TWI741474B - 熱處理方法及熱處理裝置 - Google Patents

熱處理方法及熱處理裝置 Download PDF

Info

Publication number
TWI741474B
TWI741474B TW109101153A TW109101153A TWI741474B TW I741474 B TWI741474 B TW I741474B TW 109101153 A TW109101153 A TW 109101153A TW 109101153 A TW109101153 A TW 109101153A TW I741474 B TWI741474 B TW I741474B
Authority
TW
Taiwan
Prior art keywords
heat treatment
semiconductor wafer
chamber
substrate
concentration
Prior art date
Application number
TW109101153A
Other languages
English (en)
Other versions
TW202040736A (zh
Inventor
中島往馬
大森麻央
三宅浩志
Original Assignee
日商斯庫林集團股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商斯庫林集團股份有限公司 filed Critical 日商斯庫林集團股份有限公司
Publication of TW202040736A publication Critical patent/TW202040736A/zh
Application granted granted Critical
Publication of TWI741474B publication Critical patent/TWI741474B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本發明提供一種可簡便地檢測熱處理時之基板之破裂之熱處理方法及熱處理裝置。 自鹵素燈對搬入至處理腔室之半導體晶圓照射光而進行預加熱。於藉由預加熱而半導體晶圓開始升溫後,開始處理腔室內之懸浮粒子濃度之測定。對藉由預加熱而升溫至特定溫度之半導體晶圓照射閃光而進行加熱。測定對半導體晶圓進行熱處理時之處理腔室內之懸浮粒子濃度,於該濃度值超過特定閾值而上升時,判定為半導體晶圓破裂。藉由僅測定懸浮粒子濃度並將其上升量與閾值進行比較之簡易構成而進行破裂檢測,因此可簡便地檢測出熱處理時之半導體晶圓之破裂。

Description

熱處理方法及熱處理裝置
本發明係關於一種對半導體晶圓等薄板狀精密電子基板(以下簡稱為「基板」)進行加熱或冷卻的熱處理之熱處理方法及熱處理裝置。
於半導體裝置之製造製程中,以極短時間加熱半導體晶圓之閃光燈退火(FLA,Flash Lamp Annealing)受到矚目。閃光燈退火係藉由使用氙氣閃光燈(以下簡稱為「閃光燈」時係指氙氣閃光燈)對半導體晶圓之正面照射閃光,而僅使半導體晶圓之正面以極短時間(數毫秒以下)升溫之熱處理技術。
氙氣閃光燈之放射分光分佈係自紫外線區域至近紅外線區域,且波長較先前之鹵素燈短,與矽之半導體晶圓之基礎吸收帶大致一致。藉此,於自氙氣閃光燈對半導體晶圓照射閃光時,透射光較少,可使半導體晶圓急速升溫。又,亦判明若為數毫秒以下之極短時間之閃光照射,則可選擇性地僅使半導體晶圓之正面附近升溫。
此種閃光燈退火用於需要極短時間之加熱之處理,例如典型而言用於布植於半導體晶圓之雜質之活化。若自閃光燈對藉由離子布植法而布植有雜質之半導體晶圓之正面照射閃光,則可使該半導體晶圓之正面僅以極短時間便升溫至活化溫度,可僅執行雜質活化而不會使雜質較深地擴散。
此種使用有閃光燈之熱處理裝置中,由於將具有極高能量之閃光瞬間地照射至半導體晶圓之正面,故而半導體晶圓之正面溫度瞬間急速上升,另一方面,背面溫度不會如此上升。因此,僅於半導體晶圓之正面產生急遽之熱膨脹,半導體晶圓會以上表面呈凸起地翹曲之方式變形。然後,下一瞬間相反地半導體晶圓以下表面呈凸起地翹曲之方式變形。
於半導體晶圓以上表面呈凸起之方式變形時,晶圓之端緣部會碰撞晶座。反之,於半導體晶圓以下表面呈凸起之方式變形時,晶圓之中央部會碰撞晶座。其結果,存在因碰撞晶座之衝擊而導致半導體晶圓破裂之問題。
於閃光加熱時發生晶圓破裂時,需要迅速檢測出該破裂並停止後續之半導體晶圓之投入,且進行腔室內之清掃。又,亦就防止因晶圓破裂而產生之粒子飛散至腔室外而附著於後續之半導體晶圓等損害之觀點而言,較佳為於打開剛閃光加熱後之腔室之搬出搬入口之前在腔室內檢測半導體晶圓之破裂。
因此,例如專利文獻1中揭示有如下技術:藉由在進行閃光加熱處理之腔室設置麥克風,偵測半導體晶圓破裂時之聲音而判定晶圓破裂。又,專利文獻2中揭示有如下技術:利用導光桿接收來自半導體晶圓之反射光,根據該反射光之強度檢測晶圓破裂。進而,專利文獻3中揭示有如下技術:根據閃光照射後之半導體晶圓之溫度分佈之平均值或標準偏差檢測晶圓破裂。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2009-231697號公報 [專利文獻2]日本專利特開2015-130423號公報 [專利文獻3]日本專利特開2018-148201號公報
[發明所欲解決之問題]
然而,專利文獻1中揭示之技術中存在問題的是,難以進行用於僅提取半導體晶圓破裂之聲響之濾波。又,專利文獻2中揭示之技術中,於閃光照射之前後需要2次導光桿旋轉之步驟,因此存在產能降低之問題。進而,專利文獻3中揭示之技術中,需要取得半導體晶圓之溫度分佈且對該溫度分佈進行繁雜之運算處理。
本發明係鑒於上述課題而成者,其目的在於提供一種可簡便地檢測熱處理時之基板之破裂之熱處理方法及熱處理裝置。 [解決問題之技術手段]
為解決上述課題,技術方案1之發明係一種熱處理方法,其係對基板進行熱處理者,其特徵在於具備:處理步驟,其係對收容於腔室內之基板進行熱處理;測定步驟,其係對正進行上述熱處理時之上述腔室內之懸浮粒子濃度進行測定;及檢測步驟,其係基於上述測定步驟中測定出之懸浮粒子濃度,檢測上述基板之破裂。
又,技術方案2之發明係如技術方案1之發明之熱處理方法,其特徵在於:上述檢測步驟中,於上述測定步驟中測定出之懸浮粒子濃度之上升超過特定閾值時,判定為上述基板破裂。
又,技術方案3之發明係如技術方案1之發明之熱處理方法,其特徵在於:上述檢測步驟中,於上述測定步驟中測定出之懸浮粒子濃度之變化之實測圖案與正常進行熱處理時已取得之正常濃度圖案不同時,判定為上述基板破裂。
又,技術方案4之發明係如技術方案1之發明之熱處理方法,其特徵在於:於上述檢測步驟中檢測出上述基板之破裂時,發出警告並且停止上述熱處理。
又,技術方案5之發明係如技術方案1至4中任一項之發明之熱處理方法,其特徵在於:上述熱處理係自閃光燈對上述基板照射閃光之加熱處理。
又,技術方案6之發明係一種熱處理裝置,其係對基板進行熱處理者,其特徵在於具備:腔室,其收容基板;熱處理部,其對收容於上述腔室內之上述基板進行熱處理;測定部,其對上述腔室內之懸浮粒子濃度進行測定;及檢測部,其基於進行上述熱處理時由上述測定部測定出之上述腔室內的懸浮粒子濃度,檢測上述基板之破裂。
又,技術方案7之發明係如技術方案6之發明之熱處理裝置,其特徵在於:上述檢測部於進行上述熱處理時由上述測定部測定出之懸浮粒子濃度之上升超過特定閾值時,判定為上述基板破裂。
又,技術方案8之發明係如技術方案6之發明之熱處理裝置,其特徵在於進而具備記憶部,該記憶部儲存表示基板未破裂而正常進行熱處理時由上述測定部測定出之懸浮粒子濃度之變化之正常濃度圖案,上述檢測部於進行上述熱處理時由上述測定部測定出之懸浮粒子濃度之變化之實測圖案與上述正常濃度圖案不同時,判定為上述基板破裂。
又,技術方案9之發明係如技術方案6之發明之熱處理裝置,其特徵在於進而具備控制部,該控制部於由上述檢測部檢測出上述基板之破裂時,發出警告並且停止上述熱處理。
又,技術方案10之發明係如技術方案6至9中任一項之發明之熱處理裝置,其特徵在於:上述熱處理部包含對上述基板照射閃光而將上述基板加熱之閃光燈。 [發明之效果]
根據技術方案1至5之發明,由於基於進行熱處理時之腔室內之懸浮粒子濃度檢測基板之破裂,故而僅藉由測定懸浮粒子濃度便可簡便地檢測熱處理時之基板之破裂。
根據技術方案6至10之發明,由於基於進行熱處理時由測定部測定出之腔室內之懸浮粒子濃度檢測基板之破裂,故而僅藉由測定懸浮粒子濃度便可簡便地檢測熱處理時之基板之破裂。
以下,一面參照圖式一面對本發明之實施形態進行詳細說明。
<第1實施形態> 首先,對本發明之熱處理裝置之整體構成進行說明。圖1係表示本發明之熱處理裝置100之俯視圖,圖2係其前視圖。熱處理裝置100係對作為基板之圓板形狀之半導體晶圓W照射閃光而將該半導體晶圓W加熱之閃光燈退火裝置。成為處理對象之半導體晶圓W之尺寸並無特別限定,例如為
Figure 02_image001
300 mm或
Figure 02_image001
450 mm。再者,圖1及以後之各圖中,為易於理解,視需要將各部之尺寸或個數誇張或簡化而描述。又,圖1~圖3之各圖中,為使該等之方向關係明確,標註有將Z軸方向設為鉛直方向、XY平面設為水平面之XYZ正交座標系統。
如圖1及圖2所示,熱處理裝置100具備:移載傳送部101,其用於將未處理之半導體晶圓W自外部搬入至裝置內,並且將處理過之半導體晶圓W搬出至裝置外;對準部230,其進行未處理之半導體晶圓W之定位;2個冷卻部130、140,其等進行加熱處理後之半導體晶圓W之冷卻;熱處理部160,其對半導體晶圓W實施閃光加熱處理;及搬送機器人150,其對於冷卻部130、140及熱處理部160進行半導體晶圓W之交接。又,熱處理裝置100具備控制部3,該控制部3控制設於上述各處理部之動作機構及搬送機器人150而使半導體晶圓W之閃光加熱處理進行。
移載傳送部101具備:裝載埠110,其並排載置複數個載體C(本實施形態中為2個);及交接機器人120,其自各載體C取出未處理之半導體晶圓W,並且將處理過之半導體晶圓W收納於各載體C。收容有未處理之半導體晶圓W之載體C由無人搬送車(AGV(Automated Guided Vehicle,自動導引車)、OHT(Overhead Hoist Transfer,架空起重搬送車))等搬送並載置於裝載埠110,同時收容有處理過之半導體晶圓W之載體C由無人搬送車自裝載埠110取走。
又,裝載埠110中,載體C構成為可如圖2之箭頭CU所示般進行升降移動,以使交接機器人120可對於載體C進行任意之半導體晶圓W之進出。再者,作為載體C之形態,除將半導體晶圓W收納於密閉空間之FOUP(front opening unified pod,前開式晶圓盒)以外,亦可為SMIF(Standard Mechanical Inter Face,標準機械界面)盒或將收納之半導體晶圓W暴露於外部大氣之OC(open cassette,開放式盒)。
又,交接機器人120可進行如圖1之箭頭120S所示之滑動移動、如箭頭120R所示之回轉動作及升降動作。藉此,交接機器人120對於2個載體C進行半導體晶圓W之進出,並且對於對準部230及2個冷卻部130、140進行半導體晶圓W之交接。藉由交接機器人120對於載體C進行之半導體晶圓W之進出係藉由手部121之滑動移動及載體C之升降移動而進行。又,交接機器人120與對準部230或冷卻部130、140之半導體晶圓W之交接係藉由手部121之滑動移動及交接機器人120之升降動作而進行。
對準部230係連接於沿著Y軸方向之移載傳送部101之側方而設置。對準部230係使半導體晶圓W於水平面內旋轉而朝向適於閃光加熱之方向之處理部。對準部230係於作為鋁合金製殼體之對準腔室231之內部設置將半導體晶圓W支持成水平姿勢並使其旋轉之機構、及對形成於半導體晶圓W之周緣部之凹口或定向平面等進行光學檢測之機構等而構成。
半導體晶圓W朝向對準部230之交接係由交接機器人120進行。自交接機器人120向對準腔室231將半導體晶圓W以晶圓中心位於特定位置之方式交付。對準部230中,以自移載傳送部101接收之半導體晶圓W之中心部為旋轉中心使半導體晶圓W繞鉛直方向軸旋轉,並對凹口等進行光學檢測,藉此調整半導體晶圓W之方向。方向調整結束之半導體晶圓W由交接機器人120自對準腔室231取出。
作為利用搬送機器人150之半導體晶圓W之搬送空間,設有收容搬送機器人150之搬送腔室170。於該搬送腔室170之三方,連通連接有熱處理部160之處理腔室6、冷卻部130之第1冷卻腔室131及冷卻部140之第2冷卻腔室141。
作為熱處理裝置100之主要部之熱處理部160係對進行過預加熱之半導體晶圓W照射來自氙氣閃光燈FL之閃光(flash light)而進行閃光加熱處理之基板處理部。對該熱處理部160之構成於後文進一步敍述。
2個冷卻部130、140具備大致相同之構成。冷卻部130、140分別於作為鋁合金製殼體之第1冷卻腔室131、第2冷卻腔室141之內部具備金屬製之冷卻板及載置於其上表面之石英板(均省略圖示)。該冷卻板藉由珀爾帖元件或恆溫水循環而調溫為常溫(約23℃)。於熱處理部160中實施過閃光加熱處理之半導體晶圓W被搬入至第1冷卻腔室131或第2冷卻腔室141且載置於該石英板進行冷卻。
第1冷卻腔室131及第2冷卻腔室141均於移載傳送部101與搬送腔室170之間連接於該等兩者。於第1冷卻腔室131及第2冷卻腔室141,開設有用於將半導體晶圓W搬入搬出之2個開口。第1冷卻腔室131之2個開口中連接於移載傳送部101之開口可由閘閥181進行開閉。另一方面,第1冷卻腔室131之連接於搬送腔室170之開口可由閘閥183進行開閉。即,第1冷卻腔室131與移載傳送部101經由閘閥181而連接,第1冷卻腔室131與搬送腔室170經由閘閥183而連接。
於移載傳送部101與第1冷卻腔室131之間進行半導體晶圓W之交接時,打開閘閥181。又,於第1冷卻腔室131與搬送腔室170之間進行半導體晶圓W之交接時,打開閘閥183。於閘閥181及閘閥183封閉時,第1冷卻腔室131之內部成為密閉空間。
又,第2冷卻腔室141之2個開口中連接於移載傳送部101之開口可由閘閥182進行開閉。另一方面,第2冷卻腔室141之連接於搬送腔室170之開口可由閘閥184進行開閉。即,第2冷卻腔室141與移載傳送部101經由閘閥182而連接,第2冷卻腔室141與搬送腔室170經由閘閥184而連接。
於移載傳送部101與第2冷卻腔室141之間進行半導體晶圓W之交接時,打開閘閥182。又,於第2冷卻腔室141與搬送腔室170之間進行半導體晶圓W之交接時,打開閘閥184。於閘閥182及閘閥184封閉時,第2冷卻腔室141之內部成為密閉空間。
設於與處理腔室6鄰接設置之搬送腔室170之搬送機器人150能以沿著鉛直方向之軸為中心如箭頭150R所示般回轉。搬送機器人150具有包含複數個臂段之2個連桿機構,於該等2個連桿機構之前端分別設有保持半導體晶圓W之搬送手151a、151b。該等搬送手151a、151b係上下僅隔開特定間距而配置,且可藉由連桿機構而分別獨立地沿同一水平方向呈直線地滑動移動。又,搬送機器人150藉由使設置2個連桿機構之基座升降移動,而使2個搬送手151a、151b於僅隔開特定間距之狀態下進行升降移動。
於搬送機器人150將第1冷卻腔室131、第2冷卻腔室141或熱處理部160之處理腔室6作為交接對象而進行半導體晶圓W之交接(進出)時,首先,兩搬送手151a、151b以與交接對象相對向之方式回轉,於其後(或回轉之期間)進行升降移動,從而任一搬送手位於與交接對象交接半導體晶圓W之高度。然後,使搬送手151a(151b)沿水平方向呈直線地滑動移動而與交接對象進行半導體晶圓W之交接。
搬送機器人150與交接機器人120之半導體晶圓W之交接可經由冷卻部130、140而進行。即,冷卻部130之第1冷卻腔室131及冷卻部140之第2冷卻腔室141亦作為用於在搬送機器人150與交接機器人120之間交接半導體晶圓W之通路而發揮功能。具體而言,藉由搬送機器人150或交接機器人120中之一者接收另一者交付至第1冷卻腔室131或第2冷卻腔室141之半導體晶圓W,而進行半導體晶圓W之交接。藉由搬送機器人150及交接機器人120而構成將半導體晶圓W自載體C搬送至熱處理部160之搬送機構。
如上所述,於第1冷卻腔室131及第2冷卻腔室141與移載傳送部101之間分別設有閘閥181、182。又,於搬送腔室170與第1冷卻腔室131及第2冷卻腔室141之間分別設有閘閥183、184。進而,於搬送腔室170與熱處理部160之處理腔室6之間設有閘閥185。於熱處理裝置100內搬送半導體晶圓W時,適當地將該等閘閥開閉。
其次,對熱處理部160之構成進行說明。圖3係表示熱處理部160之構成之縱剖視圖。熱處理部160具備:處理腔室6,其收容半導體晶圓W並進行加熱處理;閃光燈室5,其內置複數個閃光燈FL;及鹵素燈室4,其內置複數個鹵素燈HL。於處理腔室6之上側設置閃光燈室5,並且於下側設有鹵素燈室4。又,熱處理部160於處理腔室6之內部具備:保持部7,其將半導體晶圓W保持成水平姿勢;及移載機構10,其於保持部7與搬送機器人150之間進行半導體晶圓W之交接。
處理腔室6係於筒狀之腔室側部61之上下安裝石英製之腔室窗而構成。腔室側部61具有上下開口之大致筒形狀,於上側開口安裝有上側腔室窗63而被蓋住,於下側開口安裝有下側腔室窗64而被蓋住。構成處理腔室6之頂壁部之上側腔室窗63係由石英形成之圓板形狀構件,作為讓自閃光燈FL出射之閃光透射至處理腔室6內之石英窗而發揮功能。又,構成處理腔室6之地板部之下側腔室窗64亦為由石英形成之圓板形狀構件,作為讓來自鹵素燈HL之光透射至處理腔室6內之石英窗而發揮功能。
又,於腔室側部61之內側之壁面之上部安裝有反射環68,於下部安裝有反射環69。反射環68、69均形成為圓環狀。上側之反射環68藉由自腔室側部61之上側嵌入而安裝。另一方面,下側之反射環69藉由自腔室側部61之下側嵌入並利用省略圖示之螺釘固定而安裝。即,反射環68、69均裝卸自如地安裝於腔室側部61。處理腔室6之內側空間,即由上側腔室窗63、下側腔室窗64、腔室側部61及反射環68、69包圍之空間被規定為熱處理空間65。
藉由在腔室側部61安裝反射環68、69,而於處理腔室6之內壁面形成凹部62。即,形成由腔室側部61之內壁面中未安裝反射環68、69之中央部分、反射環68之下端面及反射環69之上端面包圍之凹部62。凹部62係於處理腔室6之內壁面沿著水平方向形成為圓環狀,且圍繞保持半導體晶圓W之保持部7。腔室側部61及反射環68、69係利用強度與耐熱性優異之金屬材料(例如不鏽鋼)而形成。
又,於腔室側部61開設有搬送開口部(爐口)66,該搬送開口部66用於對於處理腔室6進行半導體晶圓W之搬入及搬出。搬送開口部66可由閘閥185進行開閉。搬送開口部66連通連接於凹部62之外周面。因此,於閘閥185將搬送開口部66打開時,可自搬送開口部66穿過凹部62進行半導體晶圓W向熱處理空間65之搬入及半導體晶圓W自熱處理空間65之搬出。又,若閘閥185將搬送開口部66封閉,則處理腔室6內之熱處理空間65成為密閉空間。
又,於處理腔室6之內壁上部開設有向熱處理空間65供給處理氣體之氣體供給孔81。氣體供給孔81開設於較凹部62更靠上側位置,亦可設於反射環68。氣體供給孔81經由在處理腔室6之側壁內部形成為圓環狀之緩衝空間82而連通連接於氣體供給管83。氣體供給管83連接於處理氣體供給源85。又,於氣體供給管83之路徑中途介插有閥84。若閥84打開,則自處理氣體供給源85向緩衝空間82供送處理氣體。流入至緩衝空間82之處理氣體以於流體阻力較氣體供給孔81小之緩衝空間82內擴展之方式流動並自氣體供給孔81向熱處理空間65內供給。作為處理氣體,可使用氮氣(N2 )等惰性氣體或氫氣(H2 )、氨氣(NH3 )等反應性氣體(本實施形態中為氮氣)。
另一方面,於處理腔室6之內壁下部開設有將熱處理空間65內之氣體排出之氣體排出孔86。氣體排出孔86開設於較凹部62更靠下側位置,亦可設於反射環69。氣體排出孔86經由在處理腔室6之側壁內部形成為圓環狀之緩衝空間87而連通連接於氣體排出管88。氣體排出管88連接於排氣機構190。又,於氣體排出管88之路徑中途介插有閥89。若閥89打開,則熱處理空間65之氣體自氣體排出孔86經由緩衝空間87而向氣體排出管88排出。再者,氣體供給孔81及氣體排出孔86可沿著處理腔室6之周向設有複數個,亦可為狹縫狀者。又,處理氣體供給源85及排氣機構190可為設於熱處理裝置100之機構,亦可為設置熱處理裝置100之工廠之公用設施。
又,於來自處理腔室6之氣體排出管88之路徑中途連接有懸浮粒子計數器99。作為懸浮粒子計數器99,例如使用根據對含有粒子之氣體照射雷射光時之散射光計測粒子之大小或個數之光散射式粒子計數器。懸浮粒子計數器99對氣體排出管88中流動之氣體之懸浮粒子濃度進行測定。氣體排出管88中流動之氣體係存在於處理腔室6內之熱處理空間65之氣體,因此懸浮粒子計數器99係對處理腔室6內之懸浮粒子濃度進行測定。
圖4係表示保持部7之整體外觀之立體圖。保持部7係具備基台環71、連結部72及晶座74而構成。基台環71、連結部72及晶座74均由石英形成。即,保持部7之整體由石英形成。
基台環71係自圓環形狀欠缺一部分而成之圓弧形狀之石英構件。該欠缺部分係用於防止後述移載機構10之移載臂11與基台環71之干涉而設置。基台環71藉由載置於凹部62之底面,而支持於處理腔室6之壁面(參照圖3)。於基台環71之上表面,沿著其圓環形狀之周向而立設有複數個連結部72(本實施形態中為4個)。連結部72亦為石英之構件,且藉由熔接而固著於基台環71。
晶座74由設於基台環71之4個連結部72支持。圖5係晶座74之俯視圖。又,圖6係晶座74之剖視圖。晶座74具備保持板75、導引環76及複數個基板支持銷77。保持板75係由石英形成之大致圓形之平板狀構件。保持板75之直徑大於半導體晶圓W之直徑。即,保持板75具有較半導體晶圓W大之平面尺寸。
於保持板75之上表面周緣部設置有導引環76。導引環76係具有較半導體晶圓W之直徑大之內徑之圓環形狀之構件。例如,於半導體晶圓W之直徑為
Figure 02_image001
300 mm之情形時,導引環76之內徑為
Figure 02_image001
320 mm。導引環76之內周係如自保持板75朝向上方變寬之傾斜面。導引環76由與保持板75同樣之石英形成。導引環76可熔接於保持板75之上表面,亦可藉由另外加工之銷等而固定於保持板75。或者,亦可將保持板75與導引環76加工成一體之構件。
保持板75之上表面中較導引環76更靠內側之區域設為保持半導體晶圓W之平面狀之保持面75a。於保持板75之保持面75a,立設有複數個基板支持銷77。本實施形態中,沿著與保持面75a之外周圓(導引環76之內周圓)為同心圓之圓周上,每隔30°地立設有共12個基板支持銷77。配置有12個基板支持銷77之圓之直徑(相對向之基板支持銷77間之距離)小於半導體晶圓W之直徑,若半導體晶圓W之直徑為
Figure 02_image001
300 mm,則其為
Figure 02_image001
270 mm~
Figure 02_image001
280 mm(本實施形態中為
Figure 02_image001
270 mm)。各個基板支持銷77由石英形成。複數個基板支持銷77可藉由熔接而設於保持板75之上表面,亦可與保持板75加工成一體。
返回圖4,立設於基台環71之4個連結部72與晶座74之保持板75之周緣部藉由熔接而固著。即,晶座74與基台環71藉由連結部72而固定地連結。藉由此種保持部7之基台環71支持於處理腔室6之壁面,而將保持部7安裝於處理腔室6。於保持部7安裝在處理腔室6之狀態下,晶座74之保持板75成為水平姿勢(法線與鉛直方向一致之姿勢)。即,保持板75之保持面75a成為水平面。
搬入至處理腔室6之半導體晶圓W以水平姿勢載置並保持於安裝在處理腔室6之保持部7之晶座74上。此時,半導體晶圓W由立設於保持板75上之12個基板支持銷77支持而保持於晶座74。更嚴謹而言,12個基板支持銷77之上端部接觸於半導體晶圓W之下表面而支持該半導體晶圓W。12個基板支持銷77之高度(自基板支持銷77之上端至保持板75之保持面75a為止之距離)為均勻,因此可利用12個基板支持銷77將半導體晶圓W支持成水平姿勢。
又,半導體晶圓W藉由複數個基板支持銷77而自保持板75之保持面75a隔開特定間隔地受到支持。導引環76之厚度大於基板支持銷77之高度。因此,由複數個基板支持銷77支持之半導體晶圓W之水平方向之位置偏移藉由導引環76而防止。
又,如圖4及圖5所示,於晶座74之保持板75,上下貫通地形成有開口部78。開口部78係用於讓放射溫度計20(參照圖3)接收自保持於晶座74之半導體晶圓W之下表面放射之放射光(紅外光)而設置。即,放射溫度計20接收經由開口部78自保持於晶座74之半導體晶圓W之下表面放射之光而對該半導體晶圓W之溫度進行測定。進而,於晶座74之保持板75,穿設有供後述移載機構10之頂起銷12貫通以進行半導體晶圓W之交接之4個貫通孔79。
圖7係移載機構10之俯視圖。又,圖8係移載機構10之側視圖。移載機構10具備2根移載臂11。移載臂11係如沿著大致圓環狀之凹部62之圓弧形狀。於各個移載臂11立設有2根頂起銷12。各移載臂11可藉由水平移動機構13而旋動。水平移動機構13使一對移載臂11在對於保持部7進行半導體晶圓W之移載之移載動作位置(圖7之實線位置)與俯視下和保持於保持部7之半導體晶圓W不重疊之退避位置(圖7之雙點鏈線位置)之間進行水平移動。移載動作位置為晶座74之下方,退避位置為較晶座74更靠外側。作為水平移動機構13,可為藉由各自之馬達分別使各移載臂11旋動者,亦可為使用連桿機構藉由1個馬達使一對移載臂11連動地旋動者。
又,一對移載臂11藉由升降機構14而與水平移動機構13一起升降移動。若升降機構14使一對移載臂11於移載動作位置上升,則共4根頂起銷12穿過穿設於晶座74之貫通孔79(參照圖4、5),且頂起銷12之上端自晶座74之上表面突出。另一方面,若升降機構14使一對移載臂11於移載動作位置下降而將頂起銷12自貫通孔79拔出,且水平移動機構13以打開一對移載臂11之方式移動,則各移載臂11移動至退避位置。一對移載臂11之退避位置為保持部7之基台環71之正上方。由於基台環71載置於凹部62之底面,故而移載臂11之退避位置成為凹部62之內側。再者,於設有移載機構10之驅動部(水平移動機構13及升降機構14)之部位之附近亦設有省略圖示之排氣機構,且以將移載機構10之驅動部周邊之氣體排出至處理腔室6之外部之方式構成。
返回圖3,設於處理腔室6之上方之閃光燈室5係於殼體51之內側具備包含複數根(本實施形態中為30根)氙氣閃光燈FL之光源及以覆蓋該光源之上方之方式設置之反射器52而構成。又,於閃光燈室5之殼體51之底部安裝有燈光放射窗53。構成閃光燈室5之地板部之燈光放射窗53係由石英形成之板狀之石英窗。藉由將閃光燈室5設置於處理腔室6之上方,燈光放射窗53與上側腔室窗63相對向。閃光燈FL自處理腔室6之上方經由燈光放射窗53及上側腔室窗63而對熱處理空間65照射閃光。
複數個閃光燈FL係分別具有長條之圓筒形狀之棒狀燈,且以各自之長度方向沿著保持於保持部7之半導體晶圓W之主面(即,沿著水平方向)成為相互平行之方式呈平面狀地排列。藉此,藉由閃光燈FL之排列而形成之平面亦為水平面。
氙氣閃光燈FL具備:棒狀之玻璃管(放電管),其於內部封入有氙氣且於兩端部配設有連接於電容器之陽極及陰極;及觸發電極,其附設於該玻璃管之外周面上。由於氙氣為電性絕緣體,故而即便於電容器儲存有電荷,於通常之狀態下玻璃管內亦不會有電氣流動。然而,於對觸發電極施加高電壓而將絕緣破壞之情形時,儲存於電容器之電氣會瞬間於玻璃管內流動,藉由此時之氙之原子或分子之激發而放射出光。此種氙氣閃光燈FL中,預先儲存於電容器之靜電能量被轉換成0.1毫秒至100毫秒之極短之光脈衝,因此與鹵素燈HL般連續點亮之光源相比,具有可照射極強之光之特徵。即,閃光燈FL係以未達1秒之極短時間瞬間地發光之脈衝發光燈。再者,閃光燈FL之發光時間可藉由對閃光燈FL進行電力供給之燈電源之線圈常數而調整。
又,反射器52係於複數個閃光燈FL之上方以覆蓋該等整體之方式設置。反射器52之基本功能係將自複數個閃光燈FL出射之閃光向熱處理空間65側反射。反射器52由鋁合金板形成,且其表面(面向閃光燈FL之側之面)藉由噴砂處理而實施有粗面化加工。
設於處理腔室6之下方之鹵素燈室4係於殼體41之內側內置有複數根(本實施形態中為40根)鹵素燈HL。複數個鹵素燈HL自處理腔室6之下方經由下側腔室窗64而進行向熱處理空間65之光照射。
圖9係表示複數個鹵素燈HL之配置之俯視圖。本實施形態中,於矩形之光源區域分上下兩層地配設有各20根鹵素燈HL。各鹵素燈HL為具有長條之圓筒形狀之棒狀燈。上層、下層均為20根之鹵素燈HL係以各自之長度方向沿著保持於保持部7之半導體晶圓W之主面(即,沿著水平方向)成為相互平行之方式排列。藉此,上層、下層中藉由鹵素燈HL之排列而形成之平面均為水平面。
又,如圖9所示,上層、下層中相較於與保持於保持部7之半導體晶圓W之中央部相對向之區域,與周緣部相對向之區域中之鹵素燈HL之配設密度均較高。即,上下層中相較於燈排列之中央部,周緣部之鹵素燈HL之配設間距均較短。因此,於藉由自鹵素燈HL之光照射進行之加熱時可對容易發生溫度下降之半導體晶圓W之周緣部進行更多光量之照射。
又,上層之包含鹵素燈HL之燈群與下層之包含鹵素燈HL之燈群以呈格子狀地交叉之方式排列。即,以上層之各鹵素燈HL之長度方向與下層之各鹵素燈HL之長度方向正交之方式配設共40根鹵素燈HL。
鹵素燈HL係藉由對配設於玻璃管內部之燈絲通電使燈絲白熱化而進行發光之燈絲方式之光源。於玻璃管之內部,封入有在氮氣或氬氣等惰性氣體中微量導入有鹵素元素(碘、溴等)而成之氣體。藉由導入鹵素元素,可抑制燈絲之折損並且將燈絲之溫度設定為高溫。因此,鹵素燈HL與通常之白熾燈泡相比,具有壽命較長且可連續地照射較強之光之特性。即,鹵素燈HL係連續地發光至少1秒以上之連續點亮燈。又,鹵素燈HL由於為棒狀燈,故而壽命長,且藉由將鹵素燈HL沿著水平方向配置,向上方之半導體晶圓W之放射效率變得優異。
又,於鹵素燈室4之殼體41內,亦在兩層鹵素燈HL之下側設有反射器43(圖3)。反射器43將自複數個鹵素燈HL出射之光向熱處理空間65側反射。
除上述構成以外,熱處理部160亦具備各種冷卻用構造,以防止因半導體晶圓W之熱處理時自鹵素燈HL及閃光燈FL產生之熱能量導致鹵素燈室4、閃光燈室5及處理腔室6之溫度過度上升。例如,於處理腔室6之壁體設有水冷管(省略圖示)。又,鹵素燈室4及閃光燈室5係於內部形成氣流而進行排熱之空冷構造。又,亦對上側腔室窗63與燈光放射窗53之間隙供給空氣,將閃光燈室5及上側腔室窗63冷卻。
圖10係表示控制部3之構成之方塊圖。控制部3對設於熱處理裝置100之上述各種動作機構進行控制。作為控制部3之硬體之構成與通常之電腦相同。即,控制部3具備:作為進行各種運算處理之電路之CPU(Central Processing Unit,中央處理單元);作為記憶基本程式之讀出專用記憶體之ROM(Read Only Memory,只讀記憶體);作為記憶各種資訊之讀寫自如記憶體之RAM(Random Access Memory,隨機存取記憶體);及預先記憶有控制用軟體或資料等之磁碟35。藉由控制部3之CPU執行特定處理程式,而使熱處理裝置100中之處理進行。檢測部31及警示部32係藉由控制部3之CPU執行特定處理程式而實現之功能處理部。對檢測部31及警示部32之處理內容於後文進一步敍述。再者,圖1中,於移載傳送部101內示出有控制部3,但並不限定於此,控制部3可配置於熱處理裝置100內之任意位置。
又,於控制部3連接有輸入部33及顯示部34。控制部3於顯示部34顯示各種資訊。熱處理裝置100之操作員可一面確認顯示於顯示部34之資訊,一面自輸入部33輸入各種指令或參數。作為輸入部33,例如可使用鍵盤或滑鼠。作為顯示部34,例如可使用液晶顯示器。本實施形態中,作為顯示部34及輸入部33,設為採用設於熱處理裝置100之外壁之液晶之觸控面板而兼具兩者之功能。
其次,對熱處理裝置100中之半導體晶圓W之處理順序進行說明。此處,成為處理對象之半導體晶圓W係藉由離子布植法而添加有雜質(離子)之半導體基板。該雜質之活化藉由利用熱處理裝置100之閃光照射加熱處理(退火)而執行。以下說明之熱處理裝置100之處理順序藉由控制部3控制熱處理裝置100之各動作機構而進行。
首先,布植有雜質之未處理之半導體晶圓W於在載體C收容有複數片之狀態下載置於移載傳送部101之裝載埠110。然後,交接機器人120自載體C逐片取出未處理之半導體晶圓W,搬入至對準部230之對準腔室231。於對準腔室231中,使半導體晶圓W以其中心部為旋轉中心於水平面內繞鉛直方向軸旋轉,且對凹口等進行光學檢測,藉此調整半導體晶圓W之方向。
其次,移載傳送部101之交接機器人120自對準腔室231取出經過方向調整之半導體晶圓W,搬入至冷卻部130之第1冷卻腔室131或冷卻部140之第2冷卻腔室141。搬入至第1冷卻腔室131或第2冷卻腔室141之未處理之半導體晶圓W由搬送機器人150搬出至搬送腔室170。於未處理之半導體晶圓W自移載傳送部101經由第1冷卻腔室131或第2冷卻腔室141移送至搬送腔室170時,第1冷卻腔室131及第2冷卻腔室141作為用於半導體晶圓W之交接之通路而發揮功能。
已取出半導體晶圓W之搬送機器人150以朝向熱處理部160之方式回轉。繼而,閘閥185將處理腔室6與搬送腔室170之間打開,搬送機器人150將未處理之半導體晶圓W搬入至處理腔室6。此時,於之前加熱處理過之半導體晶圓W存在於處理腔室6之情形時,利用搬送手151a、151b之一者取出加熱處理後之半導體晶圓W後將未處理之半導體晶圓W搬入至處理腔室6而進行晶圓替換。其後,閘閥185將處理腔室6與搬送腔室170之間封閉。
對於搬入至處理腔室6之半導體晶圓W,藉由鹵素燈HL進行預加熱後,藉由自閃光燈FL之閃光照射進行閃光加熱處理。藉由該閃光加熱處理而進行布植於半導體晶圓W之雜質之活化。
閃光加熱處理結束後,閘閥185將處理腔室6與搬送腔室170之間再次打開,搬送機器人150自處理腔室6將閃光加熱處理後之半導體晶圓W搬出至搬送腔室170。已取出半導體晶圓W之搬送機器人150以自處理腔室6朝向第1冷卻腔室131或第2冷卻腔室141之方式回轉。又,閘閥185將處理腔室6與搬送腔室170之間封閉。
其後,搬送機器人150將加熱處理後之半導體晶圓W搬入至冷卻部130之第1冷卻腔室131或冷卻部140之第2冷卻腔室141。此時,於該半導體晶圓W在加熱處理前經過第1冷卻腔室131之情形時於加熱處理後亦搬入至第1冷卻腔室131,在加熱處理前經過第2冷卻腔室141之情形時於加熱處理後亦搬入至第2冷卻腔室141。於第1冷卻腔室131或第2冷卻腔室141中,進行閃光加熱處理後之半導體晶圓W之冷卻處理。於自熱處理部160之處理腔室6搬出之時間點之半導體晶圓W整體的溫度為相對高溫,因此將其於第1冷卻腔室131或第2冷卻腔室141冷卻至常溫附近。
經過特定冷卻處理時間後,交接機器人120將冷卻後之半導體晶圓W自第1冷卻腔室131或第2冷卻腔室141搬出,且向載體C返回。若於載體C收容有特定片數之處理過之半導體晶圓W,則將該載體C自移載傳送部101之裝載埠110搬出。
對熱處理部160中之加熱處理繼續進行說明。圖11係表示熱處理部160中之半導體晶圓W之處理順序之流程圖。於半導體晶圓W向處理腔室6搬入之前,打開用於供氣之閥84,並且打開排氣用閥89而開始對於處理腔室6內之供氣排氣。若閥84打開,則自氣體供給孔81向熱處理空間65供給氮氣。又,若閥89打開,則自氣體排出孔86排出處理腔室6內之氣體。藉此,自處理腔室6內之熱處理空間65之上部供給之氮氣向下方流動,且自熱處理空間65之下部排出。
繼而,閘閥185打開而將搬送開口部66打開,利用搬送機器人150經由搬送開口部66將成為處理對象之半導體晶圓W搬入至處理腔室6內之熱處理空間65(步驟S1)。搬送機器人150使保持未處理之半導體晶圓W之搬送手151a(或搬送手151b)進入至保持部7之正上方位置並停止。然後,藉由移載機構10之一對移載臂11自退避位置水平移動至移載動作位置並上升,頂起銷12穿過貫通孔79並自晶座74之保持板75之上表面突出而接收半導體晶圓W。此時,頂起銷12上升至較基板支持銷77之上端更上方。
未處理之半導體晶圓W載置於頂起銷12後,搬送機器人150使搬送手151a自熱處理空間65退出,並利用閘閥185將搬送開口部66封閉。然後,藉由一對移載臂11之下降,半導體晶圓W自移載機構10被交付至保持部7之晶座74且以水平姿勢自下方受到保持。半導體晶圓W由立設於保持板75上之複數個基板支持銷77支持而保持於晶座74。又,半導體晶圓W係以實施有圖案形成且布植有雜質之正面為上表面保持於保持部7。於由複數個基板支持銷77支持之半導體晶圓W之背面(與正面為相反側之主面)與保持板75之保持面75a之間形成有特定間隔。下降至晶座74之下方之一對移載臂11藉由水平移動機構13而退避至退避位置,即凹部62之內側。
半導體晶圓W藉由保持部7之晶座74而自下方以水平姿勢受到保持後,40根鹵素燈HL一起點亮而開始預加熱(輔助加熱)(步驟S2)。自鹵素燈HL出射之鹵素光透射由石英形成之下側腔室窗64及晶座74而自半導體晶圓W之下表面進行照射。藉由受到自鹵素燈HL之光照射,半導體晶圓W被預加熱而溫度上升。再者,由於移載機構10之移載臂11退避至凹部62之內側,故而不會成為利用鹵素燈HL之加熱之阻礙。
於進行利用鹵素燈HL之預加熱時,半導體晶圓W之溫度由放射溫度計20測定。即,放射溫度計20接收自保持於晶座74之半導體晶圓W之下表面經由開口部78放射之紅外光而對升溫中之晶圓溫度進行測定。測定出之半導體晶圓W之溫度被傳輸至控制部3。控制部3一面監視藉由自鹵素燈HL之光照射而升溫之半導體晶圓W之溫度是否達到特定之預加熱溫度T1,一面控制鹵素燈HL之輸出。即,控制部3基於放射溫度計20之測定值,以半導體晶圓W之溫度成為預加熱溫度T1之方式對鹵素燈HL之輸出進行反饋控制。預加熱溫度T1設為不會擔心添加於半導體晶圓W之雜質因熱而擴散之600℃至800℃左右(本實施形態中為700℃)。
於半導體晶圓W之溫度達到預加熱溫度T1後,控制部3將半導體晶圓W暫時維持於該預加熱溫度T1。具體而言,於由放射溫度計20測定之半導體晶圓W之溫度達到預加熱溫度T1之時間點,控制部3調整鹵素燈HL之輸出,將半導體晶圓W之溫度大致維持於預加熱溫度T1。
又,於預加熱開始後至執行後續閃光加熱為止之期間開始處理腔室6內之懸浮粒子濃度之測定(步驟S3)。即,於利用鹵素燈HL加熱半導體晶圓W時,開始懸浮粒子濃度之測定。具體而言,處理腔室6內之氣體經由氣體排出管88排出,該氣體排出管88中流動之氣體之懸浮粒子濃度由懸浮粒子計數器99測定。利用懸浮粒子計數器99對懸浮粒子濃度之測定持續進行至後續閃光加熱結束後經過特定時間為止。
圖12係表示由懸浮粒子計數器99測定之處理腔室6內之懸浮粒子濃度之變化之圖。利用鹵素燈HL之預加熱開始後,於時刻t1開始利用懸浮粒子計數器99對處理腔室6內之懸浮粒子濃度之測定。雖於進行半導體晶圓W之處理前已進行處理腔室6內之清潔,但於處理腔室6內不可避免地殘留有粒子,利用懸浮粒子計數器99檢測該殘留粒子。於預加熱時由懸浮粒子計數器99測定之懸浮粒子濃度C1係成為粒子濃度測定之背景之濃度。
於半導體晶圓W之溫度達到預加熱溫度T1且經過特定時間之時刻t2,閃光燈FL對半導體晶圓W之正面進行閃光照射(步驟S4)。此時,自閃光燈FL放射之閃光之一部分直接朝向處理腔室6內,另一部分先由反射器52反射後再朝向處理腔室6內,藉由該等閃光之照射而進行半導體晶圓W之閃光加熱。
再者,開始利用懸浮粒子計數器99對處理腔室6內之懸浮粒子濃度之測定之時刻t1亦可為閃光燈FL即將對半導體晶圓W之正面進行閃光照射之時刻t2之前。即,只要可取得或推定成為粒子濃度測定之基準值之懸浮粒子濃度C1之值即可。
閃光加熱係藉由自閃光燈FL之閃光(閃光)照射而進行,因此可使半導體晶圓W之正面溫度以短時間上升。即,自閃光燈FL照射之閃光係預先儲存於電容器之靜電能量轉換成極短之光脈衝而成之照射時間約0.1毫秒以上100毫秒以下之極短且較強之閃光。而且,藉由自閃光燈FL之閃光照射而被閃光加熱之半導體晶圓W之正面溫度瞬間地上升至1000℃以上之處理溫度T2,將布植於半導體晶圓W之雜質活化後,正面溫度急速地下降。如上所述,利用閃光加熱可使半導體晶圓W之正面溫度以極短時間升降,因此可抑制布植於半導體晶圓W之雜質因熱而擴散並進行雜質之活化。再者,雜質之活化所需之時間與其熱擴散所需之時間相比為極短,因此即便為0.1毫秒至100毫秒左右之不會發生擴散之短時間,活化亦結束。
於閃光照射時,將照射時間極短且具有較高能量之閃光照射至半導體晶圓W之正面,因此半導體晶圓W之正面之溫度瞬間地上升至1000℃以上之處理溫度T2,另一方面,該瞬間之背面之溫度並不會自預加熱溫度T1那樣上升。因此,僅於半導體晶圓W之正面產生急遽之熱膨脹,背面基本上不會熱膨脹,因而半導體晶圓W會以正面呈凸起之方式瞬間地翹曲。然後,於下一瞬間,以該翹曲回退之方式半導體晶圓W向相反方向變形。於如此般半導體晶圓W急遽地變形時有碰撞晶座74而發生晶圓破裂之情形。
若因閃光加熱而半導體晶圓W破裂,則會大量產生粒子,處理腔室6內之懸浮粒子濃度急遽上升。因此,藉由監視處理腔室6內之懸浮粒子濃度,可檢測半導體晶圓W之破裂。熱處理裝置100中,控制部3之檢測部31基於進行半導體晶圓W之熱處理時由懸浮粒子計數器99測定出之處理腔室6內之懸浮粒子濃度,檢測半導體晶圓W之破裂(步驟S5)。更具體而言,第1實施形態中,於由懸浮粒子計數器99測定出之處理腔室6內之懸浮粒子濃度之上升超過預先設定之特定閾值時,檢測部31判定為作為處理對象之半導體晶圓W破裂。
即便於未發生晶圓破裂之情形時,亦由於在閃光照射時半導體晶圓W會急遽地變形,故而於處理腔室6內相當之粒子會捲起,懸浮粒子濃度會上升。第1實施形態中,檢測部31計算由懸浮粒子計數器99測定之期間中之作為最高測定值之懸浮粒子濃度C2與作為背景之懸浮粒子濃度C1之差量ΔC。該差量ΔC係距作為背景之懸浮粒子濃度C1之濃度上升值。
檢測部31於作為濃度上升值之差量ΔC大於特定閾值Cth 時,判定為於處理腔室6內半導體晶圓W破裂。即,於由懸浮粒子計數器99測定出之懸浮粒子濃度超過閾值Cth 而大幅上升時,判斷為半導體晶圓W破裂而大量產生粒子。另一方面,檢測部31於差量ΔC為閾值Cth 以下時,判定為未發生半導體晶圓W之破裂。即,於由懸浮粒子計數器99測定出之懸浮粒子濃度之上升未超過閾值Cth 之情形時,判斷為該懸浮粒子濃度之上升為藉由閃光照射所發生之通常之粒子濃度上升之範圍內。再者,閾值Cth 只要預先藉由利用實驗等對發生晶圓破裂時之懸浮粒子濃度進行測定而設定並記憶於控制部3之磁碟35等記憶部即可。將閾值Cth 設定為越小之值,便成為越嚴格之破裂判定。
於差量ΔC大於閾值Cth ,檢測部31判定為半導體晶圓W破裂時,自步驟S5進行至步驟S6,警示部32發出警報。警示部32例如讓顯示部34顯示發生半導體晶圓W之破裂之含義之警報。
繼而,控制部3停止熱處理裝置100中之處理(步驟S7)。因此,於閃光加熱結束後亦不打開閘閥185,破裂之半導體晶圓W仍保留於處理腔室6內。藉此,防止因半導體晶圓W之破裂而產生之大量粒子自處理腔室6泄出至搬送腔室170。其後,熱處理裝置100之作業者進行打開處理腔室6而回收半導體晶圓W之碎片等需要之復原作業。
另一方面,於差量ΔC為閾值Cth 以下,檢測部31判定為半導體晶圓W未破裂時,自步驟S5進行至步驟S8,處理繼續進行,自處理腔室6搬出半導體晶圓W。於半導體晶圓W未破裂,閃光加熱處理正常地結束時,鹵素燈HL亦熄滅。藉此,半導體晶圓W自預加熱溫度T1急速地降溫。降溫中之半導體晶圓W之溫度由放射溫度計20測定,該測定結果被傳輸至控制部3。控制部3根據放射溫度計20之測定結果,監視半導體晶圓W之溫度是否降溫至特定溫度。然後,半導體晶圓W之溫度降溫至特定以下之後,移載機構10之一對移載臂11再次自退避位置水平移動至移載動作位置並上升,藉此頂起銷12自晶座74之上表面突出而自晶座74接收熱處理後之半導體晶圓W。繼而,打開由閘閥185封閉之搬送開口部66,利用搬送機器人150之搬送手151b(或搬送手151a)將載置於頂起銷12上之處理後之半導體晶圓W搬出。搬送機器人150使搬送手151b進入至由頂起銷12上頂之半導體晶圓W之正下方位置並停止。然後,藉由一對移載臂11之下降,而將閃光加熱後之半導體晶圓W交付並載置於搬送手151b。其後,搬送機器人150使搬送手151b自處理腔室6退出而搬出處理後之半導體晶圓W。
第1實施形態中,於進行半導體晶圓W之加熱處理時由懸浮粒子計數器99測定出之處理腔室6內之懸浮粒子濃度之上升超過特定閾值Cth 時,判定為半導體晶圓W破裂。藉由僅對處理腔室6內之懸浮粒子濃度進行測定並將其上升量與閾值Cth 進行比較之簡易構成而進行破裂檢測,因此可簡便地檢測熱處理時之半導體晶圓W之破裂。
<第2實施形態> 其次,對本發明之第2實施形態進行說明。第2實施形態之熱處理裝置100之構成及半導體晶圓W之處理順序與第1實施形態相同。第2實施形態與第1實施形態之不同之處在於半導體晶圓W之破裂之判定方法。
第2實施形態中,預先取得正常濃度圖案36並儲存於磁碟35內,該正常濃度圖案36表示熱處理時半導體晶圓W未破裂而正常地進行處理時由懸浮粒子計數器99測定出之處理腔室6內之懸浮粒子濃度之變化(圖10)。就使破裂判定之精度提高之觀點而言,較佳為預先取得儘可能多之複數之正常濃度圖案36並儲存於磁碟35。
第2實施形態中進行半導體晶圓W之熱處理時,檢測部31進行表示由懸浮粒子計數器99測定出之處理腔室6內之懸浮粒子濃度之變化的實測圖案(圖12所示之圖案)與正常濃度圖案36之比較。然後,檢測部31於懸浮粒子濃度之實測圖案自正常濃度圖案36背離一定以上時,判定為於處理腔室6內半導體晶圓W破裂。即,於由懸浮粒子計數器99測定出之懸浮粒子濃度之實測圖案與正常進行熱處理時之圖案大幅不同時,判斷為半導體晶圓W破裂。另一方面,檢測部31於懸浮粒子濃度之實測圖案自正常濃度圖案36背離未達一定時,判定為未發生半導體晶圓W之破裂。
於檢測部31判定為半導體晶圓W破裂時,與第1實施形態同樣地警示部32發出警報,並且控制部3停止熱處理裝置100中之處理。又,於檢測部31判定為半導體晶圓W未破裂時,處理繼續進行,自處理腔室6搬出半導體晶圓W。
第2實施形態中,於進行半導體晶圓W之熱處理時由懸浮粒子計數器99測定出之處理腔室6內之懸浮粒子濃度之變化之實測圖案與正常濃度圖案36不同時,判定為半導體晶圓W破裂。藉由僅對處理腔室6內之懸浮粒子濃度進行測定並將其變化之實測圖案與正常濃度圖案36進行比較之簡易構成而進行破裂檢測,因此可簡便地檢測熱處理時之半導體晶圓W之破裂。
<變化例> 以上,對本發明之實施形態進行了說明,但本發明可於不脫離其主旨之範圍內除上述者以外進行各種變更。例如,上述實施形態中,於氣體排出管88連接有懸浮粒子計數器99,但亦可代替此,直接於處理腔室6設置懸浮粒子計數器99。即,懸浮粒子計數器99只要設於可對處理腔室6內之懸浮粒子濃度進行測定之位置即可。但,於直接在處理腔室6設置懸浮粒子計數器99之情形時,亦有根據懸浮粒子計數器99之安裝位置之不同,難以檢測半導體晶圓W破裂時產生之粒子之情形。由於處理腔室6內之熱處理空間65之氣體全部會流入至氣體排出管88,故而如上述實施形態般於氣體排出管88設置懸浮粒子計數器99可確實地檢測出處理腔室6內之粒子。
又,亦可於來自第1冷卻腔室131或第2冷卻腔室141之排氣管設置懸浮粒子計數器99,對該等冷卻腔室內之懸浮粒子濃度進行測定。於熱處理部160之處理腔室6中處理結束之高溫之半導體晶圓W被搬入至第1冷卻腔室131或第2冷卻腔室141並冷卻。該冷卻步驟中亦有半導體晶圓W破裂之情形。於第1冷卻腔室131或第2冷卻腔室141中進行半導體晶圓W之冷卻處理時,與第1實施形態或第2實施形態同樣地可基於由懸浮粒子計數器99測定出之冷卻腔室內之懸浮粒子濃度,檢測半導體晶圓W之破裂。
總之,只要對進行半導體晶圓W之熱處理時之腔室內之懸浮粒子濃度進行測定,並基於該懸浮粒子濃度檢測熱處理時之半導體晶圓W之破裂即可。本說明書中之熱處理係包含加熱處理及冷卻處理之兩者之概念。
又,亦可於來自搬送腔室170之排氣管設置懸浮粒子計數器99,對搬送腔室170內之懸浮粒子濃度進行測定。通常,於搬送腔室170內發生半導體晶圓W之破裂之可能性較低。但,於熱處理部160之處理腔室6內發生半導體晶圓W之破裂,且未檢測出該破裂而打開閘閥185之情形時,粒子會自處理腔室6泄出至搬送腔室170。此種情形時,與第1實施形態或第2實施形態同樣地可藉由基於由懸浮粒子計數器99測定出之搬送腔室170內之懸浮粒子濃度進行破裂判定,而檢測處理腔室6內之半導體晶圓W之破裂。
又,亦可於第1實施形態及第2實施形態中說明之破裂檢測之技術,組合例如專利文獻1~3中提出之技術。若如此,則可使半導體晶圓W之破裂檢測精度進一步提高。
又,亦可藉由直接設於處理腔室6或搬送腔室170或設於排氣管之懸浮粒子計數器99監視腔室內之懸浮粒子濃度,於該懸浮粒子濃度超過特定水準時,發出警報並停止熱處理裝置100中之處理。進而,亦可於朝向處理腔室6或搬送腔室170之氣體供給管設置懸浮粒子計數器99,監視供給至腔室之氣體中之懸浮粒子濃度。
又,上述實施形態中,於閃光燈室5具備30根閃光燈FL,但並不限定於此,閃光燈FL之根數可設為任意數。又,閃光燈FL並不限定於氙氣閃光燈,亦可為氪氣閃光燈。又,鹵素燈室4所具備之鹵素燈HL之根數亦並不限定於40根,可設為任意數。
又,上述實施形態中,使用燈絲方式之鹵素燈HL作為連續發光1秒以上之連續點亮燈而進行半導體晶圓W之預加熱,但並不限定於此,亦可代替鹵素燈HL而使用放電型之電弧燈(例如,氙氣電弧燈)作為連續點亮燈而進行預加熱。
又,利用熱處理裝置100而成為處理對象之基板並不限定於半導體晶圓,亦可為液晶表示裝置等平板顯示器中所使用之玻璃基板或太陽電池用基板。
3:控制部 4:鹵素燈室 5:閃光燈室 6:處理腔室 7:保持部 10:移載機構 11:移載臂 12:頂起銷 13:水平移動機構 14:升降機構 20:放射溫度計 31:檢測部 32:警示部 33:輸入部 34:顯示部 35:磁碟 36:正常濃度圖案 41:殼體 43:反射器 51:殼體 52:反射器 53:燈光放射窗 61:腔室側部 62:凹部 63:上側腔室窗 64:下側腔室窗 65:熱處理空間 66:搬送開口部 68,69:反射環 71:基台環 72:連結部 74:晶座 75:保持板 75a:保持面 76:導引環 77:基板支持銷 78:開口部 79:貫通孔 81:氣體供給孔 82:緩衝空間 83:氣體供給管 84:閥 85:氣體供給源 86:氣體排出孔 87:緩衝空間 88:氣體排出管 89:閥 99:懸浮粒子計數器 100:熱處理裝置 101:移載傳送部 110:裝載埠 120:交接機器人 120R,120S,150R,CU:箭頭 121:手部 130,140:冷卻部 131:第1冷卻腔室 141:第2冷卻腔室 150:搬送機器人 151a,151b:搬送手 160:熱處理部 170:搬送腔室 181,182,183,184,185:閘閥 190:排氣機構 230:對準部 231:對準腔室 C:載體 C1,C2:懸浮粒子濃度 FL:閃光燈 HL:鹵素燈 t1,t2:時刻 W:半導體晶圓 ΔC:差量
圖1係表示本發明之熱處理裝置之俯視圖。 圖2係圖1之熱處理裝置之前視圖。 圖3係表示熱處理部之構成之縱剖視圖。 圖4係表示保持部之整體外觀之立體圖。 圖5係晶座之俯視圖。 圖6係晶座之剖視圖。 圖7係移載機構之俯視圖。 圖8係移載機構之側視圖。 圖9係表示複數個鹵素燈之配置之俯視圖。 圖10係表示控制部之構成之方塊圖。 圖11係表示熱處理部中之半導體晶圓之處理順序之流程圖。 圖12係表示處理腔室內之懸浮粒子濃度之變化之圖。

Claims (8)

  1. 一種熱處理方法,其特徵在於:其係對基板進行熱處理者,且具備:處理步驟,其係對收容於腔室內之基板進行熱處理;測定步驟,其係對正進行上述熱處理時之上述腔室內之懸浮粒子濃度進行測定;及檢測步驟,其係基於上述測定步驟中測定出之懸浮粒子濃度檢測上述基板之破裂,上述檢測步驟中,於上述測定步驟中測定出之懸浮粒子濃度之上升超過特定閾值時,判定為上述基板破裂。
  2. 一種熱處理方法,其特徵在於:其係對基板進行熱處理者,且具備:處理步驟,其係對收容於腔室內之基板進行熱處理;測定步驟,其係對正進行上述熱處理時之上述腔室內之懸浮粒子濃度進行測定;及檢測步驟,其係基於上述測定步驟中測定出之懸浮粒子濃度檢測上述基板之破裂,上述檢測步驟中,於上述測定步驟中測定出之懸浮粒子濃度之變化之實測圖案與正常進行熱處理時已取得之正常濃度圖案不同時,判定為上述基板破裂。
  3. 如請求項1或2之熱處理方法,其中於上述檢測步驟中檢測出上述基板之破裂時,發出警告並且停止上述熱處理。
  4. 如請求項1或2之熱處理方法,其中上述熱處理係自閃光燈對上述基板照射閃光之加熱處理。
  5. 一種熱處理裝置,其特徵在於:其係對基板進行熱處理者,且具備:腔室,其收容基板;熱處理部,其對收容於上述腔室內之上述基板進行熱處理;測定部,其對上述腔室內之懸浮粒子濃度進行測定;及檢測部,其基於進行上述熱處理時由上述測定部測定出之上述腔室內的懸浮粒子濃度,檢測上述基板之破裂,上述檢測部於進行上述熱處理時由上述測定部測定出之懸浮粒子濃度之上升超過特定閾值時,判定為上述基板破裂。
  6. 一種熱處理裝置,其特徵在於:其係對基板進行熱處理者,且具備:腔室,其收容基板;熱處理部,其對收容於上述腔室內之上述基板進行熱處理;測定部,其對上述腔室內之懸浮粒子濃度進行測定;檢測部,其基於進行上述熱處理時由上述測定部測定出之上述腔室內的懸浮粒子濃度,檢測上述基板之破裂;及 記憶部,該記憶部儲存表示基板未破裂而正常地進行熱處理時由上述測定部測定出之懸浮粒子濃度之變化之正常濃度圖案,且上述檢測部於進行上述熱處理時由上述測定部測定出之懸浮粒子濃度之變化之實測圖案與上述正常濃度圖案不同時,判定為上述基板破裂。
  7. 如請求項5或6之熱處理裝置,其進而具備控制部,該控制部於由上述檢測部檢測出上述基板之破裂時,發出警告並且停止上述熱處理。
  8. 如請求項5或6之熱處理裝置,其中上述熱處理部包含對上述基板照射閃光而將上述基板加熱之閃光燈。
TW109101153A 2019-03-07 2020-01-14 熱處理方法及熱處理裝置 TWI741474B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019041804A JP7245675B2 (ja) 2019-03-07 2019-03-07 熱処理方法および熱処理装置
JP2019-041804 2019-03-07

Publications (2)

Publication Number Publication Date
TW202040736A TW202040736A (zh) 2020-11-01
TWI741474B true TWI741474B (zh) 2021-10-01

Family

ID=72337865

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109101153A TWI741474B (zh) 2019-03-07 2020-01-14 熱處理方法及熱處理裝置

Country Status (3)

Country Link
JP (1) JP7245675B2 (zh)
TW (1) TWI741474B (zh)
WO (1) WO2020179231A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100099268A1 (en) * 2005-04-08 2010-04-22 Timans Paul J Rapid Thermal Processing using Energy Transfer Layers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272984A (ja) 2002-03-18 2003-09-26 Hitachi Ltd 半導体装置の製造方法
JP2009231697A (ja) 2008-03-25 2009-10-08 Dainippon Screen Mfg Co Ltd 熱処理装置
JP6184713B2 (ja) 2012-05-23 2017-08-23 株式会社Screenホールディングス パーティクル測定方法および熱処理装置
JP7265314B2 (ja) 2017-03-03 2023-04-26 株式会社Screenホールディングス 熱処理方法および熱処理装置
JP7048351B2 (ja) 2018-02-28 2022-04-05 株式会社Screenホールディングス 熱処理方法および熱処理装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100099268A1 (en) * 2005-04-08 2010-04-22 Timans Paul J Rapid Thermal Processing using Energy Transfer Layers

Also Published As

Publication number Publication date
JP2020145350A (ja) 2020-09-10
WO2020179231A1 (ja) 2020-09-10
JP7245675B2 (ja) 2023-03-24
TW202040736A (zh) 2020-11-01

Similar Documents

Publication Publication Date Title
TWI647801B (zh) 熱處理方法
TWI670773B (zh) 熱處理裝置及熱處理方法
TWI757617B (zh) 熱處理方法及熱處理裝置
TWI822903B (zh) 熱處理方法及熱處理裝置
TWI781350B (zh) 熱處理方法及熱處理裝置
JP7315331B2 (ja) 熱処理方法および熱処理装置
KR102463486B1 (ko) 열처리 방법 및 열처리 장치
KR102424749B1 (ko) 열처리 방법 및 열처리 장치
TWI738120B (zh) 熱處理方法及熱處理裝置
JP6059537B2 (ja) 熱処理装置
JP7091227B2 (ja) 熱処理方法および熱処理装置
TWI728505B (zh) 熱處理方法及熱處理裝置
TWI757561B (zh) 熱處理方法
TWI741474B (zh) 熱處理方法及熱處理裝置
TWI722544B (zh) 熱處理方法及熱處理裝置
WO2020105449A1 (ja) 熱処理方法および熱処理装置
TW202030802A (zh) 熱處理方法及熱處理裝置
TWI725414B (zh) 熱處理裝置及熱處理方法
TWI720683B (zh) 熱處理方法及熱處理裝置
JP7294802B2 (ja) 熱処理方法および熱処理装置
JP2022122342A (ja) 熱処理方法