TWI761477B - 導電性接著劑、硬化物、電子零件及電子零件之製造方法 - Google Patents

導電性接著劑、硬化物、電子零件及電子零件之製造方法 Download PDF

Info

Publication number
TWI761477B
TWI761477B TW107110671A TW107110671A TWI761477B TW I761477 B TWI761477 B TW I761477B TW 107110671 A TW107110671 A TW 107110671A TW 107110671 A TW107110671 A TW 107110671A TW I761477 B TWI761477 B TW I761477B
Authority
TW
Taiwan
Prior art keywords
conductive adhesive
conductive
particles
peroxide
acrylate
Prior art date
Application number
TW107110671A
Other languages
English (en)
Other versions
TW201900811A (zh
Inventor
福島和信
佐佐木正樹
滝澤雅弘
仲田和貴
須藤大作
大渕健太郎
Original Assignee
日商太陽油墨製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017068938A external-priority patent/JP2018168336A/ja
Priority claimed from JP2017194359A external-priority patent/JP2019065231A/ja
Application filed by 日商太陽油墨製造股份有限公司 filed Critical 日商太陽油墨製造股份有限公司
Publication of TW201900811A publication Critical patent/TW201900811A/zh
Application granted granted Critical
Publication of TWI761477B publication Critical patent/TWI761477B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive

Abstract

[課題]本發明係提供可形成具備優異的耐電壓性與優異的導電連接信賴性的連接構造體的導電性接著劑、該導電性接著劑之硬化物、包含使用該導電性接著劑而電性連接的構件的電子零件及使用該導電性接著劑的電子零件之製造方法。   [解決手段]一種導電性接著劑等,其係藉由熱壓著使構件彼此異方導電接著,並且包含導電粒子之導電性接著劑,其特徵為:前述導電粒子之調配比例係以固體成分換算為0.01~3.5體積%,下述式(1)所表示之前述導電粒子的粒度分布之跨度(Span)值為3.0以下。進而包含10小時半衰期溫度為50℃以下的過氧化物為佳。   跨度值=(D90-D10)/D50 ……(1)   (式(1)中,D50為0.1~20 μm)。

Description

導電性接著劑、硬化物、電子零件及電子零件之製造方法
本發明係關於導電性接著劑、硬化物、電子零件及電子零件之製造方法。
隨著近年之電子機器之輕薄短小化的印刷電路板之高密度化,作為電子零件之電性連接,例如作為電路板與電子元件之之電性連接或電路板間之電性連接的技術,進行導電性接著劑之開發、改良(例如專利文獻1、2)。如此的導電性接著劑係塗布於所欲電性連接的構件間,藉由加熱壓接而可輕量且省空間地電性連接。
具體而言,導電性接著劑本身為絕緣性,但藉由加熱壓接,被含有於導電性接著劑的導電粒子被挾持於電極間而壓緊而形成導電的路徑。該結果,成為可進行構件間之電性連接。另一方面,在加熱壓接後亦不被挾持於電極間而不受壓力的區域係因為導電粒子保持分散,所以絕緣性被維持。藉由此,成為所謂的異方導電性之連接構造體。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2012-216770號公報   [專利文獻2]日本特開2013-045650號公報
[發明所欲解決之課題]
使用如上述般的導電性接著劑而形成的異方導電性之連接構造體係於不受壓力的區域的絕緣性雖被維持,但是於該區域係導電粒子存在,所以需要賦與優異的耐電壓性。
又,另一方面,如此的連接構造體係藉由將含有導電粒子的導電性接著劑挾持於電極間而壓緊而形成導電的路徑,可安定地電性連接,亦即,優異的導電連接信賴性為必要。然而,隨著最近之電子機器之精密化、薄膜化,難以併存在狹間距之微細的電極的耐電壓性與導電連接信賴性。
因此,本發明之目的係提供可形成具備優異的耐電壓性與優異的導電連接信賴性的異方導電性之連接構造體的導電性接著劑、該導電性接著劑之硬化物、包含使用該導電性接著劑而電性連接的構件的電子零件及該電子零件之製造方法。 [用以解決課題之手段]
本發明者等係鑑於上述而專心致力研討的結果,發現藉由將粒度分布之跨度(Span)值為在特定之範圍的導電粒子,以特定之搭配比例調配,可解決上述課題,達到完成本發明。
亦即,本發明之導電性接著劑,其係藉由熱壓著使構件彼此異方導電接著,並且包含導電粒子之導電性接著劑,其特徵為:前述導電粒子之調配比例係以固體成分換算為0.01~3.5體積%,下述式(1)所表示之前述導電粒子的粒度分布之跨度(Span)值為3.0以下。   跨度值=(D90-D10)/D50 ……(1)   (式(1)中,D50為0.1~20 μm)。
本發明之導電性接著劑係進而包含過氧化物為佳。
本發明之導電性接著劑係前述過氧化物的10小時半衰期溫度為50℃以下為佳。在此情況,本發明之導電性接著劑,其係前述導電粒子為低熔點銲料粒子,前述導電性接著劑係以前述低熔點銲料粒子之熔點以下的溫度進行熱壓著之低溫接著用。
本發明之導電性接著劑係前述導電粒子為低熔點銲料粒子為佳。
本發明之導電性接著劑係進而包含有機成分為佳。
本發明之導電性接著劑係前述有機成分包含:含乙烯性不飽和基之化合物與有機黏合劑為佳。
本發明之導電性接著劑係前述有機成分(包含溶劑之情況則溶劑除外)中的乙烯性不飽和鍵當量為260~1000為佳。
本發明之硬化物,其特徵為使前述導電性接著劑硬化而得。
本發明之電子零件,其特徵為包含使用前述導電性接著劑而電性連接之構件。
本發明之電子零件之製造方法,其特徵為塗布前述導電性接著劑,且藉由熱壓著使構件彼此導電接著。 [發明的效果]
藉由本發明,則可提供可形成具備優異的耐電壓性與優異的導電連接信賴性的異方導電性之連接構造體的導電性接著劑、該導電性接著劑之硬化物、以及,包含使用該導電性接著劑而電性連接的構件的電子零件及該電子零件之製造方法。
本發明之導電性接著劑,其係藉由熱壓著使構件彼此異方導電接著,並且包含導電粒子之導電性接著劑,其特徵為:前述導電粒子之調配比例係以固體成分換算為0.01~3.5體積%,上述式(1)所表示之前述導電粒子的粒度分布之跨度(Span)值為3.0以下。   若將導電粒子以0.01~3.5體積%之少量調配,則被認為導電粒子不足所以無法確保充分的導電性,但實際上係已知不產生顯著的導電性降低,耐電壓提昇。詳細的機制並不明確,但藉由減少導電粒子之搭配比例,雖然電極間之導電粒子變少,但是藉由此而於熱壓著時隨著已被挾持於電極間的每1個導電粒子所受的壓力增加,導電粒子之壓潰情形(加壓方向(Z軸方向)之一維收縮和X-Y方向之二維伸長)增加,被挾持於電極間的每一個導電粒子因為與電極接觸的面積增加,所以被認為可確保導電性。另一方面,藉由將導電粒子之搭配比例變少,在非電性連接處所中,分散著的導電粒子之濃度變低而更提昇絕緣性,被認為在X-Y方向相鄰的電極間之耐電壓性提昇。
進而,若將導電粒子之搭配比例變少至0.01~3.5體積%、導電粒子之粒度分布之跨度值設為3.0以下,則意外地電性連接如電極間距(L/S)為50/50(μm)般的狹間距之電極彼此的連接構造體,了解可併存優異的耐電壓性與優異的導電連接信賴性。
在此,所謂前述導電粒子之粒度分布之跨度值係稱表示粒度分布之銳度的值,在藉由雷射繞射法所得的該粒度分布測定結果之累積粒子量曲線中,藉由該累積量為占10%、50%、90%時的粒徑D10、D50、D90,成為表示由式(D90-D10)/D50所求出的粒度分布之偏差的指標的值。   又,前述導電粒子之搭配比例(體積%)係使用依據JIS K-5400而使用100ml之比重杯而測定的由導電粒子以外之成分所構成的組成物(接著劑)之比重和導電粒子之真比重,以下述式算出。   (式)   導電粒子之搭配比例(體積%)=100×(導電粒子之調配量/導電粒子之真比重)/((導電粒子之調配量/導電粒子之真比重)+(導電粒子以外之組成物之調配量/導電粒子以外之組成物之比重))
又,在最近係進行作為基材使用耐熱溫度低的聚碳酸酯或PET等,於基材上電性連接耐熱溫度低的感測器等之電子零件而搭載。然而,在有關上述先前技術的導電接著劑係難以藉由低溫且迅速的熱壓著耐熱溫度低的基材或電子零件而電性連接而接著。又,先前在包含低熔點銲料粒子的導電性接著劑之導電連接,一般上通常以融點以上之溫度進行熱壓著。然而,發明者等係以少的低熔點銲料粒子之調配量研討後,藉由壓著同時迅速地進行硬化反應,意外地察覺到即使是低熔點銲料粒子之融點以下的低溫度區域,亦以低熔點銲料粒子已壓潰的狀態被接著固化,可導電連接。亦即,以在低熔點銲料粒子之融點以下的低溫度區域亦可迅速地進行硬化反應之方式,在本申請發明係含有10小時半衰期溫度為50℃以下之過氧化物為佳,結果在低熔點銲料粒子之融點以下的低溫區域亦成為可導電連接。在使用如此的半衰期溫度低的過氧化物的情況,被認為因為反應性提昇,所以藉由在導電粒子被充分地壓著前導電性接著劑會硬化,相反地導電連接變為困難,但在本發明中係依上述,可導電連接。
以下,說明關於本發明之導電性接著劑所含有的成分進行詳細敘述。
(導電粒子)   本發明之導電性接著劑係如上述般地,將導電粒子作為特徵的構成成分而含有。
在本發明中,導電粒子之粒度分布之跨度值係3.0以下,2.0以下為佳,0.01~1.2為較佳,0.05~1.05為更佳,0.1~0.9為最佳。若跨度值為3.0以下,則因為可為更少導電連接不良的連接,所以為佳。跨度值之下限係無特別限定,但由製造容易度之觀點視之,0.01以上為佳。
在此,式(1)中之D50為0.1~20μm,1~15μm為佳,2~15μm為較佳,3~10μm為更佳,4~8μm為最佳。藉由將D50設為20μm以下,即使是微細的處所亦成為可充分的導電連接。另一方面,藉由將D50設為0.1μm以上,可抑制在導電性接著劑中之導電粒子之凝聚。   D90係1~60μm為佳、5~30μm為較佳、9~15μm為更佳。藉由將D90設為60μm以下,即使是微細的處所亦成為可確保充分的絕緣性。另一方面,藉由將D90設為1μm以上,可抑制在導電性接著劑中之導電粒子之凝聚。   D10係0.01~20μm為佳,0.1~10μm為較佳,1~6μm為更佳。藉由將D10設為20μm以下,即使是微細的處所亦成為可確保充分的絕緣性。另一方面,藉由將D10設為0.01μm以上,可抑制在導電性接著劑中之導電粒子之凝聚。
式(1)中之(D90-D10)係10μm以下為佳,6.0μm以下為較佳。
又,在本發明中,導電粒子之搭配比例係在導電性接著劑中以固體成分換算為0.01~3.5體積%,0.1~3.0體積%為佳,0.1~2.5體積%為較佳,0.1~2.0體積%為更佳。藉由設為如此的範圍,可不產生導電性之降低且使耐電性提昇,結果可使導電性與耐電壓併存。
在本發明中,此導電粒子係藉由被挾持於電極間,構件彼此為具有電性連接的機能。在此,所謂導電粒子係意味著體積固有阻抗為1×106 Ω・cm以下的物質之粒子,無特別限定者。
例如,作為此導電粒子係可舉出Au、Ag、Ni、Cu、Pd及後述的低熔點銲料粒子、碳粒子等。此導電粒子係亦可為將作為核之玻璃或陶瓷、塑膠等之非導電性之粒子,以金屬層被覆的複合粒子、具有前述非導電粒子與金屬粒子或碳粒子的複合粒子。此導電粒子若為上述複合粒子或熱熔融性之金屬粒子,則因為藉由加熱加壓而導電粒子變形,所以連接時與電極之接觸面積增加,特別是可得到高的信賴性。尚,作為此導電粒子係亦可使用銀被覆銅粒子、或微細的金屬粒子為多數,具有連接為鏈狀的形狀的金屬粒子。
作為如此的導電粒子係熱熔融性之導電粒子為佳,特別是使用以170℃以下,2MPa以下之熱壓著而熔融的導電粒子為佳,其中低熔點銲料粒子為較佳。
在此,所謂低熔點銲料粒子係意味著融點為200℃以下,佳為170℃以下,較佳為150℃以下之焊料粒子。
又,作為低熔點銲料粒子係不含有鉛的焊料粒子為佳,所謂此之不含有鉛的焊料粒子係意味著以JIS Z 3282(焊料-化學成分及形狀)所規定,且鉛含有率0.10質量%以下之焊料粒子。
作為不包含鉛的焊料粒子係合適地使用由錫、鉍、銦、銅、銀、銻中所選擇的1種以上之金屬所構成的低熔點銲料粒子。特別是,由成本、操作性、接合強度之平衡之觀點視之,錫(Sn)與鉍(Bi)之合金為佳地使用。
如此的低熔點銲料粒子中之Bi之含有比例係15~65質量%,佳為35~65質量%,較佳係在55~60質量%之範圍適宜地選擇。
藉由將Bi之含有比例設為15質量%以上,該合金係約在160℃開始熔融。進而若使Bi之含有比例增加則熔融開始溫度係降低,在20質量%以上熔融開始溫度成為139℃,在58質量%成為共晶組成。因而,藉由將Bi之含有比例設為15~65質量%之範圍,可充分地得到低融點化效果,結果即使為低溫亦可得到充分的導通連接。
如以上已說明的導電粒子係球狀為佳。在此,所謂球狀之導電粒子係稱在導電粒子之形狀為可確認的倍率,將球狀粉之長徑與短徑之比為1~1.5者,含有90%以上。
又,導電粒子之氧量係100~2000ppm為佳,250~1400ppm為較佳,400~850ppm為更佳。
本發明之導電性接著劑係如為導電粒子以固體成分換算為以0.01~3.5體積%之搭配比例包含,前述導電粒子之粒度分布之跨度值為3.0以下的樹脂組成物,則無特別限定,作為導電粒子以外之該其他成分係可舉出可使用於導電性接著劑的一般周知慣用之成分。   具體而言係可舉出後述的樹脂成分、過氧化物、觸變性賦予劑、濕潤分散劑、消泡劑等。
(樹脂成分)   作為樹脂成分係可使用一般周知慣用之熱硬化型、熱熔融型、紫外線硬化型、濕氣硬化型之樹脂之中至少任一種。此等之樹脂之中,尤其是藉由熱壓著的電性連接為容易,所以熱硬化型為佳。作為熱硬化型之樹脂係可舉出丙烯酸酯樹脂等之含乙烯性不飽和基之化合物、環氧樹脂等。其中,尤其是含乙烯性不飽和基之化合物為特別佳。
(含乙烯性不飽和基之化合物)   本發明之導電性接著劑係含有含乙烯性不飽和基之化合物為佳。特別是,含乙烯性不飽和基之化合物係可使用作為反應性稀釋劑的單體或寡聚物為佳。   如此,藉由調配具有乙烯性不飽和鍵的化合物,例如可容易地得到170℃以下、2MPa以下的即使是低溫、低壓亦可熱壓著的導電性接著劑。
作為含乙烯性不飽和基之化合物係可混合1種或2種以上之化合物而使用,可佳地使用單官能或多官能之含(甲基)丙烯醯基之化合物。在本案說明書中,所謂(甲基)丙烯醯基係總稱丙烯醯基及甲基丙烯醯基的用語,關於其他類似之表現亦相同。
作為如此的含(甲基)丙烯醯基之化合物係例如可使用取代或非取代的脂肪族丙烯酸酯、脂環式丙烯酸酯、芳香族丙烯酸酯、含有雜環之丙烯酸酯、及此等之環氧乙烷改質丙烯酸酯、環氧丙烯酸酯、芳香族胺基甲酸酯丙烯酸酯、脂肪族胺基甲酸酯丙烯酸酯、聚酯丙烯酸酯、聚醚丙烯酸酯、多元醇丙烯酸酯、醇酸丙烯酸酯、三聚氰胺丙烯酸酯、聚矽氧丙烯酸酯、聚丁二烯丙烯酸酯、及對應於此等的甲基丙烯酸酯類等。
更具體而言,作為單官能之含(甲基)丙烯醯基之化合物係可使用(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸羥乙酯、4-羥丁基(甲基)丙烯酸酯、羥丙基(甲基)丙烯酸酯、丁氧基甲基(甲基)丙烯酸酯、2-乙基己基(甲基)丙烯酸酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸異癸酯、甘油單(甲基)丙烯酸酯等之脂肪族(甲基)丙烯酸酯、(甲基)丙烯酸環己酯、4-(甲基)丙烯醯氧基三環[5.2.1.02,6]癸烷、(甲基)丙烯酸異冰片酯等之脂環式(甲基)丙烯酸酯、(甲基)丙烯酸苯氧基乙酯、(甲基)丙烯酸芐酯、(甲基)丙烯酸苯酯、2-羥基-3-苯氧基丙基(甲基)丙烯酸酯等之芳香族(甲基)丙烯酸酯、脂肪族環氧改質(甲基)丙烯酸酯等改質(甲基)丙烯酸酯、四氫糠基(甲基)丙烯酸酯、(甲基)丙烯醯氧基乙基鄰苯二甲酸、γ-(甲基)丙烯醯氧基烷基三烷氧基矽烷等。
又,多官能之含(甲基)丙烯醯基之化合物係可使用雙酚-A-二(甲基)丙烯酸酯、環氧烷改質雙酚-A-二(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、乙二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、雙[4-(甲基)丙烯醯氧基甲基]三環[5.2.1.02,6]癸烷、雙[4-(甲基)丙烯醯氧基-2-羥丙基氧基苯基]丙烷、異佛酮二異氰酸酯改質胺基甲酸酯(甲基)丙烯酸酯、六亞甲基二異氰酸酯改質胺基甲酸酯(甲基)丙烯酸酯、低聚矽氧烷基二(甲基)丙烯酸酯、三甲基六亞甲基二異氰酸酯改質胺基甲酸酯(甲基)丙烯酸酯、三烯丙基異氰脲酸酯、乙烯基(甲基)丙烯酸酯、烯丙基(甲基)丙烯酸酯等。
此外,亦可使用以下之化合物。   (1) 藉由使2-羥乙基(甲基)丙烯酸酯,介由2,4-甲苯二異氰酸酯而與液狀聚丁二烯之羥基進行胺基甲酸酯加成反應而可得的液狀聚丁二烯胺基甲酸酯(甲基)丙烯酸酯、   (2) 於已加成馬來酸酐的馬來化聚丁二烯,使2-羥基丙烯酸酯進行酯化反應而得到的液狀聚丁二烯丙烯酸酯、   (3) 藉由聚丁二烯之羧基、與(甲基)丙烯酸縮水甘油酯之環氧酯化反應而可得的液狀聚丁二烯(甲基)丙烯酸酯、   (4) 藉由使環氧化劑作用於液狀聚丁二烯而得到的環氧化聚丁二烯、與(甲基)丙烯酸之酯化反應而得到的液狀聚丁二烯(甲基)丙烯酸酯、   (5) 藉由具有羥基的液狀聚丁二烯、與(甲基)丙烯醯氯之除氯反應而可得的液狀聚丁二烯(甲基)丙烯酸酯、及,   (6) 將已氫化於分子兩末端具有羥基的液狀聚丁二烯之雙鍵的液狀氫化1,2聚丁二烯乙二醇,已轉化胺基甲酸酯(甲基)丙烯酸酯的液狀氫化1,2聚丁二烯(甲基)丙烯酸酯。
作為此等之市售品之係可舉出NISSO PB TE-2000、NISSO PBTEA-1000、NISSO PB TE-3000、NISSO PB TEAI-1000(以上均為Nippon Soda公司製)、MM-1000-80、MAC-1000-80(以上均為日本石油化學公司製)、Poribekku ACR-LC(日本肼工業公司製)、HYCAR VT VTR 2000×164(宇部興產公司製)、Quinbeam101(日本ZEON公司製)、Chemlink5000(SARTOMER公司製)、BAC-15(大阪有機化學工業公司製)、BAC-45(大阪有機化學工業公司製)、UAT-2000(共榮社化學公司製)、Epolead PB-3600 (daicel化學工業公司製)、EY RESIN、BR-45UAS(LIGHT CHEMICAL工業公司製)等。
如此的含(甲基)丙烯醯基之化合物之中,特別是,2-羥基-3-苯氧基丙基丙烯酸酯、苯氧基乙基丙烯酸酯、4-羥基丁基丙烯酸酯、四氫糠基丙烯酸酯、2-羥基乙基丙烯酸酯、2-羥基丙基丙烯酸酯、2-丙烯醯氧基乙基鄰苯二甲酸、脂肪族胺基甲酸酯丙烯酸酯為佳。
尚,在本發明係由抑制在熱壓著時之塗膜中的氣泡產生的觀點視之,含乙烯性不飽和基之化合物係在80℃的重量減少率為5%以下者為佳,3%以下為較佳,1%以下者為特別佳。又,在90℃的重量減少率係10%以下為佳,5%以下為較佳,1%以下為特別佳。進而,在100℃的重量減少率係20%以下為佳,10%以下為較佳,3%以下為特別佳。具體而言,可舉出苯氧基乙基丙烯酸酯、苯氧基聚乙二醇丙烯酸酯、苯酚EO改質丙烯酸酯、o-苯基苯酚EO改質丙烯酸酯、對異丙苯基苯酚EO改質丙烯酸酯、壬基苯酚EO改質丙烯酸酯、N-丙烯醯氧基乙基六氫鄰苯二甲醯亞胺、聚丙二醇二丙烯酸酯、聚乙二醇二丙烯酸酯、三羥甲基丙烷三丙烯酸酯、三羥甲基丙烷PO改質三丙烯酸酯、三羥甲基丙烷EO改質三丙烯酸酯等,佳係可舉出苯氧基乙基丙烯酸酯、苯酚EO改質丙烯酸酯、o-苯基苯酚EO改質丙烯酸酯、N-丙烯醯氧基乙基六氫鄰苯二甲醯亞胺。又,含乙烯性不飽和基之化合物係在25℃的黏度為50dPa・s以下為較佳。
藉由使用如此的含乙烯性不飽和基之化合物,本發明之導電性接著劑係可將在導電性接著劑之反應峰值溫度之重量減少率設為5%以下,其結果可有效地防止熱壓著時之氣泡產生。在此,所謂導電性接著劑之反應波峰溫度係稱使用示差熱‧熱重量測定(以下,僅稱為「TG/DTA測定」)裝置,在以昇溫速度5℃/sec、30~200℃所測定的DTA曲線的波峰溫度。尚,在波峰存在2個以上的情況係稱最初之波峰溫度。
如以上說明的含乙烯性不飽和基之化合物係於導電性接著劑中,以溶劑除外的有機成分中之乙烯性不飽和鍵當量成為260~1000之方式調配為佳。較佳為260~700,更佳為350~700,特別佳為350~550,最佳為400~500。以將乙烯性不飽和鍵當量設為260以上,可抑制硬化之時所產生的硬化收縮,可得到充分的接著強度,同時保存安定性成為良好。又,以將乙烯性不飽和鍵當量設為1000以下,可得到充分的硬化性。在此,所謂乙烯性不飽和鍵當量係克當量且每個乙烯性不飽和鍵數之質量。在乙烯性不飽和基為(甲基)丙烯醯基的情況,一般而言亦被稱為(甲基)丙烯酸當量。例如,在乙烯性不飽和基為(甲基)丙烯醯基的情況,被定義為每1個(甲基)丙烯醯基之有機成分(包含溶劑的情況係溶劑除外)之質量。亦即,乙烯性不飽和鍵當量係可藉由將有機成分(包含溶劑的情況係溶劑除外)之質量合計,以組成物中之乙烯性不飽和鍵之數相除而得。
含乙烯性不飽和基之化合物之搭配比例係對於導電性接著劑之總質量而言,佳為10~90質量%,較佳為30~60,更佳為35~55質量%,特別佳為40~55質量%。藉由將含乙烯性不飽和基之化合物之搭配比例,對於導電性接著劑之總質量而言,設為10質量%以上,可得到充分的硬化性,接著強度亦設為更良好。又,藉由將含乙烯性不飽和基之化合物之搭配比例,對於導電性接著劑之總質量而言,設為90質量%以下,可抑制硬化收縮,接著強度亦成為良好。
(有機黏合劑)   本發明之導電性接著劑係作為樹脂成分含有前述含乙烯性不飽和基之化合物的情況,更含有前述化合物以外之有機黏合劑為佳。藉由添加有機黏合劑,緩和在熱硬化時產生的應力,可更提昇接著強度。
所謂有機黏合劑為有機樹脂成分,可使用一般周知慣用之天然樹脂、合成樹脂。作為如此的有機黏合劑,可使用纖維素及松香等之天然樹脂、聚乙烯、聚丙烯、聚苯乙烯、聚碳酸酯、聚氯乙烯、聚醋酸乙烯酯、聚醯胺、丙烯酸樹脂、聚對苯二甲酸乙二酯、氟樹脂、矽樹脂、聚酯樹脂、縮醛樹脂、縮丁醛樹脂等之合成樹脂。其中,尤其是使用丙烯酸樹脂、縮丁醛樹脂、飽和聚酯樹脂為佳,飽和聚酯樹脂為較佳。
作為丙烯酸樹脂之具體例係可舉出KURARITY系列(Kuraray公司製)之KURARITY LA2330等。
作為縮丁醛樹脂之具體例係可舉出積水化學S-LEC系列(積水化學工業公司製)之S-LEC BL-1、BL-1H、BL-2、BL-2H、BL-5、BL-10、BL-10、BL-S、BL-L等。
作為飽和聚酯樹脂之具體例係可舉出東洋紡VYLON系列(東洋紡織公司製)之VYLON 200、220、240、245、270、280、290、296、300、337、500、530、550、560、600、630、650、BX1001、GK110、130、140、150、180、190、250、330、590、640、680、780、810、880、890等。
有機黏合劑係在室溫(25℃)、大氣壓下使用固形者為佳。以使用固形之有機黏合劑,成為容易地維持導電性接著劑之硬化後之強度。有機黏合劑之Tg(玻璃轉移溫度)係佳為-20~150℃,較佳為0~120℃,更佳為10~70℃。
有機黏合劑之分子量係佳為1,000~100,000,較佳為3,000~80,000,更佳為5,000~60,000為佳。如分子量為1,000以上,則硬化時無滲出且可進行應力鬆弛,如為100,000以下,則容易與含乙烯性不飽和基之化合物相溶而可得到充分的流動性。
有機黏合劑之搭配比例係相對於導電性接著劑之總質量而言,佳為1~90質量%,較佳為3~60,更佳為5~60質量%,更佳為10~50質量%,更佳為25~45質量%,特別佳為35~40質量%。
(過氧化物)   本發明之導電性接著劑係作為樹脂成分含有含乙烯性不飽和基之化合物的情況,作為聚合起始劑含有過氧化物為佳。過氧化物係作為如含乙烯性不飽和基之化合物般的樹脂成分之聚合起始劑而作用。藉由過氧化物,開始含乙烯性不飽和基之化合物之自由基反應等。結果,導電性接著劑硬化,可提昇在電子零件的構件彼此之接著力。
作為前述過氧化物係包含液狀及粉末之過氧化物,作為具體例係可舉出以下之材料。
甲乙酮過氧化物、環己酮過氧化物、及乙醯丙酮過氧化物等之酮過氧化物,1,1-二(t-己基過氧基)-3,3,5-三甲基環己烷、1,1-二(t-己基過氧基)環己烷、1,1-二(t-丁基過氧基)-2-甲基環己烷、及1,1-二(t-丁基過氧基)環己烷等之過氧縮酮,2,2-二(t-丁基過氧基)丁烷、正丁基4,4-二-(t-丁基過氧基)戊酸酯、及2,2-二(4,4-二-(t-丁基過氧基)環己基)丙烷等之過氧縮酮,對薄荷烷氫過氧化物、二異丙基苯氫過氧化物、1,1,3,3-四甲基丁基氫過氧化物、異丙苯氫過氧化物、及t-丁基氫過氧化物等之氫過氧化物,二(2-t-丁基過氧基異丙基)苯、二異丙苯基過氧化物、2,5-二甲基-2,5-二(t-丁基過氧基)己烷、t-丁基異丙苯基過氧化物、二-t-己基過氧化物、二-t-丁基過氧化物、及2,5-二甲基-2,5-二(t-丁基過氧基)己炔-3等之二烷基過氧化物,二異丁基過氧化物、二(3,5,5-三甲基己醯基)過氧化物、二月桂醯基過氧化物、二琥珀酸過氧化物、二-(3-甲基苯甲醯基)過氧化物、苯甲醯基(3-甲基苯甲醯基)過氧化物、二苯甲醯基過氧化物及二-(4-甲基苯甲醯基)過氧化物等之二醯基過氧化物,過氧化二碳酸二正丙酯、過氧化二碳酸二異丙酯、過氧化二碳酸雙(4-t-丁基環己基)酯、過氧化二碳酸二(2-乙基己基)酯、過氧化二碳酸二-sec-丁酯等之過氧化二碳酸酯,異丙苯基過氧基新癸酸酯、1,1,3,3-四甲基丁基過氧基新癸酸酯、t-己基過氧基新癸酸酯、t-丁基過氧基新癸酸酯、t-丁基過氧基新庚酸酯、t-己基過氧基特戊酸酯、t-丁基過氧基特戊酸酯、1,1,3,3-四甲基丁基過氧基-2-乙基己酸酯、2,5-二甲基-2,5-二(2-乙基己醯基過氧基)己烷、t-己基過氧基-2-乙基己酸酯、t-丁基過氧-2-乙基己酸酯、t-己基過氧基異丙基單碳酸酯、t-丁基過氧基馬來酸、t-丁基過氧基-3,5,5-三甲基己酸酯、t-丁基過氧基月桂酸酯、t-丁基過氧基異丙基單碳酸酯、t-丁基過氧基-2-乙基己基單碳酸酯、t-己基過氧化基苯甲酸酯、2,5-二甲基-2,5-二(苯甲醯過氧基)己烷、t-丁基過氧基乙酸酯、t-丁基過氧基-3-甲基苯甲酸酯、t-丁基過氧基苯甲酸酯、及t-丁基過氧基烯丙基單碳酸酯等之過氧酯,及3,3',4,4'-四(t-丁基過氧羰基)二苯甲酮。
在如此的過氧化物之中,尤其是使用液狀者為佳。藉由使用液狀之過氧化物,可得到保存安定性亦優異的導電性接著劑。在此,所謂液狀之過氧化物係稱在室溫(25℃)、大氣壓下的液狀之過氧化物。
通常,在熱硬化性之樹脂組成物係調配粉體之硬化劑,賦與作為潛在性硬化劑之機能,但在含有前述含乙烯性不飽和基之化合物的情況係意外地,藉由使用液狀之過氧化物,導電性接著劑之保存安定性提昇。結果,藉由液狀之過氧化物,則良好地分散於導電性接著劑中,對於含乙烯性不飽和基之化合物而言,良好地作用而促進硬化。
作為液狀之過氧化物係例如可舉出甲乙酮過氧化物、環己酮過氧化物、及乙醯丙酮過氧化物等之酮過氧化物,1,1-二(t-己基過氧基)-3,3,5-三甲基環己烷、1,1-二(t-己基過氧基)環己烷、1,1-二(t-丁基過氧基)-2-甲基環己烷、及1,1-二(t-丁基過氧基)環己烷等之過氧縮酮,2,2-二(t-丁基過氧基)丁烷、正丁基4,4-二-(t-丁基過氧基)戊酸酯、及2,2-二(4,4-二-(t-丁基過氧基)環己基)丙烷等之過氧縮酮,對薄荷烷氫過氧化物、二異丙基苯氫過氧化物、1,1,3,3-四甲基丁基氫過氧化物、異丙苯氫過氧化物、及t-丁基氫過氧化物等之氫過氧化物,2,5-二甲基-2,5-二(t-丁基過氧基)己烷、t-丁基異丙苯基過氧化物、二-t-己基過氧化物、二-t-丁基過氧化物、及2,5-二甲基-2,5-二(t-丁基過氧基)己炔-3等之二烷基過氧化物,二異丁基過氧化物、二(3,5,5-三甲基己醯基)過氧化物、二-(3-甲基苯甲醯基)過氧化物、及苯甲醯基(3-甲基苯甲醯基)過氧化物、二苯甲醯基過氧化物等之二醯基過氧化物,過氧化二碳酸二正丙酯、過氧化二碳酸二異丙酯、過氧化二碳酸二(2-乙基己基)酯、過氧化二碳酸二-sec-丁酯等之過氧化二碳酸酯,異丙苯基過氧基新癸酸酯、1,1,3,3-四甲基丁基過氧基新癸酸酯、t-己基過氧基新癸酸酯、t-丁基過氧基新癸酸酯、t-丁基過氧基新庚酸酯、t-己基過氧基特戊酸酯、t-丁基過氧基特戊酸酯、1,1,3,3-四甲基丁基過氧基-2-乙基己酸酯、2,5-二甲基-2,5-二(2-乙基己醯基過氧基)己烷、t-己基過氧基-2-乙基己酸酯、t-丁基過氧-2-乙基己酸酯、t-己基過氧基異丙基單碳酸酯、t-丁基過氧基-3,5,5-三甲基己酸酯、t-丁基過氧基月桂酸酯、t-丁基過氧基異丙基單碳酸酯、t-丁基過氧基-2-乙基己基單碳酸酯、t-己基過氧化基苯甲酸酯、t-丁基過氧基乙酸酯、t-丁基過氧基-3-甲基苯甲酸酯、t-丁基過氧基苯甲酸酯、及t-丁基過氧基烯丙基單碳酸酯等之過氧酯,及3,3',4,4'-四(t-丁基過氧羰基)二苯甲酮。
其中,尤其是在本發明中作為佳的過氧化物係可舉出1,1-二(t-己基過氧基)-3,3,5-三甲基環己烷、1,1-二(t-己基過氧基)環己烷、正丁基-4,4-二-(t-丁基過氧基)戊酸酯等之過氧縮酮,1,1,3,3-四甲基丁基氫過氧化物等之氫過氧化物,2,5-二甲基-2,5-二(t-丁基過氧基)己烷、t-丁基異丙苯基過氧化物、二-t-己基過氧化物、二-t-丁基過氧化物、2,5-二甲基-2,5-二(t-丁基過氧基)-3-己炔等之二烷基過氧化物,二醯基過氧化物、過氧碳酸鹽、及1,1,3,3-四甲基丁基過氧-2-乙基己酸酯、t-己基過氧基-2-乙基己酸酯、t-丁基過氧基-2-乙基己酸酯、t-己基過氧基異丙基單碳酸酯、t-丁基過氧基-3,3,5-三甲基己酸酯、t-丁基過氧基月桂酸酯、t-丁基過氧基-2-乙基己基單碳酸酯、t-己基過氧基苯甲酸酯、t-丁基過氧基-3-甲基苯甲酸酯、及t-丁基過氧基苯甲酸酯等之過氧酯。又,在上述之特別佳的過氧化物之中,藉由使用過氧酯而可得優異的密著性。其中,尤其是藉由使用具有下述構造的烷基過氧酯,可得到極優異的接著強度。
Figure 02_image001
(式中,R及R´係表示各自獨立地表示烷基。)
又,藉由被要求的特性(例如低溫速硬化性)係可合適地使用粉狀之過氧化物。例如,可舉出過氧化二碳酸雙(4-t-丁基環己基)酯等。
如以上說明的過氧化物係使用1分鐘半衰期溫度為70~150℃,佳為80~140℃,較佳為85~130℃者為佳。藉由將1分鐘半衰期溫度設為70℃以上,在室溫之使用中可確保充分的可使用時間。又,藉由將1分鐘半衰期溫度設為150℃以下,可確保充分的硬化性。
過氧化物係可單獨使用,但亦可組合複數種而使用。
如此的過氧化物之調配量係相對於含乙烯性不飽和基之化合物100質量份而言為0.1~20質量份,佳為1~10質量份,較佳為在3~7質量份之範圍中可適宜地選擇。藉由相對於含乙烯性不飽和基之化合物100質量份而言,將過氧化物之調配量設為0.1質量份以上,可確保充分的硬化性。藉由相對於含乙烯性不飽和基之化合物100質量份而言,將過氧化物之調配量設為20質量份以下,可確保充分的密著性。
(10小時半衰期溫度為50℃以下之過氧化物)   本發明之導電性接著劑係含有10小時半衰期溫度為50℃以下之過氧化物為佳。佳為含有20~48℃,較佳為20℃~45℃之過氧化物。在本發明中,藉由使用10小時半衰期溫度為50℃以下之過氧化物,成為在低溫亦可熱壓著。
前述10小時半衰期溫度為50℃以下之過氧化物係可為液狀、亦可為粉末狀,作為具體例係可舉出以下之材料。
二異丁醯基過氧化物等之二醯基過氧化物、過氧化二碳酸二正丙酯、過氧化二碳酸二異丙酯、過氧化二碳酸雙(4-t-丁基環己基)酯、過氧化二碳酸二(2-乙基己基)酯、過氧化二碳酸二-sec-丁酯等之過氧化二碳酸酯、異丙苯基過氧新癸酸酯、1,1,3,3-四甲基丁基過氧化新癸酸酯、t-己基過氧新癸酸酯、t-丁基過氧化新癸酸酯等之過氧酯。
前述10小時半衰期溫度為50℃以下之過氧化物係具有碳酸酯骨架為佳,具有二碳酸酯骨架為較佳。又,作為前述具有二碳酸酯骨架的過氧化物係以下述之結構式表示的過氧化物為佳。
R1 -O-(C=O)-O-O-(C=O)-O-R2 (上述式中,R1 及R2 係各自獨立,表示碳數1~20之烷基、或是,亦可以碳數1~20之烷基取代的碳數5~7之環烷基。)
上述式中,R1 及R2 可取的碳數1~20之烷基係可舉出甲基、乙基、丁基、異丁基、戊基、己基、庚基、辛基、壬基、癸基等。
上述式中,R1 及R2 可取的亦可以碳數1~20之烷基取代的碳數5~7之環烷基係可舉出以甲基、乙基、丁基、異丁基、戊基、己基、庚基、辛基、壬基、癸基等之烷基取代的環己基等。
作為以上述之結構式表示的過氧化物係例如可舉出過氧化二碳酸二正丙酯,過氧化二碳酸二異丙酯,過氧化二碳酸雙(4-t-丁基環己基)酯,過氧化二碳酸二(2-乙基己基)酯,過氧化二碳酸二-sec-丁酯。
前述10小時半衰期溫度為50℃以下之過氧化物係1分鐘半衰期溫度為110℃以下為佳,20~95℃為較佳。
前述10小時半衰期溫度為50℃以下之過氧化物係1小時半衰期溫度為70℃以下為佳,20~60℃為較佳。
前述10小時半衰期溫度為50℃以下之過氧化物係可單獨使用,但亦可組合複數種而使用。
前述10小時半衰期溫度為50℃以下之過氧化物之搭配比例係相對於導電粒子除外的導電性接著劑而言,0.01~30質量%為佳,0.1~15質量%為較佳,0.3~10質量%為特別佳。   搭配比例為0.01質量%以上,則可充分的硬化,30質量%以下則可得到充分的強度之硬化物。
本發明之導電性接著劑係調配10小時半衰期溫度為50℃以下之過氧化物,在設為於低溫可導電連接的導電性接著劑的情況,在不損及該效果的範圍,亦可含有10小時半衰期溫度為高於50℃的過氧化物。
(觸變性賦予劑)   本發明之導電性接著劑係調配觸變性賦予劑為佳。藉由調配觸變性賦予劑,可防止比重高的導電粒子之沈降。觸變性賦予劑係可使用1種或混合2種以上使用。
作為觸變性賦予劑係可使用一般周知慣用者,例如可使用膨潤土、蠟、硬脂酸金屬鹽、改質尿素、二氧化矽等。在此等之中,二氧化矽為佳。前述二氧化矽係非晶質二氧化矽為佳,一次粒子之平均粒徑為50nm以下之非晶質二氧化矽為更佳,表面經疏水化處理的疏水性非晶質二氧化矽為特別佳。
如此的觸變性賦予劑之搭配比例係於導電性接著劑中以固體成分換算,佳為0.01~20質量%,較佳為0.1~10質量%,更佳為在1~5質量%之範圍適宜地選擇。將搭配比例設為0.01質量%以上,可防止比重高的導電粒子之沈降,設為20質量%以下,密著性成為較良好。
(濕潤分散劑)   本發明之導電性接著劑係調配濕潤分散劑佳。藉由調配濕潤分散劑,導電粒子之分散成為良好而可防止因凝聚所致的粗粒之產生。濕潤分散劑係可使用1種或混合2種以上使用。
作為濕潤分散劑係可使用一般周知慣用者,例如可使用脂肪族羧酸、脂肪族羧酸鹽、高級醇硫酸酯、烷基磺酸、磷酸酯、聚醚、聚酯羧酸或此等之鹽類。在此等之中,磷酸酯為佳。
如此的濕潤分散劑之搭配比例係在導電性接著劑中以固體成分換算為0.01~5質量%為佳。較佳為0.05~3質量%,更佳為0.1~3質量%,更佳為0.1~1質量%、最佳為0.15~0.45質量%。在本發明之導電性接著劑為含有10小時半衰期溫度為50℃以下之過氧化物的情況,於導電性接著劑中以固體成分換算為0.01~5質量%為佳,較佳為0.1~3質量%。以將搭配比例設為0.01質量%以上可得到濕潤分散效果,以將搭配比例設為5質量%以下而可得到良好的塗膜特性。
(消泡劑)   本發明之導電性接著劑係調配消泡劑為佳。藉由調配消泡劑,成為可抑制氣泡之產生而可防止孔隙之產生。消泡劑係可使用1種或混合2種以上使用。
作為消泡劑係可使用一般周知慣用者,例如可使用矽樹脂、改質矽樹脂、有機高分子聚合物、有機寡聚物等。在此等之中,有機高分子聚合物或有機寡聚物為佳,乙烯基醚之聚合物為較佳。
如此的消泡劑之搭配比例係於導電性接著劑中以固體成分換算,佳為0.01~10質量%,較佳為0.1~5質量%,更佳為在0.5~3質量%之範圍適宜地選擇。將搭配比例設為0.01質量%以上,可防止孔隙之產生,將搭配比例設為10質量%以下,密著性成為較良好。
(其他成分)   本發明之導電性接著劑係按照必要而可調配整平劑等之一般周知慣用之添加劑。又,亦可將抑制導電性接著劑之滲出且使密著性提昇等作為目的,調配樹脂粒子。樹脂粒子係使用球狀之樹脂粒子為佳,亦可使用所謂的樹脂珠。
尚,本發明之導電性接著劑係不包含溶劑為佳。在此,所謂「不使用溶劑」係稱導電性接著劑為實際上不包含溶劑,導電性接著劑之因150℃、30分加熱所致的質量之減少為相較於加熱前之質量而言,為5質量%以下,佳為3質量%以下。
如以上說明的本發明之導電性接著劑係將上述的各成分以特定之搭配比例配合攪拌,可以一般周知慣用之方法而製造。特別是在本發明係施加真空攪拌處理為佳。藉由真空攪拌處理,因為導電性接著劑被減壓除氣,所以導電性接著劑中之氣泡、水及低沸點之雜質被除去,可更抑制加熱後之氣泡之產生,以及,起因於此的密著強度之降低。
又,本發明之導電性接著劑係可合適地使用於在電子零件的構件彼此之電性連接。例如,可使用將電視等之顯示器用之玻璃基板與可撓性印刷電路板(FPC:Flexible Printed Circuits)電性連接FOG(Flex on Glass)連接、將LSI晶片或液晶畫面等之控制用IC,直接連接於玻璃基板上之透明電極等,所謂的COG(Chip on Glass)連接、於剛性印刷電路板上安裝LSI晶片等的COB(Chip on Board)連接或於可撓性印刷電路板上安裝LSI晶片等的COF (Chip on Flex)連接、連接可撓性印刷電路板與剛性印刷電路板的FOB(Flex on Board)連接、連接可撓性印刷電路板彼此的FOF(Flex on Flex)連接等,可使用於玻璃基板或印刷電路板與電子元件之電性連接或印刷電路板彼此之電性連接。其中,使用於剛性印刷電路板與可撓性印刷電路板之電性連接為佳。亦可合適地使用於觸控面板或液晶顯示器驅動用之配線之電性連接。又,亦可合適地使用在智慧型手機、平板電腦終端、可穿戴式終端的電性連接。進而因為高頻特性為良好,所以亦可合適地使用於要求高頻特性的電子機器的電性連接。
特別是,本發明之導電性接著劑係在電子零件的構件彼此之電性連接,即使電極間距(L/S)窄,可形成具備優異的耐電壓性與優異的導電連接信賴性的連接構造體。結果,本發明之導電性接著劑係電極間距(L/S)之L和S任一者均可適用於200μm以下、100μm以下、75μm以下、50μm以下之情況。
在本發明之導電性接著劑為含有10小時半衰期溫度為50℃以下之過氧化物的情況係因為即使在低溫亦可導電連接,所以可合適地使用於低溫接著用。所使用的基材係無特別限定,例如亦可為熱變形溫度(JIS K7206)為200℃以下,進而如150℃以下般的耐熱性更低的基材。例如,亦可合適地使用在導電連接於作為基材之耐熱性低的聚碳酸酯(熱變形溫度JIS K7206 18.6kgfcm-2 129~140℃)或PET(熱變形溫度JIS K7206 18.6kgfcm-2 37.7~41℃)的情況。又,亦可合適地使用在將耐熱性低的(Tjmax≦150℃(Tjmax:最大接面溫度))感測器零件等之電子零件,電性連接於基材上而搭載的情況。又,亦可合適地使用於藉由熱壓著而電性連接感測器零件的情況。   在此,在本發明所謂「耐熱性」係稱將基材放置於高溫狀態時,難以產生變形、構造上之缺陷、導通、絕緣強度或介電率等之電性的、物理上的特性之降低。   又,在本發明所謂「感測器」係稱偵測圖像、指紋、溫度、壓力、聲音等之資訊的元件或裝置。例如,可舉出相機模組之CMOS或CCD感測器、偵測指紋或靜脈的生物認證用感測器、測定心跳或血壓的生命徵象感測器、用以定位之紅外線感測器、超音波感測器、偵測接觸的感壓感測器、偵測熱的熱感測器、用以得知角度之陀螺儀感測器等。
在本發明之導電性接著劑為含有10小時半衰期溫度為50℃以下之過氧化物的情況係可合適地使用於以導電粒子之融點以下之溫度進行導電連接的低溫接著用,例如導電粒子為低熔點銲料粒子(融點=139℃)的情況,以融點以下之溫度,例如120℃,亦可導電連接。
在使用本發明之導電性接著劑的電子零件的構件彼此之電性連接係例如藉由以下之方法而進行。   首先,在印刷電路板等的連接構件之電性連接處所,將本發明之導電性接著劑,藉由網板篩或金屬遮罩所致的塗布、或是分配器(dispenser)等之塗布裝置而塗布。在此,此塗布之方法係無特別限定,可使用一般周知慣用之方法。
接下來,確認於連接處所充分地供給導電性接著劑後,使被連接構件(零件)搭載於連接構件(基板)之連接處所,藉由進行以特定溫度、特定壓力之熱壓著而硬化。藉由此,連接構件(基板)與被連接構件(零件)可電性連接。
藉由本發明之導電性接著劑,則藉由將導電粒子之搭配比例設為0.01~3.5體積%,被挾持於電極的導電粒子之數變少,因為施加於導電粒子的壓力增大,所以即使以低溫且低壓力,具體而言係170℃以下,進而係150℃以下且2.0MPa以下、1.5MPa以下,進而為1.0MPa以下之熱壓著,亦可將構件彼此進行異方導電接著。結果,在150℃、0.8MPa之相當之低溫且低壓力,亦可容易地進行異方導電接著。
又,在本發明之導電性接著劑為調配10小時半衰期溫度為50℃以下之過氧化物的情況係進而即使以低溫且低壓力之熱壓著,亦可將構件彼此異方導電接著。熱壓著時之溫度係無特別限定,但例如可以170℃以下,進而係以150℃以下之溫度進行熱壓著,亦可以130℃以下,進而以120℃以下、110℃以下、100℃以下、90℃以下般的相當之低溫進行熱壓著。又,熱壓著係以60℃以上進行為佳,以80℃以上進行為較佳。又,熱壓著時之壓力亦無特別限定,但亦可以2.0MPa以下,進而係以1.5MPa以下、1.0MPa以下之低壓力進行熱壓著。 [實施例]
以下,藉由實施例而具體地說明本發明,但本發明係不被限定於此等。又,在以下只要無特別聲明,「部」、「%」係設為質量基準。
(導電性接著劑之調製)   以下述表3、4所示的搭配比例(質量比)配合攪拌各成分,調製實施例及比較例之導電性接著劑。尚,將下述表1所示的跨度值之低熔點銲料粒子作為導電粒子B-1~B-6使用。   尚,粒度分布之測定係以下述之測定裝置及測定條件進行。
Figure 107110671-A0304-0001
Figure 02_image003
(實施例1~6、比較例1、2) (導電連接信賴性之評估) 試驗片之製作   將以上述調製的實施例1~6及比較例1、2之各導電性接著劑,在剛性基板(基材:FR-4、電極寬度:50μm、電極長度:6mm、間距寬度:0.1mm、コ字型電極數140、直線型電極1、快速Au處理)上,介由金屬遮罩(遮罩厚:80μm、開口:15mm×1mm)而藉由刮刀塗布。接著,對於已塗布導電性接著劑的狀態之剛性基板,載置可撓性基板(寬度:16mm、基材:聚醯亞胺、電極寬度:50μm、電極長度:6mm、間距寬度:0.1mm、コ字型電極數140、直線型電極數1、快速Au處理)。在此載置時係將剛性基板之電極與可撓性基板之電極之位置以形成菊花鏈之方式配合,以雙方之電極之交疊的長度成為3.5mm之方式進行。對於以如此的方式進行而載置的基板彼此之接合面,以1.2MPa、150℃、6秒進行熱壓著,製作具有140個電性連接處所的菊花鏈電路試驗片。
加熱藉由上述方法而可得到的試驗片而剝離壓著部後,將剛性基板之電極部以丙酮洗淨。   將上述已洗淨的電極部(コ字型電極數140、直線型電極1)之中央,使用顯微鏡(KEYENCE股份有限公司,VHX-5000 500倍 觀察區域 縱542×橫722μm)而觀察7條電極,於電極長邊方向540μm確認導電性粒子之有無附著,將無附著的電極設為NG端子。   將此作業以10片之試驗片進行,計算相對於合計70條之端子而言的NG端子之數,評估導電連接信賴性。評估基準係依照以下所述。   ◎:NG端子數為0條   ○:NG端子數為1~2條   △:NG端子數為3~4條   × :NG端子數為5條以上
(耐電壓之評估) 試驗片之製作   將以上述調製的實施例1~6及比較例1、2之各導電性接著劑,於下述表2之條件之剛性基板α~γ(均為基材:FR-4、快速Au處理)上,介由金屬遮罩(遮罩厚:80μm、開口:15mm×1mm)而藉由刮刀塗布。接著,對於已塗布導電性接著劑的狀態之剛性基板,各自載置以下之條件之可撓性基板α~γ(均為基材:聚醯亞胺、快速Au處理)。在此載置時,將剛性基板之電極和可撓性基板之電極之位置,以可測定耐電壓之方式配合,以雙方之電極之交疊的長度成為3.5mm之方式進行。對於以如此的方式進行而載置的基板彼此之接合面,以1.2MPa、150℃、6秒進行熱壓著,製作試驗片。
Figure 02_image005
※ 剛性基板及可撓性基板共通之序列號碼 ※ 載置的基板係各自對於剛性基板α為可撓性基板α、對於剛性基板β為可撓性基板β、對於剛性基板γ為可撓性基板γ
耐電壓之測定   將藉由上述方法而可得的試驗片之耐電壓,使用測試機(Advantest公司製TR8601 HIGH MEGOHM METER)而測定。
(密著強度之評估) 試驗片之製作   將以上述調製的實施例1~6及比較例1、2之導電性接著劑,在剛性基板(基材:FR-4、電極寬度:100μm、電極長度:6mm、間距寬度:0.2mm、電極數70、快速Au處理)上,介由金屬遮罩(遮罩厚:80μm、開口:15mm×1mm)而藉由刮刀塗布。接著,對於已塗布導電性接著劑的狀態之剛性基板,載置可撓性基板(寬度:16mm、基材:聚醯亞胺、電極寬度:100μm、電極長度:6mm、間距寬度:0.2mm、電極數70、快速Au處理)。在此載置時,配合剛性基板之電極和可撓性基板之電極之位置,以雙方之電極之交疊的長度成為3.5mm之方式進行。對於以如此的方式進行而載置的基板彼此之接合面,以1.2MPa、150℃、6秒進行熱壓著,製作試驗片。
密著強度之測定   將藉由上述方法而得到的試驗片之密著強度,使用黏結強度試驗機(Nordson Advanced Technology公司製4000 Plus),按照JIS K 6854-1而將可撓性基板於垂直方向剝離而測定、評估。評估基準係依照以下所述。   ○:10N/cm以上   △:5N/cm以上、未達10N/cm   × :未達5N/cm
(導電粒子之搭配比例(體積%)之算出方法)   依據JIS K-5400,使用100ml之比重杯(YOSHIMITSU精機公司)而測定低熔點銲料粒子(焊料粉)以外之組成物(接著劑)之比重,使用低熔點銲料粒子(焊料粉)之真比重而以下述式算出體積%。   尚,42Sn-58Bi之真比重為8.6,低熔點銲料粒子(焊料粉)以外之組成物(接著劑)之比重為1.13。   (式)   導電粒子之搭配比例(體積%)=100×(焊料粉之調配量/焊料粉之真比重)/((焊料粉之調配量/焊料粉之真比重)+(焊料粉以外之組成物之調配量/焊料粉以外之組成物之比重))
Figure 02_image007
*1:含乙烯性不飽和基之化合物(A-1):2-羥基-3-苯氧基丙基丙烯酸酯(東亞合成公司製ARONIX M-5700、分子量:222、Tg:17℃、黏度:1.65dPa・s/25℃) *2:含乙烯性不飽和基之化合物(A-2):苯氧乙基丙烯酸酯(共榮社化學公司製light acrylate PO-A、分子量:192、Tg:-22℃、黏度:0.125dPa・s/25℃) *3:含乙烯性不飽和基之化合物(A-3):脂肪族胺基甲酸酯丙烯酸酯(DAICEL-ALLNEX股份有限公司製EBECRYL270、分子量:1500、Tg:-27℃、黏度:30dPa・s/60℃) *4:飽和聚酯樹脂(東洋紡織公司製VYLON337、分子量:10000、Tg:14℃) *5:1,1,3,3-四甲基丁基過氧-2-乙基己酸酯(日油公司製PEROCTA O、性狀:液體、1分鐘半衰期溫度:124.3℃、10小時半衰期溫度:65.3℃) *6:低熔點銲料粒子42Sn-58Bi[42Sn-58Bi組成之球狀粒子]) *7:磷酸酯(共榮社化學公司製LIGHT ESTER P-2M) *8:乙烯基醚聚合物(共榮社化學公司製FLOWLEN AC-326F) *9:二氧化矽微粒子[比表面積170m2 /g](日本AEROSIL公司製AEROSIL R974) *10:L/S=100μm/100μm *11:L/S=75μm/75μm *12:L/S=50μm/50μm * 被包含於各實施例、比較例之樹脂組成物(導電性接著劑)的有機成分中之乙烯性不飽和鍵當量係實施例1~6、比較例1~2均有465(實施例、比較例均無溶劑)。   (有機成分中之乙烯性不飽和鍵當量之算出方法)    (有機成分之質量合計)/(組成物中之乙烯性不飽和鍵之數)   =90/0.1937=465
如表3所示的結果可明暸,包含搭配比例為以固體成分換算為0.01~3.5體積%、粒度分布之跨度值為3.0以下的導電粒子的導電性接著劑係可形成具備優異的耐電壓性與優異的導電連接信賴性的異方導電性之連接構造體。
(實施例7~18、比較例3、4) (硬化性之確認及接著強度之評估) 試驗片之製作   將以上述調製的實施例7~18及比較例3、4之導電性接著劑,在剛性基板(基材:FR-4、電極寬度:100μm、電極長度:6mm、間距寬度:0.2mm、電極數70、快速Au處理)上,介由金屬遮罩(遮罩厚:80μm、開口:15mm×1mm)而藉由刮刀塗布。接著,對於已塗布導電性接著劑的狀態之剛性基板,載置可撓性基板(寬度:16mm、基材:聚醯亞胺、電極寬度:100μm、電極長度:6mm、間距寬度:0.2mm、電極數70、快速Au處理)。在此載置時,配合剛性基板之電極和可撓性基板之電極之位置,以雙方之電極之交疊的長度成為3.5mm之方式進行。對於以如此的方式進行而載置的基板彼此之接合面,以1.2MPa、120℃、5秒進行熱壓著,製作試驗片。
硬化性之確認   將藉由上述方法而得到的試驗片之可撓性基板部分以夾鉗挾持,向上方舉起,藉由剛性基板與可撓性基板不剝落地舉起、或僅可撓性基板剝落而確認有無硬化。
接著強度之測定   將藉由上述方法而得到的試驗片之接著強度,使用黏結強度試驗機(Nordson Advanced Technology公司製4000 Plus),按照JIS K 6854-1而將可撓性基板於垂直方向剝離而測定、評估。
(導電連接信賴性之評估) 試驗片之製作   將以上述調製的實施例7~18及比較例3、4之各導電性接著劑,在剛性基板(基材:FR-4、電極寬度:50μm、電極長度:6mm、間距寬度:0.1mm、コ字型電極數140、直線型電極1、快速Au處理)上,介由金屬遮罩(遮罩厚:80μm、開口:15mm×1mm)而藉由刮刀塗布。接著,對於已塗布導電性接著劑的狀態之剛性基板,載置可撓性基板(寬度:16mm、基材:聚醯亞胺、電極寬度:50μm、電極長度:6mm、間距寬度:0.1mm、コ字型電極數140、直線型電極數1、快速Au處理)。在此載置時係將剛性基板之電極與可撓性基板之電極之位置以形成菊花鏈之方式配合,以雙方之電極之交疊的長度成為3.5mm之方式進行。對於以如此的方式進行而載置的基板彼此之接合面,以1.2MPa、120℃、5秒進行熱壓著,製作具有140個電性連接處所的菊花鏈電路試驗片。
加熱藉由上述方法而可得到的試驗片而剝離壓著部後,將剛性基板之電極部以丙酮洗淨。   將上述已洗淨的電極部(コ字型電極數140、直線型電極1)之中央,使用顯微鏡(KEYENCE公司製VHX-5000 500倍 觀察區域 縱542×橫722μm)而觀察7條電極,於電極長邊方向540μm確認導電粒子之有無附著,將無附著的電極設為NG端子。將此作業以10片之試驗片進行,計算相對於合計70條之端子而言的NG端子之數,評估導電連接信賴性。評估基準係依照以下所述。   ◎:NG端子數為0條   ○:NG端子數為1~2條   △:NG端子數為3~4條   × :NG端子數為5條以上
(耐電壓之評估)   試驗片之製作   將以上述調製的實施例7~18及比較例3、4之各導電性接著劑,於下述表2之條件之剛性基板α~γ(均為基材:FR-4、快速Au處理)上,介由金屬遮罩(遮罩厚:80μm、開口:15mm×1mm)而藉由刮刀塗布。接著,對於已塗布導電性接著劑的狀態之剛性基板,各自載置上述可撓性基板α~γ(均為基材:聚醯亞胺、快速Au處理)。在此載置時,將剛性基板之電極和可撓性基板之電極之位置,以可測定耐電壓之方式配合,以雙方之電極之交疊的長度成為3.5mm之方式進行。對於以如此的方式進行而載置的基板彼此之接合面,以1.2MPa、120℃、5秒進行熱壓著,製作試驗片。
耐電壓之測定   將藉由上述方法而可得的試驗片之耐電壓,使用測試機(Advantest公司製TR8601 HIGH MEGOHM METER)而測定。
(導電粒子之搭配比例(體積%)之算出方法)   以與上述同樣之方法算出體積%。
Figure 02_image009
*1:具有乙烯性不飽和鍵之化合物(A-1):2-羥基-3-苯氧基丙基丙烯酸酯(東亞合成公司製ARONIX M-5700、分子量:222、Tg:17℃、黏度:1.65dPa・s/25℃) *2:具有乙烯性不飽和鍵之化合物(A-2):苯氧乙基丙烯酸酯(共榮社化學公司製light acrylate PO-A、分子量:192、Tg:-22℃、黏度:0.125dPa・s/25℃) *3:具有乙烯性不飽和鍵之化合物(A-3):脂肪族胺基甲酸酯丙烯酸酯(DAICEL-ALLNEX公司製EBECRYL270、分子量:1500、Tg:-27℃、黏度:30dPa・s/60℃) *4:飽和聚酯樹脂(東洋紡織公司製VYLON337、分子量:10000、Tg:14℃) *13:過氧化二碳酸二(4-t-丁基環己基)酯(日油公司製TCP(純度90%)、1分鐘半衰期溫度:92.1℃、1小時半衰期溫度:57.5℃、10小時半衰期溫度:40.8℃) *14:過氧化二碳酸二異丁酯(日油公司製PEROYL IPP(純度50%)、1分鐘半衰期溫度:88.3℃、1小時半衰期溫度:56.2℃、10小時半衰期溫度:40.5℃) *15:過氧化二碳酸二(2-乙基己基)酯(日油公司製PEROYL OPP(純度70%)、1分鐘半衰期溫度:90.6℃、1小時半衰期溫度:59.1℃、10小時半衰期溫度:43.6℃) *16:過氧化二碳酸二-sec-丁酯(日油公司製PEROYL SBP (純度50%)、1分鐘半衰期溫度:92.4℃、1小時半衰期溫度:57.4℃、10小時半衰期溫度:40.5℃) *6:低熔點銲料粒子(42Sn-58Bi[42Sn-58Bi組成之球狀粒子) *7:磷酸酯(共榮社化學公司製LIGHT ESTER P-2M) *8:乙烯基醚聚合物(共榮社化學公司製FLOWLEN AC-326F) *9:二氧化矽微粒子[比表面積170m2 /g](日本AEROSIL公司製AEROSIL R974) *17:(有機成分中之乙烯性不飽和鍵當量之算出方法) (有機成分之質量合計)/(組成物中之乙烯性不飽和鍵之數)
如表4所示的結果可明暸,包含搭配比例為以固體成分換算為0.01~3.5體積%、粒度分布之跨度值為3.0以下的導電粒子及10小時半衰期溫度為50℃以下之過氧化物的導電性接著劑,其係可形成具備優異的耐電壓性與優異的導電連接信賴性,且,在低溫可導電連接的異方導電性之連接構造體。

Claims (12)

  1. 一種導電性接著劑,其係藉由熱壓著使構件彼此異方導電接著,並且包含導電粒子之導電性接著劑,其特徵為:前述導電粒子之調配比例係以固體成分換算為0.01~3.5體積%,下述式(1)所表示之前述導電粒子的粒度分布之跨度(Span)值為0.1~0.9,跨度值=(D90-D10)/D50……(1)(式(1)中,D50為0.1~20μm)。
  2. 如請求項1之導電性接著劑,其進而包含過氧化物。
  3. 如請求項2之導電性接著劑,其中前述過氧化物之10小時半衰期溫度為50℃以下。
  4. 如請求項1之導電性接著劑,其中前述導電粒子為低熔點銲料粒子。
  5. 如請求項1之導電性接著劑,其進而包含有機成分。
  6. 如請求項5之導電性接著劑,其中前述有機成分包含:含乙烯性不飽和基之化合物與有機黏合劑。
  7. 如請求項5之導電性接著劑,其中前述有機成分(包含溶劑之情況則溶劑除外)中的乙烯性不飽和鍵當量為260~1000。
  8. 如請求項6之導電性接著劑,其中前述有機成分(包含溶劑之情況則溶劑除外)中的乙烯性不飽和鍵當量為260~1000。
  9. 如請求項3之導電性接著劑,其中前述導電粒子為低熔點銲料粒子,前述導電性接著劑係以前述低熔點銲料粒子之熔點以下的溫度進行熱壓著之低溫接著用。
  10. 一種硬化物,其特徵為,由請求項1~9中任一項之導電性接著劑所成。
  11. 一種電子零件,其特徵為,包含使用請求項1~9中任一項之導電性接著劑而電性連接之構件。
  12. 一種電子零件之製造方法,其特徵為,塗布請求項1~9中任一項之導電性接著劑,且藉由熱壓著使構件彼此導電接著。
TW107110671A 2017-03-30 2018-03-28 導電性接著劑、硬化物、電子零件及電子零件之製造方法 TWI761477B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017068938A JP2018168336A (ja) 2017-03-30 2017-03-30 導電性接着剤、硬化物、電子部品および電子部品の製造方法
JP2017-068938 2017-03-30
JP2017194359A JP2019065231A (ja) 2017-10-04 2017-10-04 導電性接着剤、硬化物、電子部品および電子部品の製造方法
JP2017-194359 2017-10-04

Publications (2)

Publication Number Publication Date
TW201900811A TW201900811A (zh) 2019-01-01
TWI761477B true TWI761477B (zh) 2022-04-21

Family

ID=63844664

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107110671A TWI761477B (zh) 2017-03-30 2018-03-28 導電性接著劑、硬化物、電子零件及電子零件之製造方法

Country Status (3)

Country Link
KR (1) KR102564310B1 (zh)
CN (1) CN108690529A (zh)
TW (1) TWI761477B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178055A (ja) * 2019-04-19 2020-10-29 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201525096A (zh) * 2013-10-16 2015-07-01 Hitachi Chemical Co Ltd 接著劑組成物、膜狀接著劑、電路連接材料、以及連接體
TW201623515A (zh) * 2014-12-25 2016-07-01 奇美實業股份有限公司 導電性接著劑以及導電覆膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5964597B2 (ja) 2011-03-30 2016-08-03 株式会社タムラ製作所 異方性導電性ペーストおよびそれを用いた電子部品の接続方法
JP5802081B2 (ja) 2011-08-24 2015-10-28 株式会社タムラ製作所 異方性導電性ペースト
JP2014065766A (ja) * 2012-09-24 2014-04-17 Dexerials Corp 異方性導電接着剤
JP5943019B2 (ja) * 2014-02-26 2016-06-29 日立金属株式会社 導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シート
KR102334672B1 (ko) * 2014-06-03 2021-12-06 다이요 잉키 세이조 가부시키가이샤 경화성 조성물 및 전자 부품
KR20170029345A (ko) * 2015-09-07 2017-03-15 삼성전기주식회사 전도성 접착제 및 이를 이용한 수정 디바이스

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201525096A (zh) * 2013-10-16 2015-07-01 Hitachi Chemical Co Ltd 接著劑組成物、膜狀接著劑、電路連接材料、以及連接體
TW201623515A (zh) * 2014-12-25 2016-07-01 奇美實業股份有限公司 導電性接著劑以及導電覆膜

Also Published As

Publication number Publication date
CN108690529A (zh) 2018-10-23
KR20180111640A (ko) 2018-10-11
KR102564310B1 (ko) 2023-08-08
TW201900811A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
JP4760069B2 (ja) 接着剤組成物、回路接続用接着剤組成物及びそれを用いた回路接続構造体、半導体装置
JP5152191B2 (ja) 回路接続材料、接続構造体及びその製造方法
EP2048209A1 (en) Adhesive composition, and connection structure for circuit member
TWI669374B (zh) 硬化性組成物及電子元件
JP2006257208A (ja) 接着剤、回路接続用接着剤、接続体及び半導体装置
WO2012026470A1 (ja) 回路接続材料及びこれを用いた回路部材の接続方法
JP2014122353A (ja) 接着剤組成物、回路接続用接着剤及び接続体
JP2020109173A (ja) 接着剤組成物及び接続体
JP2017101131A (ja) 導電性接着剤、硬化物および電子部品
TWI761477B (zh) 導電性接著劑、硬化物、電子零件及電子零件之製造方法
JP6710120B2 (ja) 導電性接着剤、電子部品および電子部品の製造方法
JP2020164744A (ja) 導電性接着剤およびシリンジ
JP2018168336A (ja) 導電性接着剤、硬化物、電子部品および電子部品の製造方法
JP2017145382A (ja) 導電性接着剤とその製造方法、硬化物および電子部品
JP4752107B2 (ja) 回路接続用フィルム状接着剤、回路端子の接続構造および回路端子の接続方法
JP3877090B2 (ja) 回路接続材料及び回路板の製造法
JP4380328B2 (ja) 回路接続材料、これを用いたフィルム状回路接続材料、回路部材の接続構造及びその製造方法
JP2002167555A (ja) 回路接続用フィルム状接着剤、回路端子の接続構造および回路端子の接続方法
JP2019065231A (ja) 導電性接着剤、硬化物、電子部品および電子部品の製造方法
KR20170038691A (ko) 도전성 접착제와 그의 제조 방법, 경화물 및 전자 부품
JP2018060788A (ja) 導電性接着剤、硬化物および電子部品
KR20170038693A (ko) 접속 구조체 및 전자 부품
KR101716551B1 (ko) 이방 도전성 필름 및 이를 이용한 반도체 장치
WO2023195398A1 (ja) 接着剤組成物、回路接続用接着剤フィルム、回路接続構造体及びその製造方法
KR20140053508A (ko) 이방 전도성 접착 조성물 및 이를 이용한 이방 전도성 필름