CN108933182B - 光探测器 - Google Patents

光探测器 Download PDF

Info

Publication number
CN108933182B
CN108933182B CN201710374706.8A CN201710374706A CN108933182B CN 108933182 B CN108933182 B CN 108933182B CN 201710374706 A CN201710374706 A CN 201710374706A CN 108933182 B CN108933182 B CN 108933182B
Authority
CN
China
Prior art keywords
electrode
semiconductor
conductive film
photodetector
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710374706.8A
Other languages
English (en)
Other versions
CN108933182A (zh
Inventor
张金
魏洋
姜开利
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN201710374706.8A priority Critical patent/CN108933182B/zh
Priority to TW106121849A priority patent/TWI653749B/zh
Priority to US15/916,418 priority patent/US10847737B2/en
Priority to JP2018085051A priority patent/JP6736604B2/ja
Publication of CN108933182A publication Critical patent/CN108933182A/zh
Application granted granted Critical
Publication of CN108933182B publication Critical patent/CN108933182B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • H10K30/65Light-sensitive field-effect devices, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

一种光探测器,其包括一半导体元件、一第一电极、一第二电极及一电流探测元件,所述半导体元件、第一电极、第二电极、电流探测元件相互电连接形成一回路结构,该半导体元件包括:一半导体结构,所述半导体结构包括一P型半导体层及一N型半导体层,并定义一第一表面及与第一表面相对的第二表面;一碳纳米管,该碳纳米管设置于半导体结构的第一表面;一导电膜,该导电膜通过沉积方法形成于所述半导体结构的第二表面,使半导体结构设置于碳纳米管和导电膜之间,碳纳米管、半导体结构与导电膜相互层叠形成一多层立体结构。

Description

光探测器
技术领域
本发明涉及一种光探测器。
背景技术
光探测器是一种探测光能的器件。一般光探测器的工作原理是基于光电效应,基于材料吸收了光辐射能量后改变了它的电学性能,从而可以探测出光的存在以及光能的大小。半导体器件被越来越多的应用到光探测器中。然而,受技术水平的限制,半导体器件常常为微米结构,一定程度上限制了光探测器的尺寸,影响了其应用范围。
发明内容
有鉴于此,确有必要提供一种光探测器以克服以上缺点。
一种光探测器,其包括一半导体元件、一第一电极、一第二电极及一电流探测元件,所述半导体元件、第一电极、第二电极、电流探测元件相互电连接形成一回路结构,该半导体元件包括:一半导体结构,所述半导体结构包括一P型半导体层及一N型半导体层,并定义一第一表面及与第一表面相对的第二表面;一碳纳米管,该碳纳米管设置于半导体结构的第一表面;一导电膜,该导电膜通过沉积方法形成于所述半导体结构的第二表面,使半导体结构设置于碳纳米管和导电膜之间,碳纳米管、半导体结构与导电膜相互层叠形成一多层立体结构;其中,所述第一电极与碳纳米管电连接,所述第二电极与导电膜电连接。
相较于现有技术,本发明所提供的光探测器包括一半导体元件,该半导体元件中,碳纳米管、半导体结构和导电膜构成一纳米级的异质结,故,该光探测器可以具有较小的尺寸,同时在应用时具有较低的能耗以及更高的完整性。
附图说明
图1为本发明第一实施例提供的光探测器的整体结构示意图。
图2为本发明第一实施例提供的光探测器中的半导体元件的侧视示意图。
图3为本发明另实施例提供的另一种半导体元件侧视示意图。
图4为本发明第二实施例提供的光探测器的部分结构示意图。
主要元件符号说明
光探测器 10;20
半导体元件 100
碳纳米管 102
半导体结构 104
P型半导体层 104a
N型半导体层 104b
导电膜 106
多层立体结构 110
第一电极 202
第二电极 204
第三电极 208
绝缘层 210
电流探测元件 212
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
以下将结合附图及具体实施例对本发明的光探测器作进一步的详细说明。
请参阅图1,本发明第一实施例提供一种光探测器10。所述光探测器10 包括一半导体元件100、一第一电极202、一第二电极204及一电流探测元件 212。所述半导体元件100、第一电极202、第二电极204、电流探测元件212 相互电连接形成一回路结构。所述半导体元件100包括一半导体结构104、一碳纳米管102及一导电膜106。所述半导体结构104设置于碳纳米管102和导电膜106之间。
请参见图2,所述半导体结构104包括一P型半导体层104a及一N型半导体层104b。所述P型半导体层104a及N型半导体层104b层叠设置。所述半导体结构104包括一第一表面(图未标)及一第二表面(图未标),第一表面和第二表面相对设置。所述半导体结构104的厚度为1~20000纳米。优选地,所述半导体结构104的厚度为1~10000纳米。
所述碳纳米管102为金属型碳纳米管。碳纳米管102的直径不限,可以为 0.5纳米~150纳米,在某些实施例中,碳纳米管102的直径可以为1纳米~10纳米。优选地,碳纳米管102为单壁碳纳米管,其直径为1纳米~5纳米。本实施例中,碳纳米管102为金属型单壁碳纳米管,其直径为1纳米。所述碳纳米管 102设置在半导体结构104的第一表面,并与第一表面直接接触。所述半导体结构104的第一表面可以仅包括一根碳纳米管102。
所述半导体结构104为一二维层状结构。所述二维层状结构即半导体结构104的厚度较小,半导体结构104的厚度为1纳米~20000纳米,优选地,其厚度为1纳米~10000纳米,更优选地,其厚度为1纳米~200纳米。所述半导体结构104包括一P型半导体层104a及一N型半导体层104b,所述P型半导体层104a及N型半导体层104b层叠设置。所述半导体结构104包括一第一表面及一第二表面,第一表面和第二表面相对设置。请参见图2,所述第一表面可以为P型半导体层104a的表面,第二表面为N型半导体层104b的表面,此情况下,碳纳米管102设置在P型半导体层104a的表面,导电膜106设置在N型半导体层 104b的表面。在另外的实施例中,请参见图3,所述第一表面可以为N型半导体层104b的表面,第二表面为P型半导体层104a的表面,此情况下,碳纳米管102设置在N型半导体层104b的表面,导电膜106设置在P型半导体层104a 的表面。所述P型半导体层104a或N型半导体层104b的材料不限,可以为无机化合物半导体、元素半导体、有机半导体材料或这些材料掺杂后的材料。本实施例中,P型半导体层104a的材料为硒化钨(WSe2),其厚度为6纳米,N 型半导体层104b的材料为硫化钼(MoS2),其厚度为2.6纳米,碳纳米管102 设置在N型半导体层104b的表面,导电膜106设置在P型半导体层104a的表面。
所述导电膜106的材料为导电材料,可以为金属、导电聚合物或ITO。导电膜106直接沉积在半导体结构104的第二表面。导电膜106沉积在半导体结构104的第一表面的具体方法不限,可以为离子溅射、磁控溅射或其他镀膜方法。所述导电膜106的厚度不限,可以为5纳米~100微米。在一些实施例中,导电膜106的厚度为5纳米~100纳米;在另一些实施例中,导电膜106的厚度为5纳米~20纳米。优选地,所述导电膜106为一透明结构。所述导电膜106的形状不限,可以为长条形、线性、方形等形状。本实施例中,所述导电膜106的材料为金属,其形状为长条形。
所述碳纳米管102、半导体结构104和导电膜106相互层叠形成一多层立体结构110。所述多层立体结构110定义一横向截面及一竖向截面,所述横向截面即平行于半导体结构104表面的方向的截面,所述纵向截面即垂直于半导体结构104的表面的方向的截面。所述横向截面的面积由碳纳米管102的直径和长度决定。所述纵向截面的面积由碳纳米管102的长度和多层立体结构110的厚度决定。由于碳纳米管102相对于半导体结构104和导电膜106的尺寸较小,该多层立体结构110的横向截面和纵向截面的面积均较小,多层立体结构110的体积也很小。优选地,该多层立体结构110的横截面的面积为 0.25nm2~100000nm2。更优选地,该多层立体结构110的横截面的面积为 1nm2~10000nm2
所述第一电极202和第二电极204均由导电材料组成,该导电材料可选择为金属、ITO、ATO、导电银胶、导电聚合物以及导电碳纳米管等。该金属材料可以为铝、铜、钨、钼、金、钛、钯或任意组合的合金。所述第一电极 202和第二电极204也可以均为一层导电薄膜,该导电薄膜的厚度为2纳米 -100微米。本实施例中,所述第一电极202、第二电极204为金属Au和Ti得到的金属复合结构,具体地,所述金属复合结构是由一层金属Au和一层金属Ti 组成,Au设置在Ti的表面。所述金属Ti的厚度为5纳米,金属Au的厚度为5 纳米。本实施例中,所述第一电极202与碳纳米管102电连接,设置于碳纳米管102的一端并贴合于碳纳米管102的表面,其中,Ti层设置于碳纳米管102 表面,Au层设置于Ti层表面;所述第二电极204与导电膜106电连接,并设置于导电膜106的一端并贴合于导电膜106的表面,其中,Ti层设置于导电膜106 表面,Au层设置于Ti层表面。
所述光探测器10可以光的定性定量探测。所述光探测器10的定性探测光的工作原理为:当没有光照射到光探测器10上,碳纳米管102、半导体结构 104及导电膜106之间没有导通,回路中不会有电流通过,电流探测元件212 中探测不到电流;当光照射到光探测器10上时,半导体层中产生光生载流子,碳纳米管102和导电膜106之间形成的内建电场将光生电子空穴对分开,这样就形成了光生电流,即回路中产生电流,电流探测元件212中探测到电流。即,通过回路中是否有电流产生来探测光源。
所述光探测器10的定量探测光的工作原理为:打开电源,用已知的、不同强度的光依次照射探测点,读出电流探测元件212中探测到的电流值,一个强度的光对应一个电流值,并将不同强度的光对应的不同的电流值作相应的曲线图,即可标识出不同强度的光对应形成电流的标准曲线。当采用未知强度的光照射探测点时,根据电流探测元件212中探测到的电流值,即可从该标准曲线上读出光的强度值。
所述光探测器10中,碳纳米管102和导电膜106与二维半导体结构104在多层立体结构110处形成范德华异质结构。在应用时,碳纳米管102和导电膜 106可以看作设置在半导体结构104的两个相对表面上的电极,当光照射在半导体结构104的表面时,由半导体元件100、第一电极202、第二电极204、电流探测元件212组成的回路中产生电流,电流的流动路径为穿过多层立体结构110的横截面,所述半导体元件100的有效部分为多层立体结构110。所述半导体元件100的整体尺寸只需确保大于多层立体结构110的体积即可,因此,半导体元件100可以具有较小的尺寸,只需确保其包括多层立体结构110。所述半导体元件100可以为一纳米级的半导体元件。故,采用该半导体元件 100的光探测器10也可以具有较小的尺寸。该光探测器10具有较低的能耗、纳米级的尺寸以及更高的集成度。
请参见图4,本发明第二实施例提供一光探测器20。与第一实施例中的光探测器10相比,本实施例中的光探测器20进一步包括一第三电极208及一绝缘层210,其他结构与光探测器10相同。该半导体元件100与该第一电极202 和第二电极204电连接,该第三电极208通过一绝缘层210与该半导体元件 100、第一电极202及第二电极204绝缘设置。所述半导体元件100的具体结构与第一实施例提供的半导体元件100相同,在此不再重复做详述。
所述光探测器20中,第三电极208与绝缘层210层叠设置,所述半导体元件100设置在绝缘层210的表面,使绝缘层210位于第三电极208和半导体元件 100之间。所述半导体元件100中,碳纳米管102直接设置于绝缘层210的表面,半导体结构104设置于碳纳米管102的上方,使碳纳米管102位于半导体结构 104和绝缘层210之间,导电膜106位于半导体结构104的上方。本发明中,碳纳米管102直接设置在绝缘层210表面,碳纳米管102靠近第三电极208,第三电极208可以控制半导体元件100。所述绝缘层210的材料为绝缘材料,其厚度为1纳米~100微米。绝缘层210使碳纳米管102与第三电极208间隔绝缘设置。本实施例中,绝缘层的材料为氧化硅。
所述第三电极208由导电材料组成,该导电材料可选择为金属、ITO、 ATO、导电银胶、导电聚合物以及导电碳纳米管等。该金属材料可以为铝、铜、钨、钼、金、钛、钯或任意组合的合金。本实施例中,所述第三电极208 为一层状结构,绝缘层210设置于第三电极208的表面,所述第一电极202、第二电极204、以及半导体元件100设置于绝缘层210上,并由第三电极208和绝缘层210支撑。
本发明第二实施例所提供的光探测器20,进一步包括一第三电极208作为半导体元件100的控制电极,由于碳纳米管102作为底电极,直接设置在绝缘层210上,与第三电极208仅间隔一层绝缘层210,由于碳纳米管的特殊性能,可以通过第三电极调节半导体元件100中材料的电学性质,使半导体元件100工作性能得到优化,从而控制光探测器20的工作性能。所述第三电极 208可以看作光探测器20的栅极。本实施例中,碳纳米管102设置在N型半导体层104b的表面,导电膜106设置在P型半导体层104a的表面,P型半导体层 104a为厚度为6纳米的WSe2,N型半导体层104b为厚度为2.6纳米的MoS2
本发明的光探测器包括一基于碳纳米管不对称范德华异质结构 (CCVH),其中半导体结构为一二维结构,其被不对称地夹在碳纳米管102 和导电膜106之间,半导体结构包括一P-N结,碳纳米管和导电膜分别作为P-N 结的两个电极。碳纳米管和导电膜对2D半导体层的不对称接触使范德华异质结构具有更优异的光电性能。当光探测器包括一栅极时,通过控制栅极电极的电压,可以调控碳纳米管以及半导体材料的电学性质,进而可以优化这种光探测器的性能。这种运输特性的多样性主要是因为,半导体元件100采用碳纳米管102作为底电极,由于碳纳米管特殊的几何形状和能带结构,使碳纳米管的费米能级更容易被栅极电压调制,因此,这种半导体元件呈现出独特的性能。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (10)

1.一种光探测器,其包括一半导体元件、一第一电极、一第二电极及一电流探测元件,所述半导体元件、第一电极、第二电极、电流探测元件相互电连接形成一回路结构,该半导体元件包括:
一半导体结构,所述半导体结构包括一P型半导体层及一N型半导体层,并定义一第一表面及与第一表面相对的第二表面;
一碳纳米管,该碳纳米管设置于半导体结构的第一表面;
一导电膜,该导电膜通过沉积方法形成于所述半导体结构的第二表面,使半导体结构设置于碳纳米管和导电膜之间,碳纳米管、半导体结构与导电膜相互层叠形成一多层立体结构;
其中,所述半导体元件为一纳米级的半导体元件,所述半导体结构为一二维结构,其被不对称的夹在所述碳纳米管和所述导电膜之间,所述第一电极与所述碳纳米管电连接,所述第二电极与所述导电膜电连接。
2.如权利要求1所述的光探测器,其特征在于,所述碳纳米管为金属型碳纳米管。
3.如权利要求2所述的光探测器,其特征在于,所述碳纳米管为单壁碳纳米管。
4.如权利要求1所述的光探测器,其特征在于,所述多层立体结构的横截面面积在1nm2~10000nm2之间。
5.如权利要求1所述的光探测器,其特征在于,所述半导体结构的厚度为1nm~20000nm。
6.如权利要求1所述的光探测器,其特征在于,所述导电膜的沉积方法包括离子溅射、磁控溅射或其它镀膜方法。
7.如权利要求1所述的光探测器,其特征在于,所述半导体结构的第一表面为P型半导体层的表面,第二表面为N型半导体层的表面。
8.如权利要求1所述的光探测器,其特征在于,进一步包括一第三电极及一绝缘层层叠设置,所述半导体元件、所述第一电极及所述第二电极设置于绝缘层的表面,所述第三电极通过绝缘层与所述半导体元件、所述第一电极及所述第二电极绝缘设置,所述第三电极为所述半导体元件的控制电极。
9.如权利要求8所述的光探测器,其特征在于,所述半导体元件中的碳纳米管设置于绝缘层的表面,半导体元件中的半导体结构覆盖所述碳纳米管设置于绝缘层的表面。
10.如权利要求1所述的光探测器,其特征在于,所述第一电极位于碳纳米管的一端并贴合碳纳米管表面,所述第二电极位于导电膜的一端并贴合导电膜的表面。
CN201710374706.8A 2017-05-24 2017-05-24 光探测器 Active CN108933182B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201710374706.8A CN108933182B (zh) 2017-05-24 2017-05-24 光探测器
TW106121849A TWI653749B (zh) 2017-05-24 2017-06-29 光探測器
US15/916,418 US10847737B2 (en) 2017-05-24 2018-03-09 Light detector
JP2018085051A JP6736604B2 (ja) 2017-05-24 2018-04-26 光検出器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710374706.8A CN108933182B (zh) 2017-05-24 2017-05-24 光探测器

Publications (2)

Publication Number Publication Date
CN108933182A CN108933182A (zh) 2018-12-04
CN108933182B true CN108933182B (zh) 2020-05-15

Family

ID=64401450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710374706.8A Active CN108933182B (zh) 2017-05-24 2017-05-24 光探测器

Country Status (4)

Country Link
US (1) US10847737B2 (zh)
JP (1) JP6736604B2 (zh)
CN (1) CN108933182B (zh)
TW (1) TWI653749B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786715B (zh) 2019-11-08 2022-11-22 清华大学 太阳能电池
CN112786755B (zh) * 2019-11-08 2023-03-17 清华大学 发光二极管
CN112786678B (zh) 2019-11-08 2022-11-22 清华大学 半导体结构及半导体器件
CN112786714B (zh) * 2019-11-08 2022-11-22 清华大学 光电探测器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219403A (zh) * 2013-04-19 2013-07-24 苏州大学 基于二维层状原子晶体材料的光探测器
CN103968949A (zh) * 2013-02-04 2014-08-06 清华大学 偏振光检测系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165367A (en) * 1980-05-23 1981-12-18 Minolta Camera Co Ltd Semiconductor photoelectric convertor
JP4170701B2 (ja) 2002-07-31 2008-10-22 信越半導体株式会社 太陽電池及びその製造方法
JP2008055375A (ja) 2006-09-01 2008-03-13 Osaka Univ 単層カーボンナノチューブの分離方法
US9110055B2 (en) * 2006-11-17 2015-08-18 The Trustees Of Boston College Nanoscale sensors
KR20090117881A (ko) 2007-01-30 2009-11-13 솔라스타, 인코포레이티드 광전지 및 광전지를 제조하는 방법
US20080237682A1 (en) * 2007-03-26 2008-10-02 Kuo-Ching Chiang Semiconductor memory with conductive carbon
US8431818B2 (en) * 2007-05-08 2013-04-30 Vanguard Solar, Inc. Solar cells and photodetectors with semiconducting nanostructures
CN101562203B (zh) 2008-04-18 2014-07-09 清华大学 太阳能电池
TWI450402B (zh) 2008-05-02 2014-08-21 Hon Hai Prec Ind Co Ltd 太陽能電池
JP2010093118A (ja) 2008-10-09 2010-04-22 Sony Corp 受光素子および受光装置
US8932940B2 (en) 2008-10-28 2015-01-13 The Regents Of The University Of California Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication
CN102414840A (zh) 2009-04-30 2012-04-11 汉阳大学校产学协力团 包含碳纳米管层的硅太阳能电池
CN101667611B (zh) 2009-09-15 2011-07-20 上海交通大学 基于定向碳纳米管的太阳能微电池制备方法
JP5288640B2 (ja) * 2010-03-31 2013-09-11 富士フイルム株式会社 撮像素子及びその製造方法
CN103474474B (zh) * 2013-09-16 2016-08-17 北京京东方光电科技有限公司 Tft及其制作方法、阵列基板及其制作方法、x射线探测器
CN105097428B (zh) * 2014-04-24 2017-12-01 清华大学 碳纳米管复合膜
WO2017081831A1 (ja) * 2015-11-12 2017-05-18 パナソニックIpマネジメント株式会社 光センサ
CN205376554U (zh) 2015-12-01 2016-07-06 傲迪特半导体(南京)有限公司 一种硅光电二极管
CN105489694A (zh) 2016-01-14 2016-04-13 中国石油大学(华东) 氧化锌/硅p-n异质结紫外光探测器及其制备方法
US10312444B2 (en) * 2016-10-06 2019-06-04 International Business Machines Corporation Organic semiconductors with dithienofuran core monomers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968949A (zh) * 2013-02-04 2014-08-06 清华大学 偏振光检测系统
CN103219403A (zh) * 2013-04-19 2013-07-24 苏州大学 基于二维层状原子晶体材料的光探测器

Also Published As

Publication number Publication date
JP2018198314A (ja) 2018-12-13
US10847737B2 (en) 2020-11-24
JP6736604B2 (ja) 2020-08-05
TWI653749B (zh) 2019-03-11
TW201901937A (zh) 2019-01-01
US20180342690A1 (en) 2018-11-29
CN108933182A (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
CN108933182B (zh) 光探测器
Huang et al. Photoelectrical response of hybrid graphene-PbS quantum dot devices
CN108933172B (zh) 半导体元件
TWI628139B (zh) 奈米電晶體
TWI651864B (zh) 光探測器
JP6730367B2 (ja) 太陽電池
CN107564948B (zh) 纳米异质结构及纳米晶体管的制备方法
CN108933134B (zh) 半导体器件
CN110676341B (zh) 半导体结构、光电器件、光探测器及光探测仪
JP6621499B2 (ja) 半導体素子及び半導体部品
CN108933166B (zh) 半导体器件
CN112786714B (zh) 光电探测器
JP6946491B2 (ja) 半導体構造体及び半導体部品
CN112786715B (zh) 太阳能电池
CN108933171B (zh) 半导体结构及半导体器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant