CN112786714B - 光电探测器 - Google Patents

光电探测器 Download PDF

Info

Publication number
CN112786714B
CN112786714B CN201911089315.7A CN201911089315A CN112786714B CN 112786714 B CN112786714 B CN 112786714B CN 201911089315 A CN201911089315 A CN 201911089315A CN 112786714 B CN112786714 B CN 112786714B
Authority
CN
China
Prior art keywords
carbon nanotube
electrode
semiconductor layer
photodetector
nano tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911089315.7A
Other languages
English (en)
Other versions
CN112786714A (zh
Inventor
张金
魏洋
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN201911089315.7A priority Critical patent/CN112786714B/zh
Priority to TW108142365A priority patent/TWI738122B/zh
Priority to JP2020033010A priority patent/JP6952148B2/ja
Priority to US16/903,161 priority patent/US20210143293A1/en
Publication of CN112786714A publication Critical patent/CN112786714A/zh
Application granted granted Critical
Publication of CN112786714B publication Critical patent/CN112786714B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022491Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of a thin transparent metal layer, e.g. gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种光电探测器,包括一半导体元件、一第一电极、一第二电极及一电流探测元件,该半导体元件包括:一半导体层、一第一碳纳米管、以及一第二碳纳米管,该半导体层包括层叠设置的n型半导体层和p型半导体层,该半导体层定义一第一表面以及与该第一表面相对设置的第二表面;该第一碳纳米管设置在第一表面,并与第一表面直接接触;该第二碳纳米管设置在第二表面,并与该第二表面直接接触,所述第一碳纳米管的延伸方向与第二碳纳米管的延伸方向交叉设置,在所述第一碳纳米管以及第二碳纳米管的交叉点处,所述第一碳纳米管、半导体层以及第二碳纳米管的重叠区域形成一多层结构,所述第一电极与第一碳纳米管电连接,所述第二电极与第二碳纳米管电连接。

Description

光电探测器
技术领域
本发明涉及一种光电探测器。
背景技术
光电探测器是一种探测光能的器件。一般光电探测器的工作原理是基于光电效应,基于材料吸收了光辐射能量后改变了它的电学性能,从而可以探测出光的存在以及光能的大小。半导体器件被越来越多的应用到光电探测器中。
然而,受技术水平的限制,现有的光电探测器只能在单一的一种模式下工作,影响了其应用范围。
发明内容
有鉴于此,确有必要提供一种纳米尺寸的光电探测器,而且该光电探测器可以在三种不同的模式下工作。
一种光电探测器,其包括一半导体元件、一第一电极、一第二电极及一电流探测元件,所述半导体元件、第一电极、第二电极、电流探测元件相互电连接形成一回路结构,该半导体元件包括:
一半导体层,该半导体层包括一n型半导体层和一p型半导体层,且该n型半导体层和p型半导体层层叠设置,该半导体层定义一第一表面以及与该第一表面相对设置的第二表面;
一第一碳纳米管,该第一碳纳米管设置在半导体层的第一表面,并与第一表面直接接触,该第一碳纳米管与所述第一电极电连接;以及
一第二碳纳米管,该第二碳纳米管设置在半导体层的第二表面,并与该第二表面直接接触,该第二碳纳米管与所述第二电极电连接,所述第一碳纳米管的延伸方向与第二碳纳米管的延伸方向交叉设置,在所述第一碳纳米管以及第二碳纳米管的交叉点处,在垂直于所述半导体层的方向上,所述第一碳纳米管、半导体层以及第二碳纳米管的重叠区域形成一多层结构。
相较于现有技术,本发明提供的光电探测器中,所述半导体元件仅通过交叉设置的两个单根的碳纳米管夹持一二维半导体层形成,两个单根的碳纳米管作为电极使用,由于碳纳米管作为电极时的电场屏蔽弱,且垂直点p-n结构泄漏电流较低,而且碳纳米管和异质结中纳米材料的掺杂可以容易被电场调控,在电场调制下碳纳米管和p-n结中材料的掺杂状态发生变化,因此,通过调控电势,所述半导体元件中的异质结可以在p-n结和n-n结之间变换,进而使得所述光电探测器可以实现三种不同工作模式下切换,这在未来的纳米电子学和纳米光电学中将意义重大。
附图说明
图1为本发明第一实施例提供的光电探测器的整体结构示意图。
图2为本发明第一实施例提供的光电探测器中的半导体元件的侧视示意图。
图3为本发明第二实施例提供的光电探测器的整体结构示意图。
图4为本发明第一实施例提供的光电探测器中的侧视示意图。
图5为本发明第二实施例提供的光电探测器在不同栅极电压下的扫描光电流显微镜照片。
图6为本发明第二实施例提供的光电探测器光电探测器的光响应性能图。
主要元件符号说明
光电探测器 10;20
半导体元件 100
第一碳纳米管 102
半导体层 104
n型半导体层 1042
p型半导体层 1044
第二碳纳米管 106
多层结构 108
第一电极 202
第二电极 204
第三电极 206
绝缘层 208
电流探测元件 212
基底 210
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
以下将结合附图及具体实施例对本发明的光电探测器作进一步的详细说明。
请参阅图1,本发明第一实施例提供一种光电探测器10。所述光电探测器10包括一半导体元件100、一第一电极202、一第二电极204及一电流探测元件212。所述半导体元件100、第一电极202、第二电极204、电流探测元件212相互电连接形成一回路结构。
所述半导体元件100包括一第一碳纳米管102,一半导体层104,以及一第二碳纳米管106。所述半导体层104夹持在所述第一碳纳米管102和第二碳纳米管106之间。该半导体层104定义一第一表面(图未标)以及与该第一表面相对设置的第二表面(图未标)。该第一碳纳米管102贴合在半导体层104的第一表面,并与第一表面直接接触。该第二碳纳米管106贴合在半导体层104的第二表面,并与该第二表面直接接触。所述半导体层104包括一n型半导体层1042和一p型半导体层1044,该n型半导体层1042和p型半导体层1044均为二维材料,该n型半导体层1042和p型半导体层1044层叠设置形成所述半导体层104。所述二维材料是指电子仅可在两个维度的纳米尺度(1-100nm)上自由运动(平面运动)的材料,如纳米薄膜、超晶格、量子阱等。所述第一碳纳米管102的延伸方向与第二碳纳米管106的延伸方向交叉设置。
所述第一碳纳米管102为金属型碳纳米管。该第一碳纳米管102可以为单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。第一碳纳米管102的直径不限,可以为0.5纳米~100纳米,在某些实施例中,第一碳纳米管102的直径可以为0.5纳米~10纳米。优选地,第一碳纳米管102为单壁碳纳米管,其直径为0.5纳米~2纳米。本实施例中,所述第一碳纳米管102的直径为1纳米。本实施例中,所述第一碳纳米管102为一内壳碳纳米管,该内壳碳纳米管是指双壁碳纳米管或多壁碳纳米管的最内层碳纳米管。所述内壳碳纳米管可以从一超长双壁碳纳米管或超长多壁碳纳米管中拉取得到,该超长双壁碳纳米管或超长多壁碳纳米管是指双壁碳纳米管或多壁碳纳米管的长度在150微米以上。优选的,超长双壁碳纳米管或超长多壁碳纳米管的长度为150微米-300微米。具体的,在超长双壁碳纳米管或超长多壁碳纳米管的两端拉伸该超长双壁碳纳米管或超长多壁碳纳米管,使超长双壁碳纳米管或超长多壁碳纳米管的外壁均断裂,使该超长双壁碳纳米管或超长多壁碳纳米管的中间部分仅剩下最内层的碳纳米管,即内壳碳纳米管。该内层碳纳米管具有干净的表面,表面没有杂质,因此所述第一碳纳米管102能够与所述半导体层104很好的接触。当然,所述第一碳纳米管102并不限定为本实施例中的内壳碳纳米管,也可以为其它的单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。所述半导体层104的第一表面仅设置一根第一碳纳米管102。
所述半导体层104中的n型半导体层1042和p型半导体层1044层叠设置,并在垂直于该半导体层104的方向上形成一p-n结。所述半导体层104为一厚度为纳米尺寸的二维层状结构。当半导体层104的厚度太大时,所述半导体结构100的电流调制效应会受到限制。优选的,所述半导体层104的厚度为1纳米~200纳米。所述n型半导体层1042的厚度优选为0.5纳米到100纳米。所述p型半导体层1044的厚度优选为0.5纳米到100纳米。更优选的,所述n型半导体层1042的厚度为0.5纳米到50纳米。所述p型半导体层1044的厚度为0.5纳米到50纳米。本实施例中,所述n型半导体层1042与所述第一碳纳米管102直接接触,所述p型半导体层1044与所述第二碳纳米管106直接接触。可以理解,在其它一些实施例中,也可以所述n型半导体层1042与所述第二碳纳米管106直接接触,所述p型半导体层1044与所述第一碳纳米管102直接接触。所述p型半导体层1044或n型半导体层1042的材料不限,可以为无机化合物半导体、元素半导体、有机半导体材料或这些材料掺杂后的材料。本实施例中,所述n型半导体层1042的材料为硫化钼(MoS2),其厚度为16纳米;所述p型半导体层1044的材料为硒化钨(WSe2),其厚度为14纳米。在另外一实施例中,所述n型半导体层1042的材料为硫化钼(MoS2),其厚度为7.6纳米;所述p型半导体层1044的材料为硒化钨(WSe2),其厚度为76纳米。
所述第二碳纳米管106为金属型碳纳米管。该第二碳纳米管106可以为单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。第二碳纳米管106的直径不限,可以为0.5纳米~100纳米,在某些实施例中,第二碳纳米管106的直径可以为0.5纳米~10纳米。优选地,第二碳纳米管106为单壁碳纳米管,其直径为0.5纳米~2纳米。本实施例中,所述第二碳纳米管106的直径为1纳米。本实施例中,所述第二碳纳米管106也为一内壳碳纳米管。该内壳碳纳米管具有干净的表面,表面没有杂质,因此所述第二碳纳米管106能够与所述半导体层104很好的接触。当然,所述第二碳纳米管106并不限定为本实施例中的内壳碳纳米管,也可以为其它的单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。所述第二碳纳米管106与第一碳纳米管102的直径可以相同也可以不同。所述半导体层104的第二表面仅设置一根第二碳纳米管106。
所述第一碳纳米管102的延伸方向与第二碳纳米管106的延伸方向交叉设置是指第一碳纳米管102的延伸方向与第二碳纳米管106的延伸方向之间形成一夹角,该夹角大于0度小于等于90度。本实施例中,所述第一碳纳米管102的延伸方向和第二碳纳米管108的延伸方向相互垂直,即夹角为90度。
请参阅图2,在所述第一碳纳米管102以及第二碳纳米管106的交叉点处,在垂直于所述半导体层104的方向上,所述第一碳纳米管102、半导体层104以及第二碳纳米管106的重叠区域形成一多层结构108。所述多层结构108定义一横向截面以及一纵向截面,所述横向截面即平行于半导体层104表面的方向的截面,所述纵向截面即垂直于半导体层104的表面的方向的截面。由于第一碳纳米管102以及第二碳纳米管106相对于半导体层104的尺寸较小,且半导体层104的表面仅设置一根第一碳纳米管102和一根第二碳纳米管106,所述横向截面的面积由第一碳纳米管102或第二碳纳米管106的直径决定,由于第一碳纳米管102和第二碳纳米管106的直径均为纳米级,所以该多层结构108的横向截面的面积也为纳米级。所述纵向截面的面积由第一碳纳米管或第二碳纳米管的直径以及半导体层104的厚度决定。由于第一碳纳米管和第二碳纳米管的直径均为纳米级,而且半导体层104的厚度也为纳米级,所以该多层结构108的纵向截面的面积也均是纳米级。优选地,该多层结构108的横向截面的面积为1nm2~100nm2。该半导体层104的重叠区域处形成一个竖直方向的点状p-n异质结,该p-n异质结为范德华异质结。
所述光电探测器10在应用时,第一碳纳米管102和第二碳纳米管106可以看作设置在半导体层104的两个相对表面上的电极,当光照射在半导体层104的表面时,由半导体元件100、第一电极202、第二电极204、电流探测元件212组成的回路中产生电流,电流的流动路径为穿过多层结构108的横截面,所述半导体元件100的有效部分为多层结构108。所述半导体元件100的整体尺寸只需确保大于多层结构108的体积即可,因此,半导体元件100可以具有较小的尺寸,只需确保其包括多层结构108。所述半导体元件100可以为一纳米级的半导体元件。故,采用该半导体元件100的光电探测器10也可以具有较小的尺寸。该光电探测器10具有较低的能耗、纳米级的尺寸以及更高的集成度。
所述第一电极202和第二电极204均由导电材料组成,该导电材料可选择为金属、ITO、ATO、导电银胶、导电聚合物以及导电碳纳米管等。该金属材料可以为铝、铜、钨、钼、金、钛、钯或任意组合的合金。所述第一电极202和第二电极204也可以均为一层导电薄膜,该导电薄膜的厚度可以为2纳米-100微米。本实施例中,所述第一电极202、第二电极204为金属Au和Ti得到的金属复合结构,具体地,所述金属复合结是由一层金属Au和一层金属Ti组成,Au设置在Ti的表面。所述金属Ti的厚度为5纳米,金属Au的厚度为60纳米。本实施例中,所述第一电极202与所述第一碳纳米管102电连接,设置于第一碳纳米管102的一端并贴合于第一碳纳米管102的表面;所述第二电极204与所述第二碳纳米管106电连接,设置于第二碳纳米管106的一端并贴合于第二碳纳米管106的表面。
所述光电探测器10可以对光进行定性定量探测。所述光电探测器10的定性探测光的工作原理为:当没有光照射到光电探测器10上,第一碳纳米管102、半导体层104及第二碳纳米管106之间没有导通,回路中不会有电流通过,电流探测元件212中探测不到电流;当光照射到光电探测器10上时,半导体层104中产生光生载流子,第一碳纳米管102和第二碳纳米管106之间形成的内建电场将光生电子空穴对分开,这样就形成了光生电流,即回路中产生电流,电流探测元件212中探测到电流。即,通过回路中是否有电流产生来探测光源。
所述光电探测器10的定量探测光的工作原理为:打开电源,用已知的、不同强度的光依次照射探测点,读出电流探测元件212中探测到的电流值,一个强度的光对应一个电流值,并将不同强度的光对应的不同的电流值作相应的曲线图,即可标识出不同强度的光对应形成电流的标准曲线。当采用未知强度的光照射探测点时,根据电流探测元件212中探测到的电流值,即可从该标准曲线上读出光的强度值。
所述半导体元件100仅通过交叉设置的两个单根的碳纳米管夹持一含有竖直p-n结的二维半导体层形成,两个单根的碳纳米管作为电极使用,由于碳纳米管作为电极时的电场屏蔽弱,而且碳纳米管和异质结中纳米材料的掺杂可以容易的被电场调控,在电场调制下碳纳米管和p-n结中材料的掺杂状态会发生变化,因此,所述光电探测器10可以实现在电场调制下,使半导体层104中形成的异质结在p-n结和n-n结之间切换,进而使得该光电探测器10可以在三种不同模式下工作。因此,在实际应用时,只需要调节电场就可以以多种模式对光进行探测,实现不同性能,而不需要更换光电探测器,这是现有的光电探测器是不能实现的。例如,现有的光电感测器不能同时实现高分辨率和高响应度的检测,需要更换不同的光电探测器分别进行高分辨率的检测和高响应度的检测。而本发明的光电探测器10仅通过调节电场就能切换不同工作模式,实现高分辨率的检测和高响应度的检测,不需要更换光电探测器。
请参阅图3和4,本发明第二实施例提供一种光电探测器20。本实施例中的光电探测器20与第一实施例中的光电探测器10相比,进一步包括一第三电极206及一绝缘层208,其他结构与光电探测器10相同。该半导体元件100与该第一电极202和第二电极204电连接,该第三电极206通过一绝缘层208与该半导体元件100、第一电极202及第二电极204绝缘设置。所述半导体元件100的具体结构与第一实施例提供的半导体元件100相同,在此不再重复做详述。
所述光电探测器20中,所述第三电极206为一层状结构,绝缘层208设置于第三电极206的表面,所述第一电极202、第二电极204、以及半导体元件100设置于绝缘层208上,并由第三电极206和绝缘层208支撑。本实施例中,所述第二碳纳米管106直接设置在绝缘层208远离第三电极206的表面,第二碳纳米管106靠近第三电极206,第一碳纳米管102远离第三电极210,第一碳纳米管102不会在半导体层104和第三电极206之间产生屏蔽效应,因此,半导体器件200在应用时,第三电极206可以控制半导体层100,进而使得所述光电探测器20的光电性能具有可控性。
所述绝缘层208的材料为绝缘材料,例如:氮化硅、氧化硅等硬性材料或苯并环丁烯(BCB)、聚酯或丙烯酸树脂等柔性材料。该绝缘层208的厚度为2纳米~100微米。本实施例中,所述绝缘层208的材料为氧化硅,绝缘层的厚度为50纳米。
所述第三电极206由导电材料组成,该导电材料可选择为金属、ITO、ATO、导电银胶、导电聚合物以及导电碳纳米管等。该金属材料可以为铝、铜、钨、钼、金、钛、钯或任意组合的合金。
本发明第二实施例所提供的光电探测器20,进一步包括一第三电极206作为半导体元件100的控制电极,所述第三电极206可以看作光电探测器20的栅极。
所述光电探测器20可进一步包括一基底210,所述第三电极206、绝缘层208、以及半导体元件100依次层叠设置于所述基底210的表面。所述基底210主要起支撑作用,所述基底210的材料为不吸光的材料。本实施例中,所述基底210的材料为硅。可以理解,所述基底210为一可选择元件。
图5为当光强度为0.236μW,源漏极电压为0V,栅极电压分别在10V、-10V、0V时,该光电探测器20的扫描光电流所对应的显微镜照片a、b、c。由图a可以看出,当栅极电压为10V时,该光电探测器20的扫描光电流表现为竖线模式,当栅极电压为0V时,该光电探测器20的扫描光电流表现为横线模式,当栅极电压为-10V时,该光电探测器20的扫描光电流表现为点模式。由此说明,所述光电探测器20可以通过调控栅极电压实现三种工作模式的切换。
图6分别为当栅极电压为-10V时,所述MoS2层的厚度为7.6nm,WSe2的厚度为76nm的光电探测器,以及所述MoS2层的厚度为16nm,WSe2的厚度为14nm的光电探测器的光响应性能图。由所述光响应性能图可以看出,该光电探测器20的光响应度较大,尤其MoS2层的厚度为7.6nm,WSe2的厚度为76nm的光电探测器的光响应度可以达到216mA/W,远远高于现有的光电探测器。而且当栅极电压为-10V时,该光电探测器20的外部量子效率可以达到41.7%。因此,该光电探测器具有巨大的潜力。
本发明提供的光电探测器具有以下优点:第一,所述半导体元件仅通过交叉设置的两个单根的碳纳米管夹持一含有竖直p-n结的二维半导体层形成,两个单根的碳纳米管作为电极使用,由于碳纳米管作为电极时的电场屏蔽弱,且垂直点p-n结构泄漏电流较低,而且碳纳米管和异质结中纳米材料的掺杂可以容易被电场调控,在电场调制下碳纳米管和p-n结中材料的掺杂状态发生变化,因此,通过调控电势,所述半导体元件中的异质结可以在p-n结和n-n结之间变换,进而使得所述光电探测器可以实现三种不同工作模式下切换。第二,该光电探测器中的半导体元件通过交叉设置的两个单根的碳纳米管夹持二维半导体层形成,由于两个单根碳纳米管的直径为纳米级,在两个单根碳纳米管的交叉点处,该两个交叉的单根碳纳米管和半导体层的重叠区域处可以形成一纳米尺寸的垂直点p-n异质结,所述半导体元件的整体尺寸只需确保大于该重叠区域的体积即可,因此,半导体元件的尺寸可以为纳米级。故,采用该半导体元件的光电探测器也可以具有较小的纳米尺寸,这在未来的纳米电子学和纳米光电学中将意义重大。第三,本发明中的半导体元件的电极仅为两根单根的碳纳米管,相对于一般传统电极,碳纳米管对光的吸收或反射可以忽略不计,因此将该半导体元件用于光电探测器会对光电探测的效率提升由很大的作用。第四,该半导体元件的内置电势比较大,因此本发明的光电探测器在光电检测器功耗和零偏置信噪比方面表现出色。第五,该光电探测器中的半导体元件中的垂直点p-n异质结是不同类型的半导体层垂直堆叠形成的,与横向p-n异质结相比扩散距离更短,泄漏电流更低,具有更高的光诱导的载流子提取效率。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (9)

1.一种光电探测器,其包括一半导体元件、一第一电极、一第二电极及一电流探测元件,所述半导体元件、第一电极、第二电极、电流探测元件相互电连接形成一回路结构,其特征在于,通过调控电势,所述光电探测器在三种不同工作模式下切换,该半导体元件包括:
一半导体层,该半导体层包括一n型半导体层和一p型半导体层,且该n型半导体层和p型半导体层层叠设置,该半导体层定义一第一表面以及与该第一表面相对设置的第二表面;
一第一碳纳米管,该第一碳纳米管设置在半导体层的第一表面,并与第一表面直接接触,该第一碳纳米管与所述第一电极电连接;以及
一第二碳纳米管,该第二碳纳米管设置在半导体层的第二表面,并与该第二表面直接接触,所述第二碳纳米管与第二电极电连接,所述第一碳纳米管的延伸方向与第二碳纳米管的延伸方向交叉设置,在所述第一碳纳米管以及第二碳纳米管的交叉点处,在垂直于所述半导体层的方向上,所述第一碳纳米管、半导体层以及第二碳纳米管的重叠区域形成一多层结构,所述第一碳纳米管和第二碳纳米管均为内壳碳纳米管,该内壳碳纳米管是指双壁碳纳米管或多壁碳纳米管剥去外壳后形成的单壁碳纳米管,该内壳碳纳米管的制备方法是:在长度在150微米以上的双壁碳纳米管或多壁碳纳米管的两端拉伸该双壁碳纳米管或多壁碳纳米管,使双壁碳纳米管或多壁碳纳米管的外壁在中间部位断裂,使该双壁碳纳米管或多壁碳纳米管的中间部分仅剩下最内层的碳纳米管,进而得到一段最内层的碳纳米管,该段最内层的碳纳米管为所述内壳碳纳米管。
2.如权利要求1所述的光电探测器,其特征在于,所述第一碳纳米管的延伸方向垂直于所述第二碳纳米管的延伸方向。
3.如权利要求1所述的光电探测器,其特征在于,所述第一碳纳米管和第二碳纳米管均为金属型的单壁碳纳米管。
4.如权利要求1所述的光电探测器,其特征在于,所述n型半导体层的厚度为0.5纳米到50纳米,所述p型半导体层的厚度为0.5纳米到50纳米。
5.如权利要求1所述的光电探测器,其特征在于,所述n型半导体层的材料为硫化钼,所述p型半导体层的材料为硒化钨。
6.如权利要求1所述的光电探测器,其特征在于,该多层结构的横向截面的面积为1nm2~100nm2
7.如权利要求1所述的光电探测器,其特征在于,进一步包括一第三电极及一绝缘层,所述半导体元件与该第一电极和第二电极电连接,该第三电极通过所述绝缘层与该半导体元件、第一电极及第二电极绝缘设置。
8.如权利要求7所述的光电探测器,其特征在于,所述第三电极为一层状结构,所述绝缘层设置于第三电极的表面,所述第二碳纳米管直接设置在所述绝缘层远离第三电极的表面。
9.如权利要求7所述的光电探测器,其特征在于,进一步包括一基底,所述第三电极、绝缘层、以及半导体元件依次层叠设置于所述基底的表面。
CN201911089315.7A 2019-11-08 2019-11-08 光电探测器 Active CN112786714B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201911089315.7A CN112786714B (zh) 2019-11-08 2019-11-08 光电探测器
TW108142365A TWI738122B (zh) 2019-11-08 2019-11-21 光電探測器
JP2020033010A JP6952148B2 (ja) 2019-11-08 2020-02-28 光検出器
US16/903,161 US20210143293A1 (en) 2019-11-08 2020-06-16 Photoelectric detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911089315.7A CN112786714B (zh) 2019-11-08 2019-11-08 光电探测器

Publications (2)

Publication Number Publication Date
CN112786714A CN112786714A (zh) 2021-05-11
CN112786714B true CN112786714B (zh) 2022-11-22

Family

ID=75748486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911089315.7A Active CN112786714B (zh) 2019-11-08 2019-11-08 光电探测器

Country Status (4)

Country Link
US (1) US20210143293A1 (zh)
JP (1) JP6952148B2 (zh)
CN (1) CN112786714B (zh)
TW (1) TWI738122B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299834A (zh) * 2021-05-18 2021-08-24 西北工业大学 基于纳米管复合结构的自驱动宽波段光电探测器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4251268B2 (ja) * 2002-11-20 2009-04-08 ソニー株式会社 電子素子及びその製造方法
JP2005116618A (ja) * 2003-10-03 2005-04-28 Fujitsu Ltd 半導体装置およびその製造方法
JP5029600B2 (ja) * 2006-03-03 2012-09-19 富士通株式会社 カーボンナノチューブを用いた電界効果トランジスタとその製造方法及びセンサ
CN101527327B (zh) * 2008-03-07 2012-09-19 清华大学 太阳能电池
CN103681895A (zh) * 2013-11-28 2014-03-26 北京大学 一种基于碳纳米管的红外成像探测器及其制备方法
CN107564946A (zh) * 2016-07-01 2018-01-09 清华大学 纳米晶体管
CN107564948B (zh) * 2016-07-01 2021-01-05 清华大学 纳米异质结构及纳米晶体管的制备方法
CN107564947A (zh) * 2016-07-01 2018-01-09 清华大学 纳米异质结构
CN107564979B (zh) * 2016-07-01 2019-08-13 清华大学 光探测器
WO2018116720A1 (ja) * 2016-12-22 2018-06-28 株式会社日立製作所 温度検知素子及びこれを備える温度検知装置
CN108807562B (zh) * 2017-04-28 2021-01-05 清华大学 光电探测器及其制备方法
CN108963079B (zh) * 2017-05-17 2020-03-17 清华大学 光电探测元件以及光电探测器
CN108933182B (zh) * 2017-05-24 2020-05-15 清华大学 光探测器
US10741707B2 (en) * 2018-03-23 2020-08-11 International Business Machines Corporation Graphene-contacted nanotube photodetector
CN112786678B (zh) * 2019-11-08 2022-11-22 清华大学 半导体结构及半导体器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Multiwalled Carbon Nanotubes as Gigahertz Oscillators";Quanshui Zheng等;《PHYSICAL REVIEW LETTERS》;20020109;全文 *

Also Published As

Publication number Publication date
JP2021077846A (ja) 2021-05-20
TWI738122B (zh) 2021-09-01
US20210143293A1 (en) 2021-05-13
CN112786714A (zh) 2021-05-11
TW202119607A (zh) 2021-05-16
JP6952148B2 (ja) 2021-10-20

Similar Documents

Publication Publication Date Title
Huang et al. Photoelectrical response of hybrid graphene-PbS quantum dot devices
Chen et al. Development of infrared detectors using single carbon-nanotube-based field-effect transistors
CN108933182B (zh) 光探测器
US11069868B2 (en) Semiconductor structure, semiconductor device, photodetector and spectrometer
TWI651864B (zh) 光探測器
JP6492126B2 (ja) ナノトランジスタ
CN107564948B (zh) 纳米异质结构及纳米晶体管的制备方法
CN112786714B (zh) 光电探测器
Chen et al. Gate dependent photo-responses of carbon nanotube field effect phototransistors
Zhang et al. Single carbon nanotube based photodiodes for infrared detection
US11289615B2 (en) Semiconductor structure and semiconductor device using the same
CN112786715B (zh) 太阳能电池
Zhang et al. Performance evaluation and analysis for carbon nanotube (CNT) based IR detectors
Zhang et al. Efficient readout for carbon nanotube (CNT)-based IR detectors
Chen et al. Improving the detectability of CNT based infrared sensors using multi-gate field effect transistor
Chen et al. Gate structure optimization of carbon nanotube transistor based infrared detector
Chen et al. Development of infrared sensors using carbon nanotube (CNT) based field effect transistor (FET)
Chen et al. Carbon Nanotube Field-Effect Transistor-Based Photodetectors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant