TWI737043B - 半導體結構及半導體器件 - Google Patents

半導體結構及半導體器件 Download PDF

Info

Publication number
TWI737043B
TWI737043B TW108142362A TW108142362A TWI737043B TW I737043 B TWI737043 B TW I737043B TW 108142362 A TW108142362 A TW 108142362A TW 108142362 A TW108142362 A TW 108142362A TW I737043 B TWI737043 B TW I737043B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
semiconductor layer
electrode
type semiconductor
carbon nanotubes
Prior art date
Application number
TW108142362A
Other languages
English (en)
Other versions
TW202118725A (zh
Inventor
張金
魏洋
范守善
Original Assignee
鴻海精密工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鴻海精密工業股份有限公司 filed Critical 鴻海精密工業股份有限公司
Publication of TW202118725A publication Critical patent/TW202118725A/zh
Application granted granted Critical
Publication of TWI737043B publication Critical patent/TWI737043B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本發明提供一種半導體結構,包括:一第一奈米碳管,一半導體層,以及一第二奈米碳管。該半導體層定義一第一表面以及與該第一表面相對的第二表面,該第一奈米碳管設置在半導體層的第一表面,該第二奈米碳管設置在半導體層的第二表面,且所述第一奈米碳管的延伸方向與第二奈米碳管的延伸方向交叉設置。所述半導體層包括一n型半導體層和一p型半導體層,該n型半導體層和p型半導體層均為二維材料,且該n型半導體層和p型半導體層層疊設置並在垂直於所述半導體層的方向上形成一p-n結。本發明還提供一種採用上述半導體結構的半導體器件。

