CN112786678B - 半导体结构及半导体器件 - Google Patents

半导体结构及半导体器件 Download PDF

Info

Publication number
CN112786678B
CN112786678B CN201911089310.4A CN201911089310A CN112786678B CN 112786678 B CN112786678 B CN 112786678B CN 201911089310 A CN201911089310 A CN 201911089310A CN 112786678 B CN112786678 B CN 112786678B
Authority
CN
China
Prior art keywords
carbon nanotube
semiconductor layer
electrode
type semiconductor
semiconductor structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911089310.4A
Other languages
English (en)
Other versions
CN112786678A (zh
Inventor
张金
魏洋
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN201911089310.4A priority Critical patent/CN112786678B/zh
Priority to TW108142362A priority patent/TWI737043B/zh
Priority to JP2020033013A priority patent/JP6946491B2/ja
Priority to US16/903,171 priority patent/US11289615B2/en
Publication of CN112786678A publication Critical patent/CN112786678A/zh
Application granted granted Critical
Publication of CN112786678B publication Critical patent/CN112786678B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种半导体结构,包括:一第一碳纳米管,一半导体层,以及一第二碳纳米管,该半导体层定义一第一表面以及与该第一表面相对设置的第二表面,该第一碳纳米管设置在半导体层的第一表面,并与第一表面直接接触,该第二碳纳米管设置在半导体层的第二表面,并与该第二表面直接接触,且所述第一碳纳米管的延伸方向与第二碳纳米管的延伸方向交叉设置,所述半导体层包括一n型半导体层和一p型半导体层,该n型半导体层和p型半导体层均为二维材料,且该n型半导体层和p型半导体层层叠设置并在垂直于所述半导体层的方向上形成一p‑n结。本发明还提供一种采用上述半导体结构的半导体器件。

Description

半导体结构及半导体器件
技术领域
本发明涉及一种半导体结构及半导体器件,尤其涉及一种纳米尺寸的半导体结构及半导体器件。
背景技术
通过竖直堆叠具有不同性质(电学以及光学等)的二维半导体材料制成竖直异质结构,可以实现对组合而成的“新”材料的性质进行人工调控。由于在竖直方向上增加了新的维度,该竖直异质结构能够为光电技术带来更多的可能性。而且与横向异质结构相比,由于其原子薄结构,竖直异质结构具有更高的光电转换效率。另外,含有竖直异质结构的光电器件含有高信噪比和低功耗的优点。
然而,现有的竖直异质结构的二维p-n结半导体层与电极的的重叠区域通常为微米尺寸,进而使得包括竖直异质结构的半导体结构无法达到纳米级,限制了包括竖直异质结构的半导体结构及其半导体器件的实际应用。而且现有的半导体结构的异质结仅能实现p-p结,p-n结,和n-n结之中的一种工作模式,不能在p-p结,p-n结,和n-n结三种工作模式之间进行变换,因此采用该半导体结构的半导体器件只能在单一的一种模式下工作。
发明内容
有鉴于此,确有必要提供一种半导体结构及其相关应用,该半导体结构的二维p-n结半导体层与电极的重叠区域为纳米尺寸,半导体结构可以做成纳米尺寸。
一种半导体结构,包括:一第一碳纳米管,一半导体层,以及一第二碳纳米管,该半导体层定义一第一表面以及与该第一表面相对设置的第二表面,该第一碳纳米管设置在半导体层的第一表面,并与第一表面直接接触,该第二碳纳米管设置在半导体层的第二表面,并与该第二表面直接接触,且所述第一碳纳米管的延伸方向与第二碳纳米管的延伸方向交叉设置,所述半导体层包括一n型半导体层和一p型半导体层,该n型半导体层和p型半导体层层叠设置,该n型半导体层和p型半导体层均为二维材料,在所述第一碳纳米管以及第二碳纳米管的交叉点处,在垂直于所述半导体层的方向上,所述第一碳纳米管、半导体层以及第二碳纳米管的重叠区域形成一多层立体结构。
一种半导体器件,包括一第一电极、一第二电极、一半导体结构及一第三电极,该半导体结构与该第一电极和第二电极电连接,该第三电极通过一绝缘层与该半导体结构、第一电极及第二电极绝缘设置,所述半导体结构包括:一第一碳纳米管,一半导体层,以及一第二碳纳米管,该半导体层定义一第一表面以及与该第一表面相对设置的第二表面,该第一碳纳米管设置在半导体层的第一表面,并与第一表面直接接触,该第二碳纳米管设置在半导体层的第二表面,并与该第二表面直接接触,且所述第一碳纳米管的延伸方向与第二碳纳米管的延伸方向交叉设置,所述半导体层包括一n型半导体层和一p型半导体层,该n型半导体层和p型半导体层层叠设置,该n型半导体层和p型半导体层均为二维材料,在所述第一碳纳米管以及第二碳纳米管的交叉点处,在垂直于所述半导体层的方向上,所述第一碳纳米管、半导体层以及第二碳纳米管的重叠区域形成一多层立体结构。
相较于现有技术,本发明提供的半导体结构通过交叉设置的两个单根的碳纳米管夹持一含有竖直p-n结的二维半导体层形成,在两个单根碳纳米管的交叉点处,该两个交叉的单根碳纳米管和半导体层的重叠区域处可以形成一纳米尺寸的p-n异质结构,进而使得该半导体结构的尺寸为非常小的纳米级。另外,所述半导体结构仅通过交叉设置的两个单根的碳纳米管夹持一含有竖直p-n结的二维半导体层形成,两个单根的碳纳米管作为电极使用,碳纳米管作为电极时的电场屏蔽弱,而且碳纳米管和异质结中纳米材料的掺杂容易被电场调控,在电场调制下碳纳米管和p-n结中材料的掺杂状态发生变化,因此,当该半导体结构用于半导体器件上时,可以通过调控栅极电压,使得半导体结构的异质结在p-p结,p-n结,和n-n结之间变换,进而使得采用该半导体结构的半导体器件可以在三种不同模式下工作。
附图说明
图1为本发明第一实施例提供的半导体结构的整体结构示意图。
图2为本发明第一实施例提供的半导体结构的侧视示意图。
图3为本发明第二实施例提供的半导体器件的结构示意图。
图4为本发明第二实施例提供的半导体器件的侧视示意图。
图5为本发明第二实施例提供的半导体器件的源极-漏极偏执电压和栅极电压变化时通过半导体结构的电流变化。
图6为本发明第二实施例提供的半导体器件在栅极电压分别为-10V、0V以及10V时的输出特性。
主要元件符号说明
半导体结构 100
第一碳纳米管 102
半导体层 104
第二碳纳米管 106
n型半导体层 1042
p型半导体层 1044
多层立体结构 108
半导体器件 200
第一电极 202
第二电极 204
第三电极 206
绝缘层 208
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
以下将结合附图对本发明的半导体结构及采用上述半导体结构的半导体器件作进一步的详细说明。
请参阅图1,本发明第一实施例提供一种半导体结构100。该半导体结构100包括一第一碳纳米管102,一半导体层104,以及一第二碳纳米管106。所述半导体层104夹持在所述第一碳纳米管102和第二碳纳米管106之间。该半导体层104定义一第一表面以及与该第一表面相对设置的第二表面。该第一碳纳米管102贴合在半导体层104的第一表面,并与第一表面直接接触。该第二碳纳米管106贴合在半导体层104的第二表面,并与该第二表面直接接触。所述半导体层104包括一n型半导体层1042和一p型半导体层1044,该n型半导体层1042和p型半导体层1044均为二维材料,该n型半导体层1042和p型半导体层1044层叠设置形成所述半导体层104。所述二维材料是指电子仅可在两个维度的纳米尺度(1-100nm)上自由运动(平面运动)的材料,如纳米薄膜、超晶格、量子阱等。所述第一碳纳米管102的延伸方向与第二碳纳米管106的延伸方向交叉设置。
所述第一碳纳米管102优选为金属型碳纳米管。该第一碳纳米管102可以为单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。第一碳纳米管102的直径不限,可以为0.5纳米~100纳米,在某些实施例中,第一碳纳米管102的直径可以为0.5纳米~10纳米。优选地,第一碳纳米管102为单壁碳纳米管,其直径为0.5纳米~2纳米。本实施例中,所述第一碳纳米管102的直径为1纳米。本实施例中,所述第一碳纳米管102为一内壳碳纳米管,该内壳碳纳米管是指双壁碳纳米管或多壁碳纳米管的最内层碳纳米管。所述内壳碳纳米管可以从一超长双壁碳纳米管或超长多壁碳纳米管中拉取得到,该超长双壁碳纳米管或超长多壁碳纳米管是指双壁碳纳米管或多壁碳纳米管的长度在150微米以上。优选的,超长双壁碳纳米管或超长多壁碳纳米管的长度为150微米-300微米。具体的,在超长双壁碳纳米管或超长多壁碳纳米管的两端拉伸该超长双壁碳纳米管或超长多壁碳纳米管,使超长双壁碳纳米管或超长多壁碳纳米管的外壁均断裂,使该超长双壁碳纳米管或超长多壁碳纳米管的中间部分仅剩下最内层的碳纳米管,即内壳碳纳米管。该内层碳纳米管具有干净的表面,表面没有杂质,因此所述第一碳纳米管102能够与所述半导体层104很好的接触。当然,所述第一碳纳米管102并不限定为本实施例中的内壳碳纳米管,也可以为其它的单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。所述半导体层104的第一表面仅设置一根第一碳纳米管102。
所述半导体层104中的n型半导体层1042和p型半导体层1044层叠设置,并在垂直于该半导体层104的方向上形成一p-n结。所述半导体层104为一厚度为纳米尺寸的二维层状结构。当半导体层104的厚度太大时,所述半导体结构100的电流调制效应会受到限制。优选的,所述半导体层104的厚度为1纳米~100纳米。所述n型半导体层1042的厚度优选为0.5纳米到100纳米。所述p型半导体层1044的厚度优选为0.5纳米到100纳米。更优选的,所述n型半导体层1042的厚度为0.5纳米到50纳米。所述p型半导体层1044的厚度为0.5纳米到50纳米。本实施例中,所述n型半导体层1042与所述第一碳纳米管102直接接触,所述p型半导体层1044与所述第二碳纳米管106直接接触。可以理解,在其它一些实施例中,也可以所述n型半导体层1042与所述第二碳纳米管106直接接触,所述p型半导体层1044与所述第一碳纳米管102直接接触。所述p型半导体层1044或n型半导体层1042的材料不限,可以为无机化合物半导体、元素半导体、有机半导体材料或这些材料掺杂后的材料。本实施例中,所述n型半导体层1042的材料为硫化钼(MoS2),其厚度为16纳米;所述p型半导体层1044的材料为硒化钨(WSe2),其厚度为14纳米。在另外一实施例中,所述n型半导体层1042的材料为硫化钼(MoS2),其厚度为7.6纳米;所述p型半导体层1044的材料为硒化钨(WSe2),其厚度为76纳米。
所述第二碳纳米管106优选为金属型碳纳米管。该第二碳纳米管106可以为单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。第二碳纳米管106的直径不限,可以为0.5纳米~100纳米,在某些实施例中,第二碳纳米管106的直径可以为0.5纳米~10纳米。优选地,第二碳纳米管106为单壁碳纳米管,其直径为0.5纳米~2纳米。本实施例中,所述第二碳纳米管106的直径为1纳米。本实施例中,所述第二碳纳米管106为一内壳碳纳米管,该内壳碳纳米管是指双壁碳纳米管或多壁碳纳米管的最内层碳纳米管。所述内壳碳纳米管可以从一超长双壁碳纳米管或超长多壁碳纳米管中拉取得到,该超长双壁碳纳米管或超长多壁碳纳米管是指双壁碳纳米管或多壁碳纳米管的长度在150微米以上。优选的,超长双壁碳纳米管或超长多壁碳纳米管的长度为150微米-300微米。具体的,在超长双壁碳纳米管或超长多壁碳纳米管的两端拉伸该超长双壁碳纳米管或超长多壁碳纳米管,使超长双壁碳纳米管或超长多壁碳纳米管的外壁均断裂,使该超长双壁碳纳米管或超长多壁碳纳米管的中间部分仅剩下最内层的碳纳米管,即内壳碳纳米管。该内层碳纳米管具有干净的表面,表面没有杂质,因此所述第二碳纳米管106能够与所述半导体层104很好的接触。当然,所述第二碳纳米管106并不限定为本实施例中的内壳碳纳米管,也可以为其它的单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。所述第二碳纳米管106与第一碳纳米管102的直径可以相同也可以不同。所述半导体层104的第二表面仅设置一根第二碳纳米管106。
所述第一碳纳米管102的延伸方向与第二碳纳米管106的延伸方向交叉设置是指第一碳纳米管102的延伸方向与第二碳纳米管106的延伸方向之间形成一夹角,该夹角大于0度小于等于90度。本实施例中,所述第一碳纳米管102的延伸方向和第二碳纳米管108的延伸方向相互垂直,即夹角为90度。
请参阅图2,在所述第一碳纳米管102以及第二碳纳米管106的交叉点处,在垂直于所述半导体层104的方向上,所述第一碳纳米管102、半导体层104以及第二碳纳米管106的重叠区域形成一多层立体结构108。所述多层立体结构108定义一横向截面及一竖向截面,所述横向截面即平行于半导体层104表面的方向的截面,所述纵向截面即垂直于半导体层104表面的方向的截面。由于第一碳纳米管102以及第二碳纳米管106相对于半导体层104的尺寸较小,所述横向截面的面积由第一碳纳米管102或第二碳纳米管106的直径决定。所述纵向截面的面积由第一碳纳米管102或第二碳纳米管106的直径以及半导体层108的厚度决定。由于第一碳纳米管102和第二碳纳米管106的直径均为纳米级,而且半导体层104的厚度也为纳米级,所以该多层立体结构108的横向截面的面积以及竖向截面的面积也均是纳米级,因此,该多层立体结构108为一纳米立体结构。优选地,该多层立体结构108的横向截面的面积为0.25nm2~1000nm2。更优选地,该多层立体结构108的横向截面的面积为1nm2~100nm2。该半导体层104的重叠区域处形成一个竖直方向的点状p-n异质结,该p-n异质结为范德华异质结。该第一碳纳米管102,半导体层104,以及第二碳纳米管106在所述多层立体结构108处在垂直于所述半导体层104的方向上形成一纳米异质结构。
该半导体结构100在应用时,所述第一碳纳米管102和第二碳纳米管106可以看作设置在半导体层104的两个相对表面上的电极。当在第一碳纳米管102和第二碳纳米管106上施加源极-漏极偏执电压实现导通时,电流的流动路径为穿过多层立体结构108,所述半导体结构100的有效部分为所述多层立体结构108。所述半导体结构100的整体尺寸只需确保大于多层立体结构108的体积即可,该多层立体结构108的体积为纳米级。因此,所述半导体结构100可以具有较小的纳米尺寸,只需确保其包括多层立体结构108。而且,该半导体结构100具有较低的能耗、纳米级的尺寸以及更高的集成度。
本发明提供的半导体结构具有很多优点:第一,所述半导体结构仅通过交叉设置的两个单根的碳纳米管夹持一含有竖直p-n结的二维半导体层形成,两个单根的碳纳米管作为电极使用,碳纳米管作为电极时的电场屏蔽弱,且垂直点p-n结构泄漏电流较低,而且碳纳米管和异质结中纳米材料的掺杂可以容易被电场调控,在电场调制下碳纳米管和p-n结中材料的掺杂状态发生变化,因此,当该半导体结构用于半导体器件上时,可以通过调控栅极电压,使得半导体结构的异质结在p-p结,p-n结,和n-n结之间变换,进而使得采用该半导体结构的半导体器件可以在三种不同模式下工作。第二,通过交叉设置的两个单根的碳纳米管夹持一含有竖直p-n结的二维半导体层形成,由于该二维半导体层的厚度为纳米级,而且两个单根碳纳米管的直径也为纳米级,在两个单根碳纳米管的交叉点处,该两个交叉的单根碳纳米管和半导体层的重叠区域处可以形成一纳米尺寸的p-n异质结构,进而使得该半导体结构的尺寸为非常小的纳米级,这在未来的纳米电子学和纳米光电学中将意义重大。第三,该半导体结构中的竖直p-n异质结构是不同类型的半导体层垂直堆叠形成的,与横向p-n异质结构相比扩散距离更短,具有更高的载流子收集效率。而且该半导体结构具有纳米级的厚度,使得含有该半导体结构的光电器件具有高光电转换效率、高信噪比和低功耗的优点。第四,该半导体结构的内置电势可以通过栅极电压进行调制,因此含有该半导体结构的半导体器件具有可变的光电特性。第五,本发明中的半导体结构的电极仅为两根单根的碳纳米管,碳纳米管作为电极相对于一般传统电极,碳纳米管对光的吸收或反射可以忽略不计,因此将该半导体结构用于光电探测器会对光电探测的效率提升由很大的作用。
请参阅图3和4,本发明第二实施例提供一种半导体器件200。该半导体器件200包括一第一电极202、一第二电极204、一半导体结构100及一第三电极206,该半导体结构100与该第一电极202和第二电极204电连接,该第三电极206通过一绝缘层208与该半导体结构100、第一电极202及第二电极204绝缘设置。所述半导体结构100的具体结构与第一实施例提供的半导体结构100完全相同,在此不再详细赘述。
所述半导体器件200中,第三电极206与绝缘层208层叠设置,所述半导体结构100设置在绝缘层208的表面,使绝缘层208位于第三电极206和半导体结构100之间。所述半导体结构100中,第二碳纳米管106直接设置于绝缘层208的表面,半导体层104设置于第二碳纳米管106的上方,使第二碳纳米管106位于半导体层104和绝缘层208之间,第一碳纳米管102位于半导体层104的远离所述绝缘层的表面。
所述第一电极202,第二电极204均由导电材料组成,该导电材料可选择为金属、ITO、ATO、导电银胶、导电聚合物以及导电碳纳米管等。该金属材料可以为铝、铜、钨、钼、金、钛、钯或任意组合的合金。所述第一电极202,第二电极204也可以均为一层导电薄膜,该导电薄膜的厚度为0.01微米-10微米。本实施例中,所述第一电极202,第二电极204为金属Au和Ti得到的金属复合结构,具体地,所述金属复合结构是由金属Au在金属Ti的表面复合而成,所述金属Ti的厚度为5纳米,金属Au的厚度为60纳米。本实施例中,所述第一电极202与所述第一碳纳米管102电连接,设置于第一碳纳米管102的一端并贴合于第一碳纳米管102的表面;所述第二电极204与所述第二碳纳米管106电连接,设置于第二碳纳米管106的一端并贴合于第二碳纳米管106的表面。
所述第三电极206由导电材料组成,该导电材料可选择为金属、ITO、ATO、导电银胶、导电聚合物以及导电碳纳米管等。该金属材料可以为铝、铜、钨、钼、金、钛、钯或任意组合的合金。本实施例中,所述第三电极206为一层状结构,绝缘层208设置于第三电极206的表面,所述第一电极202,第二电极204,以及半导体结构100设置于绝缘层205上,并由第一电极201和绝缘层205支撑。
所述第三电极206由导电材料组成,该导电材料可选择为金属、ITO、ATO、导电银胶、导电聚合物以及导电碳纳米管等。该金属材料可以为铝、铜、钨、钼、金、钛、钯或任意组合的合金。本实施例中,所述第三电极206为一层状结构,绝缘层208设置于第三电极206的表面,所述第一电极202、第二电极204、以及半导体结构100设置于绝缘层208上,并由第三电极206和绝缘层208支撑。本发明中,所述第二碳纳米管106直接设置在绝缘层208表面,第二碳纳米管106靠近第三电极206,第一碳纳米管102远离第三电极206,第一碳纳米管102不会在半导体层104和第三电极206产生屏蔽效应,因此,半导体器件200在应用时,第三电极206可以控制半导体结构100。
所述绝缘层208的材料为绝缘材料,例如:氮化硅、氧化硅等硬性材料或苯并环丁烯(BCB)、聚酯或丙烯酸树脂等柔性材料。该绝缘层208的厚度为2纳米~100微米。本实施例中,所述绝缘层208的材料为氧化硅,绝缘层的厚度为50纳米。
本实施例中,所述半导体器件200为一晶体管,所述第一电极202接地为源极,第二电极204为漏极,第三电极206为栅极。本发明所提供的半导体器件200,由于第二碳纳米管106作为底电极,直接设置在绝缘层208上,与作为栅极的第三电极206仅间隔一层绝缘层208,由于碳纳米管的特殊性能,可以通过栅极调节半导体结构100的导通,使半导体结构100呈现可调节的输出特性。本实施例中,第二碳纳米管106设置在p型半导体层1044的表面,第一碳纳米管102设置在n型半导体层1042的表面,n型半导体层1042的材料为硫化钼(MoS2),其厚度为16纳米;所述p型半导体层1044的材料为硒化钨(WSe2),其厚度为14纳米。
请参阅图5,由图中可以看出,当栅极电压由负变为正时,该半导体器件200中的半导体结构100由p-n结变为n-n结。请参阅图6,为当栅极电压从-10V到10V之间变化时,该半导体器件200的电流变化。由图中可以看出,所述该半导体器件200中的半导体结构100的电流变化由栅极电压的变化控制,这是由于栅极电压的变化可以引起纳米材料的掺杂变化。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (9)

1.一种半导体结构,其特征在于,包括:一第一碳纳米管,一半导体层,以及一第二碳纳米管,该半导体层定义一第一表面以及与该第一表面相对设置的第二表面,该第一碳纳米管设置在半导体层的第一表面,并与第一表面直接接触,该第二碳纳米管设置在半导体层的第二表面,并与该第二表面直接接触,且所述第一碳纳米管的延伸方向与第二碳纳米管的延伸方向交叉设置,所述半导体层包括一n型半导体层和一p型半导体层,该n型半导体层和p型半导体层层叠设置,该n型半导体层和p型半导体层均为二维材料,在所述第一碳纳米管以及第二碳纳米管的交叉点处,在垂直于所述半导体层的方向上,所述第一碳纳米管、半导体层以及第二碳纳米管的重叠区域形成一多层立体结构,所述第一碳纳米管和第二碳纳米管均为内壳碳纳米管,该内壳碳纳米管是指双壁碳纳米管或多壁碳纳米管剥去外壳后形成的单壁碳纳米管,该内壳碳纳米管的制备方法是:在长度在150微米以上的双壁碳纳米管或多壁碳纳米管的两端拉伸该双壁碳纳米管或多壁碳纳米管,使双壁碳纳米管或多壁碳纳米管的外壁在中间部位断裂,使该双壁碳纳米管或多壁碳纳米管的中间部分仅剩下最内层的碳纳米管,进而得到一段最内层的碳纳米管,该段最内层的碳纳米管为所述内壳碳纳米管,通过调控电势,所述半导体结构的异质结在p-p结,p-n结,和n-n结之间切换。
2.如权利要求1所述的半导体结构,其特征在于,所述第一碳纳米管的延伸方向垂直于所述第二碳纳米管的延伸方向。
3.如权利要求1所述的半导体结构,其特征在于,所述第一碳纳米管和第二碳纳米管均为金属性碳纳米管。
4.如权利要求1所述的半导体结构,其特征在于,半导体层的厚度为1.0-100纳米。
5.如权利要求1所述的半导体结构,其特征在于,所述n型半导体层的厚度为0.5-50纳米,所述p型半导体层的厚度为0.5-50纳米。
6.如权利要求1所述的半导体结构,其特征在于,所述n型半导体层的材料为硫化钼(MoS2);所述p型半导体层的材料为硒化钨(WSe2)。
7.如权利要求1所述的半导体结构,其特征在于,该多层立体结构的横向截面的面积为1nm2~100nm2
8.一种半导体器件,包括一第一电极、一第二电极、一半导体结构及一第三电极,该半导体结构与该第一电极和第二电极电连接,该第三电极通过一绝缘层与该半导体结构、第一电极及第二电极绝缘设置,其特征在于,所述半导体结构为权利要求1-7中任一项的半导体结构,通过调控第三电极的电压,所述半导体器件在三种不同工作模式下切换。
9.如权利要求8所述的半导体器件,其特征在于,所述n型半导体层与所述第一碳纳米管直接接触,所述p型半导体层与所述第二碳纳米管直接接触,所述第二碳纳米管直接设置在绝缘层表面,第二碳纳米管靠近第三电极,第一碳纳米管远离第三电极。
CN201911089310.4A 2019-11-08 2019-11-08 半导体结构及半导体器件 Active CN112786678B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201911089310.4A CN112786678B (zh) 2019-11-08 2019-11-08 半导体结构及半导体器件
TW108142362A TWI737043B (zh) 2019-11-08 2019-11-21 半導體結構及半導體器件
JP2020033013A JP6946491B2 (ja) 2019-11-08 2020-02-28 半導体構造体及び半導体部品
US16/903,171 US11289615B2 (en) 2019-11-08 2020-06-16 Semiconductor structure and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911089310.4A CN112786678B (zh) 2019-11-08 2019-11-08 半导体结构及半导体器件

Publications (2)

Publication Number Publication Date
CN112786678A CN112786678A (zh) 2021-05-11
CN112786678B true CN112786678B (zh) 2022-11-22

Family

ID=75748966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911089310.4A Active CN112786678B (zh) 2019-11-08 2019-11-08 半导体结构及半导体器件

Country Status (4)

Country Link
US (1) US11289615B2 (zh)
JP (1) JP6946491B2 (zh)
CN (1) CN112786678B (zh)
TW (1) TWI737043B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786714B (zh) * 2019-11-08 2022-11-22 清华大学 光电探测器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1194960B1 (en) * 1999-07-02 2010-09-15 President and Fellows of Harvard College Nanoscopic wire-based devices, arrays, and methods of their manufacture
JP4251268B2 (ja) * 2002-11-20 2009-04-08 ソニー株式会社 電子素子及びその製造方法
JP2005116618A (ja) 2003-10-03 2005-04-28 Fujitsu Ltd 半導体装置およびその製造方法
US8217386B2 (en) * 2006-06-29 2012-07-10 University Of Florida Research Foundation, Inc. Short channel vertical FETs
KR20120081801A (ko) 2011-01-12 2012-07-20 삼성엘이디 주식회사 반도체 발광 소자
KR101396432B1 (ko) * 2012-08-02 2014-05-21 경희대학교 산학협력단 반도체 소자 및 그의 제조 방법
CN107564946A (zh) 2016-07-01 2018-01-09 清华大学 纳米晶体管
CN107564948B (zh) * 2016-07-01 2021-01-05 清华大学 纳米异质结构及纳米晶体管的制备方法
CN107564947A (zh) 2016-07-01 2018-01-09 清华大学 纳米异质结构
CN107564910B (zh) * 2016-07-01 2020-08-11 清华大学 半导体器件
CN107564917B (zh) * 2016-07-01 2020-06-09 清华大学 纳米异质结构
CN107564979B (zh) 2016-07-01 2019-08-13 清华大学 光探测器
CN108933166B (zh) * 2017-05-24 2020-08-11 清华大学 半导体器件
JP6621499B2 (ja) * 2017-05-24 2019-12-18 ツィンファ ユニバーシティ 半導体素子及び半導体部品
CN108963003B (zh) 2017-05-24 2020-06-09 清华大学 太阳能电池
CN108933182B (zh) 2017-05-24 2020-05-15 清华大学 光探测器
KR102381419B1 (ko) * 2017-06-29 2022-04-01 삼성디스플레이 주식회사 반도체 소자의 제조 방법, 반도체 소자를 포함하는 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
CN110224022A (zh) * 2019-06-12 2019-09-10 南京邮电大学 一种基于非对称范德华异质结构的场效应管及其制备方法

Also Published As

Publication number Publication date
JP6946491B2 (ja) 2021-10-06
JP2021077849A (ja) 2021-05-20
TW202118725A (zh) 2021-05-16
TWI737043B (zh) 2021-08-21
US11289615B2 (en) 2022-03-29
US20210143289A1 (en) 2021-05-13
CN112786678A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
CN108933134B (zh) 半导体器件
CN108933172B (zh) 半导体元件
US10600925B2 (en) Solar battery
CN108933182B (zh) 光探测器
CN112786678B (zh) 半导体结构及半导体器件
TWI668181B (zh) 半導體器件
TWI738122B (zh) 光電探測器
CN112786715B (zh) 太阳能电池
CN108933171B (zh) 半导体结构及半导体器件
CN113555417A (zh) 整流器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant