WO2020179231A1 - 熱処理方法および熱処理装置 - Google Patents

熱処理方法および熱処理装置 Download PDF

Info

Publication number
WO2020179231A1
WO2020179231A1 PCT/JP2020/000998 JP2020000998W WO2020179231A1 WO 2020179231 A1 WO2020179231 A1 WO 2020179231A1 JP 2020000998 W JP2020000998 W JP 2020000998W WO 2020179231 A1 WO2020179231 A1 WO 2020179231A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
semiconductor wafer
chamber
substrate
unit
Prior art date
Application number
PCT/JP2020/000998
Other languages
English (en)
French (fr)
Inventor
往馬 中島
麻央 大森
浩志 三宅
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2020179231A1 publication Critical patent/WO2020179231A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a heat treatment method and heat treatment apparatus for performing heat treatment for heating or cooling a thin plate-shaped precision electronic substrate (hereinafter simply referred to as “substrate”) such as a semiconductor wafer.
  • substrate such as a semiconductor wafer.
  • Flash lamp annealing In the semiconductor device manufacturing process, flash lamp annealing (FLA), which heats a semiconductor wafer in an extremely short time, is attracting attention.
  • FLA flash lamp annealing
  • Flash lamp annealing uses a xenon flash lamp (hereinafter, simply referred to as "flash lamp” to mean a xenon flash lamp) to irradiate the surface of the semiconductor wafer with flash light, so that only the surface of the semiconductor wafer is extremely exposed.
  • flash lamp xenon flash lamp
  • the emission spectral distribution of the xenon flash lamp is from the ultraviolet region to the near infrared region, has a shorter wavelength than conventional halogen lamps, and almost matches the basic absorption band of silicon semiconductor wafers. Therefore, when the semiconductor wafer is irradiated with the flash light from the xenon flash lamp, the transmitted light is small and the temperature of the semiconductor wafer can be rapidly raised. It has also been found that the flash light irradiation for a very short time of several milliseconds or less can selectively raise the temperature only in the vicinity of the surface of the semiconductor wafer.
  • Such a flash lamp anneal is used for a process that requires heating for an extremely short time, for example, typically for activating impurities implanted into a semiconductor wafer. If the surface of a semiconductor wafer in which impurities have been implanted by the ion implantation method is irradiated with flash light from a flash lamp, the surface of the semiconductor wafer can be heated to the activation temperature for an extremely short time, and impurities are deeply diffused. Only impurity activation can be performed without causing it.
  • the semiconductor inside the chamber should be opened immediately before the loading/unloading opening of the chamber immediately after flash heating. It is preferable to detect cracks in the wafer.
  • Patent Document 1 discloses a technique for determining wafer cracking by providing a microphone in a chamber for performing flash heat treatment and detecting a sound when a semiconductor wafer is cracked.
  • Patent Document 2 discloses a technique in which reflected light from a semiconductor wafer is received by a light guide rod and a wafer crack is detected from the intensity of the reflected light.
  • Patent Document 3 discloses a technique for detecting a wafer crack from the average value or standard deviation of the temperature profile of a semiconductor wafer after flash light irradiation.
  • Patent Document 1 has a problem that it is difficult to filter for extracting only the sound in which the semiconductor wafer is broken. Further, in the technique disclosed in Patent Document 2, the step of rotating the light guide rod is required twice before and after the flash light irradiation, and thus there is a problem that throughput is deteriorated. Further, in the technique disclosed in Patent Document 3, it is necessary to acquire a temperature profile of a semiconductor wafer and perform complicated arithmetic processing on the temperature profile.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a heat treatment method and a heat treatment apparatus capable of easily detecting cracks in a substrate during heat treatment.
  • the first aspect of the present invention is a heat treatment method for heat-treating a substrate, wherein the heat treatment is performed on the substrate housed in the chamber, and the heat treatment is performed.
  • a measurement step of measuring the air particle concentration in the chamber, and a detection step of detecting cracks in the substrate based on the air particle concentration measured in the measurement step are provided.
  • a second aspect is the heat treatment method according to the first aspect, wherein in the detecting step, when the increase in the air particle concentration measured in the measuring step exceeds a predetermined threshold value, the substrate is Judge as broken.
  • the third aspect is the heat treatment method according to the first aspect, when the actual measurement pattern of the change in the air particle concentration measured in the measurement step is normally heat-treated in the detection step. It is determined that the substrate is cracked when it is different from the acquired normal density pattern.
  • the fifth aspect is the heat treatment method according to any one of the first to fourth aspects, wherein the heat treatment is a heat treatment of irradiating the substrate with flash light from a flash lamp.
  • a sixth aspect is a heat treatment apparatus for performing heat treatment on a substrate, a chamber that accommodates the substrate, a heat treatment unit that performs heat treatment on the substrate accommodated in the chamber, and airborne particles in the chamber.
  • a measuring unit for measuring the concentration and a detecting unit for detecting cracks in the substrate based on the concentration of air particles in the chamber measured by the measuring unit during the heat treatment are provided.
  • the detection unit sets a predetermined threshold value for the increase in the concentration of air particles measured by the measurement unit during the heat treatment. When it exceeds, it is determined that the substrate is broken.
  • An eighth aspect is a heat treatment apparatus according to the sixth aspect, in which the normal concentration pattern indicates a change in the airborne particle concentration measured by the measurement unit when the substrate is normally heat-treated without being cracked.
  • the detection unit further includes a storage unit that stores the above-mentioned substrate when the actual measurement pattern of the change in the air particle concentration measured by the measurement unit during the heat treatment is different from the normal concentration pattern. Determine that the cracked.
  • a ninth aspect is the heat treatment apparatus according to any of the sixth to eighth aspects, which issues a warning and stops the heat treatment when the detection unit detects cracks in the substrate. It further comprises a control unit for controlling.
  • a tenth aspect is the heat treatment apparatus according to any one of the sixth to ninth aspects, wherein the heat treatment unit includes a flash lamp that irradiates the substrate with flash light to heat the substrate.
  • the heat treatment method since cracks in the substrate are detected based on the air particle concentration in the chamber during the heat treatment, the heat treatment is performed only by measuring the air particle concentration. It is possible to easily detect cracks in the substrate at the time.
  • the heat treatment apparatus since cracks in the substrate are detected based on the air particle concentration in the chamber measured by the measuring unit during the heat treatment, the air particle concentration It is possible to easily detect cracks in the substrate during heat treatment simply by measuring.
  • FIG. 1 is a plan view showing a heat treatment apparatus 100 according to the present invention
  • FIG. 2 is a front view thereof.
  • the heat treatment apparatus 100 is a flash lamp annealing apparatus that irradiates a disk-shaped semiconductor wafer W as a substrate with flash light to heat the semiconductor wafer W.
  • the size of the semiconductor wafer W to be processed is not particularly limited, but is, for example, ⁇ 300 mm or ⁇ 450 mm. Note that, in FIG. 1 and the subsequent drawings, the dimensions and the number of each part are exaggerated or simplified as necessary for easy understanding. Further, in each of FIGS. 1 to 3, an XYZ orthogonal coordinate system in which the Z-axis direction is the vertical direction and the XY plane is the horizontal plane is attached in order to clarify their directional relationship.
  • the heat treatment apparatus 100 includes an indexer unit 101 for loading an unprocessed semiconductor wafer W into the apparatus from the outside and an unprocessed semiconductor wafer W for removing the processed semiconductor wafer W from the apparatus.
  • Alignment unit 230 for positioning the semiconductor wafer W, two cooling units 130 and 140 for cooling the semiconductor wafer W after heat treatment, heat treatment unit 160 for performing flash heat treatment on the semiconductor wafer W, and cooling units 130 and 140.
  • a transfer robot 150 that transfers the semiconductor wafer W to and from the heat treatment unit 160 is provided.
  • the heat treatment apparatus 100 includes the control unit 3 that controls the operation mechanism provided in each of the processing units and the transfer robot 150 to advance the flash heating process of the semiconductor wafer W.
  • the indexer unit 101 includes a load port 110 on which a plurality of carriers C (two in the present embodiment) are mounted side by side, unprocessed semiconductor wafers W from each carrier C, and processed semiconductor wafers on each carrier C. And a delivery robot 120 that stores W.
  • the carrier C containing the unprocessed semiconductor wafer W is transported by an automated guided vehicle (AGV, OHT) or the like and placed on the load port 110, and the carrier C containing the processed semiconductor wafer W is an automated guided vehicle. Is taken away from the load port 110.
  • AGV automated guided vehicle
  • the carrier C is configured to be movable up and down as shown by an arrow CU in FIG. 2 so that the delivery robot 120 can take in and out an arbitrary semiconductor wafer W with respect to the carrier C. ing.
  • the carrier C also has an SM (Standard Mechanical Inter Face) pod and an OC (open that exposes the stored semiconductor wafer W to the outside air). cassette).
  • the delivery robot 120 is capable of sliding movement as shown by an arrow 120S in FIG. 1, swinging movement as shown by an arrow 120R, and lifting operation.
  • the delivery robot 120 transfers the semiconductor wafer W to and from the two carriers C, and transfers the semiconductor wafer W to the alignment unit 230 and the two cooling units 130 and 140.
  • the delivery of the semiconductor wafer W to/from the carrier C by the delivery robot 120 is performed by the sliding movement of the hand 121 and the vertical movement of the carrier C.
  • the transfer of the semiconductor wafer W between the delivery robot 120 and the alignment unit 230 or the cooling units 130, 140 is performed by the sliding movement of the hand 121 and the raising / lowering operation of the delivery robot 120.
  • the alignment section 230 is connected to the side of the indexer section 101 along the Y-axis direction.
  • the alignment unit 230 is a processing unit that rotates the semiconductor wafer W in a horizontal plane and orients it in an appropriate direction for flash heating.
  • the alignment unit 230 includes a mechanism for supporting and rotating the semiconductor wafer W in a horizontal posture inside the alignment chamber 231 which is a housing made of aluminum alloy, and a notch, an orientation flat, etc. formed in the peripheral portion of the semiconductor wafer W. It is configured by providing a mechanism for optically detecting
  • Delivery of the semiconductor wafer W to the alignment unit 230 is performed by the delivery robot 120.
  • the semiconductor wafer W is delivered from the delivery robot 120 to the alignment chamber 231 such that the center of the wafer is located at a predetermined position.
  • the alignment unit 230 adjusts the orientation of the semiconductor wafer W by rotating the semiconductor wafer W about a vertical axis around the center of the semiconductor wafer W received from the indexer unit 101 and optically detecting a notch or the like. To do.
  • the semiconductor wafer W whose orientation has been adjusted is taken out from the alignment chamber 231 by the delivery robot 120.
  • a transfer chamber 170 for accommodating the transfer robot 150 is provided as a transfer space for the semiconductor wafer W by the transfer robot 150.
  • the processing chamber 6 of the heat treatment section 160, the first cool chamber 131 of the cooling section 130, and the second cool chamber 141 of the cooling section 140 are connected in communication with the transfer chamber 170 on three sides.
  • the heat treatment unit 160 which is the main part of the heat treatment apparatus 100, is a substrate processing unit that irradiates a preheated semiconductor wafer W with a flash (flash light) from a xenon flash lamp FL to perform a flash heat treatment.
  • the configuration of the heat treatment section 160 will be described later.
  • the two cooling units 130 and 140 have substantially the same configuration.
  • Each of the cooling units 130 and 140 is provided with a metal cooling plate and a quartz plate placed on the upper surface inside the first cool chamber 131 and the second cool chamber 141, which are aluminum alloy casings, respectively. (All are not shown).
  • the cooling plate is temperature-controlled at room temperature (about 23° C.) by a Peltier element or constant temperature water circulation.
  • the semiconductor wafer W that has been subjected to the flash heat treatment in the heat treatment unit 160 is carried into the first cool chamber 131 or the second cool chamber 141, placed on the quartz plate, and cooled.
  • Both the first cool chamber 131 and the second cool chamber 141 are connected to both of them between the indexer unit 101 and the transfer chamber 170.
  • the first cool chamber 131 and the second cool chamber 141 are formed with two openings for loading and unloading the semiconductor wafer W.
  • the opening connected to the indexer section 101 can be opened and closed by a gate valve 181.
  • the opening connected to the transfer chamber 170 of the first cool chamber 131 can be opened and closed by the gate valve 183. That is, the first cool chamber 131 and the indexer unit 101 are connected via the gate valve 181, and the first cool chamber 131 and the transfer chamber 170 are connected via the gate valve 183.
  • the gate valve 181 When the semiconductor wafer W is transferred between the indexer section 101 and the first cool chamber 131, the gate valve 181 is opened. Further, when the semiconductor wafer W is transferred between the first cool chamber 131 and the transfer chamber 170, the gate valve 183 is opened. When the gate valve 181 and the gate valve 183 are closed, the inside of the first cool chamber 131 becomes a closed space.
  • the opening connected to the indexer portion 101 can be opened and closed by the gate valve 182.
  • the opening connected to the transfer chamber 170 of the second cool chamber 141 can be opened and closed by the gate valve 184. That is, the second cool chamber 141 and the indexer unit 101 are connected via the gate valve 182, and the second cool chamber 141 and the transfer chamber 170 are connected via the gate valve 184.
  • the gate valve 182 is opened when the semiconductor wafer W is transferred between the indexer unit 101 and the second cool chamber 141. Further, when the semiconductor wafer W is transferred between the second cool chamber 141 and the transfer chamber 170, the gate valve 184 is opened. When the gate valve 182 and the gate valve 184 are closed, the inside of the second cool chamber 141 becomes a closed space.
  • the transfer robot 150 provided in the transfer chamber 170 installed adjacent to the processing chamber 6 is capable of turning as shown by an arrow 150R about an axis along the vertical direction.
  • the transfer robot 150 has two link mechanisms including a plurality of arm segments, and transfer hands 151a and 151b for holding the semiconductor wafer W are provided at the tips of the two link mechanisms. These transport hands 151a, 151b are vertically spaced apart by a predetermined pitch, and are independently slidable linearly in the same horizontal direction by a link mechanism.
  • the transfer robot 150 moves up and down the base provided with the two link mechanisms to move up and down the two transfer hands 151a and 151b while keeping a distance of a predetermined pitch.
  • both transfer hands 151a and 151b are transferred. It turns so as to face the delivery partner and then moves up and down (or while it is turning) so that one of the transfer hands is positioned at a height for delivering the semiconductor wafer W to the delivery partner. Then, the transfer hand 151a (151b) is linearly slid in the horizontal direction to transfer the semiconductor wafer W to and from the transfer partner.
  • the semiconductor wafer W can be transferred between the transfer robot 150 and the transfer robot 120 via the cooling units 130 and 140. That is, the first cool chamber 131 of the cooling unit 130 and the second cool chamber 141 of the cooling unit 140 also function as a path for transferring the semiconductor wafer W between the transfer robot 150 and the transfer robot 120. .. Specifically, the semiconductor wafer W is delivered by one of the transfer robot 150 or the delivery robot 120 receiving the semiconductor wafer W delivered to the first cool chamber 131 or the second cool chamber 141.
  • the transfer robot 150 and the transfer robot 120 constitute a transfer mechanism for transporting the semiconductor wafer W from the carrier C to the heat treatment unit 160.
  • the gate valves 181 and 182 are provided between the first cool chamber 131 and the second cool chamber 141 and the indexer unit 101, respectively.
  • Gate valves 183 and 184 are provided between the transfer chamber 170 and the first cool chamber 131 and the second cool chamber 141, respectively.
  • a gate valve 185 is provided between the transfer chamber 170 and the processing chamber 6 of the heat treatment section 160.
  • FIG. 3 is a vertical cross-sectional view showing the configuration of the heat treatment unit 160.
  • the heat treatment unit 160 includes a processing chamber 6 that accommodates the semiconductor wafer W and performs heat treatment, a flash lamp house 5 that incorporates a plurality of flash lamps FL, and a halogen lamp house 4 that incorporates a plurality of halogen lamps HL.
  • Prepare A flash lamp house 5 is provided on the upper side of the processing chamber 6, and a halogen lamp house 4 is provided on the lower side.
  • the heat treatment unit 160 holds the semiconductor wafer W in a horizontal position inside the processing chamber 6, and the transfer mechanism 10 that transfers the semiconductor wafer W between the holding unit 7 and the transfer robot 150.
  • the transfer mechanism 10 that transfers the semiconductor wafer W between the holding unit 7 and the transfer robot 150.
  • the processing chamber 6 is configured by mounting quartz chamber windows above and below a cylindrical chamber side portion 61.
  • the chamber side portion 61 has a substantially cylindrical shape with an opening at the top and bottom, and an upper chamber window 63 is attached and closed at the upper opening, and a lower chamber window 64 is attached and closed at the lower opening.
  • the upper chamber window 63 that constitutes the ceiling of the processing chamber 6 is a disk-shaped member made of quartz, and functions as a quartz window that transmits the flash light emitted from the flash lamp FL into the processing chamber 6.
  • the lower chamber window 64 that constitutes the floor of the processing chamber 6 is also a disk-shaped member made of quartz, and functions as a quartz window that transmits the light from the halogen lamp HL into the processing chamber 6.
  • a reflection ring 68 is attached to the upper portion of the inner wall surface of the chamber side portion 61, and a reflection ring 69 is attached to the lower portion.
  • the reflective rings 68 and 69 are both formed in an annular shape.
  • the upper reflective ring 68 is attached by fitting from the upper side of the chamber side portion 61.
  • the lower reflection ring 69 is attached by being fitted from the lower side of the chamber side portion 61 and fastened with screws (not shown). That is, both the reflective rings 68 and 69 are detachably attached to the chamber side portion 61.
  • the inner space of the processing chamber 6, that is, the space surrounded by the upper chamber window 63, the lower chamber window 64, the chamber side 61, and the reflection rings 68, 69 is defined as the heat treatment space 65.
  • a recess 62 is formed on the inner wall surface of the processing chamber 6. That is, a concave portion 62 surrounded by a central portion of the inner wall surface of the chamber side portion 61 where the reflection rings 68 and 69 are not attached, a lower end surface of the reflection ring 68, and an upper end surface of the reflection ring 69 is formed. ..
  • the concave portion 62 is formed in an annular shape along the horizontal direction on the inner wall surface of the processing chamber 6 and surrounds the holding portion 7 that holds the semiconductor wafer W.
  • the chamber side portion 61 and the reflection rings 68 and 69 are formed of a metal material (for example, stainless steel) having excellent strength and heat resistance.
  • the chamber side portion 61 is provided with a transfer opening (furnace port) 66 for carrying in and out of the semiconductor wafer W to the processing chamber 6.
  • the transport opening 66 is openable and closable by a gate valve 185.
  • the transport opening 66 is communicatively connected to the outer peripheral surface of the recess 62. Therefore, when the gate valve 185 opens the transport opening 66, the semiconductor wafer W is carried in from the transport opening 66 through the recess 62 into the heat treatment space 65 and the semiconductor wafer W is carried out from the heat treatment space 65. It can be performed. Further, when the gate valve 185 closes the transfer opening 66, the heat treatment space 65 in the processing chamber 6 becomes a closed space.
  • a gas supply hole 81 for supplying a processing gas to the heat treatment space 65 is formed in the upper portion of the inner wall of the processing chamber 6.
  • the gas supply hole 81 is formed in a position above the recess 62 and may be provided in the reflection ring 68.
  • the gas supply hole 81 is connected to a gas supply pipe 83 via a buffer space 82 formed in an annular shape inside the sidewall of the processing chamber 6.
  • the gas supply pipe 83 is connected to the processing gas supply source 85.
  • a valve 84 is inserted in the middle of the path of the gas supply pipe 83. When the valve 84 is opened, the processing gas is supplied from the processing gas supply source 85 to the buffer space 82.
  • the processing gas flowing into the buffer space 82 flows so as to spread in the buffer space 82 having a smaller fluid resistance than the gas supply hole 81, and is supplied from the gas supply hole 81 into the heat treatment space 65.
  • an inert gas such as nitrogen (N 2 ) or a reactive gas such as hydrogen (H 2 ) or ammonia (NH 3 ) can be used (nitrogen in this embodiment).
  • a gas exhaust hole 86 for exhausting the gas in the heat treatment space 65 is formed in the lower part of the inner wall of the processing chamber 6.
  • the gas exhaust hole 86 is formed at a position below the recess 62, and may be provided in the reflection ring 69.
  • the gas exhaust hole 86 is connected to a gas exhaust pipe 88 via a buffer space 87 formed in an annular shape inside the side wall of the processing chamber 6.
  • the gas exhaust pipe 88 is connected to the exhaust mechanism 190.
  • a valve 89 is inserted in the middle of the path of the gas exhaust pipe 88. When the valve 89 is opened, the gas in the heat treatment space 65 is discharged from the gas exhaust hole 86 to the gas exhaust pipe 88 through the buffer space 87.
  • a plurality of gas supply holes 81 and gas exhaust holes 86 may be provided along the circumferential direction of the processing chamber 6, or may be slit-shaped. Further, the processing gas supply source 85 and the exhaust mechanism 190 may be a mechanism provided in the heat treatment apparatus 100 or may be a utility of a factory in which the heat treatment apparatus 100 is installed.
  • an air particle counter 99 is connected in the middle of the path of the gas exhaust pipe 88 from the processing chamber 6.
  • the air particle counter 99 for example, a light scattering type particle counter that measures the size and number of particles from the scattered light when a gas containing particles is irradiated with laser light is used.
  • the air particle counter 99 measures the air particle concentration of the gas flowing through the gas exhaust pipe 88. Since the gas flowing through the gas exhaust pipe 88 is the gas existing in the heat treatment space 65 in the processing chamber 6, the air particle counter 99 measures the air particle concentration in the processing chamber 6.
  • FIG. 4 is a perspective view showing the overall appearance of the holding portion 7.
  • the holding portion 7 includes a base ring 71, a connecting portion 72, and a susceptor 74.
  • the base ring 71, the connecting portion 72, and the susceptor 74 are all made of quartz. That is, the entire holding portion 7 is made of quartz.
  • the base ring 71 is an arc-shaped quartz member in which a part is missing from the ring shape. This missing portion is provided to prevent interference between the transfer arm 11 of the transfer mechanism 10 and the base ring 71, which will be described later.
  • a plurality of connecting portions 72 (four in the present embodiment) are erected on the upper surface of the base ring 71 along the circumferential direction of the ring shape.
  • the connecting portion 72 is also a quartz member, and is fixed to the base ring 71 by welding.
  • FIG. 5 is a plan view of the susceptor 74.
  • FIG. 6 is a sectional view of the susceptor 74.
  • the susceptor 74 includes a holding plate 75, a guide ring 76, and a plurality of substrate support pins 77.
  • the holding plate 75 is a substantially circular flat plate-shaped member made of quartz. The diameter of the holding plate 75 is larger than the diameter of the semiconductor wafer W. That is, the holding plate 75 has a plane size larger than that of the semiconductor wafer W.
  • a guide ring 76 is installed on the upper peripheral edge of the holding plate 75.
  • the guide ring 76 is a ring-shaped member having an inner diameter larger than the diameter of the semiconductor wafer W. For example, when the diameter of the semiconductor wafer W is 300 mm, the inner diameter of the guide ring 76 is 320 mm.
  • the inner circumference of the guide ring 76 is a tapered surface that widens upward from the holding plate 75.
  • the guide ring 76 is made of quartz similar to the holding plate 75.
  • the guide ring 76 may be welded to the upper surface of the holding plate 75, or may be fixed to the holding plate 75 by a separately processed pin or the like. Alternatively, the holding plate 75 and the guide ring 76 may be processed as an integral member.
  • a region of the upper surface of the holding plate 75 inside the guide ring 76 is a flat holding surface 75 a for holding the semiconductor wafer W.
  • a plurality of substrate support pins 77 are erected on the holding surface 75a of the holding plate 75.
  • a total of twelve substrate support pins 77 are erected at intervals of 30° along the circumference of the outer circumference circle of the holding surface 75a (the inner circumference circle of the guide ring 76) and the concentric circle.
  • the diameter of the circle in which the twelve substrate support pins 77 are arranged is smaller than the diameter of the semiconductor wafer W.
  • Each substrate support pin 77 is made of quartz.
  • the plurality of substrate support pins 77 may be provided on the upper surface of the holding plate 75 by welding, or may be integrally processed with the holding plate 75.
  • the four connecting portions 72 erected on the base ring 71 and the peripheral portion of the holding plate 75 of the susceptor 74 are fixed by welding. That is, the susceptor 74 and the base ring 71 are fixedly connected by the connecting portion 72.
  • the holding unit 7 is attached to the processing chamber 6.
  • the holding plate 75 of the susceptor 74 has a horizontal posture (a posture in which the normal line is aligned with the vertical direction). That is, the holding surface 75a of the holding plate 75 becomes a horizontal surface.
  • the semiconductor wafer W carried into the processing chamber 6 is placed and held in a horizontal posture on the susceptor 74 of the holding portion 7 mounted on the processing chamber 6. At this time, the semiconductor wafer W is supported by the twelve substrate support pins 77 erected on the holding plate 75 and held by the susceptor 74. More strictly, the upper ends of the twelve substrate support pins 77 contact the lower surface of the semiconductor wafer W to support the semiconductor wafer W. Since the heights of the 12 substrate support pins 77 (distance from the upper end of the substrate support pins 77 to the holding surface 75a of the holding plate 75) are uniform, the semiconductor wafer W is placed in a horizontal position by the 12 substrate support pins 77. Can be supported.
  • the semiconductor wafer W is supported by the plurality of substrate support pins 77 at a predetermined distance from the holding surface 75a of the holding plate 75.
  • the thickness of the guide ring 76 is larger than the height of the substrate support pin 77. Therefore, the horizontal misalignment of the semiconductor wafer W supported by the plurality of substrate support pins 77 is prevented by the guide ring 76.
  • the holding plate 75 of the susceptor 74 is formed with an opening 78 penetrating vertically.
  • the opening 78 is provided for the radiation thermometer 20 (see FIG. 3) to receive the radiation light (infrared light) emitted from the lower surface of the semiconductor wafer W held by the susceptor 74. That is, the radiation thermometer 20 receives the light radiated from the lower surface of the semiconductor wafer W held by the susceptor 74 through the opening 78 and measures the temperature of the semiconductor wafer W.
  • the holding plate 75 of the susceptor 74 is provided with four through holes 79 through which the lift pin 12 of the transfer mechanism 10 described later penetrates for the transfer of the semiconductor wafer W.
  • FIG. 7 is a plan view of the transfer mechanism 10.
  • FIG. 8 is a side view of the transfer mechanism 10.
  • the transfer mechanism 10 includes two transfer arms 11.
  • the transfer arm 11 has an arc shape that generally follows an annular recess 62.
  • Two lift pins 12 are erected on each transfer arm 11.
  • Each transfer arm 11 is rotatable by a horizontal movement mechanism 13.
  • the horizontal movement mechanism 13 includes a transfer operation position (solid line position in FIG. 7) where the pair of transfer arms 11 transfers the semiconductor wafer W to the holding unit 7 and the semiconductor wafer W held by the holding unit 7. It is horizontally moved to and from the retracted position (the position indicated by the chain double-dashed line in FIG. 7) that does not overlap in plan view.
  • each transfer arm 11 may be rotated by an individual motor, or a pair of transfer arms 11 may be rotated by one motor using a link mechanism. It may be a moving one.
  • the pair of transfer arms 11 is moved up and down by the elevating mechanism 14 together with the horizontal moving mechanism 13.
  • the elevating mechanism 14 raises the pair of transfer arms 11 at the transfer operation position, a total of four lift pins 12 pass through the through holes 79 (see FIGS. 4 and 5) formed in the susceptor 74, and the lift pins are lifted.
  • the upper end of 12 projects from the upper surface of the susceptor 74.
  • the elevating mechanism 14 lowers the pair of transfer arms 11 at the transfer operation position to extract the lift pins 12 from the through holes 79, and the horizontal movement mechanism 13 moves the pair of transfer arms 11 to open them.
  • the transfer arm 11 moves to the retracted position.
  • the retracted position of the pair of transfer arms 11 is directly above the base ring 71 of the holding unit 7. Since the base ring 71 is placed on the bottom surface of the recess 62, the retreat position of the transfer arm 11 is inside the recess 62.
  • An exhaust mechanism (not shown) is also provided in the vicinity of the portion where the drive unit (horizontal movement mechanism 13 and elevating mechanism 14) of the transfer mechanism 10 is provided, and the atmosphere around the drive unit of the transfer mechanism 10 is provided. Are discharged to the outside of the processing chamber 6.
  • the flash lamp house 5 provided above the processing chamber 6 has a light source composed of a plurality of (30 in this embodiment) xenon flash lamp FL inside the housing 51, and a light source thereof. It is configured to include a reflector 52 provided so as to cover the upper part. Further, a lamp light emitting window 53 is attached to the bottom of the housing 51 of the flash lamp house 5.
  • the lamp light emitting window 53 constituting the floor of the flash lamp house 5 is a plate-shaped quartz window made of quartz.
  • Each of the plurality of flash lamps FL is a rod-shaped lamp having a long cylindrical shape, and the longitudinal direction thereof is along the main surface of the semiconductor wafer W held by the holding portion 7 (that is, along the horizontal direction). They are arranged in a plane so as to be parallel to each other. Therefore, the plane formed by the arrangement of the flash lamps FL is also a horizontal plane.
  • the xenon flash lamp FL is provided with a rod-shaped glass tube (discharge tube) in which xenon gas is filled and an anode and a cathode connected to a condenser are provided at both ends of the xenon flash lamp FL and an outer peripheral surface of the glass tube. And a triggered electrode. Since xenon gas is an electrical insulator, electricity does not flow in the glass tube in a normal state even if electric charges are accumulated in the capacitor. However, when a high voltage is applied to the trigger electrode to break the insulation, electricity stored in the capacitor instantly flows in the glass tube, and light is emitted by the excitation of the xenon atom or molecule at that time.
  • the flash lamp FL since the electrostatic energy stored in the condenser in advance is converted into an extremely short light pulse of 0.1 millisecond to 100 millisecond, continuous lighting such as the halogen lamp HL is performed. It has the feature that it can irradiate extremely strong light compared to a light source. That is, the flash lamp FL is a pulsed light emitting lamp that instantaneously emits light in an extremely short time of less than 1 second. The light emission time of the flash lamp FL can be adjusted by the coil constant of the lamp power supply that supplies power to the flash lamp FL.
  • the reflector 52 is provided above the plurality of flash lamps FL so as to cover them all.
  • the basic function of the reflector 52 is to reflect the flash light emitted from the plurality of flash lamps FL toward the heat treatment space 65.
  • the reflector 52 is formed of an aluminum alloy plate, and the surface (the surface facing the flash lamp FL) is roughened by blasting.
  • the halogen lamp house 4 provided below the processing chamber 6 has a plurality of (40 in the present embodiment) halogen lamps HL inside the housing 41.
  • the plurality of halogen lamps HL irradiate the heat treatment space 65 from below the processing chamber 6 through the lower chamber window 64.
  • FIG. 9 is a plan view showing the arrangement of a plurality of halogen lamps HL.
  • 20 halogen lamps HL are provided in each of the upper and lower two stages in the rectangular light source region.
  • Each halogen lamp HL is a rod-shaped lamp having a long cylindrical shape.
  • the 20 halogen lamps HL in both the upper and lower stages are arranged so that their longitudinal directions are parallel to each other along the main surface of the semiconductor wafer W held by the holding portion 7 (that is, along the horizontal direction). There is. Therefore, the plane formed by the arrangement of the halogen lamps HL in both the upper and lower stages is a horizontal plane.
  • the arrangement density of the halogen lamps HL is higher in the region facing the peripheral portion than in the region facing the central portion of the semiconductor wafer W held by the holding portion 7 in both the upper and lower stages. There is. That is, in both the upper and lower stages, the arrangement pitch of the halogen lamps HL is shorter in the peripheral portion than in the central portion of the lamp array. Therefore, it is possible to irradiate a larger amount of light on the peripheral edge of the semiconductor wafer W, which tends to have a temperature drop during heating by light irradiation from the halogen lamp HL.
  • the lamp group consisting of the upper halogen lamps HL and the lamp group consisting of the lower halogen lamps HL are arranged so as to intersect in a grid pattern. That is, a total of 40 halogen lamps HL are arranged so that the longitudinal direction of each upper halogen lamp HL and the longitudinal direction of each lower halogen lamp HL are orthogonal to each other.
  • the halogen lamp HL is a filament-type light source that energizes the filament arranged inside the glass tube to make the filament incandescent and emit light. Inside the glass tube, a gas in which a small amount of a halogen element (iodine, bromine, etc.) is introduced into an inert gas such as nitrogen or argon is sealed. By introducing the halogen element, it becomes possible to set the filament temperature to a high temperature while suppressing breakage of the filament. Therefore, the halogen lamp HL has a characteristic that it has a long life and can continuously emit strong light as compared with an ordinary incandescent lamp. That is, the halogen lamp HL is a continuously lit lamp that continuously emits light for at least 1 second or longer. Further, since the halogen lamp HL is a rod-shaped lamp, it has a long life, and by arranging the halogen lamp HL along the horizontal direction, the radiation efficiency to the upper semiconductor wafer W becomes excellent.
  • a halogen element iod
  • a reflector 43 is provided below the two-stage halogen lamp HL (FIG. 3).
  • the reflector 43 reflects the light emitted from the plurality of halogen lamps HL to the heat treatment space 65 side.
  • the heat treatment unit 160 prevents an excessive temperature rise of the halogen lamp house 4, the flash lamp house 5 and the processing chamber 6 due to the heat energy generated from the halogen lamp HL and the flash lamp FL during the heat treatment of the semiconductor wafer W. Therefore, various cooling structures are provided. For example, a water cooling pipe (not shown) is provided on the wall of the processing chamber 6. Further, the halogen lamp house 4 and the flash lamp house 5 have an air-cooled structure in which a gas flow is formed inside to exhaust heat. Air is also supplied to the gap between the upper chamber window 63 and the lamp light emitting window 53 to cool the flash lamp house 5 and the upper chamber window 63.
  • FIG. 10 is a block diagram showing the configuration of the control unit 3.
  • the control unit 3 controls the above-described various operating mechanisms provided in the heat treatment apparatus 100.
  • the hardware configuration of the control unit 3 is similar to that of a general computer. That is, the control unit 3 includes a CPU that is a circuit that performs various arithmetic processes, a ROM that is a read-only memory that stores a basic program, a RAM that is a readable/writable memory that stores various information, and control software and data. A magnetic disk 35 for storing is provided.
  • the processing in the heat treatment apparatus 100 proceeds when the CPU of the control unit 3 executes a predetermined processing program.
  • the detection unit 31 and the reporting unit 32 are function processing units realized by the CPU of the control unit 3 executing a predetermined processing program. The processing contents of the detection unit 31 and the alarm unit 32 will be further described later.
  • the control unit 3 is shown in the indexer unit 101 in FIG. 1, the present invention is not limited to this, and the control unit 3 can be arranged at any position in the heat treatment apparatus 100.
  • the input unit 33 and the display unit 34 are connected to the control unit 3.
  • the control unit 3 displays various information on the display unit 34.
  • the operator of the heat treatment apparatus 100 can input various commands and parameters from the input unit 33 while confirming the information displayed on the display unit 34.
  • a keyboard or a mouse can be used.
  • the display unit 34 for example, a liquid crystal display can be used.
  • a liquid crystal touch panel provided on the outer wall of the heat treatment apparatus 100 is adopted so as to have both functions.
  • the semiconductor wafer W to be processed here is a semiconductor substrate to which impurities (ions) have been added by the ion implantation method.
  • the activation of the impurities is performed by a flash light irradiation heat treatment (annealing) by the heat treatment apparatus 100.
  • the processing procedure of the heat treatment apparatus 100 described below proceeds by the control unit 3 controlling each operating mechanism of the heat treatment apparatus 100.
  • a plurality of unprocessed semiconductor wafers W into which impurities have been injected are placed in the carrier C and placed on the load port 110 of the indexer unit 101.
  • the delivery robot 120 takes out the unprocessed semiconductor wafers W one by one from the carrier C and carries them into the alignment chamber 231 of the alignment section 230.
  • the alignment chamber 231 the semiconductor wafer W is rotated around the vertical axis in the horizontal plane with the center portion as the center of rotation, and the notch or the like is optically detected to adjust the orientation of the semiconductor wafer W.
  • the delivery robot 120 of the indexer unit 101 takes out the semiconductor wafer W whose orientation has been adjusted from the alignment chamber 231, and carries it into the first cool chamber 131 of the cooling unit 130 or the second cool chamber 141 of the cooling unit 140.
  • the unprocessed semiconductor wafer W carried into the first cool chamber 131 or the second cool chamber 141 is carried out to the transfer chamber 170 by the transfer robot 150.
  • the transfer robot 150 When the unprocessed semiconductor wafer W is transferred from the indexer unit 101 to the transfer chamber 170 via the first cool chamber 131 or the second cool chamber 141, the first cool chamber 131 and the second cool chamber 141 are not connected to each other. It functions as a path for the delivery of.
  • the transfer robot 150 from which the semiconductor wafer W has been taken out rotates so as to face the heat treatment unit 160. Subsequently, the gate valve 185 opens the space between the processing chamber 6 and the transfer chamber 170, and the transfer robot 150 loads the unprocessed semiconductor wafer W into the processing chamber 6. At this time, if the preceding heat-treated semiconductor wafer W is present in the processing chamber 6, the heat-treated semiconductor wafer W is taken out by one of the transfer hands 151a and 151b, and then the untreated semiconductor wafer W is taken out. W is carried into the processing chamber 6 to replace the wafer. The gate valve 185 then closes between the processing chamber 6 and the transfer chamber 170.
  • the semiconductor wafer W carried into the processing chamber 6 is preheated by the halogen lamp HL, and then the flash heat treatment is performed by irradiating the flash light from the flash lamp FL. This flash heat treatment activates the impurities injected into the semiconductor wafer W.
  • the gate valve 185 opens the space between the processing chamber 6 and the transfer chamber 170 again, and the transfer robot 150 carries out the semiconductor wafer W after the flash heat treatment from the processing chamber 6 to the transfer chamber 170. ..
  • the transfer robot 150 from which the semiconductor wafer W has been taken out rotates so as to face the first cool chamber 131 or the second cool chamber 141 from the processing chamber 6. Further, the gate valve 185 closes between the processing chamber 6 and the transfer chamber 170.
  • the transfer robot 150 carries the heat-treated semiconductor wafer W into the first cool chamber 131 of the cooling unit 130 or the second cool chamber 141 of the cooling unit 140.
  • the semiconductor wafer W is carried into the first cool chamber 131 even after the heat treatment, and passes through the second cool chamber 141 before the heat treatment. If so, it is carried into the second cool chamber 141 even after the heat treatment.
  • the semiconductor wafer W is cooled after the flash heat treatment. Since the temperature of the entire semiconductor wafer W at the time of being carried out from the processing chamber 6 of the heat treatment unit 160 is relatively high, it is cooled to near room temperature in the first cool chamber 131 or the second cool chamber 141. is there.
  • the delivery robot 120 After the lapse of a predetermined cooling processing time, the delivery robot 120 carries out the cooled semiconductor wafer W from the first cool chamber 131 or the second cool chamber 141 and returns it to the carrier C.
  • the carrier C is carried out from the load port 110 of the indexer section 101.
  • FIG. 11 is a flowchart showing a processing procedure of the semiconductor wafer W in the heat treatment unit 160.
  • the valve 84 for air supply Prior to the loading of the semiconductor wafer W into the processing chamber 6, the valve 84 for air supply is opened, and the valve 89 for gas exhaust is opened to start air supply/exhaust to/from the processing chamber 6.
  • nitrogen gas is supplied to the heat treatment space 65 from the gas supply hole 81.
  • the valve 89 is opened, the gas in the processing chamber 6 is exhausted from the gas exhaust hole 86.
  • the nitrogen gas supplied from the upper portion of the heat treatment space 65 in the processing chamber 6 flows downward and is exhausted from the lower portion of the heat treatment space 65.
  • the gate valve 185 is opened to open the transfer opening 66, and the semiconductor wafer W to be processed is carried into the heat treatment space 65 in the processing chamber 6 by the transfer robot 150 (step). S1).
  • the transfer robot 150 advances the transfer hand 151a (or transfer hand 151b) for holding the unprocessed semiconductor wafer W to a position directly above the holding unit 7 and stops the transfer robot 150.
  • the pair of transfer arms 11 of the transfer mechanism 10 horizontally moves from the retracted position to the transfer operation position and rises, so that the lift pin 12 projects from the upper surface of the holding plate 75 of the susceptor 74 through the through hole 79.
  • the lift pin 12 rises above the upper end of the substrate support pin 77.
  • the transfer robot 150 causes the transfer hand 151 a to exit the heat treatment space 65, and the transfer opening 66 is closed by the gate valve 185. Then, as the pair of transfer arms 11 descend, the semiconductor wafer W is handed over from the transfer mechanism 10 to the susceptor 74 of the holding portion 7 and held in a horizontal posture from below.
  • the semiconductor wafer W is supported by a plurality of substrate support pins 77 provided upright on the holding plate 75 and held by the susceptor 74. Further, the semiconductor wafer W is held by the holding portion 7 with the surface on which the pattern is formed and the impurities are injected as the upper surface.
  • a predetermined distance is formed between the back surface (main surface opposite to the front surface) of the semiconductor wafer W supported by the plurality of substrate support pins 77 and the holding surface 75a of the holding plate 75.
  • the pair of transfer arms 11 descending below the susceptor 74 are retracted by the horizontal movement mechanism 13 to the retracted position, that is, inside the recess 62.
  • the 40 halogen lamps HL are turned on all at once and preheating (assist heating) is started (step S2).
  • the halogen light emitted from the halogen lamp HL passes through the lower chamber window 64 and the susceptor 74 made of quartz and is irradiated from the lower surface of the semiconductor wafer W.
  • the semiconductor wafer W is preheated by receiving the light irradiation from the halogen lamp HL, and the temperature rises. Since the transfer arm 11 of the transfer mechanism 10 is retracted inside the recess 62, it does not interfere with heating by the halogen lamp HL.
  • the temperature of the semiconductor wafer W is measured by the radiation thermometer 20. That is, the radiation thermometer 20 receives infrared light radiated from the lower surface of the semiconductor wafer W held by the susceptor 74 through the opening 78, and measures the wafer temperature during temperature rise. The measured temperature of the semiconductor wafer W is transmitted to the controller 3.
  • the control unit 3 controls the output of the halogen lamp HL while monitoring whether or not the temperature of the semiconductor wafer W, which is raised by light irradiation from the halogen lamp HL, has reached a predetermined preheating temperature T1.
  • control unit 3 feedback-controls the output of the halogen lamp HL so that the temperature of the semiconductor wafer W becomes the preheating temperature T1 based on the measured value by the radiation thermometer 20.
  • the preheating temperature T1 is set to about 600 ° C. to 800 ° C. (700 ° C. in the present embodiment) so that impurities added to the semiconductor wafer W do not diffuse due to heat.
  • the control unit 3 After the temperature of the semiconductor wafer W reaches the preheating temperature T1, the control unit 3 maintains the semiconductor wafer W at the preheating temperature T1 for a while. Specifically, when the temperature of the semiconductor wafer W measured by the radiation thermometer 20 reaches the preheating temperature T1, the control unit 3 adjusts the output of the halogen lamp HL, and the temperature of the semiconductor wafer W is almost spared. The heating temperature T1 is maintained.
  • step S3 the measurement of the airborne particle concentration in the processing chamber 6 is started until the subsequent flash heating is executed. That is, when the semiconductor wafer W is being heated by the halogen lamp HL, measurement of the airborne particle concentration is started. Specifically, the gas in the processing chamber 6 is exhausted through the gas exhaust pipe 88, and the concentration of air particles of the gas flowing through the gas exhaust pipe 88 is measured by the air particle counter 99. The measurement of the air particle concentration by the air particle counter 99 is continuously performed until a predetermined time elapses after the end of the subsequent flash heating.
  • FIG. 12 is a diagram showing changes in the air particle concentration in the processing chamber 6 measured by the air particle counter 99.
  • the measurement of the airborne particle concentration in the processing chamber 6 by the airborne particle counter 99 is started at time t1.
  • the airborne particle concentration C1 measured by the airborne particle counter 99 during preheating is a background concentration of the particle concentration measurement.
  • the flash lamp FL irradiates the surface of the semiconductor wafer W with flash light at time t2 when the temperature of the semiconductor wafer W reaches the preheating temperature T1 and a predetermined time elapses (step S4). At this time, a part of the flash light emitted from the flash lamp FL goes directly into the processing chamber 6, and another part of the flash light is once reflected by the reflector 52 and then goes into the processing chamber 6, where these flashes are emitted. Flash heating of the semiconductor wafer W is performed by irradiation with light.
  • the time t1 at which the measurement of the air particle concentration in the processing chamber 6 by the air particle counter 99 is started may be immediately before the time t2 at which the flash lamp FL irradiates the surface of the semiconductor wafer W with the flash light. That is, it suffices to be able to acquire or estimate the value of the airborne particle concentration C1 which is the reference value in the particle concentration measurement.
  • the flash heating is performed by irradiating flash light (flash light) from the flash lamp FL, so that the surface temperature of the semiconductor wafer W can be raised in a short time. That is, the flash light emitted from the flash lamp FL has an extremely short irradiation time of 0.1 millisecond or more and 100 millisecond or less, in which the electrostatic energy stored in the capacitor in advance is converted into an extremely short optical pulse. It is a strong flash. Then, the surface temperature of the semiconductor wafer W flash-heated by the flash light irradiation from the flash lamp FL momentarily rises to the processing temperature T2 of 1000 ° C. or higher, and the impurities injected into the semiconductor wafer W are activated. After that, the surface temperature drops rapidly.
  • flash light flash light
  • the surface temperature of the semiconductor wafer W can be raised and lowered in a very short time by flash heating, it is possible to activate the impurities while suppressing the diffusion of the impurities injected into the semiconductor wafer W due to heat. .. Since the time required for activation of impurities is extremely short as compared with the time required for thermal diffusion thereof, activation is not possible even for a short time such that diffusion of about 0.1 millisecond to 100 millisecond does not occur. Complete.
  • the detection unit 31 of the control unit 3 detects the semiconductor wafer W based on the concentration of the airborne particles in the processing chamber 6 measured by the airborne particle counter 99 during the heat treatment of the semiconductor wafer W.
  • a crack is detected (step S5). More specifically, in the first embodiment, when the increase in the air particle concentration in the processing chamber 6 measured by the air particle counter 99 exceeds a predetermined threshold value set in advance, the detection unit 31. Determines that the semiconductor wafer W to be processed is broken.
  • the difference ⁇ C between the air particle concentration C2, which is the highest measurement value during the period in which the detection unit 31 is being measured by the air particle counter 99, and the air particle concentration C1 that is the background is calculated. To do.
  • This difference ⁇ C is a concentration increase value from the background air particle concentration C1.
  • Detector 31 determines that the difference ⁇ C is the concentration increase value is at greater than the predetermined threshold value C th, the semiconductor wafer W is cracked in the process chamber 6. That is, when the air particle concentration measured by the air particle counter 99 greatly increases beyond the threshold value Cth , it is determined that the semiconductor wafer W is cracked and a large amount of particles are generated. On the other hand, the detection unit 31 determines that the difference ⁇ C is at or less than the threshold value C th is cracking of the semiconductor wafer W is not generated. That is, when the increase in the air particle concentration measured by the air particle counter 99 does not exceed the threshold value Cth , the increase in the air particle concentration is within the range of the normal particle concentration increase due to the flash light irradiation.
  • the threshold value Cth may be set in advance by measuring the concentration of airborne particles when wafer cracking occurs by an experiment or the like, and may be stored in a storage unit such as a magnetic disk 35 of the control unit 3. The smaller the threshold value C th is set, the more severe the crack determination is made.
  • step S5 When the difference ⁇ C is larger than the threshold value C th and the detection unit 31 determines that the semiconductor wafer W is cracked, the process proceeds from step S5 to step S6, and the reporting unit 32 issues an alarm.
  • the reporting unit 32 causes the display unit 34 to display an alarm indicating that the semiconductor wafer W is cracked, for example.
  • control unit 3 stops the process in the heat treatment apparatus 100 (step S7). Therefore, even after the flash heating is completed, the gate valve 185 is not opened, and the broken semiconductor wafer W remains in the processing chamber 6. As a result, a large amount of particles generated by the cracking of the semiconductor wafer W are prevented from flowing out from the processing chamber 6 to the transfer chamber 170. Thereafter, the operator of the heat treatment apparatus 100 opens the processing chamber 6 and performs necessary recovery work such as collecting the fragments of the semiconductor wafer W.
  • the difference ⁇ C is equal to or less than the threshold value C th
  • the process proceeds from step S5 to step S8, processing the semiconductor wafer W from the processing chamber 6 is continue out To be done.
  • the halogen lamp HL is also turned off when the flash heating process is normally completed without the semiconductor wafer W being cracked.
  • the semiconductor wafer W is rapidly cooled from the preheating temperature T1.
  • the temperature of the semiconductor wafer W during cooling is measured by the radiation thermometer 20, and the measurement result is transmitted to the control unit 3.
  • the control unit 3 monitors whether the temperature of the semiconductor wafer W has dropped to a predetermined temperature based on the measurement result of the radiation thermometer 20.
  • the pair of transfer arms 11 of the transfer mechanism 10 horizontally move from the retracted position to the transfer operation position again and rise, so that the lift pin 12 is a susceptor.
  • the semiconductor wafer W that has protruded from the upper surface of 74 and has undergone the heat treatment is received from the susceptor 74.
  • the transfer opening 66 closed by the gate valve 185 is opened, and the processed semiconductor wafer W placed on the lift pin 12 is carried out by the transfer hand 151b (or transfer hand 151a) of the transfer robot 150.
  • the transfer robot 150 advances the transfer hand 151b to a position directly below the semiconductor wafer W pushed up by the lift pin 12 and stops the transfer robot 150. Then, as the pair of transfer arms 11 are lowered, the semiconductor wafer W after flash heating is passed to the transfer hand 151b and placed on the transfer hand 151b. After that, the transfer robot 150 moves the transfer hand 151b out of the processing chamber 6 to carry out the processed semiconductor wafer W.
  • the crack detection is performed with a simple configuration in which the air particle concentration in the processing chamber 6 is measured and the amount of increase thereof is compared with the threshold value C th , the crack of the semiconductor wafer W during the heat treatment is easily detected. can do.
  • a normal concentration pattern showing a change in the air particle concentration in the processing chamber 6 measured by the air particle counter 99 when the semiconductor wafer W is normally processed without being cracked during the heat treatment. 36 is acquired in advance and stored in the magnetic disk 35 (FIG. 10). From the viewpoint of improving the accuracy of the crack determination, it is preferable to acquire as many normal density patterns 36 as possible and store them in the magnetic disk 35.
  • the actual measurement pattern (the pattern shown in FIG. 12) showing the change in the air particle concentration in the processing chamber 6 measured by the air particle counter 99 by the detection unit 31.
  • the normal density pattern 36 are compared. Then, when the measured pattern of the air particle concentration deviates from the normal concentration pattern 36 by a certain amount or more, the detection unit 31 determines that the semiconductor wafer W is broken in the processing chamber 6. That is, when the measured pattern of the air particle concentration measured by the air particle counter 99 is significantly different from the pattern when the heat treatment is normally performed, it is determined that the semiconductor wafer W is cracked. On the other hand, when the measured pattern of the airborne particle concentration deviates from the normal concentration pattern 36 by less than a certain amount, the detection unit 31 determines that the semiconductor wafer W is not cracked.
  • the alarm unit 32 issues an alarm and the control unit 3 stops the process in the heat treatment apparatus 100, as in the first embodiment.
  • the control unit 3 stops the process in the heat treatment apparatus 100, as in the first embodiment.
  • the actual measurement pattern of the change in the air particle concentration in the processing chamber 6 measured by the air particle counter 99 during the heat treatment of the semiconductor wafer W is different from the normal concentration pattern 36.
  • the air particle counter 99 is connected to the gas exhaust pipe 88, but instead of this, the air particle counter 99 may be provided directly in the processing chamber 6. That is, the airborne particle counter 99 may be provided at a position where the airborne particle concentration in the processing chamber 6 can be measured.
  • the air particle counter 99 may be difficult to detect the particles generated when the semiconductor wafer W is broken depending on the mounting position of the air particle counter 99. Since the entire atmosphere of the heat treatment space 65 in the processing chamber 6 flows into the gas exhaust pipe 88, it is more reliable to provide the air particle counter 99 in the gas exhaust pipe 88 as in the above embodiment. Particles can be detected.
  • the air particle counter 99 may be provided in the exhaust pipe from the first cool chamber 131 or the second cool chamber 141 to measure the air particle concentration in those cool chambers.
  • the high-temperature semiconductor wafer W that has been processed in the processing chamber 6 of the heat treatment section 160 is carried into the first cool chamber 131 or the second cool chamber 141 and cooled.
  • the semiconductor wafer W may crack even in this cooling step. While the semiconductor wafer W is being cooled in the first cool chamber 131 or the second cool chamber 141, the cool chamber measured by the airborne particle counter 99 as in the first or second embodiment. Cracks in the semiconductor wafer W can be detected based on the concentration of particles in the air.
  • the concentration of air particles in the chamber during heat treatment of the semiconductor wafer W may be measured, and cracks in the semiconductor wafer W during heat treatment may be detected based on the air particle concentration.
  • Heat treatment as used herein is a concept that includes both heat treatment and cooling treatment.
  • the air particle counter 99 may be provided in the exhaust pipe from the transport chamber 170 to measure the air particle concentration in the transport chamber 170. Normally, it is unlikely that the semiconductor wafer W will crack in the transfer chamber 170. However, when the semiconductor wafer W is cracked in the processing chamber 6 of the heat treatment unit 160 and the gate valve 185 is opened without the crack being detected, particles flow out from the processing chamber 6 to the transfer chamber 170. Will be done. In such a case, the processing chamber 6 is subjected to the crack determination based on the air particle concentration in the transport chamber 170 measured by the air particle counter 99 in the same manner as in the first embodiment or the second embodiment. The crack of the semiconductor wafer W inside can be detected.
  • the crack detection technology described in the first and second embodiments may be combined with the technology presented in Patent Documents 1 to 3, for example. By doing so, the crack detection accuracy of the semiconductor wafer W can be further improved.
  • the air particle counter 99 provided directly in the processing chamber 6 or the transfer chamber 170 or in the exhaust pipe monitors the air particle concentration in the chamber, and when the air particle concentration exceeds a predetermined level, an alarm is generated. May be issued and the processing in the heat treatment apparatus 100 may be stopped. Further, an aerial particle counter 99 may be provided in the gas supply pipe to the processing chamber 6 or the transfer chamber 170 to monitor the concentration of aerial particles in the gas supplied to the chamber.
  • the flash lamp house 5 is provided with 30 flash lamps FL, but the number is not limited to this, and the number of flash lamps FL may be any number. .. Further, the flash lamp FL is not limited to the xenon flash lamp and may be a krypton flash lamp. Further, the number of halogen lamps HL provided in the halogen lamp house 4 is not limited to 40, and may be any number.
  • the semiconductor wafer W is preheated by using the filament type halogen lamp HL as a continuous lighting lamp that continuously emits light for 1 second or more, but the present invention is not limited to this.
  • a discharge type arc lamp for example, a xenon arc lamp
  • a continuous lighting lamp to perform preheating.
  • the substrate to be processed by the heat treatment apparatus 100 is not limited to a semiconductor wafer, but may be a glass substrate used for a flat panel display such as a liquid crystal display device or a solar cell substrate.
  • Control unit 4 Halogen lamp house 5 Flash lamp house 6 Processing chamber 7 Holding unit 10 Transfer mechanism 31 Detection unit 32 Notification unit 35 Magnetic disk 36 Normal concentration pattern 65 Heat treatment space 74 Suceptor 99 Air particle counter 100 Heat treatment device 101 Indexer Part 120 Delivery robot 130, 140 Cooling part 131 First cool chamber 141 Second cool chamber 150 Transfer robot 151a, 151b Transfer hand 160 Heat treatment part 170 Transfer chamber FL Flash lamp HL Halogen lamp W Semiconductor wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

処理チャンバーに搬入した半導体ウェハーにハロゲンランプから光を照射して予備加熱を行う。予備加熱により半導体ウェハーが昇温を開始した後に処理チャンバー内の気中パーティクル濃度の測定を開始する。予備加熱により所定温度にまで昇温した半導体ウェハーにフラッシュ光を照射してフラッシュ加熱を行う。半導体ウェハーに熱処理を行っているときの処理チャンバー内の気中パーティクル濃度を測定し、その濃度値が所定の閾値を超えて上昇したときには、半導体ウェハーが割れたと判定する。気中パーティクル濃度を測定し、その上昇分を閾値と比較するだけという簡易な構成にて割れ検出を行っているため、熱処理時における半導体ウェハーの割れを簡便に検出することができる。

Description

熱処理方法および熱処理装置
 本発明は、半導体ウェハー等の薄板状精密電子基板(以下、単に「基板」と称する)に加熱または冷却の熱処理を行う熱処理方法および熱処理装置に関する。
 半導体デバイスの製造プロセスにおいて、極めて短時間で半導体ウェハーを加熱するフラッシュランプアニール(FLA)が注目されている。フラッシュランプアニールは、キセノンフラッシュランプ(以下、単に「フラッシュランプ」とするときにはキセノンフラッシュランプを意味する)を使用して半導体ウェハーの表面にフラッシュ光を照射することにより、半導体ウェハーの表面のみを極めて短時間(数ミリ秒以下)に昇温させる熱処理技術である。
 キセノンフラッシュランプの放射分光分布は紫外域から近赤外域であり、従来のハロゲンランプよりも波長が短く、シリコンの半導体ウェハーの基礎吸収帯とほぼ一致している。よって、キセノンフラッシュランプから半導体ウェハーにフラッシュ光を照射したときには、透過光が少なく半導体ウェハーを急速に昇温することが可能である。また、数ミリ秒以下の極めて短時間のフラッシュ光照射であれば、半導体ウェハーの表面近傍のみを選択的に昇温できることも判明している。
 このようなフラッシュランプアニールは、極短時間の加熱が必要とされる処理、例えば典型的には半導体ウェハーに注入された不純物の活性化に利用される。イオン注入法によって不純物が注入された半導体ウェハーの表面にフラッシュランプからフラッシュ光を照射すれば、当該半導体ウェハーの表面を極短時間だけ活性化温度にまで昇温することができ、不純物を深く拡散させることなく、不純物活性化のみを実行することができるのである。
 このようなフラッシュランプを使用した熱処理装置においては、極めて高いエネルギーを有するフラッシュ光を瞬間的に半導体ウェハーの表面に照射するため、一瞬で半導体ウェハーの表面温度が急速に上昇する一方で裏面温度はそれ程には上昇しない。このため、半導体ウェハーの表面のみに急激な熱膨張が生じて半導体ウェハーが上面を凸として反るように変形する。そして、次の瞬間には反動で半導体ウェハーが下面を凸として反るように変形していた。
 半導体ウェハーが上面を凸とするように変形したときには、ウェハーの端縁部がサセプタに衝突する。逆に、半導体ウェハーが下面を凸とするように変形したときには、ウェハーの中央部がサセプタに衝突することとなっていた。その結果、サセプタに衝突した衝撃によって半導体ウェハーが割れるという問題があった。
 フラッシュ加熱時にウェハー割れが生じたときには、その割れを迅速に検出して後続の半導体ウェハーの投入を停止するとともに、チャンバー内の清掃を行う必要がある。また、ウェハー割れによって発生したパーティクルがチャンバー外に飛散して後続の半導体ウェハーに付着する等の弊害を防止する観点からも、フラッシュ加熱直後のチャンバーの搬出入口を開放する前にチャンバー内にて半導体ウェハーの割れを検出するのが好ましい。
 このため、例えば特許文献1には、フラッシュ加熱処理を行うチャンバーにマイクロフォンを設け、半導体ウェハーが割れたときの音を検知することによってウェハー割れを判定する技術が開示されている。また、特許文献2には、半導体ウェハーからの反射光を導光ロッドによって受光し、その反射光の強度からウェハー割れを検出する技術が開示されている。さらに、特許文献3には、フラッシュ光照射後の半導体ウェハーの温度プロファイルの平均値または標準偏差からウェハー割れを検出する技術が開示されている。
特開2009-231697号公報 特開2015-130423号公報 特開2018-148201号公報
 しかしながら、特許文献1に開示の技術では、半導体ウェハーが割れた音響のみを抽出するためのフィルタリングが困難であるという問題があった。また、特許文献2に開示の技術では、導光ロッドを回転させる工程がフラッシュ光照射の前後で2回必要となるため、スループットが悪化するという問題があった。さらに、特許文献3に開示の技術では、半導体ウェハーの温度プロファイルを取得し、その温度プロファイルに繁雑な演算処理を行う必要があった。
 本発明は、上記課題に鑑みてなされたものであり、熱処理時における基板の割れを簡便に検出することができる熱処理方法および熱処理装置を提供することを目的とする。
 上記課題を解決するため、この発明の第1の態様は、基板に熱処理を行う熱処理方法において、チャンバー内に収容した基板に対して熱処理を行う処理工程と、前記熱処理を行っているときの前記チャンバー内の気中パーティクル濃度を測定する測定工程と、前記測定工程にて測定された気中パーティクル濃度に基づいて前記基板の割れを検出する検出工程と、を備える。
 また、第2の態様は、第1の態様に係る熱処理方法において、前記検出工程では、前記測定工程にて測定されている気中パーティクル濃度の上昇が所定の閾値を超えたときに前記基板が割れたと判定する。
 また、第3の態様は、第1の態様に係る熱処理方法において、前記検出工程では、前記測定工程にて測定された気中パーティクル濃度の変化の実測パターンが正常に熱処理が行われたときに取得済みの正常濃度パターンと相違するときに前記基板が割れたと判定する。
 また、第4の態様は、第1から第3のいずれかの態様に係る熱処理方法において、前記検出工程にて前記基板の割れが検出されたときに、警告を発報するとともに、前記熱処理を停止する。
 また、第5の態様は、第1から第4のいずれかの態様に係る熱処理方法において、前記熱処理は、フラッシュランプから前記基板にフラッシュ光を照射する加熱処理である。
 また、第6の態様は、基板に熱処理を行う熱処理装置において、基板を収容するチャンバーと、前記チャンバー内に収容された前記基板に対して熱処理を行う熱処理部と、前記チャンバー内の気中パーティクル濃度を測定する測定部と、前記熱処理を行っているときに前記測定部によって測定された前記チャンバー内の気中パーティクル濃度に基づいて前記基板の割れを検出する検出部と、を備える。
 また、第7の態様は、第6の態様に係る熱処理装置において、前記検出部は、前記熱処理を行っているときに前記測定部によって測定されている気中パーティクル濃度の上昇が所定の閾値を超えたときに前記基板が割れたと判定する。
 また、第8の態様は、第6の態様に係る熱処理装置において、基板が割れることなく正常に熱処理が行われたときに前記測定部によって測定された気中パーティクル濃度の変化を示す正常濃度パターンを格納する記憶部をさらに備え、前記検出部は、前記熱処理を行っているときに前記測定部によって測定された気中パーティクル濃度の変化の実測パターンが前記正常濃度パターンと相違するときに前記基板が割れたと判定する。
 また、第9の態様は、第6から第8のいずれかの態様に係る熱処理装置において、前記検出部によって前記基板の割れが検出されたときに、警告を発報するとともに、前記熱処理を停止する制御部をさらに備える。
 また、第10の態様は、第6から第9のいずれかの発明に係る熱処理装置において、前記熱処理部は、前記基板にフラッシュ光を照射して前記基板を加熱するフラッシュランプを含む。
 第1から第5の態様に係る熱処理方法によれば、熱処理を行っているときのチャンバー内の気中パーティクル濃度に基づいて基板の割れを検出するため、気中パーティクル濃度を測定するだけで熱処理時における基板の割れを簡便に検出することができる。
 第6から第10の態様に係る熱処理装置によれば、熱処理を行っているときに測定部によって測定されたチャンバー内の気中パーティクル濃度に基づいて基板の割れを検出するため、気中パーティクル濃度を測定するだけで熱処理時における基板の割れを簡便に検出することができる。
本発明に係る熱処理装置を示す平面図である。 図1の熱処理装置の正面図である。 熱処理部の構成を示す縦断面図である。 保持部の全体外観を示す斜視図である。 サセプタの平面図である。 サセプタの断面図である。 移載機構の平面図である。 移載機構の側面図である。 複数のハロゲンランプの配置を示す平面図である。 制御部の構成を示すブロック図である。 熱処理部における半導体ウェハーの処理手順を示すフローチャートである。 処理チャンバー内の気中パーティクル濃度の変化を示す図である。
 以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
  <第1実施形態>
 まず、本発明に係る熱処理装置の全体構成について説明する。図1は、本発明に係る熱処理装置100を示す平面図であり、図2はその正面図である。熱処理装置100は基板として円板形状の半導体ウェハーWにフラッシュ光を照射してその半導体ウェハーWを加熱するフラッシュランプアニール装置である。処理対象となる半導体ウェハーWのサイズは特に限定されるものではないが、例えばφ300mmやφ450mmである。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。また、図1~図3の各図においては、それらの方向関係を明確にするためZ軸方向を鉛直方向とし、XY平面を水平面とするXYZ直交座標系を付している。
 図1および図2に示すように、熱処理装置100は、未処理の半導体ウェハーWを外部から装置内に搬入するとともに処理済みの半導体ウェハーWを装置外に搬出するためのインデクサ部101、未処理の半導体ウェハーWの位置決めを行うアライメント部230、加熱処理後の半導体ウェハーWの冷却を行う2つの冷却部130,140、半導体ウェハーWにフラッシュ加熱処理を施す熱処理部160並びに冷却部130,140および熱処理部160に対して半導体ウェハーWの受け渡しを行う搬送ロボット150を備える。また、熱処理装置100は、上記の各処理部に設けられた動作機構および搬送ロボット150を制御して半導体ウェハーWのフラッシュ加熱処理を進行させる制御部3を備える。
 インデクサ部101は、複数のキャリアC(本実施形態では2個)を並べて載置するロードポート110と、各キャリアCから未処理の半導体ウェハーWを取り出すとともに、各キャリアCに処理済みの半導体ウェハーWを収納する受渡ロボット120とを備えている。未処理の半導体ウェハーWを収容したキャリアCは無人搬送車(AGV、OHT)等によって搬送されてロードポート110に載置されるともに、処理済みの半導体ウェハーWを収容したキャリアCは無人搬送車によってロードポート110から持ち去られる。
 また、ロードポート110においては、受渡ロボット120がキャリアCに対して任意の半導体ウェハーWの出し入れを行うことができるように、キャリアCが図2の矢印CUにて示す如く昇降移動可能に構成されている。なお、キャリアCの形態としては、半導体ウェハーWを密閉空間に収納するFOUP(front opening unified pod)の他に、SMIF(Standard Mechanical Inter Face)ポッドや収納した半導体ウェハーWを外気に曝すOC(open cassette)であっても良い。
 また、受渡ロボット120は、図1の矢印120Sにて示すようなスライド移動、矢印120Rにて示すような旋回動作および昇降動作が可能とされている。これにより、受渡ロボット120は、2つのキャリアCに対して半導体ウェハーWの出し入れを行うとともに、アライメント部230および2つの冷却部130,140に対して半導体ウェハーWの受け渡しを行う。受渡ロボット120によるキャリアCに対する半導体ウェハーWの出し入れは、ハンド121のスライド移動、および、キャリアCの昇降移動により行われる。また、受渡ロボット120とアライメント部230または冷却部130,140との半導体ウェハーWの受け渡しは、ハンド121のスライド移動、および、受渡ロボット120の昇降動作によって行われる。
 アライメント部230は、Y軸方向に沿ったインデクサ部101の側方に接続されて設けられている。アライメント部230は、半導体ウェハーWを水平面内で回転させてフラッシュ加熱に適切な向きに向ける処理部である。アライメント部230は、アルミニウム合金製の筐体であるアライメントチャンバー231の内部に、半導体ウェハーWを水平姿勢に支持して回転させる機構、および、半導体ウェハーWの周縁部に形成されたノッチやオリフラ等を光学的に検出する機構などを設けて構成される。
 アライメント部230への半導体ウェハーWの受け渡しは受渡ロボット120によって行われる。受渡ロボット120からアライメントチャンバー231へはウェハー中心が所定の位置に位置するように半導体ウェハーWが渡される。アライメント部230では、インデクサ部101から受け取った半導体ウェハーWの中心部を回転中心として鉛直方向軸まわりで半導体ウェハーWを回転させ、ノッチ等を光学的に検出することによって半導体ウェハーWの向きを調整する。向き調整の終了した半導体ウェハーWは受渡ロボット120によってアライメントチャンバー231から取り出される。
 搬送ロボット150による半導体ウェハーWの搬送空間として搬送ロボット150を収容する搬送チャンバー170が設けられている。その搬送チャンバー170の三方に熱処理部160の処理チャンバー6、冷却部130の第1クールチャンバー131および冷却部140の第2クールチャンバー141が連通接続されている。
 熱処理装置100の主要部である熱処理部160は、予備加熱を行った半導体ウェハーWにキセノンフラッシュランプFLからの閃光(フラッシュ光)を照射してフラッシュ加熱処理を行う基板処理部である。この熱処理部160の構成についてはさらに後述する。
 2つの冷却部130,140は、概ね同様の構成を備える。冷却部130,140はそれぞれ、アルミニウム合金製の筐体である第1クールチャンバー131,第2クールチャンバー141の内部に、金属製の冷却プレートと、その上面に載置された石英板とを備える(いずれも図示省略)。当該冷却プレートは、ペルチェ素子または恒温水循環によって常温(約23℃)に温調されている。熱処理部160にてフラッシュ加熱処理が施された半導体ウェハーWは、第1クールチャンバー131または第2クールチャンバー141に搬入されて当該石英板に載置されて冷却される。
 第1クールチャンバー131および第2クールチャンバー141はともに、インデクサ部101と搬送チャンバー170との間にて、それらの双方に接続されている。第1クールチャンバー131および第2クールチャンバー141には、半導体ウェハーWを搬入出するための2つの開口が形設されている。第1クールチャンバー131の2つの開口のうちインデクサ部101に接続される開口はゲートバルブ181によって開閉可能とされている。一方、第1クールチャンバー131の搬送チャンバー170に接続される開口はゲートバルブ183によって開閉可能とされている。すなわち、第1クールチャンバー131とインデクサ部101とはゲートバルブ181を介して接続され、第1クールチャンバー131と搬送チャンバー170とはゲートバルブ183を介して接続されている。
 インデクサ部101と第1クールチャンバー131との間で半導体ウェハーWの受け渡しを行う際には、ゲートバルブ181が開放される。また、第1クールチャンバー131と搬送チャンバー170との間で半導体ウェハーWの受け渡しを行う際には、ゲートバルブ183が開放される。ゲートバルブ181およびゲートバルブ183が閉鎖されているときには、第1クールチャンバー131の内部が密閉空間となる。
 また、第2クールチャンバー141の2つの開口のうちインデクサ部101に接続される開口はゲートバルブ182によって開閉可能とされている。一方、第2クールチャンバー141の搬送チャンバー170に接続される開口はゲートバルブ184によって開閉可能とされている。すなわち、第2クールチャンバー141とインデクサ部101とはゲートバルブ182を介して接続され、第2クールチャンバー141と搬送チャンバー170とはゲートバルブ184を介して接続されている。
 インデクサ部101と第2クールチャンバー141との間で半導体ウェハーWの受け渡しを行う際には、ゲートバルブ182が開放される。また、第2クールチャンバー141と搬送チャンバー170との間で半導体ウェハーWの受け渡しを行う際には、ゲートバルブ184が開放される。ゲートバルブ182およびゲートバルブ184が閉鎖されているときには、第2クールチャンバー141の内部が密閉空間となる。
 処理チャンバー6に隣接して設置された搬送チャンバー170に設けられた搬送ロボット150は、鉛直方向に沿った軸を中心に矢印150Rにて示すように旋回可能とされる。搬送ロボット150は、複数のアームセグメントからなる2つのリンク機構を有し、それら2つのリンク機構の先端にはそれぞれ半導体ウェハーWを保持する搬送ハンド151a,151bが設けられている。これらの搬送ハンド151a,151bは上下に所定のピッチだけ隔てて配置され、リンク機構によりそれぞれ独立して同一水平方向に直線的にスライド移動可能とされている。また、搬送ロボット150は、2つのリンク機構が設けられるベースを昇降移動することにより、所定のピッチだけ離れた状態のまま2つの搬送ハンド151a,151bを昇降移動させる。
 搬送ロボット150が第1クールチャンバー131、第2クールチャンバー141または熱処理部160の処理チャンバー6を受け渡し相手として半導体ウェハーWの受け渡し(出し入れ)を行う際には、まず、両搬送ハンド151a,151bが受け渡し相手と対向するように旋回し、その後(または旋回している間に)昇降移動していずれかの搬送ハンドが受け渡し相手と半導体ウェハーWを受け渡しする高さに位置する。そして、搬送ハンド151a(151b)を水平方向に直線的にスライド移動させて受け渡し相手と半導体ウェハーWの受け渡しを行う。
 搬送ロボット150と受渡ロボット120との半導体ウェハーWの受け渡しは冷却部130,140を介して行うことができる。すなわち、冷却部130の第1クールチャンバー131および冷却部140の第2クールチャンバー141は、搬送ロボット150と受渡ロボット120との間で半導体ウェハーWを受け渡すためのパスとしても機能するものである。具体的には、搬送ロボット150または受渡ロボット120のうちの一方が第1クールチャンバー131または第2クールチャンバー141に渡した半導体ウェハーWを他方が受け取ることによって半導体ウェハーWの受け渡しが行われる。搬送ロボット150および受渡ロボット120によって半導体ウェハーWをキャリアCから熱処理部160にまで搬送する搬送機構が構成される。
 上述したように、第1クールチャンバー131および第2クールチャンバー141とインデクサ部101との間にはそれぞれゲートバルブ181,182が設けられている。また、搬送チャンバー170と第1クールチャンバー131および第2クールチャンバー141との間にはそれぞれゲートバルブ183,184が設けられている。さらに、搬送チャンバー170と熱処理部160の処理チャンバー6との間にはゲートバルブ185が設けられている。熱処理装置100内にて半導体ウェハーWが搬送される際には、適宜これらのゲートバルブが開閉される。
 次に、熱処理部160の構成について説明する。図3は、熱処理部160の構成を示す縦断面図である。熱処理部160は、半導体ウェハーWを収容して加熱処理を行う処理チャンバー6と、複数のフラッシュランプFLを内蔵するフラッシュランプハウス5と、複数のハロゲンランプHLを内蔵するハロゲンランプハウス4と、を備える。処理チャンバー6の上側にフラッシュランプハウス5が設けられるとともに、下側にハロゲンランプハウス4が設けられている。また、熱処理部160は、処理チャンバー6の内部に、半導体ウェハーWを水平姿勢に保持する保持部7と、保持部7と搬送ロボット150との間で半導体ウェハーWの受け渡しを行う移載機構10と、を備える。
 処理チャンバー6は、筒状のチャンバー側部61の上下に石英製のチャンバー窓を装着して構成されている。チャンバー側部61は上下が開口された概略筒形状を有しており、上側開口には上側チャンバー窓63が装着されて閉塞され、下側開口には下側チャンバー窓64が装着されて閉塞されている。処理チャンバー6の天井部を構成する上側チャンバー窓63は、石英により形成された円板形状部材であり、フラッシュランプFLから出射されたフラッシュ光を処理チャンバー6内に透過する石英窓として機能する。また、処理チャンバー6の床部を構成する下側チャンバー窓64も、石英により形成された円板形状部材であり、ハロゲンランプHLからの光を処理チャンバー6内に透過する石英窓として機能する。
 また、チャンバー側部61の内側の壁面の上部には反射リング68が装着され、下部には反射リング69が装着されている。反射リング68,69は、ともに円環状に形成されている。上側の反射リング68は、チャンバー側部61の上側から嵌め込むことによって装着される。一方、下側の反射リング69は、チャンバー側部61の下側から嵌め込んで図示省略のビスで留めることによって装着される。すなわち、反射リング68,69は、ともに着脱自在にチャンバー側部61に装着されるものである。処理チャンバー6の内側空間、すなわち上側チャンバー窓63、下側チャンバー窓64、チャンバー側部61および反射リング68,69によって囲まれる空間が熱処理空間65として規定される。
 チャンバー側部61に反射リング68,69が装着されることによって、処理チャンバー6の内壁面に凹部62が形成される。すなわち、チャンバー側部61の内壁面のうち反射リング68,69が装着されていない中央部分と、反射リング68の下端面と、反射リング69の上端面とで囲まれた凹部62が形成される。凹部62は、処理チャンバー6の内壁面に水平方向に沿って円環状に形成され、半導体ウェハーWを保持する保持部7を囲繞する。チャンバー側部61および反射リング68,69は、強度と耐熱性に優れた金属材料(例えば、ステンレススチール)にて形成されている。
 また、チャンバー側部61には、処理チャンバー6に対して半導体ウェハーWの搬入および搬出を行うための搬送開口部(炉口)66が形設されている。搬送開口部66は、ゲートバルブ185によって開閉可能とされている。搬送開口部66は凹部62の外周面に連通接続されている。このため、ゲートバルブ185が搬送開口部66を開放しているときには、搬送開口部66から凹部62を通過して熱処理空間65への半導体ウェハーWの搬入および熱処理空間65からの半導体ウェハーWの搬出を行うことができる。また、ゲートバルブ185が搬送開口部66を閉鎖すると処理チャンバー6内の熱処理空間65が密閉空間とされる。
 また、処理チャンバー6の内壁上部には熱処理空間65に処理ガスを供給するガス供給孔81が形設されている。ガス供給孔81は、凹部62よりも上側位置に形設されており、反射リング68に設けられていても良い。ガス供給孔81は処理チャンバー6の側壁内部に円環状に形成された緩衝空間82を介してガス供給管83に連通接続されている。ガス供給管83は処理ガス供給源85に接続されている。また、ガス供給管83の経路途中にはバルブ84が介挿されている。バルブ84が開放されると、処理ガス供給源85から緩衝空間82に処理ガスが送給される。緩衝空間82に流入した処理ガスは、ガス供給孔81よりも流体抵抗の小さい緩衝空間82内を拡がるように流れてガス供給孔81から熱処理空間65内へと供給される。処理ガスとしては、窒素(N)等の不活性ガス、または、水素(H)、アンモニア(NH)等の反応性ガスを用いることができる(本実施形態では窒素)。
 一方、処理チャンバー6の内壁下部には熱処理空間65内の気体を排気するガス排気孔86が形設されている。ガス排気孔86は、凹部62よりも下側位置に形設されており、反射リング69に設けられていても良い。ガス排気孔86は処理チャンバー6の側壁内部に円環状に形成された緩衝空間87を介してガス排気管88に連通接続されている。ガス排気管88は排気機構190に接続されている。また、ガス排気管88の経路途中にはバルブ89が介挿されている。バルブ89が開放されると、熱処理空間65の気体がガス排気孔86から緩衝空間87を経てガス排気管88へと排出される。なお、ガス供給孔81およびガス排気孔86は、処理チャンバー6の周方向に沿って複数設けられていても良いし、スリット状のものであっても良い。また、処理ガス供給源85および排気機構190は、熱処理装置100に設けられた機構であっても良いし、熱処理装置100が設置される工場のユーティリティであっても良い。
 また、処理チャンバー6からのガス排気管88の経路途中には気中パーティクルカウンタ99が接続されている。気中パーティクルカウンタ99としては、例えば粒子を含む気体にレーザ光を照射したときの散乱光から粒子の大きさや個数を計測する光散乱式の粒子計数器が用いられる。気中パーティクルカウンタ99は、ガス排気管88を流れる気体の気中パーティクル濃度を測定する。ガス排気管88を流れる気体は処理チャンバー6内の熱処理空間65に存在していた気体であるため、気中パーティクルカウンタ99は処理チャンバー6内の気中パーティクル濃度を測定することとなる。
 図4は、保持部7の全体外観を示す斜視図である。保持部7は、基台リング71、連結部72およびサセプタ74を備えて構成される。基台リング71、連結部72およびサセプタ74はいずれも石英にて形成されている。すなわち、保持部7の全体が石英にて形成されている。
 基台リング71は円環形状から一部が欠落した円弧形状の石英部材である。この欠落部分は、後述する移載機構10の移載アーム11と基台リング71との干渉を防ぐために設けられている。基台リング71は凹部62の底面に載置されることによって、処理チャンバー6の壁面に支持されることとなる(図3参照)。基台リング71の上面に、その円環形状の周方向に沿って複数の連結部72(本実施形態では4個)が立設される。連結部72も石英の部材であり、溶接によって基台リング71に固着される。
 サセプタ74は基台リング71に設けられた4個の連結部72によって支持される。図5は、サセプタ74の平面図である。また、図6は、サセプタ74の断面図である。サセプタ74は、保持プレート75、ガイドリング76および複数の基板支持ピン77を備える。保持プレート75は、石英にて形成された略円形の平板状部材である。保持プレート75の直径は半導体ウェハーWの直径よりも大きい。すなわち、保持プレート75は、半導体ウェハーWよりも大きな平面サイズを有する。
 保持プレート75の上面周縁部にガイドリング76が設置されている。ガイドリング76は、半導体ウェハーWの直径よりも大きな内径を有する円環形状の部材である。例えば、半導体ウェハーWの直径がφ300mmの場合、ガイドリング76の内径はφ320mmである。ガイドリング76の内周は、保持プレート75から上方に向けて広くなるようなテーパ面とされている。ガイドリング76は、保持プレート75と同様の石英にて形成される。ガイドリング76は、保持プレート75の上面に溶着するようにしても良いし、別途加工したピンなどによって保持プレート75に固定するようにしても良い。或いは、保持プレート75とガイドリング76とを一体の部材として加工するようにしても良い。
 保持プレート75の上面のうちガイドリング76よりも内側の領域が半導体ウェハーWを保持する平面状の保持面75aとされる。保持プレート75の保持面75aには、複数の基板支持ピン77が立設されている。本実施形態においては、保持面75aの外周円(ガイドリング76の内周円)と同心円の周上に沿って30°毎に計12個の基板支持ピン77が立設されている。12個の基板支持ピン77を配置した円の径(対向する基板支持ピン77間の距離)は半導体ウェハーWの径よりも小さく、半導体ウェハーWの径がφ300mmであればφ270mm~φ280mm(本実施形態ではφ270mm)である。それぞれの基板支持ピン77は石英にて形成されている。複数の基板支持ピン77は、保持プレート75の上面に溶接によって設けるようにしても良いし、保持プレート75と一体に加工するようにしても良い。
 図4に戻り、基台リング71に立設された4個の連結部72とサセプタ74の保持プレート75の周縁部とが溶接によって固着される。すなわち、サセプタ74と基台リング71とは連結部72によって固定的に連結されている。このような保持部7の基台リング71が処理チャンバー6の壁面に支持されることによって、保持部7が処理チャンバー6に装着される。保持部7が処理チャンバー6に装着された状態においては、サセプタ74の保持プレート75は水平姿勢(法線が鉛直方向と一致する姿勢)となる。すなわち、保持プレート75の保持面75aは水平面となる。
 処理チャンバー6に搬入された半導体ウェハーWは、処理チャンバー6に装着された保持部7のサセプタ74の上に水平姿勢にて載置されて保持される。このとき、半導体ウェハーWは保持プレート75上に立設された12個の基板支持ピン77によって支持されてサセプタ74に保持される。より厳密には、12個の基板支持ピン77の上端部が半導体ウェハーWの下面に接触して当該半導体ウェハーWを支持する。12個の基板支持ピン77の高さ(基板支持ピン77の上端から保持プレート75の保持面75aまでの距離)は均一であるため、12個の基板支持ピン77によって半導体ウェハーWを水平姿勢に支持することができる。
 また、半導体ウェハーWは複数の基板支持ピン77によって保持プレート75の保持面75aから所定の間隔を隔てて支持されることとなる。基板支持ピン77の高さよりもガイドリング76の厚さの方が大きい。従って、複数の基板支持ピン77によって支持された半導体ウェハーWの水平方向の位置ずれはガイドリング76によって防止される。
 また、図4および図5に示すように、サセプタ74の保持プレート75には、上下に貫通して開口部78が形成されている。開口部78は、放射温度計20(図3参照)がサセプタ74に保持された半導体ウェハーWの下面から放射される放射光(赤外光)を受光するために設けられている。すなわち、放射温度計20が開口部78を介してサセプタ74に保持された半導体ウェハーWの下面から放射された光を受光してその半導体ウェハーWの温度を測定する。さらに、サセプタ74の保持プレート75には、後述する移載機構10のリフトピン12が半導体ウェハーWの受け渡しのために貫通する4個の貫通孔79が穿設されている。
 図7は、移載機構10の平面図である。また、図8は、移載機構10の側面図である。移載機構10は、2本の移載アーム11を備える。移載アーム11は、概ね円環状の凹部62に沿うような円弧形状とされている。それぞれの移載アーム11には2本のリフトピン12が立設されている。各移載アーム11は水平移動機構13によって回動可能とされている。水平移動機構13は、一対の移載アーム11を保持部7に対して半導体ウェハーWの移載を行う移載動作位置(図7の実線位置)と保持部7に保持された半導体ウェハーWと平面視で重ならない退避位置(図7の二点鎖線位置)との間で水平移動させる。移載動作位置はサセプタ74の下方であり、退避位置はサセプタ74よりも外方である。水平移動機構13としては、個別のモータによって各移載アーム11をそれぞれ回動させるものであっても良いし、リンク機構を用いて1個のモータによって一対の移載アーム11を連動させて回動させるものであっても良い。
 また、一対の移載アーム11は、昇降機構14によって水平移動機構13とともに昇降移動される。昇降機構14が一対の移載アーム11を移載動作位置にて上昇させると、計4本のリフトピン12がサセプタ74に穿設された貫通孔79(図4,5参照)を通過し、リフトピン12の上端がサセプタ74の上面から突き出る。一方、昇降機構14が一対の移載アーム11を移載動作位置にて下降させてリフトピン12を貫通孔79から抜き取り、水平移動機構13が一対の移載アーム11を開くように移動させると各移載アーム11が退避位置に移動する。一対の移載アーム11の退避位置は、保持部7の基台リング71の直上である。基台リング71は凹部62の底面に載置されているため、移載アーム11の退避位置は凹部62の内側となる。なお、移載機構10の駆動部(水平移動機構13および昇降機構14)が設けられている部位の近傍にも図示省略の排気機構が設けられており、移載機構10の駆動部周辺の雰囲気が処理チャンバー6の外部に排出されるように構成されている。
 図3に戻り、処理チャンバー6の上方に設けられたフラッシュランプハウス5は、筐体51の内側に、複数本(本実施形態では30本)のキセノンフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。また、フラッシュランプハウス5の筐体51の底部にはランプ光放射窓53が装着されている。フラッシュランプハウス5の床部を構成するランプ光放射窓53は、石英により形成された板状の石英窓である。フラッシュランプハウス5が処理チャンバー6の上方に設置されることにより、ランプ光放射窓53が上側チャンバー窓63と相対向することとなる。フラッシュランプFLは処理チャンバー6の上方からランプ光放射窓53および上側チャンバー窓63を介して熱処理空間65にフラッシュ光を照射する。