Description

半導體結構及半導體器件
本發明涉及一種半導體結構及半導體器件,尤其涉及一種奈米尺寸的半導體結構及半導體器件。
通過豎直堆疊具有不同性質(電學以及光學等)的二維半導體材料製成豎直異質結構,可以實現對組合而成的“新”材料的性質進行人工調控。由於在豎直方向上增加了新的維度,該豎直異質結構能夠為光電技術帶來更多的可能性。而且與橫向異質結構相比,由於其原子薄結構,豎直異質結構具有更高的光電轉換效率。另外,含有豎直異質結構的光電器件含有高信噪比和低功耗的優點。
然而,先前的豎直異質結構的二維p-n結半導體層與電極的的重疊區域通常為微米尺寸,進而使得包括豎直異質結構的半導體結構無法達到奈米級,限制了包括豎直異質結構的半導體結構及其半導體器件的實際應用。而且現有的半導體結構的異質結僅能實現p-p結,p-n結,和n-n結之中的一種工作模式,不能在p-p結,p-n結,和n-n結三種工作模式之間進行變換,因此採用該半導體結構的半導體器件只能在單一的一種模式下工作。
有鑑於此,確有必要提供一種半導體結構及其相關應用,該半導體結構的二維p-n結半導體層與電極的重疊區域為奈米尺寸,半導體結構可以做成奈米尺寸。
一種半導體結構,包括:一半導體層,該半導體層定義一第一表面以及與該第一表面相對設置的第二表面,該半導體層包括一n型半導體層和一p型半導體層,該n型半導體層和p型半導體層層疊設置,該n型半導體層和p型半導體層均為二維材料; 一第一奈米碳管,該第一奈米碳管設置在半導體層的第一表面,並與第一表面直接接觸;以及一第二奈米碳管,該第二奈米碳管設置在半導體層的第二表面,並與該第二表面直接接觸,其中,所述第一奈米碳管的延伸方向與第二奈米碳管的延伸方向交叉設置,在所述第一奈米碳管以及第二奈米碳管的交叉點處以及垂直於所述半導體層的方向上,所述第一奈米碳管、半導體層以及第二奈米碳管的重疊區域形成一多層立體結構。
一種半導體器件,包括一第一電極、一第二電極、一半導體結構及一第三電極,該半導體結構與該第一電極和第二電極電連接,該第三電極通過一絕緣層與該半導體結構、第一電極及第二電極絕緣設置,所述半導體結構包括:一第一奈米碳管,一半導體層,以及一第二奈米碳管,該半導體層定義一第一表面以及與該第一表面相對設置的第二表面,該第一奈米碳管設置在半導體層的第一表面,並與第一表面直接接觸,該第二奈米碳管設置在半導體層的第二表面,並與該第二表面直接接觸,且所述第一奈米碳管的延伸方向與第二奈米碳管的延伸方向交叉設置,所述半導體層包括一n型半導體層和一p型半導體層,該n型半導體層和p型半導體層層疊設置,該n型半導體層和p型半導體層均為二維材料,在所述第一奈米碳管以及第二奈米碳管的交叉點處,在垂直於所述半導體層的方向上,所述第一奈米碳管、半導體層以及第二奈米碳管的重疊區域形成一多層立體結構。
相較於先前技術,本發明提供的半導體結構通過交叉設置的兩個單根的奈米碳管夾持一含有豎直p-n結的二維半導體層形成,在兩個單根奈米碳管的交叉點處,該兩個交叉的單根奈米碳管和半導體層的重疊區域處可以形成一奈米尺寸的p-n異質結構,進而使得該半導體結構的尺寸為非常小的奈米級。另外,所述半導體結構僅通過交叉設置的兩個單根的奈米碳管夾持一含有豎直p-n結的二維半導體層形成,兩個單根的奈米碳管作為電極使用,奈米碳管作為電極時的電場遮罩弱,而且奈米碳管和異質結中奈米材料的摻雜容易被電場調控,在電場調製下奈米碳管和p-n結中材料的摻雜狀態發生變化,因此,當該半導體結構用於半導體器件上時,可以通過調控柵極電壓,使得半導體結構的異質結在p-p結,p-n結,和n-n結之間變換,進而使得採用該半導體結構的半導體器件可以在三種不同模式下工作。
100;200:太陽能電池
102:第一奈米碳管
104:半導體層
1044:p型半導體層
1042:n型半導體層
106:第二奈米碳管
108:多層立體結構
202:第一電極
204:第二電極
206:太陽能電池單元
208:柵極
210:絕緣層
圖1為本發明第一實施例提供的半導體結構的整體結構示意圖。
圖2為本發明第一實施例提供的半導體結構的側視示意圖。
圖3為本發明第二實施例提供的半導體器件的結構示意圖。
圖4為本發明第二實施例提供的半導體器件的側視示意圖。
圖5為本發明第二實施例提供的半導體器件的源極-漏極偏執電壓和柵極電壓變化時通過半導體結構的電流變化。
圖6為本發明第二實施例提供的半導體器件在柵極電壓分別為-10V、0V以及10V時的輸出特性。
下面將結合附圖及具體實施例對本發明的半導體結構及採用上述半導體結構的半導體器件作進一步的詳細說明。
請參閱圖1,本發明第一實施例提供一種半導體結構100。該半導體結構100包括一第一奈米碳管102,一半導體層104,以及一第二奈米碳管106。所述半導體層104夾持在所述第一奈米碳管102和第二奈米碳管106之間。該半導體層104定義一第一表面以及與該第一表面相對設置的第二表面。該第一奈米碳管102貼合在半導體層104的第一表面,並與第一表面直接接觸。該第二奈米碳管106貼合在半導體層104的第二表面,並與該第二表面直接接觸。所述半導體層104包括一n型半導體層1042和一p型半導體層1044,該n型半導體層1042和p型半導體層1044均為二維材料,該n型半導體層1042和p型半導體層1044層疊設置形成所述半導體層104。所述二維材料係指電子僅可在兩個維度的奈米尺度(1-100nm)上自由運動(平面運動)的材料,如奈米薄膜、超晶格、量子阱等。所述第一奈米碳管102的延伸方向與第二奈米碳管106的延伸方向交叉設置。
所述第一奈米碳管102優選為金屬型奈米碳管。該第一奈米碳管102可以為單壁奈米碳管、雙壁奈米碳管或多壁奈米碳管。第一奈米碳管102的直徑不限,可以為0.5奈米~100奈米,在某些實施例中,第一奈米碳管102的直徑可以為0.5奈米~10奈米。優選地,第一奈米碳管102為單壁奈米碳管,其直徑為0.5奈米~2奈米。本實施例中,所述第一奈米碳管102的直徑為1奈米。本實施例中,所述第一奈米碳管102為一內殼奈米碳管,該內殼奈米碳管是指雙壁奈米碳管或 多壁奈米碳管剝去外殼后形成的單壁奈米碳管。所述內殼奈米碳管可以從一超長雙壁奈米碳管或超長多壁奈米碳管中拉取得到,該超長雙壁奈米碳管或超長多壁奈米碳管是指雙壁奈米碳管或多壁奈米碳管的長度在150微米以上。優選的,超長雙壁奈米碳管或超長多壁奈米碳管的長度為150微米-300微米。具體的,在超長雙壁奈米碳管或超長多壁奈米碳管的兩端拉伸該超長雙壁奈米碳管或超長多壁奈米碳管,使超長雙壁奈米碳管或超長多壁奈米碳管的外壁均斷裂,使該超長雙壁奈米碳管或超長多壁奈米碳管的中間部分僅剩下最內層的奈米碳管,即內殼奈米碳管。該內層奈米碳管具有乾淨的表面,表面沒有雜質,因此所述第一奈米碳管102能夠與所述半導體層104很好的接觸。當然,所述第一奈米碳管102並不限定為本實施例中的內殼奈米碳管,也可以為其它的單壁奈米碳管、雙壁奈米碳管或多壁奈米碳管。所述半導體層104的第一表面僅設置一根第一奈米碳管102。
所述半導體層104中的n型半導體層1042和p型半導體層1044層疊設置,並在垂直於該半導體層104的方向上形成一p-n結。所述半導體層104為一厚度為奈米尺寸的二維層狀結構。當半導體層104的厚度太大時,所述半導體結構100的電流調製效應會受到限制。優選的,所述半導體層104的厚度為1奈米~100奈米。所述n型半導體層1042的厚度優選為0.5奈米到100奈米。所述p型半導體層1044的厚度優選為0.5奈米到100奈米。更優選的,所述n型半導體層1042的厚度為0.5奈米到50奈米。所述p型半導體層1044的厚度為0.5奈米到50奈米。本實施例中,所述n型半導體層1042與所述第一奈米碳管102直接接觸,所述p型半導體層1044與所述第二奈米碳管106直接接觸。可以理解,在其它一些實施例中,也可以所述n型半導體層1042與所述第二奈米碳管106直接接觸,所述p型半導體層1044與所述第一奈米碳管102直接接觸。所述p型半導體層1044或n型半導體層1042的材料不限,可以為無機化合物半導體、元素半導體、有機半導體材料或這些材料摻雜後的材料。本實施例中,所述n型半導體層1042的材料為硫化鉬(MoS2),其厚度為16奈米;所述p型半導體層1044的材料為硒化鎢(WSe2),其厚度為14奈米。在另外一實施例中,所述n型半導體層1042的材料為硫化鉬(MoS2),其厚度為7.6奈米;所述p型半導體層1044的材料為硒化鎢(WSe2),其厚度為76奈米。
所述第二奈米碳管106優選為金屬型奈米碳管。該第二奈米碳管106可以為單壁奈米碳管、雙壁奈米碳管或多壁奈米碳管。第二奈米碳管106的直徑不限,可以為0.5奈米~100奈米,在某些實施例中,第二奈米碳管106的直徑可以為0.5奈米~10奈米。優選地,第二奈米碳管106為單壁奈米碳管,其直徑為0.5奈米~2奈米。本實施例中,所述第二奈米碳管106的直徑為1奈米。本實施例中,所述第二奈米碳管106為一內殼奈米碳管,該內殼奈米碳管是指雙壁奈米碳管或多壁奈米碳管剝去外殼后形成的單壁奈米碳管。所述內殼奈米碳管可以從一超長雙壁奈米碳管或超長多壁奈米碳管中拉取得到,該超長雙壁奈米碳管或超長多壁奈米碳管是指雙壁奈米碳管或多壁奈米碳管的長度在150微米以上。優選的,超長雙壁奈米碳管或超長多壁奈米碳管的長度為150微米-300微米。具體的,在超長雙壁奈米碳管或超長多壁奈米碳管的兩端拉伸該超長雙壁奈米碳管或超長多壁奈米碳管,使超長雙壁奈米碳管或超長多壁奈米碳管的外壁均斷裂,使該超長雙壁奈米碳管或超長多壁奈米碳管的中間部分僅剩下最內層的奈米碳管,即內殼奈米碳管。該內層奈米碳管具有乾淨的表面,表面沒有雜質,因此所述第二奈米碳管106能夠與所述半導體層104很好的接觸。當然,所述第二奈米碳管106並不限定為本實施例中的內殼奈米碳管,也可以為其它的單壁奈米碳管、雙壁奈米碳管或多壁奈米碳管。所述第二奈米碳管106與第一奈米碳管102的直徑可以相同也可以不同。所述半導體層104的第二表面僅設置一根第二奈米碳管106。
所述第一奈米碳管102的延伸方向與第二奈米碳管106的延伸方向交叉設置是指第一奈米碳管102的延伸方向與第二奈米碳管106的延伸方向之間形成一夾角,該夾角大於0度小於等於90度。本實施例中,所述第一奈米碳管102的延伸方向和第二奈米碳管108的延伸方向相互垂直,即夾角為90度。
請參閱圖2,在所述第一奈米碳管102以及第二奈米碳管106的交叉點處,在垂直於所述半導體層104的方向上,所述第一奈米碳管102、半導體層104以及第二奈米碳管106的重疊區域形成一多層立體結構108。所述多層立體結構108定義一橫向截面及一豎向截面,所述橫向截面即平行於半導體層104表面的方向的截面,所述縱向截面即垂直於半導體層104表面的方向的截面。由於第一奈米碳管102以及第二奈米碳管106相對於半導體層104的尺寸較小,所述橫向截面的面積由第一奈米碳管102或第二奈米碳管106的直徑決定。所述縱向截面 的面積由第一奈米碳管102或第二奈米碳管106的直徑以及半導體層108的厚度決定。由於第一奈米碳管102和第二奈米碳管106的直徑均為奈米級,而且半導體層104的厚度也為奈米級,所以該多層立體結構108的橫向截面的面積以及豎向截面的面積也均是奈米級,因此,該多層立體結構108為一奈米立體結構。優選地,該多層立體結構108的橫向截面的面積為0.25nm2~1000nm2。更優選地,該多層立體結構108的橫向截面的面積為1nm2~100nm2。該半導體層104的重疊區域處形成一個豎直方向的點狀p-n異質結,該p-n異質結為範德華異質結。該第一奈米碳管102,半導體層104,以及第二奈米碳管106在所述多層立體結構108處在垂直於所述半導體層104的方向上形成一奈米異質結構。
該半導體結構100在應用時,所述第一奈米碳管102和第二奈米碳管106可以看作設置在半導體層104的兩個相對表面上的電極。當在第一奈米碳管102和第二奈米碳管106上施加源極-漏極偏執電壓實現導通時,電流的流動路徑為穿過多層立體結構108,所述半導體結構100的有效部分為所述多層立體結構108。所述半導體結構100的整體尺寸只需確保大於多層立體結構108的體積即可,該多層立體結構108的體積為奈米級。因此,所述半導體結構100可以具有較小的奈米尺寸,只需確保其包括多層立體結構108。而且,該半導體結構100具有較低的能耗、奈米級的尺寸以及更高的集成度。
本發明提供的半導體結構具有很多優點:第一,所述半導體結構僅通過交叉設置的兩個單根的奈米碳管夾持一含有豎直p-n結的二維半導體層形成,兩個單根的奈米碳管作為電極使用,奈米碳管作為電極時的電場遮罩弱,且垂直點p-n結構洩漏電流較低,而且奈米碳管和異質結中奈米材料的摻雜可以容易被電場調控,在電場調製下奈米碳管和p-n結中材料的摻雜狀態發生變化,因此,當該半導體結構用於半導體器件上時,可以通過調控柵極電壓,使得半導體結構的異質結在p-p結,p-n結,和n-n結之間變換,進而使得採用該半導體結構的半導體器件可以在三種不同模式下工作。第二,通過交叉設置的兩個單根的奈米碳管夾持一含有豎直p-n結的二維半導體層形成,由於該二維半導體層的厚度為奈米級,而且兩個單根奈米碳管的直徑也為奈米級,在兩個單根奈米碳管的交叉點處,該兩個交叉的單根奈米碳管和半導體層的重疊區域處可以形成一奈米尺寸的p-n異質結構,進而使得該半導體結構的尺寸為非常小的奈米級,這在未來的奈米電子學和奈米光電學中將意義重大。第三,該半導體結構中的 豎直p-n異質結構是不同類型的半導體層垂直堆疊形成的,與橫向p-n異質結構相比擴散距離更短,具有更高的載流子收集效率。而且該半導體結構具有奈米級的厚度,使得含有該半導體結構的光電器件具有高光電轉換效率、高信噪比和低功耗的優點。第四,該半導體結構的內置電勢可以通過柵極電壓進行調製,因此含有該半導體結構的半導體器件具有可變的光電特性。第五,本發明中的半導體結構的電極僅為兩根單根的奈米碳管,奈米碳管作為電極相對於一般傳統電極,奈米碳管對光的吸收或反射可以忽略不計,因此將該半導體結構用於光電探測器會對光電探測的效率提升由很大的作用。
請參閱圖3和4,本發明第二實施例提供一種半導體器件200。該半導體器件200包括一第一電極202、一第二電極204、一半導體結構100及一第三電極206,該半導體結構100與該第一電極202和第二電極204電連接,該第三電極206通過一絕緣層208與該半導體結構100、第一電極202及第二電極204絕緣設置。所述半導體結構100的具體結構與第一實施例提供的半導體結構100完全相同,在此不再詳細贅述。
所述半導體器件200中,第三電極206與絕緣層208層疊設置,所述半導體結構100設置在絕緣層208的表面,使絕緣層208位於第三電極206和半導體結構100之間。所述半導體結構100中,第二奈米碳管106直接設置於絕緣層208的表面,半導體層104設置於第二奈米碳管106的上方,使第二奈米碳管106位於半導體層104和絕緣層208之間,第一奈米碳管102位於半導體層104的遠離所述絕緣層的表面。
所述第一電極202,第二電極204均由導電材料組成,該導電材料可選擇為金屬、ITO、ATO、導電銀膠、導電聚合物以及導電奈米碳管等。該金屬材料可以為鋁、銅、鎢、鉬、金、鈦、鈀或任意組合的合金。所述第一電極202,第二電極204也可以均為一層導電薄膜,該導電薄膜的厚度為0.01微米-10微米。本實施例中,所述第一電極202,第二電極204為金屬Au和Ti得到的金屬複合結構,具體地,所述金屬複合結構是由金屬Au在金屬Ti的表面複合而成,所述金屬Ti的厚度為5奈米,金屬Au的厚度為60奈米。本實施例中,所述第一電極202與所述第一奈米碳管102電連接,設置於第一奈米碳管102的一端並貼合於第一奈米碳管102的表面;所述第二電極204與所述第二奈米碳管106電連接,設置於第二奈米碳管106的一端並貼合於第二奈米碳管106的表面。
所述第三電極206由導電材料組成,該導電材料可選擇為金屬、ITO、ATO、導電銀膠、導電聚合物以及導電奈米碳管等。該金屬材料可以為鋁、銅、鎢、鉬、金、鈦、鈀或任意組合的合金。本實施例中,所述第三電極206為一層狀結構,絕緣層208設置於第三電極206的表面,所述第一電極202,第二電極204,以及半導體結構100設置於絕緣層205上,並由第一電極201和絕緣層205支撐。
所述第三電極206由導電材料組成,該導電材料可選擇為金屬、ITO、ATO、導電銀膠、導電聚合物以及導電奈米碳管等。該金屬材料可以為鋁、銅、鎢、鉬、金、鈦、鈀或任意組合的合金。本實施例中,所述第三電極206為一層狀結構,絕緣層208設置於第三電極206的表面,所述第一電極202、第二電極204、以及半導體結構100設置於絕緣層208上,並由第三電極206和絕緣層208支撐。本發明中,所述第二奈米碳管106直接設置在絕緣層208表面,第二奈米碳管106靠近第三電極206,第一奈米碳管102遠離第三電極206,第一奈米碳管102不會在半導體層104和第三電極206產生遮罩效應,因此,半導體器件200在應用時,第三電極206可以控制半導體結構100。
所述絕緣層208的材料為絕緣材料,例如:氮化矽、氧化矽等硬性材料或苯並環丁烯(BCB)、聚酯或丙烯酸樹脂等柔性材料。該絕緣層208的厚度為2奈米~100微米。本實施例中,所述絕緣層208的材料為氧化矽,絕緣層的厚度為50奈米。
本實施例中,所述半導體器件200為一電晶體,所述第一電極202接地為源極,第二電極204為漏極,第三電極206為柵極。本發明所提供的半導體器件200,由於第二奈米碳管106作為底電極,直接設置在絕緣層208上,與作為柵極的第三電極206僅間隔一層絕緣層208,由於奈米碳管的特殊性能,可以通過柵極調節半導體結構100的導通,使半導體結構100呈現可調節的輸出特性。本實施例中,第二奈米碳管106設置在p型半導體層1044的表面,第一奈米碳管102設置在n型半導體層1042的表面,n型半導體層1042的材料為硫化鉬(MoS2),其厚度為16奈米;所述p型半導體層1044的材料為硒化鎢(WSe2),其厚度為14奈米。
請參閱圖5,由圖中可以看出,當柵極電壓由負變為正時,該半導體器件200中的半導體結構100由p-n結變為n-n結。請參閱圖6,為當柵極電壓從-10V到10V之間變化時,該半導體器件200的電流變化。由圖中可以看出,所述 該半導體器件200中的半導體結構100的電流變化由柵極電壓的變化控制,這是由於柵極電壓的變化可以引起奈米材料的摻雜變化。
綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。
100:半導體結構
102:第一奈米碳管
104:半導體層
106:第二奈米碳管
1042:n型半導體層
1044:p型半導體層
108:多層立體結構

Claims (10)

  1. 一種半導體結構,其改良在於,包括:一半導體層,該半導體層定義一第一表面以及與該第一表面相對設置的第二表面,該半導體層包括一n型半導體層和一p型半導體層,該n型半導體層和p型半導體層層疊設置,該n型半導體層和p型半導體層均為二維材料;一第一奈米碳管,該第一奈米碳管設置在半導體層的第一表面,並與第一表面直接接觸;以及一第二奈米碳管,該第二奈米碳管設置在半導體層的第二表面,並與該第二表面直接接觸,其中,所述第一奈米碳管的延伸方向與第二奈米碳管的延伸方向交叉設置,在所述第一奈米碳管以及第二奈米碳管的交叉點處以及垂直於所述半導體層的方向上,所述第一奈米碳管、半導體層以及第二奈米碳管的重疊區域形成一多層立體結構,所述第一奈米碳管和第二奈米碳管均為內殼奈米碳管,該內殼奈米碳管是指雙壁奈米碳管或多壁奈米碳管剝去外殼後形成的單壁奈米碳管。
  2. 如請求項1所述之半導體結構,其中,所述第一奈米碳管的延伸方向垂直於所述第二奈米碳管的延伸方向。
  3. 如請求項1所述之半導體結構,其中,所述第一奈米碳管和第二奈米碳管均為內殼奈米碳管。
  4. 如請求項1所述之半導體結構,其中,所述第一奈米碳管和第二奈米碳管均為金屬型奈米碳管。
  5. 如請求項1所述之半導體結構,其中,半導體層的厚度為1.0-100奈米。
  6. 如請求項1所述之半導體結構,其中,所述n型半導體層的厚度為0.5-50奈米,所述p型半導體層的厚度為0.5-50奈米。
  7. 如請求項1所述之半導體結構,其中,所述n型半導體層的材料為硫化鉬(MoS2);所述p型半導體層的材料為硒化鎢(WSe2)。
  8. 如請求項1所述之半導體結構,其中,該多層立體結構的橫向截面的面積為1平方奈米~100平方奈米。
  9. 一種半導體器件,包括一第一電極、一第二電極、一半導體結構及一第三電極,該半導體結構與該第一電極和第二電極電連接,該第三電極通過 一絕緣層與該半導體結構、第一電極及第二電極絕緣設置,其改良在於,所述半導體結構為請求項1-8中任一項的半導體結構。
  10. 如請求項9所述之半導體器件,其中,所述n型半導體層與所述第一奈米碳管直接接觸,所述p型半導體層與所述第二奈米碳管直接接觸,所述第二奈米碳管直接設置在絕緣層表面,第二奈米碳管靠近第三電極,第一奈米碳管遠離第三電極。
TW108142362A 2019-11-08 2019-11-21 半導體結構及半導體器件 TWI737043B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911089310.4 2019-11-08
CN201911089310.4A CN112786678B (zh) 2019-11-08 2019-11-08 半导体结构及半导体器件

Publications (2)

Publication Number Publication Date
TW202118725A TW202118725A (zh) 2021-05-16
TWI737043B true TWI737043B (zh) 2021-08-21

Family

ID=75748966

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108142362A TWI737043B (zh) 2019-11-08 2019-11-21 半導體結構及半導體器件

Country Status (4)

Country Link
US (1) US11289615B2 (zh)
JP (1) JP6946491B2 (zh)
CN (1) CN112786678B (zh)
TW (1) TWI737043B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786714B (zh) * 2019-11-08 2022-11-22 清华大学 光电探测器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201802951A (zh) * 2016-07-01 2018-01-16 鴻海精密工業股份有限公司 奈米異質結構及奈米電晶體的製備方法
TW201808787A (zh) * 2016-07-01 2018-03-16 鴻海精密工業股份有限公司 半導體器件
TW201901978A (zh) * 2017-05-24 2019-01-01 鴻海精密工業股份有限公司 太陽能電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2239794A3 (en) * 1999-07-02 2011-03-23 President and Fellows of Harvard College Nanoscopic wire-based devices, arrays, and methods of their manufacture
JP4251268B2 (ja) * 2002-11-20 2009-04-08 ソニー株式会社 電子素子及びその製造方法
JP2005116618A (ja) 2003-10-03 2005-04-28 Fujitsu Ltd 半導体装置およびその製造方法
US8217386B2 (en) * 2006-06-29 2012-07-10 University Of Florida Research Foundation, Inc. Short channel vertical FETs
KR20120081801A (ko) 2011-01-12 2012-07-20 삼성엘이디 주식회사 반도체 발광 소자
KR101396432B1 (ko) * 2012-08-02 2014-05-21 경희대학교 산학협력단 반도체 소자 및 그의 제조 방법
CN107564946A (zh) 2016-07-01 2018-01-09 清华大学 纳米晶体管
CN107564917B (zh) * 2016-07-01 2020-06-09 清华大学 纳米异质结构
CN107564979B (zh) 2016-07-01 2019-08-13 清华大学 光探测器
CN107564947A (zh) 2016-07-01 2018-01-09 清华大学 纳米异质结构
CN108933182B (zh) 2017-05-24 2020-05-15 清华大学 光探测器
CN108933166B (zh) 2017-05-24 2020-08-11 清华大学 半导体器件
JP6621499B2 (ja) * 2017-05-24 2019-12-18 ツィンファ ユニバーシティ 半導体素子及び半導体部品
KR102381419B1 (ko) * 2017-06-29 2022-04-01 삼성디스플레이 주식회사 반도체 소자의 제조 방법, 반도체 소자를 포함하는 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
CN110224022A (zh) * 2019-06-12 2019-09-10 南京邮电大学 一种基于非对称范德华异质结构的场效应管及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201802951A (zh) * 2016-07-01 2018-01-16 鴻海精密工業股份有限公司 奈米異質結構及奈米電晶體的製備方法
TW201808787A (zh) * 2016-07-01 2018-03-16 鴻海精密工業股份有限公司 半導體器件
TW201901978A (zh) * 2017-05-24 2019-01-01 鴻海精密工業股份有限公司 太陽能電池

Also Published As

Publication number Publication date
JP2021077849A (ja) 2021-05-20
CN112786678B (zh) 2022-11-22
US20210143289A1 (en) 2021-05-13
JP6946491B2 (ja) 2021-10-06
TW202118725A (zh) 2021-05-16
US11289615B2 (en) 2022-03-29
CN112786678A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
TWI650808B (zh) 半導體元件
TWI667191B (zh) 半導體器件
TWI653749B (zh) 光探測器
JP6730367B2 (ja) 太陽電池
TWI737043B (zh) 半導體結構及半導體器件
TWI668181B (zh) 半導體器件
TWI738122B (zh) 光電探測器
TWI775012B (zh) 太陽能電池
TWI780858B (zh) 隧穿電晶體
TWI797712B (zh) 奈米碳管n型摻雜的方法
TWI667192B (zh) 半導體結構及半導體器件
TWI824279B (zh) 奈米碳管p型摻雜的方法