CN110224022A - 一种基于非对称范德华异质结构的场效应管及其制备方法 - Google Patents

一种基于非对称范德华异质结构的场效应管及其制备方法 Download PDF

Info

Publication number
CN110224022A
CN110224022A CN201910504725.7A CN201910504725A CN110224022A CN 110224022 A CN110224022 A CN 110224022A CN 201910504725 A CN201910504725 A CN 201910504725A CN 110224022 A CN110224022 A CN 110224022A
Authority
CN
China
Prior art keywords
field
effect tube
van der
der waals
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910504725.7A
Other languages
English (en)
Inventor
程庆苏
吉娜
渠开放
李桂华
王伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201910504725.7A priority Critical patent/CN110224022A/zh
Publication of CN110224022A publication Critical patent/CN110224022A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种基于非对称范德华异质结构的场效应管,包括Si/SiO2基底,Si/SiO2基底上表面设有浮栅,所述浮栅上表面一侧设有栅极,另一侧设有二维材料制备的介电层,所述介电层上表面设有二维材料二硫化钼层,所述二硫化钼上表面一侧设有源极,另一侧设有二维材料二碲化钼层,所述二碲化钼上表面设有漏极;一种上述场效应管的制备方法,将浮栅层、介电层、MoS2和MoTe2逐层转移到基底上,再沉积金属电极。本发明所述场效应管显示较高的电流开关比和整流比。

Description

一种基于非对称范德华异质结构的场效应管及其制备方法
技术领域
本发明涉及一种异质结场效应管,尤其涉及一种基于非对称范德华异质结构的场效应管及其制备方法。
背景技术
近年来,二维材料由于其独特的物理特性受到关注,并被广泛的应用到场效应晶体管器件的研发。石墨烯是二维材料研究的起源及代表材料,然而由于石墨烯的零带隙特点导致其无法应用在逻辑电子器件中,而以二硫化钼(MoS2)为代表的过渡金属硫族化合物具有1-2eV 的带隙,为其应用到逻辑电子器件中提供了良好的基础。范德华异质结构是一种二维材料叠加在一起的结构,它允许不同的材料和属性被组合在一起,从而创造出多功能设备。由于范德华力较弱,不同的二维材料可以垂直叠加制备人工异质结构—通常称为范德华异质结构 (vdWHs),而不受晶格失配的限制。基于机械剥落和人工叠加,各种复杂的具有原子锋利接口的vdWHs被制造出来,并用于制造一系列设备,包括原子薄的p-n结、晶体管隧穿、光探测器、发光二极管和存储设备。这些异质结构也被用来建造多功能设备。
发明内容
发明目的:本发明的目的是提供一种具有较高电流开关比和整流比的基于非对称范德华异质结构的场效应管,本发明的另一个目的是提供上述场效应管的制备方法。
技术方案:本发明所述的一种基于非对称范德华异质结构的场效应管,包括Si/SiO2基底,所述Si/SiO2基底上表面设有浮栅,所述浮栅上表面一侧设有栅极,另一侧设有二维材料制备的介电层,所述介电层上表面设有二维材料二硫化钼层,所述二硫化钼上表面一侧设有源极,另一侧设有二维材料二碲化钼层,所述二碲化钼上表面设有漏极。
进一步的,所述介电层为二维材料h-BN,有利于栅极尺寸的缩放和减小电荷-载流子散射。
进一步的,所述浮栅为二维材料石墨烯材质,石墨烯作为浮栅,有存储电荷的能力。可以通过调节背栅电压在不同的存储状态下工作。在施加负(正)背栅脉冲后,所述浮栅表现出正(负)门样行为。特别是当背栅脉冲为正时,通道中的电子会被转移到石墨烯层中,并在石墨烯层中积累,与程序状态(P)相对应。储存的电子可以起到负栅电压的作用。因此,在负栅电压下观察到的现象可以维持在这种状态。
进一步的,所述二硫化钼为单层,所述二碲化钼为双层,通过MoTe2/MoS2p-n结的隧穿或热活化,可以将载流子注入通道。
一种基于非对称范德华异质结构的场效应管的制备方法,首先,将石墨烯薄片从块状材料中机械剥离并转移到Si/SiO2基底上;然后,将h-BN、MoS2和MoTe2依次转移到底层石墨烯层,从而制备三层异质二维结构的场效应管的沟道;最后,通过标准电子束光刻技术和金属沉积法,分别在石墨烯薄片、MoS2和MoTe2薄片上制备栅极、源极和漏极的金属电极Gr。
原理分析:对于二维材料非对称范德华异质结构的场效应晶体管应用,将三层异质结构二维材料用于通道,这种石墨烯(Graphene),六方氮化硼(h-BN)和二硫化钼/二碲化钼异质结(MoS2/MoTe2)分别作为其浮栅,介电层和导电沟道的不对称vdWH器件,实现了在负偏置或正偏置条件下,通过MoTe2/MoS2p-n结的隧穿或热活化,可以将载流子注入通道。在负偏压作用下,MoS2/MoTe2中的电子/空穴被耗尽,漏极电压主要沿结部下降,产生强电场。结合MoTe2的超薄体厚度,可以发生电子隧穿(尤其是在高偏置区),产生较大的电流值。当施加正偏置时,电子/空穴在MoS2(MoTe2)中积累,MoTe2层作为半导体p型垂直通道与MoS2串联,可以抑制正电流,增强电流不对称。与常见的p-n垂直连接类似,电流主要由载流子层间复合和过阻挡层自由电子输运控制,它们与温度有关。因此设备可以被调制,并显示较高的电流开关比和整流比。此外,vdWH器件还能够作为可编程整流器工作,具有稳定的保持和多级存储。
有益效果:本发明所述的一种基于非对称范德华异质结构的场效应管,它使用石墨烯 (Graphene),六方氮化硼(h-BN)和二硫化钼/二碲化钼异质结(MoS2/MoTe2)分别作为其 浮栅,介电层和传导通道的不对称的vdWH器件,实现了在负偏置或正偏置条件下,通过MoTe2/MoS2p-n结的隧穿或热活化,可以将载流子注入通道。因此设备可以被调制,并显示较高的电流开关比和整流比。此外,vdWH器件还能够作为可编程整流器工作,具有稳定的保持和多级存储。
具体实施方式
为进一步了解本发明的内容,结合实施例对本发明作详细描述。
本实施例所述的一种基于非对称范德华异质结构的场效应管,包括Si/SiO2基底,Si/SiO2基底上表面设有由二维材料石墨烯(Graphene)制备的浮栅,浮栅上表面一侧设有栅极(G),另一侧设有二维材料六方氮化硼(h-BN)制备的介电层,介电层上表面设有二维材料单层的二硫化钼层,所述二硫化钼上表面一侧设有源极(S),另一侧设有二维材料双层的二碲化钼层,所述二碲化钼上表面设有漏极(D)。
一种基于非对称范德华异质结构的场效应管的制备方法,将石墨烯薄片从块状材料中机械剥离并转移到Si/SiO2基底上;然后,利用3M透明胶带在透明PDMS膜上转移少量的h-BN 薄片;接着用同样方法在h-BN上转移少量的MoS2薄片,再在MoS2薄片上转移MoTe2,最终制备一个三层异质结构的二维材料场效应管导电沟道;最后,通过标准电子束光刻技术和金属沉积法,分别在石墨烯薄片、MoS2和MoTe2薄片上制备栅极、源极和漏极的金属电极Gr。
针对传统的从vdWHs创建的面向可编程的p-n结大多是载流子传输机制下实现的,这可能会限制设备的性能和集成。鉴于二维材料良好的性能和与硅基技术的相容性的优势,提出了一种基于非对称范德华异质结构二硫化钼/二硫化碲的场效应管。
对于一种基于二维材料非对称范德华异质结构的场效应晶体管,需要进行量子输运分析。在具有紧束缚(TB)的NEGF框架中,Poisson和薛定谔方程的自洽解决方案需要哈密顿量来捕获这些新兴材料装置中的弹道传输现象,使用双带紧束缚(TB)哈密顿量和开源量子传输模拟框架模拟TM TMDC FET(过渡金属硫化物场效应晶体管)的电气特性。并且这项工作使用了相同的开源平台NanoTcad ViDES,这是一个模拟2D材料FET的既定平台。
为揭示纳米尺度该类器件的量子输运特性,本发明采用了一种量子力学模型,通过自洽全量子数值求解二维非平衡格林函数(NEGF)方程和泊松(Poisson)方程,构建了适用于非对称范德华异质结构二维材料电介质调制场效应管的输运模型。
该模型基于二维异质结构场效应管中的电势和电荷密度的自洽计算。具体过程是给定一个初始沟道电势,利用NEGF方程计算出其电荷密度,再将电荷密度代入泊松方程求解出多层MoS2沟道中的静电势,然后又将求得的电势重新代入NEGF方程中进行计算,如此反复迭代直到得到自洽解为止。电荷密度的计算是利用非平衡格林函数方法,器件的迟滞格林函数为(参考文章Nanoscale device modeling:The Green’s function method,选自Superlattices Microstruct,2000):
G(E)=[EI-H-∑S-∑D]-1. (1)
I是单位矩阵,ΣS和ΣD分别为器件源和漏电极贡献的自能项,可根据表面格林函数通过迭代求出。扩展矩阵ГSГD和谱密度ASAD分别为[参考文章A simple quantummechanical treatment of scattering nanoscale transistors,选自期刊Journal ofApplied Physics,2003]:
AS,D(E)=G(E)ΓS,DG+(E). (3)
用于解泊松方程的密度矩阵为:
其中A(Ek,x)是谱密度矩阵,Ek,x是导电电平的能量,η是触点的化学势,f0是费米函数。
将由NEGF方程计算得到的载流子密度放入泊松方程中,以计算更准确的自洽电位猜测值去计算更好的ntot,用于计算传输矩阵T(E)的收敛值为:
T(E)=Trace[ASΓD]=Trace[ADΓS].
(5)
由此可计算得到弹道漏电流为:
其中e是电子电荷,h是普朗克常数,fS和fD是源极和漏极触点中的费米函数。
ηS和ηD分别是源和化学势。因子4起源于多层MoS2中的自旋简并性和谷简并性通道电导可计算得:
其中gv是谷简并度,因子2是自旋简并度,f是费米函数。
研究结果表明,该种基于非对称范德华异质结构二硫化钼/二硫化碲的场效应管使用石墨烯(Graphene),六方氮化硼(h-BN)和二硫化钼/二碲化钼异质结(MoS2/MoTe2)分别作为其浮栅,介电层和导电沟道的不对称的vdWH器件,实现了在负偏置或正偏置条件下,通过 MoTe2/MoS2p-n结的隧穿或热活化,可以将载流子注入通道。因此设备可以被调制,并显示较高的电流开关比和整流比。此外,存储器是数字电路的重要电子元件。利用石墨烯存储电荷的能力,我们证明了垂直堆叠的vdWHs可以作为非易失性存储器,其中MoS2/MoTe2、h-BN和石墨烯分别作为通道、隧道层和浮栅。也因此,vdWH器件还能够作为可编程整流器工作,具有稳定的保持和多级存储。

Claims (5)

1.一种基于非对称范德华异质结构的场效应管,包括Si/SiO2基底,其特征在于,所述Si/SiO2基底上表面设有浮栅,所述浮栅上表面一侧设有栅极,另一侧设有二维材料制备的介电层,所述介电层上表面设有二维材料二硫化钼层,所述二硫化钼上表面一侧设有源极,另一侧设有二维材料二碲化钼层,所述二碲化钼上表面设有漏极。
2.根据权利要求1所述的一种基于非对称范德华异质结构的场效应管,其特征在于,所述介电层为二维材料h-BN。
3.根据权利要求1所述的一种基于非对称范德华异质结构的场效应管,其特征在于,所述浮栅为二维材料石墨烯材质。
4.根据权利要求1所述的一种基于非对称范德华异质结构的场效应管,其特征在于,所述二硫化钼为单层,所述二碲化钼为双层。
5.一种权利要求1-4所述的基于非对称范德华异质结构的场效应管的制备方法,其特征在于,首先,将石墨烯薄片从块状材料中机械剥离并转移到Si/SiO2基底上;然后,将h-BN、MoS2和MoTe2依次转移到底层石墨烯层,从而制备三层异质二维结构的场效应管的沟道;最后,通过标准电子束光刻技术和金属沉积法,分别在石墨烯薄片、MoS2和MoTe2薄片上制备栅极、源极和漏极的金属电极Gr。
CN201910504725.7A 2019-06-12 2019-06-12 一种基于非对称范德华异质结构的场效应管及其制备方法 Pending CN110224022A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910504725.7A CN110224022A (zh) 2019-06-12 2019-06-12 一种基于非对称范德华异质结构的场效应管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910504725.7A CN110224022A (zh) 2019-06-12 2019-06-12 一种基于非对称范德华异质结构的场效应管及其制备方法

Publications (1)

Publication Number Publication Date
CN110224022A true CN110224022A (zh) 2019-09-10

Family

ID=67816496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910504725.7A Pending CN110224022A (zh) 2019-06-12 2019-06-12 一种基于非对称范德华异质结构的场效应管及其制备方法

Country Status (1)

Country Link
CN (1) CN110224022A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471328A (zh) * 2021-07-02 2021-10-01 中国科学院物理研究所 一种具有可拉伸场效应的晶体管器件及其制备方法和产品
US11289615B2 (en) * 2019-11-08 2022-03-29 Tsinghua University Semiconductor structure and semiconductor device using the same
CN114597254A (zh) * 2022-05-09 2022-06-07 华中科技大学 一种MoTe2浮栅晶体管、ADC电路、DCA电路及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024861A (zh) * 2016-05-31 2016-10-12 天津理工大学 二维黑磷/过渡金属硫族化合物异质结器件及其制备方法
CN109004016A (zh) * 2018-06-04 2018-12-14 国家纳米科学中心 非对称范德华异质结器件、其制备方法及用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024861A (zh) * 2016-05-31 2016-10-12 天津理工大学 二维黑磷/过渡金属硫族化合物异质结器件及其制备方法
CN109004016A (zh) * 2018-06-04 2018-12-14 国家纳米科学中心 非对称范德华异质结器件、其制备方法及用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
戴明金等: ""石墨烯基二维垂直异质结的制备及光电子器件"", 《材料科学与工艺》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289615B2 (en) * 2019-11-08 2022-03-29 Tsinghua University Semiconductor structure and semiconductor device using the same
CN113471328A (zh) * 2021-07-02 2021-10-01 中国科学院物理研究所 一种具有可拉伸场效应的晶体管器件及其制备方法和产品
CN113471328B (zh) * 2021-07-02 2023-10-31 中国科学院物理研究所 一种具有可拉伸场效应的晶体管器件及其制备方法和产品
CN114597254A (zh) * 2022-05-09 2022-06-07 华中科技大学 一种MoTe2浮栅晶体管、ADC电路、DCA电路及方法
CN114597254B (zh) * 2022-05-09 2022-08-16 华中科技大学 一种MoTe2浮栅晶体管、ADC电路、DAC电路及方法

Similar Documents

Publication Publication Date Title
Mleczko et al. Contact engineering high-performance n-type MoTe2 transistors
Urban et al. Gas dependent hysteresis in MoS2 field effect transistors
Lee et al. Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators
CN110224022A (zh) 一种基于非对称范德华异质结构的场效应管及其制备方法
Berdebes et al. Substrate gating of contact resistance in graphene transistors
Shin et al. Ambipolar bistable switching effect of graphene
CN110137263A (zh) 基于黑磷-氮化硼-二硫化钼异质结构的浮栅场效应管
McMorrow et al. Vacuum ultraviolet radiation effects on two-dimensional MoS2 field-effect transistors
Patil et al. Intriguing field-effect-transistor performance of two-dimensional layered and crystalline CrI3
US11325343B2 (en) Ion-doped two-dimensional nanomaterials
Hemanjaneyulu et al. MoS 2 doping using potassium iodide for reliable contacts and efficient FET operation
Goyal et al. Accurate threshold voltage reliability evaluation of thin Al2O3 top-gated dielectric black phosphorous FETs using ultrafast measurement pulses
Lin et al. Ambipolar field-effect transistors by few-layer InSe with asymmetry contact metals
Xu et al. Annealing effects on the electrical and photoelectric performance of SnS2 field-effect transistor
Lee et al. Issues with the electrical characterization of graphene devices
Upadhyaya et al. Vacuum annealing and passivation of HfS 2 FET for mitigation of atmospheric degradation
Ju et al. N-type field-effect transistors using multiple Mg-doped ZnO nanorods
Rai et al. MoS2 Field-Effect Transistor Performance Enhancement by Contact Doping and Defect Passivation via Fluorine Ions and Its Cyclic Field-Assisted Activation
CN106784004A (zh) 一种石墨烯晶体管结构
Yu et al. High on/off current ratio in dual in-plane gate spin transistor based on the VB defect hexagonal BN
Zeng et al. Effects of sulfide treatment on electronic transport of graphene/n-type Si Schottky diodes
Li et al. Investigation of non-volatile and photoelectric storage characteristics for MoS2/h-BN/graphene heterojunction floating-gate transistor with the different tunneling layer thicknesses
CN209401632U (zh) 一种二硫化钼晶体管
Lim et al. Control of positive and negative threshold voltage shifts using ultraviolet and ultraviolet-ozone irradiation
Ji et al. Impact of Heat Treatment on a Hetero-Stacked MoS 2/${h} $-BN Field-Effect Transistor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190910