀伸乙基脲為用於製造乙二胺及高碳數伸乙基胺的有吸引力之前驅物。
然而,已發現,環狀伸烷基脲相對穩定且難以轉變成相應之伸烷基胺。此亦可見於先前技術,其中轉變使用較大過量之強無機鹼來進行。使用強無機鹼將環狀伸烷基脲轉變成相應之伸烷基胺的困難之處特定言之在於其中伸烷基脲部分經由氮原子連接至其他伸烷基胺部分的化合物,特定言之其中伸烷基脲部分存在於兩個其他伸烷基胺部分之間的化合物。
US4,503,250描述一種用於製備線性聚伸烷基多胺之方法,其包含使氨氣或具有兩個一級胺基之伸烷基胺化合物或其混合物與醇或具有一個一級胺基及一個一級或二級羥基之烷醇胺化合物或其混合物在碳酸衍生物存在下,於反應將進行時所處的溫度下,在足以維持反應混合物大體上呈液相之壓力下反應。該方法引起形成聚伸烷基多胺之脲加成物。藉由與50% KOH水溶液在回流下反應隔夜來將脲加成物轉變成聚伸乙基多胺。每莫耳二氧化碳使用8莫耳KOH。
US 4,387,249揭示使乙二胺(EDA)、乙醇胺(MEA)及尿素反應,得到胺基乙基伸乙基脲(UDETA)及伸乙基脲(EU),其經水解以形成DETA及EDA。水解步驟在惰性氛圍中在布朗斯特鹼存在下進行。布朗斯特鹼較佳為鹼金屬氫氧化物,更佳為NaOH水溶液。在實例中,水解在200℃之溫度下於自生壓力下,使用5莫耳/公升NaOH溶液進行。
雖然相當有效,但如此等參考文獻中所描述之方法具有多種缺點。使用苛性鹼之缺點在於其由於使所需產物降解而引起產物選擇性較低。另外,當使用(無機)鹼時,形成鹽作為副產物,其使後續有機物分離複雜化,引起目標產物產率較低。另外,胺、水、鹽及高溫之組合可能導致腐蝕、產物變色及儲存穩定性降低方面之問題。此外,必須尋找用於加工大量鹽之出口。
US2,812,333描述藉由在水存在下於高溫下加熱,同時移除CO2,來將1-(2-羥基乙基)咪唑啉酮-2水解成相應之羥基乙基乙二胺。反應在較大過量之水中進行;在實例中,使用1-(2-羥基乙基)咪唑啉酮-2之12%溶液。轉變率較低。在測試條件下,每小時大致5%之化合物水解。
在此項技術中需要一種用於將環狀伸烷基脲轉變成其相應之伸烷基胺的方法,其將環狀伸烷基脲轉變成相應之胺的高轉變率與同時解決先前技術方法之缺點組合。
本發明提供此類方法。
本發明提供一種用於將包含環狀伸烷基脲之原料轉變成其相應之伸烷基胺的方法,其包含 - CO2移除步驟,其中藉由使環狀伸烷基脲在液相中與水反應,同時移除CO2,來將環狀伸烷基脲轉變成其相應之伸烷基胺, - 胺移除步驟,其中藉由與沸點比在該方法期間形成之該等伸烷基胺高的選自一級胺或二級胺之群的胺化合物反應,來在反應性分離法中將環狀伸烷基脲轉變成其相應之伸烷基胺。
一般而言,在CO2移除步驟中,將存在於原料中的介於5%與95%之間的伸烷基脲部分轉變成胺部分,且在胺移除步驟中,將存在於原料中的介於5%與95%之間的伸烷基脲部分轉變成胺部分。
已發現CO2移除步驟及胺移除步驟之組合使得有可能用高效方式以較高反應速率將伸烷基脲轉變成相應之胺。本發明及其具體實施例之其他優勢將由進一步說明而變得顯而易見。
根據本發明之方法包含兩個步驟,即CO2移除步驟及胺移除步驟。在CO2移除步驟中,藉由使環狀伸烷基脲在液相中與水反應,在移除CO2的情況下,來將環狀伸烷基脲轉變成其相應之伸烷基胺,在胺移除步驟中,藉由與沸點比在該方法期間形成之伸烷基胺高的選自一級胺或二級胺之群的胺化合物反應,同時移除伸烷基胺,來在反應性分離法中將環狀伸烷基脲轉變成其相應之伸烷基胺。
因此,兩個步驟均將環狀伸烷基脲轉變成相應之胺,但藉由兩種不同機制來進行。
在CO2移除步驟中,伸烷基脲在與水反應中水解,引起形成伸烷基胺及經移除之CO2。
在胺移除步驟中,伸烷基脲與一級或二級胺反應以形成伸烷基胺及伸烷基脲,同時移除伸烷基胺。
兩種步驟具有不同最佳條件(optima)。此將闡明如下:
在藉由移除CO2來將伸烷基胺化合物之脲加成物轉變成相應之胺中,脲加成物轉變在高加成物濃度下相對容易。當加成物濃度降低時,使脲加成物轉變逐漸變得更困難。因此,CO2移除步驟在系統包含相對較高量之環狀伸烷基脲及相對較低量的相應之胺時工作效果最佳。
此可經由系統之CO2負荷來加以定量。系統之CO2負荷可定義為存在於系統中之脲及胺基甲酸酯部分的量除以獨立脲及胺基甲酸酯部分以及-NH-CH2-CH2-NH-及-NH-CH2-CH2-OH部分之總量。在上文定義中,應指出,例如,由於中間胺僅可為一個部分之一部分,故如二伸乙基三胺(DETA)或胺基乙醇伸乙基胺(AEEA)之化合物僅具有一個獨立-NH-CH2-CH2-NH-或-NH-CH2-CH2-OH部分。在假定所有脲及胺基甲酸酯均已藉由水解加以移除的情況下計算部分-NH-CH2-CH2-NH-及-NH-CH2-CH2-OH之數目。舉例而言,UDETA的-NH-CH2-CH2-NH-之數目與DETA相同。
因此,CO2負荷表示在存在於系統中之脲及胺基甲酸酯部分的數目與可能潛在地形成此類加成物之基團的總數目之間的莫耳比。CO2負荷可由系統之組成計算。若有此需要,則其亦可經由用強鹼滴定來確定。
較佳的是,進入CO2移除步驟中之饋料的CO2負荷為至少0.2,特定言之至少0.4,更特定言之至少0.6。最大值較佳為1。
另一方面,胺移除步驟在相對較低CO2負荷下工作效果最佳。在胺移除步驟中,將CO部分(在脲基團中)自待轉變的含脲之胺轉移至具有較高沸點之胺的胺基團中。若系統中之胺基團的數目相對較高,則此工作效果最佳。因此,較佳的是,待向胺移除步驟中提供之饋料的CO2負荷為至多0.8,更特定言之至多0.6。因為在系統中必須存在一些脲加成物以值得進行該方法,所以可提及0.05之值作為最小值。CO2負荷較佳為至少0.1,特定言之至少0.2。
在CO2移除步驟中,由於自系統移除CO2,故系統之CO2負荷降低。另一方面,在胺移除步驟中,由於自系統移除胺化合物,故系統之CO2負荷增加。因此,視待處理之組合物的CO2負荷而定,執行兩個步驟之順序可變化。
在一個實施例中,本發明提供一種用於將包含環狀伸烷基脲之原料轉變成其相應之伸烷基胺的方法,其包含以下步驟 - 將CO2負荷為至少0.2之原料提供至CO2移除步驟中,其中藉由使環狀伸烷基脲在液相中與水反應,同時移除CO2,來將環狀伸烷基脲轉變成其相應之伸烷基胺,及 - 將該CO2移除步驟之產物的至少一部分提供至胺移除步驟中,其中藉由與沸點比在該方法期間形成之該等伸烷基胺高的選自一級胺或二級胺之群的胺化合物反應,同時移除伸烷基胺,來在反應性分離法中將環狀伸烷基脲轉變成其相應之伸烷基胺。
如對於技術人員將顯而易見的是,可向胺移除步驟中提供的CO2移除步驟之產物為已自其中移除CO2之反應混合物。
若有此需要,則可將CO2負荷比進入胺移除步驟中之饋料高的胺移除步驟之產物(亦即已自其中移除胺之產物級分)提供至另一個CO2移除步驟中或再循環至CO2移除步驟。其亦可以其他方式進行加工。
可將來自CO2移除步驟之產物直接提供至胺移除步驟中。然而,亦可進行中間步驟。特定言之,可能有吸引力的是對來自CO2移除步驟之產物進行其中移除水及其他輕化合物的步驟。
在另一個實施例中,本發明提供一種用於將包含環狀伸烷基脲之原料轉變成其相應之伸烷基胺的方法,其包含以下步驟 - 將CO2負荷介於0.05與0.8之間的原料提供至胺移除步驟中,其中藉由與沸點比在該方法期間形成之伸烷基胺高的選自一級胺或二級胺之群的胺化合物反應,同時移除伸烷基胺,來在反應性分離法中將環狀伸烷基脲轉變成其相應之伸烷基胺,及 - 將該胺移除步驟之產物的至少一部分提供至CO2移除步驟中,其中藉由使環狀伸烷基脲在液相中與水反應,同時移除CO2,來將環狀伸烷基脲轉變成其相應之伸烷基胺。
如對於技術人員將顯而易見的是,可向CO2移除步驟中提供的胺移除步驟之產物為已自其中移除胺之產物級分。
如對於技術人員將顯而易見的是,若有此需要,則可將CO2負荷比進入CO2移除步驟中之饋料低的CO2移除步驟之產物提供至另一個胺移除步驟中。視其組成而定,其亦可以其他方式進行加工。
可將來自胺移除步驟之產物直接提供至CO2移除步驟中。然而,亦可進行中間步驟。特定言之,可能期望在將組合物提供至CO2移除步驟中之前向該組合物中添加水。此水可例如部分或全部地為來自在CO2移除步驟與胺移除步驟之間進行之水蒸發的再循環流及/或來自在CO2移除步驟中回收之水或在胺移除步驟中回收之水。
一般而言,當在根據本發明之方法中將來自CO2移除步驟之產物提供至胺移除步驟中時,可能需要將該來自CO2移除步驟之產物的一部分提供至胺移除步驟中,且在排放中移除另一部分。相反,當在根據本發明之方法中將來自胺移除步驟之產物提供至CO2移除步驟中時,可能需要將該來自胺移除步驟之產物的一部分提供至CO2移除步驟中,且在排放中移除另一部分。
如對於技術人員將顯而易見的是,當在根據本發明之方法中將來自CO2移除步驟之產物提供至胺移除步驟中時,有可能亦向胺移除步驟中提供含有環狀伸烷基脲之其他組合物以對經合併之組合物進行胺移除。相反,當在根據本發明之方法中將來自胺移除步驟之產物提供至CO2移除步驟中時,有可能亦向CO2移除步驟中提供含有環狀伸烷基脲之其他組合物以對經合併之組合物進行CO2移除。
可將自CO2移除步驟回收之CO2提供至其他方法中。自胺移除步驟回收之伸烷基胺可為該方法之最終產物。若有此需要,則可對其進行進一步分級分離,其中視需要處理不同產物。
起始化合物 在本發明中所用之起始物質為包含環狀伸烷基脲之反應混合物。環狀伸烷基脲為包含兩個氮原子藉由羰基部分及伸烷基部分連接之化合物。舉例而言,在環狀伸乙基脲中,兩個氮原子根據下式經由羰基部分及伸乙基部分連接:
Figure 02_image003
在本發明之方法中的一個較佳實施例中,進行轉變以得到相應之伸烷基胺的環狀伸烷基脲為:
Figure 02_image005
其中R1 及R2 各自獨立地選自以下之群:氫、式X-R3 -(NH-R3 -)p -之伸烷基胺基團或式X-R3 -(O-R3 -)n -之烷氧基、或組合此類伸烷基胺及烷氧基單元p及n之基團,其中一或多個單元~N-R3 -N~可以環
Figure 02_image007
及/或
Figure 02_image009
中之任一者的形式存在,且其中各R3 獨立地如下文所定義,且X可為羥基、胺、直鏈或分支鏈C1-C20羥基烷基或C1-C20胺基烷基,n及p獨立地為至少0,較佳為1-20,更佳為2-20;其視情況含有一或多個哌嗪或伸烷基脲基團;或當p或n為0時可為C1-C20羥基烷基或C1-C20胺基烷基;且R3 為伸烷基或經取代之伸烷基。
在一個較佳實施例中,R2為氫原子且R1不為氫原子。
在一個更佳實施例中,R2為氫原子,且R1為可含有重複伸烷基胺基團,甚至更佳含有式X-(NH-C2 H4 )n 之重複伸乙基胺基團的基團,其中一或多個單元-NH-C2 H4 -NH-可視情況以環
Figure 02_image011
及/或
Figure 02_image013
中之任一者的形式存在,且其中n為0至20,且X可為氫原子、胺基烷基、羥基烷基、N-咪唑啶酮烷基或哌嗪基烷基,最佳地其中烷基為乙基。
R3較佳為伸乙基或伸丙基,其視情況經C1-C3烷基取代基取代。更佳地,其為未經取代之伸乙基、未經取代之伸丙基或伸異丙基,最佳為未經取代之伸乙基。
最佳之環狀伸烷基脲的一些實例為EU (伸乙基脲)、UDETA (二伸乙基三胺之脲)、UTETA (三伸乙基四胺之脲,亦即視該脲是在鏈中的第1與第2胺之間還是第2與第3胺之間而定,分別為U1TETA或U2TETA)、DUTETA (三伸乙基四胺之雙脲)、UTEPA (四伸乙基五胺之脲,亦即視脲單元所處之位置而定,U1TEPA、U2TEPA)、DUTEPA (DU1,3TEPA、DU1,4TEPA,四伸乙基五胺之雙脲)、UAEEA (胺基乙基乙醇胺之脲)、HE-UDETA (羥基乙基二伸乙基三胺之脲,其可以兩種異構體HE-U1DETA及HE-U2DETA形式存在)、HE-UTETA (羥基乙基三伸乙基四胺之脲,其可以三種異構體HE-U1TETA、HE-U2TETA及HE-U3TETA形式存在)、HE-DUTETA (羥基乙基三伸乙基四胺之雙脲)或此等實例之任何混合物。多種上文環狀伸烷基脲之分子結構在圖1中給出。為了避免任何混亂,若給出環狀脲單元U所處之胺基團位置的編號,則自分子上之末端胺基團開始對該等胺基團進行計數,在羥乙基化伸乙基胺的情況下,該末端胺基團為處於不含有羥基之末端處的胺基團。
根據本發明之方法尤其適合於轉變基於存在於混合物中之環狀脲化合物的總量所計算的,包含至少10莫耳%的包含-NH-R3-NH-R3-NH-R3-NH-部分之伸烷基胺化合物的環狀脲衍生物的伸烷基胺混合物。具有此部分之化合物的環狀脲衍生物相對難以轉變成相應之胺,且可轉變包含此等化合物之混合物且同時獲得高產率為本發明之方法的特徵。可能較佳的是,起始物質為基於存在於混合物中之環狀脲化合物的總量所計算的,包含至少15莫耳%、特定言之至少20莫耳%的包含-NH-R3-NH-R3-NH-R3-NH-部分之伸烷基胺化合物的環狀脲衍生物的伸烷基胺混合物。
CO2 移除步驟 在CO2移除步驟中,藉由使環狀伸烷基脲在液相中與水反應,同時移除CO2,來將環狀伸烷基脲轉變成其相應之伸烷基胺。
與水之反應一般在至少150℃之溫度下進行。若反應溫度低於150℃,則環狀伸烷基脲將不會以顯著程度反應。較佳的是,反應在至少180℃、特定言之至少200℃、更特定言之至少230℃或甚至至少250℃之溫度下進行。較佳地,在此步驟期間之溫度不超出400℃,特定言之至多350℃,更特定言之至多320℃。
在方法期間之壓力並非關鍵的,只要反應介質呈液相即可。作為通用範圍,視所需溫度而定,可提及0.5至100巴之值。較佳的是,CO2移除步驟在至少5巴、特定言之至少10巴之壓力下進行以在介質中維持足夠量之胺及水。鑒於與高壓設備相關聯之高成本,可能較佳的是,壓力為至多50巴,特定言之至多40巴。
水量視所需轉變率及方法條件而定。一般而言,水量為原料中每莫耳脲部分至少0.1莫耳水。常使用較高量,例如每莫耳脲部分至少0.2莫耳水,特定言之每莫耳脲部分至少0.5莫耳水。對於根據本發明之方法,最大值並非關鍵的,但太大水量將導致要求有不必要地較大設備。作為通用最大值,可提及每莫耳環狀伸烷基脲部分至多500莫耳水,特定言之至多300莫耳,更特定言之至多200莫耳,在一些實施例中至多100莫耳,或至多50莫耳的量。
CO2移除可在已完成使用水將伸烷基脲轉變成伸乙基胺化合物之轉變時進行。然而,較佳的是在轉變反應期間進行CO2移除。CO2移除可以此項技術中已知之方式進行。為進行此操作而進行之最基本方式為對反應容器進行通氣。
汽提氣體可用於增加CO2移除。提昇CO2移除之其他措施對於技術人員將為顯而易見的,且包括增加液相與氣相(gas/vapour phase)之間質量轉移的措施,且包括如攪拌反應混合物、鼓泡汽提氣體、薄膜蒸發、使用填料或塔盤等之措施。
在使用汽提氣體的情況下,流動速率通常為每1 m3反應器體積每小時至少1 m3 (在反應溫度及壓力下)且每1 m3反應器體積每小時至多100 m3 (在反應溫度及壓力下)。汽提流動速率可藉由使反應器容器內部之液體蒸發,引起原位產生汽提氣體來產生。上文範圍亦適用於此實施例。當然,亦有可能將添加汽提氣體與原位形成汽提氣體組合。
自CO2移除步驟移除的含CO2之汽提流體可例如包含1至99 mol% CO2。在其他實施例中,汽提流體可包含1-80 mol% CO2或1-60 mol% CO2。在一些實施例中,來自CO2移除步驟之流出物可包含1-40 mol% CO2或1-20 mol% CO2。較低CO2含量有助於較高效汽提,且亦有助於使用較多汽提氣體。在此等參數之間尋找適當平衡處於技術人員之技能範疇內。
視反應溫度及所需CO2移除程度而定,反應時間可在寬範圍內變化,例如為至少一分鐘,特定言之至少5分鐘,更特定言之介於15分鐘與24小時之間。在一個實施例中,反應時間可為至少30分鐘或至少1小時。可能較佳的是,反應時間在1小時與12小時之間,特定言之在1小時與6小時之間變化。當使用較低溫度時,可能要求較長反應時間以獲得所需轉變率。
用水進行之轉變不依賴於使用強無機鹼。儘管如此,若有此需要,則可存在有限量之強無機鹼。在本發明之情形下,強無機鹼為不含有碳-碳鍵且pKb小於1之物質。在一個實施例中,若使用,則強無機鹼係選自金屬氫氧化物之群,特定言之選自鹼金屬及鹼土金屬氫氧化物之群,特定言之選自氫氧化鈉、氫氧化鉀、氫氧化鋰、氫氧化鈣、氫氧化鎂及氫氧化鋇。在一個實施例中,強無機鹼係選自金屬氧化物之群,特定言之選自鹼金屬及鹼土金屬氧化物之群,特定言之選自氧化鈣、氧化鎂及氧化鋇。自氫氧化鈉、氫氧化鉀、(氫)氧化鎂及(氫)氧化鈣之群選擇強無機鹼可為較佳的。使用氫氧化鈉及氫氧化鉀可為尤其較佳的。亦可使用其他強無機鹼,諸如氫氧化銨。如對於技術人員將顯而易見的是,可使用各種強無機鹼之混合物。亦可使用除其他組分以外亦包含強鹼之化合物,同樣可使用將在反應介質中轉變成強無機鹼之化合物。若使用強無機鹼,則其一般以每莫耳環狀伸烷基脲部分少於0.5莫耳無機鹼、特定言之每莫耳環狀伸烷基脲部分少於0.2莫耳無機鹼之量進行使用。
在本發明之一個實施例中,CO2移除步驟藉由以下來進行:使環狀伸烷基脲在液相中與水以每莫耳脲部分0.1-20莫耳水之量,在至少230℃之溫度下反應,同時移除CO2。已發現使用較低水量與相對較高溫度及CO2移除組合得到轉變率良好且副產物形成較低之高效方法。
已發現在根據本發明之方法的此實施例中,有可能在使用每莫耳脲部分至多20莫耳水之相對有限水量的情況下獲得良好轉變率。已發現有可能在甚至更低之水量下工作,例如每莫耳脲部分至多15莫耳水之量,更特定言之每莫耳脲部分至多10莫耳水之量,或甚至每莫耳脲部分至多5莫耳水。
每莫耳脲部分0.1-20莫耳水之範圍係指基於在反應開始時處於原料中之脲部分的量所計算的,在該方法期間所添加之全部水量。為了獲得完全轉變,每莫耳待轉變之脲部分要求有1莫耳水。由於完全轉變並非始終必要的,故較低水量可為可能的。因此,水以每莫耳脲部分至少0.1莫耳之量進行使用。常使用較高量,例如每莫耳脲部分至少0.2莫耳,特定言之每莫耳脲部分至少0.5莫耳水。
可在該方法開始時以單次給予形式添加水。然而,較佳的是在該方法期間以數次給予形式或連續地添加水。在連續操作中,可使用多個饋料點。藉由使所添加之水量與由反應消耗之水量相匹配,可限制反應混合物中之過量水。已發現,此限制副產物之形成。
基於存在於液體反應介質中之水,計算水與脲部分之莫耳比。若以蒸汽形式添加水(其可為將向反應混合物中添加水與提供熱量組合的有吸引力之實施例),則蒸汽中之大部分水將不會吸收在液體反應介質中。以使得反應介質吸收所需量之水的方式經由蒸汽來調控水添加法之條件處於技術人員之技能範疇內。水亦可存在於來自反應開始時之原料中,例如由於用於生產原料之方法而存在。亦可以液體形式添加水。
在本發明之此實施例中,反應在至少230℃之溫度下執行。已發現在低於此值之溫度下,反應速率太低而無法在可接受之時間框內獲得有意義之轉變。較佳的是在至少240℃、特定言之至少250℃之溫度下進行反應。作為最大值,可提及400℃之值。可能較佳的是在至多350℃、特定言之至多320℃之溫度下進行反應。
在本發明之此實施例中,壓力並非關鍵的,只要反應介質呈液相即可。作為通用範圍,可提及0.5至100巴之值。上文所提及之較佳壓力範圍亦適用於此實施例。
若有此需要,則CO2移除步驟可在選自一級胺、環狀二級胺及雙環三級胺之群的胺化合物存在下用水進行。
一級胺為以下胺官能性化合物,其中胺基團具有式R4-NH2 ,且其中R4可為任何有機基團,較佳為具有視情況選用之雜原子(諸如氧及/或氮)的脂族烴。二級環胺為式R5-NH-R6之胺,其中R5及R6一起形成視情況具有雜原子(諸如氧及/或氮)之烴環,較佳形成哌嗪環。三級雙環胺為式R7-N(-R9)-R8之胺,其中R7及R8一起形成視情況具有雜原子(諸如氧及/或氮)之烴環,且R7及R9一起形成另一個視情況具有雜原子(諸如氧及/或氮)之烴環。
在上文所有基團上,可存在R4至R9取代基,如烷基或羥基烷基。一級胺、環狀二級胺及雙環三級胺均含有空間上相對不受阻之胺基團。在本文檔中,若化合物中之一個胺基團為一級胺或二級環胺或三級雙環胺基團,則不依賴於此化合物是否含有性質可能不同之其他胺基團,將該化合物定義為一級胺或二級環胺或三級雙環胺。化合物亦可含有兩個或超過兩個不同胺官能基,例如一個一級胺及一個二級環胺官能基,或一個一級胺、一個二級環胺及一個三級雙環胺官能基。
一級胺之較佳實例為烷基胺、線性伸乙基胺及烷醇胺。一些胺化合物之結構在圖1中給出。
環狀二級胺之較佳實例為含有末端哌嗪環之胺。雙環三級胺之較佳實例為1,4-二氮雜雙環[2.2.2]辛烷(DABCO)、1,4-二氮雜雙環[2.2.2]辛-2-基)甲醇及1-氮雜雙環[2.2.2]辛烷(
Figure 107127377-A0101-12-0018-1
啶)。
Figure 02_image015
胺化合物較佳為具有超過一個胺基團之化合物,其中該等胺基團中之至少一者為一級胺,甚至更佳地,該化合物為其中兩個胺基團為一級胺之胺。胺化合物較佳為與藉由本發明之方法獲得之R1-NH-R3-NH-R2不同的化合物。
在另一個較佳實施例中,胺化合物為可與來自環狀伸乙基脲之羰基結合的化合物。較佳胺化合物包括伸烷基胺或烷醇胺化合物,甚至更佳地包括比藉由本發明之方法形成之胺化合物小的伸烷基胺(伸乙基胺)或烷醇胺(乙醇胺),最佳地包括乙二胺(EDA)、二伸乙基三胺(DETA)、單乙醇胺(MEA)、胺基乙基乙醇胺(AEEA)、N-胺基乙基哌嗪(AEP)、N,N'-二胺基乙基哌嗪(DAEP)、UDETA、N,N'-二胺基乙基-2-咪唑啶酮(U2TETA)、參胺基乙胺(TAEA)。
在又另一個較佳實施例中,胺化合物為結合來自環狀伸烷基脲之羰基的化合物,得到尤其另一種揮發性比藉由本發明方法形成之伸烷基胺更大或更小的線性或環狀伸烷基脲或線性或環狀伸烷基胺基甲酸酯,甚至更佳地得到在用於處理反應混合物之條件下為固體之伸乙基胺或與固體載劑鍵結之伸乙基胺。其實例為DETA-PS (亦即與固體聚苯乙烯連接之二伸乙基三胺)或固體聚乙烯亞胺(PEI)。
可用於根據本發明之方法之CO2移除步驟中的較佳胺化合物包括乙二胺(EDA)、N-甲基乙二胺(MeEDA)、二伸乙基三胺(DETA)、乙醇胺(MEA)、胺基乙基乙醇胺(AEEA)、哌嗪(PIP)、N-胺基乙基哌嗪(AEP)、1,4-二氮雜雙環[2.2.2]辛烷(DABCO)、1,4-二氮雜雙環[2.2.2]辛-2-基)甲醇、三伸乙基四胺(TETA)、N-二乙基二胺-2-咪唑啶酮(U1TETA)、N,N'-二胺基乙基哌嗪(DAEP)、N,N'-二胺基乙基-2-咪唑啶酮(U2TETA)、四伸乙基五胺(TEPA)、五伸乙基六胺(PEHA),及TEPA及PEHA之單環狀脲(亦即U1TEPA、U2TEPA、U1PEHA、U2PEHA、U3PEHA)及PEHA之雙環脲異構體(亦即DUPEHA)、聚乙烯亞胺(polyethyleneimine,PEI)或固體載劑上之伸烷基胺。
胺化合物較佳以相對於環狀伸乙基脲之總莫耳量介於0.001與100當量之間、更佳地介於0.01與50當量之間、甚至更佳地介於0.05與30當量之間、又更佳地介於0.15與25當量之間且最佳地介於0.20與20當量之間的莫耳量進行給予。
在CO2移除步驟中在胺存在下與水之反應較佳在至少150℃、較佳至少200℃、更佳至少230℃且最佳至少240℃或至少250℃之溫度下進行。較佳地,在該方法期間之溫度不超出400℃,更佳不超出350℃,甚至更佳不超出320℃。
在根據本發明之方法之第一步驟之一個實施例中的與水及胺化合物之反應一般執行持續介於1分鐘與12小時之間的時間。較佳地,在少於10小時、更佳少於8小時、最佳少於5小時內操作反應。視反應溫度及所需CO2移除程度而定,可能較佳的是反應時間為至少5分鐘,更特定言之至少15分鐘,至少30分鐘或至少1小時。當使用較低溫度時,可能要求較長反應時間以獲得所需轉變率。如技術人員應理解,此反應時間不包括對反應混合物之任何進一步加工,諸如分離所獲得之化合物。
在一個較佳實施例中,在根據本發明之方法的第一步驟中,藉由採用選自EDA、DETA、MEA、AEEA、N-甲基-EDA (MeEDA)、AEP、DAEP、U2TETA及TAEA之群的胺來將TETA或TEPA之環狀伸乙基脲,諸如線性TETA雙脲(DUTETA)或線性TEPA雙脲(DUTEPA)轉變成線性TETA (L-TETA)或線性TEPA (L-TEPA)。尤其較佳的為胺化合物EDA、DETA、U2TETA、DAEP或AEP。用EDA及水使DUTETA轉變較佳在150℃與350℃之間,較佳在200℃與300℃之間進行。
在CO2移除步驟中,自系統移除CO2。該系統包含其他揮發性化合物,諸如水,且在一些實施例中包含低沸點胺。CO2移除步驟關注於CO2之移除,且雖然蒸發其他揮發物可能並非不利的,但其一般將受限制。此可例如藉由使用冷凝器來進行。
較佳的是,向CO2移除步驟中提供之組合物組成水、環狀伸烷基脲(特定言之上文指示為較佳之彼等環狀伸烷基脲)及(若存在)選自一級胺、環狀二級胺及雙環三級胺之群之胺化合物(特定言之上文指示為較佳之彼等胺化合物)之總量的至少70 wt%。尤其較佳的是,向第一步驟中提供之組合物組成此等化合物之總量的至少80 wt%,更特定言之至少90 wt%。
出於方法效率之原因,較佳的是在CO2移除步驟期間藉由蒸發自系統移除之伸烷基胺的量受到限制。在一個實施例中,在CO2移除步驟期間,在系統中截留伸烷基胺及環狀伸烷基脲之總量的至少80%,特定言之至少90%,更特定言之至少95%。由於在CO2移除步驟中將環狀伸烷基脲轉變成伸烷基胺,故此百分比係基於環狀伸烷基脲及伸烷基胺之分子總量來計算。較佳的是CO2移除步驟在不自系統大量移除伸烷基胺的情況下進行。此可藉由選擇適當方法條件,諸如溫度、壓力以及是否應用汽提劑及若應用則選擇汽提劑之類型來實現。此外,適合之設備,例如(部分)冷凝器區段可適用。
胺移除步驟 在胺移除步驟中,藉由與沸點比在該方法期間形成之伸烷基胺高的選自一級胺或二級胺之群的胺化合物反應,來在反應性分離法中將環狀伸烷基脲轉變成其相應之伸烷基胺。
伸烷基脲移除步驟之關鍵在於使伸烷基脲與沸點比在該方法期間形成之伸烷基胺高的選自一級胺或二級胺之群的胺化合物反應。在此方法中,將伸烷基脲轉變成自系統移除之伸烷基胺化合物,且將沸點比在該方法期間形成之伸烷基胺高的選自一級胺或二級胺之群的胺化合物轉變成留在系統中的伸烷基脲或伸烷基胺基甲酸酯。
此步驟使得有可能以高效率形成伸烷基胺產物且同時使用相對溫和條件以良好產率使其與反應混合物分離。可製備且在相對較低溫度下以一個級分形式分離所形成之伸烷基胺,尤其揮發性相對較高之伸烷基胺。因為胺用於將環狀伸烷基脲轉變成其相應之伸烷基胺,所以伸烷基胺之降解在很大程度上得到避免。本發明之方法的另一個優勢在於,不必添加水或任何其他佐劑且亦可回收在該方法中形成之伸烷基脲及伸烷基胺基甲酸酯作為產物。
反應性分離法之實例為藉由揮發性差異驅動之方法,諸如反應性急驟蒸發、膜蒸餾、膜蒸發汽提或反應性蒸餾,其中反應性蒸餾較佳。
對於許多實施例,胺移除步驟可由以下反應表示:UEA1 + EA2 -> EA1 ↑ + UEA2 其中UEA1為環狀伸烷基脲,EA2為胺化合物,且向上箭頭指示所形成之伸烷基胺EA1與反應混合物分離,且其中EA2之沸點比EA1高。
向胺移除步驟中提供之反應混合物可或可不含有水。若在此混合物中存在大量水,則可能較佳的是首先自系統移除水。因此,在一個實施例中,在胺移除步驟之前進行水移除步驟。此類步驟可涉及熟習此項技術者已知的水蒸發、急驟蒸發、汽提、萃取、吸附或其他物理步驟以及化學性水清除技術,較佳藉由蒸餾步驟來進行。
較佳的是,向胺移除步驟中提供之反應混合物的水含量小於10 wt%。在該方法之一個較佳實施例中,按反應混合物之總重量計,反應混合物含有少於7 wt%、甚至更佳少於5 wt%之水。
在本發明之一個實施例中,進行CO2移除步驟之物質的水濃度高於進行胺移除步驟之物質的水濃度。為了確保此情況,可能有必要在CO2移除步驟該等胺移除步驟之間實行水移除步驟。
胺移除步驟可在任何適合之壓力下進行。在反應期間,反應性分離系統中之壓力較佳為至多127絕對巴,更佳為至多50絕對巴,且甚至更佳為至多25絕對巴。所生產之伸烷基胺愈大,甚至更低之壓力愈佳。舉例而言,若待轉變之伸烷基脲為二伸乙基三胺之脲衍生物,則壓力較佳小於15巴。若待轉變之伸烷基脲為三伸乙基四胺之脲衍生物,則壓力較佳小於5巴。因此,在根據本發明之方法的一些實施例中,方法在甚至更低之壓力(諸如小於15巴)或甚至更佳地更低之壓力(諸如小於5巴)下執行。
該方法亦可在低於大氣壓力之壓力下進行,諸如在小於700絕對毫巴、更佳低於100絕對毫巴、甚至更佳地低於25絕對毫巴且最佳低於5絕對毫巴之壓力下進行。
一般而言,壓力將為至少0.1絕對毫巴。
胺移除步驟中之壓力一般低於CO2移除步驟中之壓力。
胺移除步驟較佳在至少150℃、特定言之至少180℃、在一些實施例中至少200℃或至少230℃、有時至少250℃之溫度下進行。較佳地,該方法期間之溫度不超出400℃,更佳不超出350℃。
在一個實施例中,胺移除步驟在介於180℃-300℃範圍內之溫度及至多2000絕對毫巴、特定言之至多1000絕對毫巴、更特定言之至多500絕對毫巴、更特定言之至多200絕對毫巴之壓力下進行。可能較佳的是在200℃-260℃之溫度及至多50絕對毫巴之壓力下進行胺移除步驟。
胺移除步驟一般執行持續介於1分鐘與12小時之間的時間。較佳地,在少於10小時、更佳少於8小時、最佳少於5小時內操作胺移除步驟。
胺移除步驟之關鍵在於使伸烷基脲與沸點比在該方法期間形成之伸烷基胺高的選自一級胺或二級胺之群的胺化合物反應。
胺化合物可為一級胺及/或二級胺。一級胺為胺官能性化合物,其中胺基團具有式R4-NH2 ,且其中R4可為任何有機基團,較佳為具有視情況選用之雜原子(諸如氧及/或氮)的脂族烴。二級胺為式R5-NH-R6之胺,其中R5及R6可為任何有機基團,較佳為具有視情況選用之雜原子(諸如氧及/或氮)之脂族烴。二級胺可為線性或環狀的。在上文所有基團上,可存在R4至R6取代基,如烷基、胺基烷基或羥基烷基。
在本文檔中,若化合物中之一個胺基團為一級胺或二級胺,則不依賴於此化合物是否含有性質可能不同之其他胺基團,將該化合物定義為一級胺或二級胺。化合物亦可含有兩個或超過兩個不同胺官能基,例如一個一級胺及一個二級胺官能基,且亦可含有超過一個各官能基。
一級胺之較佳實例為烷基胺、線性伸烷基胺及烷醇胺。
胺化合物較佳為具有超過一個胺基團之化合物,其中該等胺基團中之至少一者為一級胺,甚至更佳地,該化合物為其中兩個胺基團為一級胺之胺或其中一個胺為一級胺基團且另外含有羥基之胺。胺化合物較佳為與藉由本發明之方法獲得之R1-NH-R3-NH-R2不同的化合物。
在另一個較佳實施例中,胺化合物為可與來自環狀伸烷基脲(UEA)之羰基結合的化合物。較佳胺化合物包括視情況在其結構中含有哌嗪單元之伸烷基胺,或視情況在其結構中含有哌嗪單元之烷醇胺化合物,甚至更佳包括結合來自環狀伸烷基脲之羰基的胺化合物,得到尤其另一種揮發性比藉由本發明方法形成之伸烷基胺更大或更小的線性或環狀伸烷基脲或線性或環狀伸烷基胺基甲酸酯。可能部分地轉變成其環狀伸烷基脲對應物之伸烷基胺相對於烷醇胺(且相對於其中進行轉變成此等烷醇胺之胺基甲酸酯或脲之轉變的烷醇胺對應物)較佳。
較佳使用之胺化合物在實施例中為乙二胺(EDA)、N-甲基乙二胺(MeEDA)、二伸乙基三胺(DETA)、乙醇胺(MEA)、胺基乙基乙醇胺(AEEA)、HE-DETA、HE-TETA、HE-UTETA、線性三伸乙基四胺(L-TETA)、N-二乙基二胺-2-咪唑啶酮(U1TETA)、N,N'-二胺基乙基-2-咪唑啶酮(U2TETA)、線性四伸乙基五胺(L-TEPA)、五伸乙基六胺(PEHA),以及TEPA及PEHA之單環狀脲(亦即U1TEPA、U2TEPA、U1PEHA、U2PEHA、U3PEHA),PEHA之雙環脲異構體(亦即DUPEHA),以及伸烷基胺之C1、C2、C3類似物,諸如C1TETA (N1-(2-(哌嗪-1-基)乙基)乙烷-1,2-二胺)、C1TEPA (N1-(2-胺基乙基)-N2-(2-(哌嗪-1-基)乙基)乙烷-1,2-二胺)、C2TEPA (N1-(2-(4-(2-胺基乙基)哌嗪-1-基)乙基)乙烷-1,2-二胺)、C1PEHA (N1-(2-胺基乙基)-N2-(2-((2-(哌嗪-1-基)乙基)胺基)乙基)乙烷-1,2-二胺)、C2PEHA (N1-(2-胺基乙基)-N2-(2-(4-(2-胺基乙基)哌嗪-1-基)乙基)乙烷-1,2-二胺)及C3-PEHA (N1,N1'-(哌嗪-1,4-二基雙(乙烷-2,1-二基))雙(乙烷-1,2-二胺)。
環狀伸烷基脲及胺化合物之更佳組合在下表1中 表1
Figure 107127377-A0304-0001
● 對於一些上文分子,未提及U之位置,此係由於其可處於分子中之任何位置,亦即UTETA可為U1TETA或U2TETA
應理解,本發明之方法亦可用於含有兩種或超過兩種胺化合物及/或環狀脲化合物之反應混合物。
在一個實施例中,按環狀伸烷基脲之總莫耳量計,胺化合物在該方法期間以介於0.15與25當量之間的莫耳量存在。
在胺移除步驟中用作反應物之胺可與可能存在於上文所描述之CO2移除步驟中的胺相同或不同。
有可能在單個步驟中進行胺移除步驟。然而,若起始物質含有沸騰範圍變化之多種不同組分,則可能有吸引力的是在至少兩個階段中進行胺移除步驟,其中所移除之伸烷基胺的沸點隨階段增加。亦即,在第一階段中移除之伸烷基胺的沸點低於在第二階段中移除之至少一些伸烷基胺的沸點,在第二階段中移除之伸烷基胺的沸點隨後低於在第三階段(若存在)中移除之伸烷基脲的沸點等等。
舉例而言,在第一步驟中,EU可與高沸點胺化合物反應以形成EDA (其藉由蒸餾移除)及環狀伸烷基脲,且在第二步驟中,UDETA可與高沸點胺化合物反應以形成DETA (藉由蒸餾移除)及環狀伸烷基脲。
若有此需要,則亦可在胺移除步驟期間移除CO2。尤其連續移除將增強該方法。可例如藉由在包含或連接至用於藉由在膜存在或不存在下解吸(例如藉由蒸餾、汽提或急驟蒸發)主動移除CO2 之區段的適合之反應器單元中工作來移除二氧化碳。
胺分離步驟可在分批反應器中進行,可能以饋料批式操作形式進行,及/或在連續操作系統中,諸如在連續流反應器級聯中進行。熟習此項技術者將能夠選擇正確反應器設置。相同情況適用於CO2移除步驟。
在化學製品之大規模生產中,較佳地採用連續方法。連續方法可為例如單程或再循環方法。在單程方法中,一或多種試劑流經方法設備一次,且接著輸送來自反應器之所得流出物用於純化或進一步加工。
在此類方案中,可視需要在整個方法設備中之單個點或多個點處將環狀伸烷基脲、胺化合物及可能之水饋入至設備中,該設備可包括連續攪拌槽反應器、導管、管道、反應性蒸餾塔、反應性汽提單元或其組合。
在其中使用反應性蒸餾設備之實施例中,該等設備可包含有包含至少一個塔內件(分離級)之反應性蒸餾塔,該塔在一側連接至冷卻器單元且在另一側連接至再沸器,且該設備具有一個用於供應胺混合物之入口及一或多個用於不同餾出物級分之出口。該方法可以分批模式或連續地進行操作。
本發明之方法通常視多種反應參數而定,諸如塔中之壓力、H2O與胺之質量比、CO相對於胺級分之比、反應性蒸餾塔之塔盤的數目及/或類型、冷卻器單元及/或再沸器之溫度以及液體在該塔中之滯留時間。
反應性蒸餾塔包含至少一個塔內件。此類塔內件之實例為塔盤或填料。反應性蒸餾塔之塔盤的數目亦為重要反應參數,此係由於此等數目決定在該塔中與反應同時進行之反應物及產物分離法的有效性。較佳地,塔中塔盤之數目為至少1,更佳為至少2,且最佳為至少5,且較佳為至多80,更佳為至多60,最佳為至多40。技術人員進一步應理解,塔盤之尺寸及各塔盤可容納之液體體積可變化且亦將影響反應及/或分離有效性。
合乎期望地,塔將具有塔盤,但任何氣體液體接觸裝置可為適合的。或者,可使用適合之習知填料,諸如拉西環(Raschig ring)、帕爾環(Pall ring)、鞍形物或任何種類之結構化填料來代替塔盤。塔中之不同區段可配備有不同類型之填料及/或塔盤。
冷卻器單元之溫度低於再沸器溫度,且經選擇以使得低沸點產物(諸如所形成之伸乙基胺化合物)可離開塔,且反應物及高沸點產物留在系統中。冷卻器單元可包含僅一個冷卻器單元或可包含複數個冷卻器子單元,由此各子單元具有特定溫度。此類冷卻器單元之一個較佳實施例包含第一及第二冷卻器子單元。在一個較佳實施例中,冷卻器單元為冷凝器。
熟習此項技術者能夠藉由確定總產率、能量消耗及廢料產生來選擇恰當反應器及分離單元方案。
在一個最佳實施例中,藉由採用EDA、DETA、TETA、TEPA或更大伸乙基胺來將EDA、DETA、TETA或TEPA之環狀伸烷基脲,諸如EU、UDETA、線性TETA單或雙脲(UTETA或DUTETA)或線性TEPA單或雙脲(UTEPA或DUTEPA)轉變成EDA、DETA、線性TETA (L-TETA)或線性TEPA (L-TEPA)。可有利地使用根據本發明之方法來將AEEA之環狀伸烷基脲轉變成AEEA。
如對於技術人員將顯而易見的是,可組合本發明之各種實施例及本文所表述之各種偏好,只要其不相互排斥即可。
圖2繪示根據本發明之方法的一個實施例。
經由管線(1)向CO2移除單元(2)中提供含有環狀伸烷基脲之饋料。在CO2移除單元中,經由管線(3)提供水。可經由未示出之管線提供汽提氣體。使混合物達到如上文所論述之CO2移除條件。經由管線(4a)移除CO2。若有此需要,管線(4a)可流經冷凝器(5),其中使蒸發之胺冷凝且經由管線(6)饋送返回CO2移除單元(2)中,同時經由管線(4b)移除CO2。
CO2移除步驟之產物為伸乙基胺及環狀伸烷基脲之混合物,經由管線(7a)抽取該混合物。若有此需要,可將其提供至中間物分離步驟(8)中,其中經由管線(9)移除輕級分,特定言之水。將已自其中視情況移除輕級分之產物經由管線(7b)提供至單元(10)中之胺移除步驟中,在該單元中進行反應性分離步驟。在單元(10)中,使混合物達到如上文所論述之胺移除條件。將環狀伸烷基脲轉變(藉由與胺反應)成相應之伸烷基胺,經由管線(11)移除該伸烷基胺。同時,形成留在反應單元中之高沸點伸烷基脲,且可經由管線(12)移除該等伸烷基脲。因此,反應性分離步驟之產物的CO2負荷比向該反應性分離步驟中提供之饋料高。如其他地方所描述,有可能將胺移除步驟之產物整體或部分地,且視情況在已與其他級分組合之後提供至另一個CO2移除步驟(未示出)中。
在圖式中,將步驟描述為在分開之單元進行。然而,如對於技術人員將顯而易見的是,亦有可能在單個單元中以依序步驟進行該方法。
本發明將由以下實例闡明,但不限於此或受此限制。
比較實例 1 CO2 移除步驟 向反應容器中提供包含0.64 mol (93.6 g) L TETA及0.63 mol (124.5 g) DUTETA之饋料。反應容器配備有攪拌器及連接至氮氣瓶之氣體鼓泡器,且連接至填充有水之注射泵。使用壓力控制閥在35絕對巴之壓力下且在反應器容器中265℃之液體溫度下操作反應器。在該方法期間給予水以補償在CO2移除步驟期間蒸發之水。使用質量流量控制器將氮氣流動速率控制在在1 L/min流動速率下。以2500 rpm操作攪拌器。一旦達到操作溫度,則藉由開始提供汽提氣體來開始CO2移除步驟。進行反應持續330分鐘。使用近紅外CO2氣體分析器來監測在反應期間移除之CO2的量。一旦反應已停止,則使混合物冷卻,且使用GC-FID (使用火焰離子化偵測器之氣相層析)來分析反應產物。起始物質及反應產物之組成提供於表2中。 表2
Figure 107127377-A0304-0002
* 一些胺由於蒸發而損失。
自表2可見,如本文所進行之CO2移除步驟引起CO2負荷降低0.5至0.29。
根據本發明之實例 2 胺移除後接 CO2 移除 在此實例中,對比較實例1之原料進行反應性分離步驟以實現胺移除,後接CO2移除步驟。
胺移除步驟如下進行:向攪拌反應容器中提供0.64 mol (93.6 g) L-TETA及0.63 mol (124.5 g) DUTETA。將容器加熱至200℃之起始溫度,且使用真空泵使其達到20絕對毫巴之壓力。在該方法期間維持此壓力。在反應期間使溫度緩慢增加至260℃之終值。在33分鐘之後停止反應。
使用置放於冷卻器與真空泵之間的含有冰之冷阱使自反應器收集之蒸氣(亦即伸乙基胺)冷卻。使用GC-FID分析蒸發之產物及留在反應器中之產物。
如實例1中所描述對留在反應器中之產物進行CO2移除步驟。在260分鐘之後停止反應。表3展示起始物質、在反應性分離步驟之後之氣體級分、在反應性分離步驟之後之液體級分、來自CO2移除步驟之產物以及來自胺移除步驟及CO2移除步驟之氣體級分總體的組成。 3
Figure 107127377-A0304-0003
下表4展示比較實例1及根據本發明之實例2並排的結果。 4 . 實例之主要數值比較
Figure 107127377-A0304-0004
如自表4可見,根據本發明之方法得到的L-TETA比比較性方法更多。非所需U2TETA副產物之形成減少。實現CO2移除所要求之時間減少。終產物之CO2負荷亦降低。
比較實例 3 CO2 移除 除了使用包含0.27 mol (38.9 g) L TETA、0.78 mol (154.9 g) DUTETA及2.29 mol (41.3 g)水之起始物質之外,重複實例1。起始物質之CO2負荷為0.75。採用290分鐘之反應時間。
表5提供起始物質及產物之組成。 表5
Figure 107127377-A0304-0005
* 一些胺在蒸發期間損失
自此表可見,在2.98 mmol/min之反應速率下,混合物之CO2負荷自0.75降低至0.4。反應主要引起自雙脲化合物DUTETA形成單脲化合物U1TETA及U2TETA。
根據本發明之實例 4 CO2 移除 後接胺移除 後接 CO2 移除 除了進行反應持續93分鐘之外,如實例3中所描述對實例3中所用之起始物質進行CO2移除步驟。
如實例2中所描述對來自CO2移除步驟之液體產物進行胺移除步驟。在反應性蒸餾步驟期間移除總計0.27 mol (39.5 g) L-TETA。
對來自胺移除步驟之液體殘餘物進行另一個CO2移除步驟,持續100分鐘。
下表6展示
Figure 107127377-A0304-0006
結論: 7 展示實例3及實例4之多種方法效率參數的比較。對於所有參數,使用CO2 移除步驟、胺移除步驟及另一個CO2 移除步驟之組合的實例4之效能較單獨使用CO2 移除步驟為好。在反應性蒸餾與反應性汽提組合的情況下,要求在所添加水之量較低時,L-TETA之產率較高。平均CO2 移除速率在實例4中比實例3高38%。此實例清楚展示在兩個反應性汽提步驟之間執行反應性蒸餾步驟的有益作用。 7 . 實例之主要數值比較
Figure 107127377-A0304-0007
因此,根據本發明之方法使得有可能回收更多L-TETA,同時使U2TETA形成減少。另外,實現CO2移除所要求之時間可減少。
根據本發明之實例 5 胺移除後接 CO2 移除 在此實例中,對如表8中所描述之原料(起始混合物)進行反應性分離步驟以實現胺移除,後接CO2移除步驟。藉由在2 L高壓釜中將EDA (200 g,3.32 mol)、EU (128 g,1.42 mol)及UAEEA (260 g,1.90 mol)於290℃下加熱80分鐘來製備起始混合物。使混合物冷卻,且藉由GC-FID來分析。
胺移除步驟如下進行:在減壓(30-40毫巴)下將混合物在高於120℃之溫度下加熱30分鐘,且在冷阱中收集揮發物(130 g,大約16 g水,大約114 g EDA)。
對留在反應器中之產物進行CO2移除步驟,該CO2移除步驟如下進行:在環境溫度下向剩餘混合物(429 g)中添加180 g水。加熱混合物,將壓力設定成30巴表壓,且當溫度達到220℃ (t=0 min)時,經由微米鼓泡器在容器(配備有設定在15℃下之冷凝器及處於冷凝器頂部上之壓力調控器)之底部引入氮氣流(平均3 NL/min)。。使溫度自250℃緩慢增加至設定點290℃。在190分鐘之後使反應器冷卻。藉由GC-FID分析樣品,且剩餘重量為386 g。 表8
Figure 107127377-A0304-0008
1‧‧‧提供饋料之管線2‧‧‧CO2移除單元3‧‧‧提供水之管線4a‧‧‧移除CO2之管線4b‧‧‧移除CO2之管線5‧‧‧冷凝器6‧‧‧饋送返回之管線7a‧‧‧抽取產物之管線7b‧‧‧提供產物之管線8‧‧‧中間物分離步驟9‧‧‧移除輕級分之管線10‧‧‧胺移除步驟之單元11‧‧‧移除伸烷基胺之管線12‧‧‧移除伸烷基脲之管線
在下文將更詳細地論述本發明。 以下圖式非限制性地繪示本發明。 圖1繪示一些環狀伸烷基脲之分子結構。 圖2繪示根據本發明之方法的一個實施例。
1‧‧‧提供饋料之管線
2‧‧‧CO2移除單元
3‧‧‧提供水之管線
4a‧‧‧移除CO2之管線
4b‧‧‧移除CO2之管線
5‧‧‧冷凝器
6‧‧‧饋送返回之管線
7a‧‧‧抽取產物之管線
7b‧‧‧提供產物之管線
8‧‧‧中間物分離步驟
9‧‧‧移除輕級分之管線
10‧‧‧胺移除步驟之單元
11‧‧‧移除伸烷基胺之管線
12‧‧‧移除伸烷基脲之管線

Claims (15)

  1. 一種用於將包含環狀伸烷基脲之原料轉變成其相應之伸烷基胺的方法,其包含CO2移除步驟,其中藉由使環狀伸烷基脲在液相中與水反應,同時移除CO2,來將環狀伸烷基脲轉變成其相應之伸烷基胺,胺移除步驟,其中藉由與沸點比在該方法期間形成之該等伸烷基胺高的選自一級胺或二級胺之群的胺化合物反應,來在反應性分離法中將環狀伸烷基脲轉變成其相應之伸烷基胺。
  2. 如請求項1之方法,其中在該CO2移除步驟中,將存在於該原料中的介於5%與95%之間的伸烷基脲部分轉變成胺部分,且在該胺移除步驟中,將存在於該原料中的介於5%與95%之間的伸烷基脲部分轉變成胺部分。
  3. 如請求項1或2之方法,其中進入該CO2移除步驟中之饋料的CO2負荷為至少0.2。
  4. 如請求項1或2之方法,其中進入該胺移除步驟中之饋料的CO2負荷為至多0.8且至少0.05。
  5. 如請求項1或2之方法,其包含以下步驟:將CO2負荷為至少0.2之原料提供至CO2移除步驟中,其中藉由使環 狀伸烷基脲在液相中與水反應,同時移除CO2,來將環狀伸烷基脲轉變成其相應之伸烷基胺,及將該CO2移除步驟之產物的至少一部分提供至胺移除步驟中,其中藉由與沸點比在該方法期間形成之該等伸烷基胺高的選自一級胺或二級胺之群的胺化合物反應,來在反應性分離法中將環狀伸烷基脲轉變成其相應之伸烷基胺。
  6. 如請求項1或2之方法,其包含以下步驟將CO2負荷介於0.05與0.8之間的原料提供至胺移除步驟中,其中藉由與沸點比在該方法期間形成之該等伸烷基胺高的選自一級胺或二級胺之群的胺化合物反應,來在反應性分離法中將環狀伸烷基脲轉變成其相應之伸烷基胺,及將該胺移除步驟之產物的至少一部分提供至CO2移除步驟中,其中藉由使環狀伸烷基脲在液相中與水反應,來將環狀伸烷基脲轉變成其相應之伸烷基胺。
  7. 如請求項1或2之方法,其中該CO2移除步驟在至少150℃之溫度下進行。
  8. 如請求項1或2之方法,其中該CO2移除步驟藉由以下來進行:使環狀伸烷基脲在液相中與水以每莫耳脲部分0.1-20莫耳水之量,在至少230℃之溫度下反應。
  9. 如請求項1或2之方法,其中該CO2轉變步驟在選自一級胺、環狀二級胺及雙環三級胺之群的胺化合物存在下進行。
  10. 如請求項1或2之方法,其中該胺移除步驟為反應性蒸餾步驟。
  11. 如請求項1或2之方法,其中進行轉變以得到相應之伸烷基胺的該環狀伸烷基脲為:
    Figure 107127377-A0305-02-0038-1
    其中R1係選自以下之群:氫、式X-R3-(NH-R3-)p-之伸烷基胺基團或式X-R3-(O-R3-)n-之烷氧基、或組合此類伸烷基胺及烷氧基之基團,其中一或多個單元~N-R3-N~係以環
    Figure 107127377-A0305-02-0038-2
    及/或
    Figure 107127377-A0305-02-0038-3
    中之任一者的形式存在;其中R2為氫,且當n或p獨立地為至少1時,X為羥基、胺、直鏈或分支鏈C1-C20羥基烷基或C1-C20胺基烷基,其視情況含有一或多個哌嗪或伸烷基脲基團;或當p或n為0時,X為C1-C20羥基烷基或C1-C20胺基烷基;且其中各R3獨立地為伸烷基或經取代之伸烷基。
  12. 如請求項1或2之方法,其中在該胺移除步驟中,該環狀伸烷基脲及該胺化合物係選自以下組合:
    Figure 107127377-A0305-02-0039-4
    其中EDA表示乙二胺,DETA表示二伸乙基三胺,TETA表示三伸乙基四胺,TEPA表示四伸乙基五胺,PEHA表示五伸乙基六胺,且EU、UDETA、UTETA、UTEPA及UPEHA表示其相應單脲,DUTETA、DUTEPA及DUPEHA表示TETA、TEPA及PEHA之雙脲,TUPEHA表示PEHA之三脲,AEEA表示胺基乙基乙醇胺,UAEEA表示胺基乙基乙醇胺之脲,且HE表示在所提及之伸乙基胺的一個末端胺處存在羥基乙基。
  13. 如請求項1或2之方法,其中進入該胺分離步驟中之饋料的水含量小於10wt%。
  14. 如請求項1或2之方法,其中該反應性分離系統中之壓力為至多127絕對巴。
  15. 如請求項1或2之方法,其中該胺移除步驟在至少150℃之溫度下進行。
TW107127377A 2017-08-11 2018-08-07 將環狀伸烷基脲轉變成其相應之伸烷基胺之多重步驟方法 TWI761570B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17185945.7 2017-08-11
??17185945.7 2017-08-11
EP17185945 2017-08-11

Publications (2)

Publication Number Publication Date
TW201920065A TW201920065A (zh) 2019-06-01
TWI761570B true TWI761570B (zh) 2022-04-21

Family

ID=59592932

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107127377A TWI761570B (zh) 2017-08-11 2018-08-07 將環狀伸烷基脲轉變成其相應之伸烷基胺之多重步驟方法

Country Status (10)

Country Link
US (1) US11236039B2 (zh)
EP (1) EP3665153A1 (zh)
JP (2) JP2020530455A (zh)
KR (1) KR20200036011A (zh)
CN (1) CN111032616B (zh)
BR (1) BR112020002389B1 (zh)
CA (1) CA3071903A1 (zh)
MX (1) MX2020001449A (zh)
TW (1) TWI761570B (zh)
WO (1) WO2019030190A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3555041B1 (en) * 2016-12-15 2022-02-02 Nouryon Chemicals International B.V. Process for manufacturing ethylene amines
WO2018108888A1 (en) 2016-12-15 2018-06-21 Akzo Nobel Chemicals International B.V. Process for manufacturing hydroxyethyl ethylene amines
WO2019011710A1 (en) * 2017-07-10 2019-01-17 Akzo Nobel Chemicals International B.V. PROCESS FOR THE PREPARATION OF ETHYLENEAMINES AND ETHYLENEAMINE DERIVATIVES
EP3665152A1 (en) * 2017-08-11 2020-06-17 Nouryon Chemicals International B.V. Process for converting cyclic alkylene ureas into their corresponding alkylene amines
WO2019030193A1 (en) * 2017-08-11 2019-02-14 Akzo Nobel Chemicals International B.V. TWO-CYCLE ALKYLENE-UREA CONVERSION PROCESS INTO THEIR ALKYLENE AMINOUS CORRESPONDENTS
BR112020002390A2 (pt) * 2017-08-11 2020-09-08 Nouryon Chemicals International B.V. processo de conversão da monoureia cíclica de compostos de etileno amina em composto de etileno amina
EP4098348A4 (en) * 2020-01-28 2024-02-28 Tosoh Corporation COMPOSITION FOR CARBON DIOXIDE CAPTURE AND METHOD FOR CAPTURE OF CARBON DIOXIDE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812333A (en) * 1954-09-27 1957-11-05 Union Carbide Corp Process for the preparation of 1-(2-hydroxyethyl) imidazolidine-2
US4387249A (en) * 1981-12-18 1983-06-07 The Dow Chemical Company Process for the manufacture of diethylenetriamine
US4503250A (en) * 1981-09-30 1985-03-05 Union Carbide Corporation Preparation of polyalkylene polyamines

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE513250C2 (sv) 1997-11-11 2000-08-07 Akzo Nobel Nv Amineringsförfarande för framställning av polyaminer
DE102004011320A1 (de) 2004-03-09 2005-09-22 Degussa Ag Verfahren zur Herstellung von Aminen aus Carbodiimidgruppen aufweisenden Verbindungen durch Hydrolyse mit Wasser
WO2013129682A1 (ja) * 2012-03-02 2013-09-06 国立大学法人九州大学 アミノ基および/または水酸基を有する化合物の製造方法
MX2018009316A (es) * 2016-02-12 2018-11-09 Akzo Nobel Chemicals Int Bv Proceso para convertir alquilenureas ciclicas en sus correspondientes alquilenaminas.
BR112020002390A2 (pt) * 2017-08-11 2020-09-08 Nouryon Chemicals International B.V. processo de conversão da monoureia cíclica de compostos de etileno amina em composto de etileno amina

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812333A (en) * 1954-09-27 1957-11-05 Union Carbide Corp Process for the preparation of 1-(2-hydroxyethyl) imidazolidine-2
US4503250A (en) * 1981-09-30 1985-03-05 Union Carbide Corporation Preparation of polyalkylene polyamines
US4387249A (en) * 1981-12-18 1983-06-07 The Dow Chemical Company Process for the manufacture of diethylenetriamine

Also Published As

Publication number Publication date
TW201920065A (zh) 2019-06-01
US20200165187A1 (en) 2020-05-28
KR20200036011A (ko) 2020-04-06
WO2019030190A1 (en) 2019-02-14
RU2020109528A3 (zh) 2021-09-14
CN111032616A (zh) 2020-04-17
CN111032616B (zh) 2024-01-19
US11236039B2 (en) 2022-02-01
JP2020530455A (ja) 2020-10-22
BR112020002389B1 (pt) 2023-03-21
EP3665153A1 (en) 2020-06-17
MX2020001449A (es) 2020-03-20
BR112020002389A2 (pt) 2020-09-01
JP2023017864A (ja) 2023-02-07
CA3071903A1 (en) 2019-02-14
RU2020109528A (ru) 2021-09-14

Similar Documents

Publication Publication Date Title
TWI761570B (zh) 將環狀伸烷基脲轉變成其相應之伸烷基胺之多重步驟方法
JP6496088B2 (ja) 環状アルキレン尿素をそれらの対応するアルキレンアミンに変換するプロセス
TWI761569B (zh) 將環狀伸烷基脲轉變成其相應之伸烷基胺之反應性分離方法
TWI761571B (zh) 將環狀伸烷基脲轉變成其相應之伸烷基胺之方法
TWI752193B (zh) 製造增鏈之羥乙基乙二胺、乙二胺或其混合物之方法
JP7235716B6 (ja) 高級エチレンアミンまたはその尿素誘導体を調製する方法
CN110072838B (zh) 制备亚乙基胺的方法
TWI761545B (zh) 製備伸乙基胺及伸乙基胺衍生物之方法
TWI761572B (zh) 將環狀伸烷基脲轉變成其相應之伸烷基胺之二步驟方法
TWI767001B (zh) 製造乙胺化合物之環狀尿素加成物的方法
TWI774812B (zh) 將環狀伸烷基脲轉變成其相應之伸烷基胺的方法
US11390607B2 (en) Process to prepare propylene amines and propylene amine derivatives
RU2782146C2 (ru) Многостадийный способ превращения циклических алкиленмочевинных соединений в их соответствующие алкиленамины
RU2783708C2 (ru) Способ производства этиленаминовых соединений
KR102643992B1 (ko) 에틸렌아민 화합물의 제조 방법