 複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。
 キセノンフラッシュランプFLは、その内部にキセノンガスが封入されその両端部にコンデンサーに接続された陽極および陰極が配設された棒状のガラス管(放電管)と、該ガラス管の外周面上に付設されたトリガー電極とを備える。キセノンガスは電気的には絶縁体であることから、コンデンサーに電荷が蓄積されていたとしても通常の状態ではガラス管内に電気は流れない。しかしながら、トリガー電極に高電圧を印加して絶縁を破壊した場合には、コンデンサーに蓄えられた電気がガラス管内に瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。このようなキセノンフラッシュランプFLにおいては、予めコンデンサーに蓄えられていた静電エネルギーが0.1ミリセカンドないし100ミリセカンドという極めて短い光パルスに変換されることから、ハロゲンランプHLの如き連続点灯の光源に比べて極めて強い光を照射し得るという特徴を有する。すなわち、フラッシュランプFLは、1秒未満の極めて短い時間で瞬間的に発光するパルス発光ランプである。なお、フラッシュランプFLの発光時間は、フラッシュランプFLに電力供給を行うランプ電源のコイル定数によって調整することができる。
 また、リフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ52はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されている。
 処理チャンバー6の下方に設けられたハロゲンランプハウス4は、筐体41の内側に複数本(本実施形態では40本)のハロゲンランプHLを内蔵している。複数のハロゲンランプHLは処理チャンバー6の下方から下側チャンバー窓64を介して熱処理空間65への光照射を行う。
 図9は、複数のハロゲンランプHLの配置を示す平面図である。本実施形態では、矩形の光源領域に上下2段に各20本ずつのハロゲンランプHLが配設されている。各ハロゲンランプHLは、長尺の円筒形状を有する棒状ランプである。上段、下段ともに20本のハロゲンランプHLは、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように配列されている。よって、上段、下段ともにハロゲンランプHLの配列によって形成される平面は水平面である。
 また、図9に示すように、上段、下段ともに保持部7に保持される半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域におけるハロゲンランプHLの配設密度が高くなっている。すなわち、上下段ともに、ランプ配列の中央部よりも周縁部の方がハロゲンランプHLの配設ピッチが短い。このため、ハロゲンランプHLからの光照射による加熱時に温度低下が生じやすい半導体ウェハーWの周縁部により多い光量の照射を行うことができる。
 また、上段のハロゲンランプHLからなるランプ群と下段のハロゲンランプHLからなるランプ群とが格子状に交差するように配列されている。すなわち、上段の各ハロゲンランプHLの長手方向と下段の各ハロゲンランプHLの長手方向とが直交するように計40本のハロゲンランプHLが配設されている。
 ハロゲンランプHLは、ガラス管内部に配設されたフィラメントに通電することでフィラメントを白熱化させて発光させるフィラメント方式の光源である。ガラス管の内部には、窒素やアルゴン等の不活性ガスにハロゲン元素(ヨウ素、臭素等)を微量導入した気体が封入されている。ハロゲン元素を導入することによって、フィラメントの折損を抑制しつつフィラメントの温度を高温に設定することが可能となる。したがって、ハロゲンランプHLは、通常の白熱電球に比べて寿命が長くかつ強い光を連続的に照射できるという特性を有する。すなわち、ハロゲンランプHLは少なくとも1秒以上連続して発光する連続点灯ランプである。また、ハロゲンランプHLは棒状ランプであるため長寿命であり、ハロゲンランプHLを水平方向に沿わせて配置することにより上方の半導体ウェハーWへの放射効率が優れたものとなる。
 また、ハロゲンランプハウス4の筐体41内にも、2段のハロゲンランプHLの下側にリフレクタ43が設けられている(図3)。リフレクタ43は、複数のハロゲンランプHLから出射された光を熱処理空間65の側に反射する。
 上記の構成以外にも熱処理部160は、半導体ウェハーWの熱処理時にハロゲンランプHLおよびフラッシュランプFLから発生する熱エネルギーによるハロゲンランプハウス4、フラッシュランプハウス5および処理チャンバー6の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、処理チャンバー6の壁体には水冷管(図示省略)が設けられている。また、ハロゲンランプハウス4およびフラッシュランプハウス5は、内部に気体流を形成して排熱する空冷構造とされている。また、上側チャンバー窓63とランプ光放射窓53との間隙にも空気が供給され、フラッシュランプハウス5および上側チャンバー窓63を冷却する。
 図10は、制御部3の構成を示すブロック図である。制御部3は、熱処理装置100に設けられた上記の種々の動作機構を制御する。制御部3のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部3は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく磁気ディスク35を備えている。制御部3のCPUが所定の処理プログラムを実行することによって熱処理装置100における処理が進行する。検出部31および発報部32は、制御部3のCPUが所定の処理プログラムを実行することによって実現される機能処理部である。検出部31および発報部32の処理内容についてはさらに後述する。なお、図1においては、インデクサ部101内に制御部3を示しているが、これに限定されるものではなく、制御部3は熱処理装置100内の任意の位置に配置することができる。
 また、制御部3には入力部33および表示部34が接続されている。制御部3は、表示部34に種々の情報を表示する。熱処理装置100のオペレータは、表示部34に表示された情報を確認しつつ、入力部33から種々のコマンドやパラメータを入力することができる。入力部33としては、例えばキーボードやマウスを用いることができる。表示部34としては、例えば液晶ディスプレイを用いることができる。本実施形態においては、表示部34および入力部33として、熱処理装置100の外壁に設けられた液晶のタッチパネルを採用して双方の機能を併せ持たせるようにしている。
 次に、熱処理装置100における半導体ウェハーWの処理手順について説明する。ここで処理対象となる半導体ウェハーWはイオン注入法により不純物(イオン)が添加された半導体基板である。その不純物の活性化が熱処理装置100によるフラッシュ光照射加熱処理(アニール)により実行される。以下に説明する熱処理装置100の処理手順は、制御部3が熱処理装置100の各動作機構を制御することにより進行する。
 まず、不純物が注入された未処理の半導体ウェハーWがキャリアCに複数枚収容された状態でインデクサ部101のロードポート110に載置される。そして、受渡ロボット120がキャリアCから未処理の半導体ウェハーWを1枚ずつ取り出し、アライメント部230のアライメントチャンバー231に搬入する。アライメントチャンバー231では、半導体ウェハーWをその中心部を回転中心として水平面内にて鉛直方向軸まわりで回転させ、ノッチ等を光学的に検出することによって半導体ウェハーWの向きを調整する。
 次に、インデクサ部101の受渡ロボット120がアライメントチャンバー231から向きの調整された半導体ウェハーWを取り出し、冷却部130の第1クールチャンバー131または冷却部140の第2クールチャンバー141に搬入する。第1クールチャンバー131または第2クールチャンバー141に搬入された未処理の半導体ウェハーWは搬送ロボット150によって搬送チャンバー170に搬出される。未処理の半導体ウェハーWがインデクサ部101から第1クールチャンバー131または第2クールチャンバー141を経て搬送チャンバー170に移送される際には、第1クールチャンバー131および第2クールチャンバー141は半導体ウェハーWの受け渡しのためのパスとして機能するのである。
 半導体ウェハーWを取り出した搬送ロボット150は熱処理部160を向くように旋回する。続いて、ゲートバルブ185が処理チャンバー6と搬送チャンバー170との間を開放し、搬送ロボット150が未処理の半導体ウェハーWを処理チャンバー6に搬入する。このときに、先行する加熱処理済みの半導体ウェハーWが処理チャンバー6に存在している場合には、搬送ハンド151a,151bの一方によって加熱処理後の半導体ウェハーWを取り出してから未処理の半導体ウェハーWを処理チャンバー6に搬入してウェハー入れ替えを行う。その後、ゲートバルブ185が処理チャンバー6と搬送チャンバー170との間を閉鎖する。
 処理チャンバー6に搬入された半導体ウェハーWには、ハロゲンランプHLによって予備加熱が行われた後、フラッシュランプFLからのフラッシュ光照射によってフラッシュ加熱処理が行われる。このフラッシュ加熱処理により半導体ウェハーWに注入された不純物の活性化が行われる。
 フラッシュ加熱処理が終了した後、ゲートバルブ185が処理チャンバー6と搬送チャンバー170との間を再び開放し、搬送ロボット150が処理チャンバー6からフラッシュ加熱処理後の半導体ウェハーWを搬送チャンバー170に搬出する。半導体ウェハーWを取り出した搬送ロボット150は、処理チャンバー6から第1クールチャンバー131または第2クールチャンバー141に向くように旋回する。また、ゲートバルブ185が処理チャンバー6と搬送チャンバー170との間を閉鎖する。
 その後、搬送ロボット150が加熱処理後の半導体ウェハーWを冷却部130の第1クールチャンバー131または冷却部140の第2クールチャンバー141に搬入する。このとき、当該半導体ウェハーWが加熱処理前に第1クールチャンバー131を通ってきている場合には加熱処理後にも第1クールチャンバー131に搬入され、加熱処理前に第2クールチャンバー141を通ってきている場合には加熱処理後にも第2クールチャンバー141に搬入される。第1クールチャンバー131または第2クールチャンバー141では、フラッシュ加熱処理後の半導体ウェハーWの冷却処理が行われる。熱処理部160の処理チャンバー6から搬出された時点での半導体ウェハーW全体の温度は比較的高温であるため、これを第1クールチャンバー131または第2クールチャンバー141にて常温近傍にまで冷却するのである。
 所定の冷却処理時間が経過した後、受渡ロボット120が冷却後の半導体ウェハーWを第1クールチャンバー131または第2クールチャンバー141から搬出し、キャリアCへと返却する。キャリアCに所定枚数の処理済み半導体ウェハーWが収容されると、そのキャリアCはインデクサ部101のロードポート110から搬出される。
 熱処理部160における加熱処理について説明を続ける。図11は、熱処理部160における半導体ウェハーWの処理手順を示すフローチャートである。処理チャンバー6への半導体ウェハーWの搬入に先立って、給気のためのバルブ84が開放されるとともに、排気用のバルブ89が開放されて処理チャンバー6内に対する給排気が開始される。バルブ84が開放されると、ガス供給孔81から熱処理空間65に窒素ガスが供給される。また、バルブ89が開放されると、ガス排気孔86から処理チャンバー6内の気体が排気される。これにより、処理チャンバー6内の熱処理空間65の上部から供給された窒素ガスが下方へと流れ、熱処理空間65の下部から排気される。
 続いて、ゲートバルブ185が開いて搬送開口部66が開放され、搬送ロボット150により搬送開口部66を介して処理対象となる半導体ウェハーWが処理チャンバー6内の熱処理空間65に搬入される(ステップS1)。搬送ロボット150は、未処理の半導体ウェハーWを保持する搬送ハンド151a(または搬送ハンド151b)を保持部7の直上位置まで進出させて停止させる。そして、移載機構10の一対の移載アーム11が退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12が貫通孔79を通ってサセプタ74の保持プレート75の上面から突き出て半導体ウェハーWを受け取る。このとき、リフトピン12は基板支持ピン77の上端よりも上方にまで上昇する。
 未処理の半導体ウェハーWがリフトピン12に載置された後、搬送ロボット150が搬送ハンド151aを熱処理空間65から退出させ、ゲートバルブ185によって搬送開口部66が閉鎖される。そして、一対の移載アーム11が下降することにより、半導体ウェハーWは移載機構10から保持部7のサセプタ74に受け渡されて水平姿勢にて下方より保持される。半導体ウェハーWは、保持プレート75上に立設された複数の基板支持ピン77によって支持されてサセプタ74に保持される。また、半導体ウェハーWは、パターン形成がなされて不純物が注入された表面を上面として保持部7に保持される。複数の基板支持ピン77によって支持された半導体ウェハーWの裏面(表面とは反対側の主面)と保持プレート75の保持面75aとの間には所定の間隔が形成される。サセプタ74の下方にまで下降した一対の移載アーム11は水平移動機構13によって退避位置、すなわち凹部62の内側に退避する。
 半導体ウェハーWが保持部7のサセプタ74によって水平姿勢にて下方より保持された後、40本のハロゲンランプHLが一斉に点灯して予備加熱(アシスト加熱)が開始される(ステップS2)。ハロゲンランプHLから出射されたハロゲン光は、石英にて形成された下側チャンバー窓64およびサセプタ74を透過して半導体ウェハーWの下面から照射される。ハロゲンランプHLからの光照射を受けることによって半導体ウェハーWが予備加熱されて温度が上昇する。なお、移載機構10の移載アーム11は凹部62の内側に退避しているため、ハロゲンランプHLによる加熱の障害となることは無い。
 ハロゲンランプHLによる予備加熱を行うときには、半導体ウェハーWの温度が放射温度計20によって測定されている。すなわち、サセプタ74に保持された半導体ウェハーWの下面から開口部78を介して放射された赤外光を放射温度計20が受光して昇温中のウェハー温度を測定する。測定された半導体ウェハーWの温度は制御部3に伝達される。制御部3は、ハロゲンランプHLからの光照射によって昇温する半導体ウェハーWの温度が所定の予備加熱温度T1に到達したか否かを監視しつつ、ハロゲンランプHLの出力を制御する。すなわち、制御部3は、放射温度計20による測定値に基づいて、半導体ウェハーWの温度が予備加熱温度T1となるようにハロゲンランプHLの出力をフィードバック制御する。予備加熱温度T1は、半導体ウェハーWに添加された不純物が熱により拡散する恐れのない、600℃ないし800℃程度とされる(本実施の形態では700℃)。
 半導体ウェハーWの温度が予備加熱温度T1に到達した後、制御部3は半導体ウェハーWをその予備加熱温度T1に暫時維持する。具体的には、放射温度計20によって測定される半導体ウェハーWの温度が予備加熱温度T1に到達した時点にて制御部3がハロゲンランプHLの出力を調整し、半導体ウェハーWの温度をほぼ予備加熱温度T1に維持している。
 また、予備加熱が開始された後、続くフラッシュ加熱が実行されるまでの間に処理チャンバー6内の気中パーティクル濃度の測定が開始される(ステップS3)。すなわち、ハロゲンランプHLによって半導体ウェハーWが加熱されているときに、気中パーティクル濃度の測定が開始される。具体的には、処理チャンバー6内の気体はガス排気管88を経て排気され、そのガス排気管88を流れる気体の気中パーティクル濃度が気中パーティクルカウンタ99によって測定される。気中パーティクルカウンタ99による気中パーティクル濃度の測定は続くフラッシュ加熱の終了後所定時間が経過するまで継続して行われる。
 図12は、気中パーティクルカウンタ99によって測定される処理チャンバー6内の気中パーティクル濃度の変化を示す図である。ハロゲンランプHLによる予備加熱が開始された後、時刻t1に気中パーティクルカウンタ99による処理チャンバー6内の気中パーティクル濃度の測定が開始される。半導体ウェハーWの処理を行う前に処理チャンバー6内のクリーニングは行われてはいるものの、処理チャンバー6内には不可避的にパーティクルが残留しており、その残留パーティクルが気中パーティクルカウンタ99によって検出されている。予備加熱時に気中パーティクルカウンタ99によって測定される気中パーティクル濃度C1はパーティクル濃度測定のバックグラウンドとなる濃度である。
 半導体ウェハーWの温度が予備加熱温度T1に到達して所定時間が経過した時刻t2にフラッシュランプFLが半導体ウェハーWの表面にフラッシュ光照射を行う(ステップS4)。このとき、フラッシュランプFLから放射されるフラッシュ光の一部は直接に処理チャンバー6内へと向かい、他の一部は一旦リフレクタ52により反射されてから処理チャンバー6内へと向かい、これらのフラッシュ光の照射により半導体ウェハーWのフラッシュ加熱が行われる。
 なお、気中パーティクルカウンタ99による処理チャンバー6内の気中パーティクル濃度の測定が開始される時刻t1は、フラッシュランプFLが半導体ウェハーWの表面にフラッシュ光照射を行う時刻t2の直前でも構わない。すなわち、パーティクル濃度測定における基準値となる気中パーティクル濃度C1の値を取得または推定できれば良い。
 フラッシュ加熱は、フラッシュランプFLからのフラッシュ光(閃光)照射により行われるため、半導体ウェハーWの表面温度を短時間で上昇することができる。すなわち、フラッシュランプFLから照射されるフラッシュ光は、予めコンデンサーに蓄えられていた静電エネルギーが極めて短い光パルスに変換された、照射時間が0.1ミリセカンド以上100ミリセカンド以下程度の極めて短く強い閃光である。そして、フラッシュランプFLからのフラッシュ光照射によりフラッシュ加熱される半導体ウェハーWの表面温度は、瞬間的に1000℃以上の処理温度T2まで上昇し、半導体ウェハーWに注入された不純物が活性化された後、表面温度が急速に下降する。このように、フラッシュ加熱では半導体ウェハーWの表面温度を極めて短時間で昇降することができるため、半導体ウェハーWに注入された不純物の熱による拡散を抑制しつつ不純物の活性化を行うことができる。なお、不純物の活性化に必要な時間はその熱拡散に必要な時間に比較して極めて短いため、0.1ミリセカンドないし100ミリセカンド程度の拡散が生じない短時間であっても活性化は完了する。
 フラッシュ光照射時には、極めて照射時間が短く高いエネルギーを有するフラッシュ光を半導体ウェハーWの表面に照射するため、半導体ウェハーWの表面の温度は瞬間的に1000℃以上の処理温度T2にまで上昇する一方、その瞬間の裏面の温度は予備加熱温度T1からさほどには上昇しない。従って、半導体ウェハーWの表面のみに急激な熱膨張が生じ、裏面はほとんど熱膨張しないために、半導体ウェハーWが表面を凸とするように瞬間的に反る。そして、次の瞬間には、その反りが戻るように半導体ウェハーWが逆向きに変形する。このように半導体ウェハーWが急激に変形したときにサセプタ74に衝突してウェハー割れが発生することがある。
 フラッシュ加熱によって半導体ウェハーWが割れると、パーティクルが多量に発生して処理チャンバー6内における気中パーティクル濃度が急激に上昇する。従って、処理チャンバー6内の気中パーティクル濃度を監視することによって半導体ウェハーWの割れを検出することが可能となる。熱処理装置100においては、半導体ウェハーWの熱処理を行っているときに気中パーティクルカウンタ99によって測定された処理チャンバー6内の気中パーティクル濃度に基づいて制御部3の検出部31が半導体ウェハーWの割れを検出する(ステップS5)。より具体的には、第1実施形態では、気中パーティクルカウンタ99によって測定されている処理チャンバー6内の気中パーティクル濃度の上昇が予め設定されている所定の閾値を超えたときに検出部31が処理対象としている半導体ウェハーWが割れたと判定する。
 ウェハー割れが発生していない場合であってもフラッシュ光照射時には半導体ウェハーWが急激に変形するため、処理チャンバー6内には相応のパーティクルが巻き上がり、気中パーティクル濃度が上昇する。第1実施形態においては、検出部31が気中パーティクルカウンタ99によって測定されている期間中における最高測定値である気中パーティクル濃度C2とバックグラウンドである気中パーティクル濃度C1との差分ΔCを算定する。この差分ΔCはバックグラウンドである気中パーティクル濃度C1からの濃度上昇値である。
 検出部31は、濃度上昇値である差分ΔCが所定の閾値Cthよりも大きいときには、処理チャンバー6内にて半導体ウェハーWが割れたと判定する。すなわち、気中パーティクルカウンタ99によって測定されている気中パーティクル濃度が閾値Cthを超えて大きく上昇したときには、半導体ウェハーWが割れてパーティクルが多量に発生したと判断されるのである。一方、検出部31は、差分ΔCが閾値Cth以下のときには、半導体ウェハーWの割れは発生していないと判定する。すなわち、気中パーティクルカウンタ99によって測定されている気中パーティクル濃度の上昇が閾値Cthを超えない場合には、その気中パーティクル濃度の上昇はフラッシュ光照射による通常のパーティクル濃度上昇の範囲内であると判断されるのである。なお、閾値Cthは予め実験等によってウェハー割れが発生したときの気中パーティクル濃度を測定することによって設定して制御部3の磁気ディスク35等の記憶部に記憶させておけば良い。閾値Cthを小さな値に設定するほど、厳しい割れ判定がなされることとなる。
 差分ΔCが閾値Cthよりも大きく、検出部31が半導体ウェハーWが割れたと判定したときには、ステップS5からステップS6に進み、発報部32がアラームを発報する。発報部32は、例えば表示部34に半導体ウェハーWの割れが発生した旨のアラームを表示させる。
 続いて、制御部3は、熱処理装置100における処理を停止する(ステップS7)。従って、フラッシュ加熱終了後もゲートバルブ185は開かれず、割れた半導体ウェハーWは処理チャンバー6内に残されたままとなる。これにより、半導体ウェハーWの割れによって生じた多量のパーティクルが処理チャンバー6から搬送チャンバー170に流出することは防止される。その後、熱処理装置100の作業者が処理チャンバー6を開放して半導体ウェハーWの破片を回収する等の必要な復旧作業を行う。
 一方、差分ΔCが閾値Cth以下であり、検出部31が半導体ウェハーWが割れていないと判定したときには、ステップS5からステップS8に進み、処理が続行されて処理チャンバー6から半導体ウェハーWが搬出される。半導体ウェハーWが割れることなく正常にフラッシュ加熱処理が終了したときにはハロゲンランプHLも消灯する。これにより、半導体ウェハーWが予備加熱温度T1から急速に降温する。降温中の半導体ウェハーWの温度は放射温度計20によって測定され、その測定結果は制御部3に伝達される。制御部3は、放射温度計20の測定結果より半導体ウェハーWの温度が所定温度まで降温したか否かを監視する。そして、半導体ウェハーWの温度が所定以下にまで降温した後、移載機構10の一対の移載アーム11が再び退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12がサセプタ74の上面から突き出て熱処理後の半導体ウェハーWをサセプタ74から受け取る。続いて、ゲートバルブ185により閉鎖されていた搬送開口部66が開放され、リフトピン12上に載置された処理後の半導体ウェハーWが搬送ロボット150の搬送ハンド151b(または搬送ハンド151a)により搬出される。搬送ロボット150は、搬送ハンド151bをリフトピン12によって突き上げられた半導体ウェハーWの直下位置にまで進出させて停止させる。そして、一対の移載アーム11が下降することにより、フラッシュ加熱後の半導体ウェハーWが搬送ハンド151bに渡されて載置される。その後、搬送ロボット150が搬送ハンド151bを処理チャンバー6から退出させて処理後の半導体ウェハーWを搬出する。
 第1実施形態においては、半導体ウェハーWの加熱処理を行っているときに気中パーティクルカウンタ99によって測定されている処理チャンバー6内の気中パーティクル濃度の上昇が所定の閾値Cthを超えたときに、半導体ウェハーWが割れたと判定している。処理チャンバー6内の気中パーティクル濃度を測定し、その上昇分を閾値Cthと比較するだけという簡易な構成にて割れ検出を行っているため、熱処理時における半導体ウェハーWの割れを簡便に検出することができる。
  <第2実施形態>
 次に、本発明の第2実施形態について説明する。第2実施形態の熱処理装置100の構成および半導体ウェハーWの処理手順は第1実施形態と同様である。第2実施形態が第1実施形態と相違するのは、半導体ウェハーWの割れの判定手法である。
 第2実施形態においては、熱処理時に半導体ウェハーWが割れることなく正常に処理が行われたときに気中パーティクルカウンタ99によって測定された処理チャンバー6内の気中パーティクル濃度の変化を示す正常濃度パターン36が予め取得されて磁気ディスク35内に格納されている(図10)。割れ判定の精度を向上させる観点からは、なるべく多くの複数の正常濃度パターン36を取得して磁気ディスク35に格納しておくことが好ましい。
 第2実施形態にて半導体ウェハーWの熱処理を行うときには、検出部31が気中パーティクルカウンタ99によって測定された処理チャンバー6内の気中パーティクル濃度の変化を示す実測パターン(図12に示したパターン)と正常濃度パターン36との比較を行う。そして、検出部31は、気中パーティクル濃度の実測パターンが正常濃度パターン36から一定以上乖離しているときには、処理チャンバー6内にて半導体ウェハーWが割れたと判定する。すなわち、気中パーティクルカウンタ99によって測定されている気中パーティクル濃度の実測パターンが正常に熱処理が行われたときのパターンと大きく相違するときには、半導体ウェハーWが割れたと判断される。一方、検出部31は、気中パーティクル濃度の実測パターンが正常濃度パターン36から一定未満しか乖離していないときには、半導体ウェハーWの割れは発生していないと判定する。
 検出部31が半導体ウェハーWが割れたと判定したときには、第1実施形態と同様に、発報部32がアラームを発報するとともに、制御部3が熱処理装置100における処理を停止する。また、検出部31が半導体ウェハーWが割れていないと判定したときには、処理が続行されて処理チャンバー6から半導体ウェハーWが搬出される。
 第2実施形態においては、半導体ウェハーWの熱処理を行っているときに気中パーティクルカウンタ99によって測定された処理チャンバー6内の気中パーティクル濃度の変化の実測パターンが正常濃度パターン36と相違するときに、半導体ウェハーWが割れたと判定している。処理チャンバー6内の気中パーティクル濃度を測定し、その変化の実測パターンを正常濃度パターン36と比較するだけという簡易な構成にて割れ検出を行っているため、熱処理時における半導体ウェハーWの割れを簡便に検出することができる。
  <変形例>
 以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態においては、ガス排気管88に気中パーティクルカウンタ99を接続していたが、これに代えて、処理チャンバー6に直接気中パーティクルカウンタ99を設けるようにしても良い。すなわち、気中パーティクルカウンタ99は、処理チャンバー6内の気中パーティクル濃度を測定することができる位置に設けられていれば良い。もっとも、処理チャンバー6に直接気中パーティクルカウンタ99を設けた場合、気中パーティクルカウンタ99の取り付け位置によっては、半導体ウェハーWが割れたときに発生したパーティクルを検出しにくいこともある。処理チャンバー6内の熱処理空間65の雰囲気は全てガス排気管88に流れ込むため、上記実施形態のようにガス排気管88に気中パーティクルカウンタ99を設けるようにした方が確実に処理チャンバー6内のパーティクルを検出することができる。
 また、気中パーティクルカウンタ99を第1クールチャンバー131または第2クールチャンバー141からの排気管に設け、それらクールチャンバー内の気中パーティクル濃度を測定するようにしても良い。熱処理部160の処理チャンバー6にて処理の終了した高温の半導体ウェハーWは、第1クールチャンバー131または第2クールチャンバー141に搬入されて冷却される。この冷却工程においても半導体ウェハーWが割れることがある。第1クールチャンバー131または第2クールチャンバー141にて半導体ウェハーWの冷却処理を行っているときに、第1実施形態または第2実施形態と同様にして気中パーティクルカウンタ99によって測定されたクールチャンバー内の気中パーティクル濃度に基づいて半導体ウェハーWの割れを検出することができる。
 要するに、半導体ウェハーWの熱処理を行っているときのチャンバー内の気中パーティクル濃度を測定し、その気中パーティクル濃度に基づいて熱処理時の半導体ウェハーWの割れを検出するようにすれば良い。本明細書での熱処理は加熱処理および冷却処理の双方を含む概念である。
 また、気中パーティクルカウンタ99を搬送チャンバー170からの排気管に設け、搬送チャンバー170内の気中パーティクル濃度を測定するようにしても良い。通常は搬送チャンバー170内にて半導体ウェハーWの割れが発生する可能性は低い。しかし、熱処理部160の処理チャンバー6内にて半導体ウェハーWの割れが発生し、その割れが検出されることなくゲートバルブ185が開いた場合には、処理チャンバー6から搬送チャンバー170にパーティクルが流出することとなる。このような場合に、第1実施形態または第2実施形態と同様にして気中パーティクルカウンタ99によって測定された搬送チャンバー170内の気中パーティクル濃度に基づいて割れ判定を行うことにより、処理チャンバー6内の半導体ウェハーWの割れを検出することができる。
 また、第1実施形態および第2実施形態にて説明した割れ検出の技術に、例えば特許文献1~3に提示された技術を組み合わせるようにしても良い。このようにすれば、半導体ウェハーWの割れ検出精度をさらに向上させることができる。
 また、処理チャンバー6または搬送チャンバー170に直接にまたは排気管に設けた気中パーティクルカウンタ99によってチャンバー内の気中パーティクル濃度を監視し、その気中パーティクル濃度が所定のレベルを超えたときには、アラームを発報するとともに熱処理装置100における処理を停止するようにしても良い。さらには、処理チャンバー6または搬送チャンバー170へのガス供給管に気中パーティクルカウンタ99を設け、チャンバーに供給されるガス中の気中パーティクル濃度を監視するようにしても良い。
 また、上記実施形態においては、フラッシュランプハウス5に30本のフラッシュランプFLを備えるようにしていたが、これに限定されるものではなく、フラッシュランプFLの本数は任意の数とすることができる。また、フラッシュランプFLはキセノンフラッシュランプに限定されるものではなく、クリプトンフラッシュランプであっても良い。また、ハロゲンランプハウス4に備えるハロゲンランプHLの本数も40本に限定されるものではなく、任意の数とすることができる。
 また、上記実施形態においては、1秒以上連続して発光する連続点灯ランプとしてフィラメント方式のハロゲンランプHLを用いて半導体ウェハーWの予備加熱を行っていたが、これに限定されるものではなく、ハロゲンランプHLに代えて放電型のアークランプ(例えば、キセノンアークランプ)を連続点灯ランプとして用いて予備加熱を行うようにしても良い。
 また、熱処理装置100によって処理対象となる基板は半導体ウェハーに限定されるものではなく、液晶表示装置などのフラットパネルディスプレイに用いるガラス基板や太陽電池用の基板であっても良い。
 3 制御部
 4 ハロゲンランプハウス
 5 フラッシュランプハウス
 6 処理チャンバー
 7 保持部
 10 移載機構
 31 検出部
 32 発報部
 35 磁気ディスク
 36 正常濃度パターン
 65 熱処理空間
 74 サセプタ
 99 気中パーティクルカウンタ
 100 熱処理装置
 101 インデクサ部
 120 受渡ロボット
 130,140 冷却部
 131 第1クールチャンバー
 141 第2クールチャンバー
 150 搬送ロボット
 151a,151b 搬送ハンド
 160 熱処理部
 170 搬送チャンバー
 FL フラッシュランプ
 HL ハロゲンランプ
 W 半導体ウェハー

Claims (10)

  1.  基板に熱処理を行う熱処理方法であって、
     チャンバー内に収容した基板に対して熱処理を行う処理工程と、
     前記熱処理を行っているときの前記チャンバー内の気中パーティクル濃度を測定する測定工程と、
     前記測定工程にて測定された気中パーティクル濃度に基づいて前記基板の割れを検出する検出工程と、
    を備える熱処理方法。
  2.  請求項1記載の熱処理方法において、
     前記検出工程では、前記測定工程にて測定されている気中パーティクル濃度の上昇が所定の閾値を超えたときに前記基板が割れたと判定する熱処理方法。
  3.  請求項1記載の熱処理方法において、
     前記検出工程では、前記測定工程にて測定された気中パーティクル濃度の変化の実測パターンが正常に熱処理が行われたときに取得済みの正常濃度パターンと相違するときに前記基板が割れたと判定する熱処理方法。
  4.  請求項1から請求項3のいずれかに記載の熱処理方法において、
     前記検出工程にて前記基板の割れが検出されたときに、警告を発報するとともに、前記熱処理を停止する熱処理方法。
  5.  請求項1から請求項4のいずれかに記載の熱処理方法において、
     前記熱処理は、フラッシュランプから前記基板にフラッシュ光を照射する加熱処理である熱処理方法。
  6.  基板に熱処理を行う熱処理装置であって、
     基板を収容するチャンバーと、
     前記チャンバー内に収容された前記基板に対して熱処理を行う熱処理部と、
     前記チャンバー内の気中パーティクル濃度を測定する測定部と、
     前記熱処理を行っているときに前記測定部によって測定された前記チャンバー内の気中パーティクル濃度に基づいて前記基板の割れを検出する検出部と、
    を備える熱処理装置。
  7.  請求項6記載の熱処理装置において、
     前記検出部は、前記熱処理を行っているときに前記測定部によって測定されている気中パーティクル濃度の上昇が所定の閾値を超えたときに前記基板が割れたと判定する熱処理装置。
  8.  請求項6記載の熱処理装置において、
     基板が割れることなく正常に熱処理が行われたときに前記測定部によって測定された気中パーティクル濃度の変化を示す正常濃度パターンを格納する記憶部をさらに備え、
     前記検出部は、前記熱処理を行っているときに前記測定部によって測定された気中パーティクル濃度の変化の実測パターンが前記正常濃度パターンと相違するときに前記基板が割れたと判定する熱処理装置。
  9.  請求項6から請求項8のいずれかに記載の熱処理装置において、
     前記検出部によって前記基板の割れが検出されたときに、警告を発報するとともに、前記熱処理を停止する制御部をさらに備える熱処理装置。
  10.  請求項6から請求項9のいずれかに記載の熱処理装置において、
     前記熱処理部は、前記基板にフラッシュ光を照射して前記基板を加熱するフラッシュランプを含む熱処理装置。
PCT/JP2020/000998 2019-03-07 2020-01-15 熱処理方法および熱処理装置 WO2020179231A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-041804 2019-03-07
JP2019041804A JP7245675B2 (ja) 2019-03-07 2019-03-07 熱処理方法および熱処理装置

Publications (1)

Publication Number Publication Date
WO2020179231A1 true WO2020179231A1 (ja) 2020-09-10

Family

ID=72337865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000998 WO2020179231A1 (ja) 2019-03-07 2020-01-15 熱処理方法および熱処理装置

Country Status (3)

Country Link
JP (1) JP7245675B2 (ja)
TW (1) TWI741474B (ja)
WO (1) WO2020179231A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272984A (ja) * 2002-03-18 2003-09-26 Hitachi Ltd 半導体装置の製造方法
JP2009231697A (ja) * 2008-03-25 2009-10-08 Dainippon Screen Mfg Co Ltd 熱処理装置
JP2014003277A (ja) * 2012-05-23 2014-01-09 Dainippon Screen Mfg Co Ltd パーティクル測定方法、熱処理装置および熱処理方法
JP2018148201A (ja) * 2017-03-03 2018-09-20 株式会社Screenホールディングス 熱処理方法および熱処理装置
JP2019149526A (ja) * 2018-02-28 2019-09-05 株式会社Screenホールディングス 熱処理方法および熱処理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7642205B2 (en) * 2005-04-08 2010-01-05 Mattson Technology, Inc. Rapid thermal processing using energy transfer layers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272984A (ja) * 2002-03-18 2003-09-26 Hitachi Ltd 半導体装置の製造方法
JP2009231697A (ja) * 2008-03-25 2009-10-08 Dainippon Screen Mfg Co Ltd 熱処理装置
JP2014003277A (ja) * 2012-05-23 2014-01-09 Dainippon Screen Mfg Co Ltd パーティクル測定方法、熱処理装置および熱処理方法
JP2018148201A (ja) * 2017-03-03 2018-09-20 株式会社Screenホールディングス 熱処理方法および熱処理装置
JP2019149526A (ja) * 2018-02-28 2019-09-05 株式会社Screenホールディングス 熱処理方法および熱処理装置

Also Published As

Publication number Publication date
TW202040736A (zh) 2020-11-01
TWI741474B (zh) 2021-10-01
JP7245675B2 (ja) 2023-03-24
JP2020145350A (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
JP6804398B2 (ja) 熱処理装置および熱処理方法
KR102549304B1 (ko) 열처리 방법 및 열처리 장치
KR102225757B1 (ko) 열처리 방법 및 열처리 장치
TWI757617B (zh) 熱處理方法及熱處理裝置
KR102463486B1 (ko) 열처리 방법 및 열처리 장치
KR102424749B1 (ko) 열처리 방법 및 열처리 장치
JP6720033B2 (ja) 熱処理装置
JP7091227B2 (ja) 熱処理方法および熱処理装置
JP2020107698A (ja) 熱処理方法および熱処理装置
JP2020120078A (ja) 熱処理方法および熱処理装置
WO2020166249A1 (ja) 熱処理方法および熱処理装置
WO2020179231A1 (ja) 熱処理方法および熱処理装置
WO2020105449A1 (ja) 熱処理方法および熱処理装置
CN110931358B (zh) 热处理方法及热处理装置
JP7294802B2 (ja) 熱処理方法および熱処理装置
JP7208100B2 (ja) 熱処理装置および熱処理方法
TWI725414B (zh) 熱處理裝置及熱處理方法
JP7304151B2 (ja) 熱処理方法および熱処理装置
JP7300365B2 (ja) 熱処理装置
WO2020121895A1 (ja) 熱処理方法および熱処理装置
JP2022122342A (ja) 熱処理方法
KR20230151909A (ko) 온도 측정 방법
JP2024116492A (ja) 熱処理方法および熱処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765823

Country of ref document: EP

Kind code of ref document: A1