CN113471328A - 一种具有可拉伸场效应的晶体管器件及其制备方法和产品 - Google Patents

一种具有可拉伸场效应的晶体管器件及其制备方法和产品 Download PDF

Info

Publication number
CN113471328A
CN113471328A CN202110749551.8A CN202110749551A CN113471328A CN 113471328 A CN113471328 A CN 113471328A CN 202110749551 A CN202110749551 A CN 202110749551A CN 113471328 A CN113471328 A CN 113471328A
Authority
CN
China
Prior art keywords
gold
stretchable
transistor device
dimensional
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110749551.8A
Other languages
English (en)
Other versions
CN113471328B (zh
Inventor
李佳蔚
张广宇
时东霞
杨蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Physics of CAS
Original Assignee
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Physics of CAS filed Critical Institute of Physics of CAS
Priority to CN202110749551.8A priority Critical patent/CN113471328B/zh
Publication of CN113471328A publication Critical patent/CN113471328A/zh
Application granted granted Critical
Publication of CN113471328B publication Critical patent/CN113471328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供了一种具有可拉伸场效应的晶体管器件,所述器件包括:可拉伸的柔性衬底;经沉积的金属栅电极;二维绝缘材料和/或柔性介电层;生长于所述柔性衬底上的二维半导体材料;和源漏金属电极。还提供了该器件的制备方法和应用。本发明对器件的制作方法进行了改进,先将要制作器件的柔性衬底进行预拉伸固定,然后直接在拉伸后的衬底上转移二维半导体材料进行器件制备。二维半导体材料如二硫化钼作为器件的沟道材料,二维绝缘材料如氮化硼作为器件的介电层。在器件制作完成后释放衬底,让衬底上的材料收缩,形成褶皱结构的可拉伸器件。成功制备出了稳定的场效应晶体管三端器件,可以应用于逻辑电路,光电探测,神经突触形态器件。有效解决了二维半导体材料柔性器件不能承受较大应变,在应变条件下不能稳定工作的问题。

Description

一种具有可拉伸场效应的晶体管器件及其制备方法和产品
技术领域
本发明总体上涉及微纳加工和半导体制造领域,具体涉及一种具有可拉伸场效应的晶体管器件及其制备方法和产品。
背景技术
柔性器件是下一代新型器件的发展趋势,因其柔软灵活的特点可以被应用于各种传感器、可穿戴器件等,为电子器件在生物医学、人工智能方面开辟了新的研究方向。
目前的柔性器件大多采用有机材料,制备过程毒性较大,并且器件性能不高。二维半导体材料的出现为柔性器件制备提供了一个新的思路,采用二维半导体材料不仅仅能够制备简单的两端器件,还可以制备三端场效应晶体管器件,以及基于晶体管器件制备的逻辑器件等。制作的器件能得到较高的载流子迁移率,开关电流比,并且二维半导体材料器件可加工的尺寸很小,有利于器件的集成。
但二维半导体材料相比有机材料在形变较大的时候更容易出现碎裂,现有的技术方法大多只能保证器件在弯曲条件下能够工作,弯曲施加的应变范围很小,使柔性器件的应用范围受限。
因此,需要一种新型的器件制备方法去加工二维半导体材料,使其能够在拉伸的过程中不会出现损坏的情况,进而保证器件在较大应变下的稳定工作,制备出高性能的二维半导体材料可拉伸器件。
发明内容
因此,本发明的目的在于克服现有技术中的缺陷,提供一种具有可拉伸场效应的晶体管器件及其制备方法和应用,使二维半导体材料在拉伸的过程中不会出现损坏,进而保证器件在较大应变下的稳定工作。
在阐述本发明内容之前,定义本文中所使用的术语如下:
术语“PDMS”是指:聚二甲基硅氧烷。
术语“PMMA”是指:聚甲基丙烯酸甲酯。
术语“SEBS”是指:是以聚苯乙烯为末端段,以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物。
术语“PVA”是指:聚乙烯醇。
术语“PET”是指:俗称涤纶树脂,是对苯二甲酸与乙二醇的缩聚物。
为实现上述目的,本发明的第一方面提供了一种具有可拉伸场效应的晶体管器件,其特征在于,所述器件依次包括:
可拉伸的柔性衬底;
经沉积的金属栅电极;
转移或涂覆于所述金属栅电极上的二维绝缘材料层/或柔性介电层;
位于所述二维绝缘材料层/或柔性介电层上形成沟道的二维半导体材料;和
源漏金属电极。
根据本发明第一方面的具有可拉伸场效应的晶体管器件,
所述可拉伸的柔性衬底材料为:PDMS或SEBS;
所述经沉积的金属栅电极选自以下一种或多种:钛金、金、铂金、钯金、铜金、镍金;优选为钛金、金、铂金、钯金,更优选为钛金、金、铂金,最优选为钛金和/或金;
所述二维绝缘材料为六方氮化硼;
所述柔性介电层材料为:PVA或SEBS;
所述二维半导体材料为金属硫族化合物或黑磷,优选为二维过渡金属硫族化合物,更优选自以下一种或多种:二硫化钼、二硫化钨、二硒化钼、二硒化钨;和/或
所述源漏金属电极的材料选自以下一种或多种:钛金、金、钯金、铂金、镍金。
根据本发明第一方面的具有可拉伸场效应的晶体管器件,
所述可拉伸的柔性衬底拉伸量为2-20%,优选为5-15%,进一步优选为5-10%,最优选为7%;
所述的金属栅电极厚度为3-50纳米,优选为5-40纳米,更优选为5-30纳米,进一步优选为5-20纳米,最优选为10纳米;
所述柔性介电层厚度为5-80纳米,优选为5-60纳米,更优选为10-50纳米,进一步优选为20-40纳米,最优选为30纳米;和/或
所述源漏金属电极厚度为10-80纳米,优选为20-70纳米,更优选为20-60纳米,进一步优选为20-50纳米,最优选为30纳米。
根据本发明第一方面的具有可拉伸场效应的晶体管器件,所述的晶体管器件选自以下一种或多种:场效应晶体管器件、反相器、与门逻辑器件、或门逻辑器件。
本发明的第二方面提供了制备第一方面所述的晶体管器件的方法,所述方法依次包括以下步骤:
(1)预拉伸柔性衬底;
(2)在步骤(1)的衬底上沉积金属栅电极;
(3)在步骤(2)的栅电极上转移或涂覆二维绝缘材料和/或柔性介电层;
(4)将二维半导体材料转移至步骤(3)的二维绝缘材料和/或介电层上,以形成沟道;和
(5)转移源漏金属电极,即得所述的晶体管器件。
根据本发明第二方面的方法,所述的制备方法在步骤(5)后还包括:(6)解除柔性衬底固定。
根据本发明第二方面的方法,在步骤(2)中,所述沉积金属栅电极的方法为蒸镀,
优选地,所述蒸镀包括以下步骤:
(1)在通过步骤(1)拉伸好的柔性衬底上贴上掩膜;
(2)通过掩膜法沉积金属电极作为金属栅电极;
更优选地,所述的掩膜法沉积在电子束蒸发设备中进行;
进一步优选地,所述的掩膜选自以下一种或多种:PET、PDMS、硅、铝、不锈钢;和/或
更进一步优选地,掩膜的制备方法为:紫外光刻和/或感应耦合等离子刻蚀。
根据本发明第二方面的方法,在步骤(4)中,
所述生长得到二维半导体材料的方法为:机械剥离法或化学气相沉积法;
所述形成沟道的方法选自以下一种或多种:紫外光刻、电子束曝光、反应离子刻蚀、感应耦合等离子刻蚀。
根据本发明第二方面的方法,在步骤(5)中,所述的源漏金属电极用电子束蒸发。
本发明的第三方面提供了一种光探测器件、光存储器件和/或对于光照响应敏感的神经突触形态器件,所述的光探测器件、光存储器件和/或对于光照响应敏感的神经突触形态器件包括如权利要求1至4中任一项所述的具有可拉伸场效应的晶体管器件或按照权利要求5至9中任一项所述方法制备的可拉伸场效应的晶体管器件。
根据本发明一个具体的实施方案,本发明提供了一种采用二维半导体材料可拉伸器件及其制备方法,将柔性衬底进行预拉伸,之后在预拉伸的衬底上直接制作器件,在释放衬底之后,二维半导体材料能够在衬底上形成褶皱结构,保持材料的完好,避免在拉伸应变过程中出现碎裂。
本发明提供的一种采用二维半导体材料可拉伸器件的制备方法,包括以下步骤:
(1)将柔性衬底进行预拉伸之后再进行器件的制备。
(2)在电子束蒸发设备中采用掩膜的方法沉积金属电极,并可以进行金属电极的转移。
(3)将机械剥离或者化学气相沉积方法生长的一种或多种二维半导体材料转移至预拉伸的衬底作为器件的沟道材料。
(4)采用紫外光刻设备和反应离子刻蚀设备对材料进行加工,并用半导体分析仪对器件进行电学测量。
根据本发明另一个具体的实施方案,本发明提供了一种在拉伸的柔性衬底上直接采用二维半导体材料制作可拉伸器件的方法,包括以下步骤:
(1)先将柔性衬底进行预拉伸,在电子束蒸发设备中采用掩膜的方法沉积金属栅电极。
(2)在栅电极上转移二维绝缘材料或旋涂柔性介电层。
(3)采用机械剥离或者化学气相沉积法生长得到二维半导体材料,转移至介电层上作为器件的沟道材料。
(4)加工沟道形状后转移源漏金属电极,释放衬底预应变,得到可拉伸器件。
在步骤(1)中,所述柔性衬底为PDMS或SEBS。
在步骤(2)中,所述介电层为六方氮化硼、PVA或SEBS。
在步骤(3)中,所述二维半导体材料为二硫化钼、二硫化钨、二硒化钼或二硒化钨。
在步骤(4)中,所述的的可拉伸器件选自以下一种或多种:场效应晶体管器件、反相器、与门和或门逻辑器件。
制备的可拉伸器件可以用作光探测器件,光存储器件,以及对于光照响应敏感的神经突触形态器件。
本发明提供了一种基于二维半导体材料的可拉伸场效应晶体管器件及其制备方法。采用二维半导体材料如二硫化钼制作的柔性电子器件通常不能在很大的拉伸应变下工作,因为应变会使材料断裂从而使器件性能显著下降甚至损坏。本发明对器件的制作方法进行了改进,先将要制作器件的柔性衬底进行预拉伸固定,然后直接在拉伸后的衬底上转移二维半导体材料进行器件制备。二维半导体材料如二硫化钼作为器件的沟道材料,二维绝缘材料如氮化硼作为器件的介电层。在器件制作完成后释放衬底,让衬底上的材料收缩,形成褶皱结构的可拉伸器件。成功制备出了稳定的场效应晶体管三端器件,可以应用于逻辑电路,光电探测,神经突触形态器件。有效解决了二维半导体材料柔性器件不能承受较大应变,在应变条件下不能稳定工作的问题。
本发明的具有可拉伸场效应的晶体管器件及其制备方法及应用可以具有但不限于以下有益效果:
(1)利用本发明的制备方法可以对衬底拉伸的时候实现二维半导体材料及金属电极完好,不会出现碎裂的效果。
(2)制备的器件能够在应变大于10%的条件下重复稳定地工作。
(3)制备的器件具有良好的开关性能,开关比可达108,迁移率可达28厘米2-1-1
(4)制备的器件可以实现单轴和双轴不同方向拉伸。
(5)制备的器件具有良好的光响应,在施加光照脉冲的时候电流增加且有记忆效果,能够实现神经突触形态器件的性质。
(6)利用这种方法可以制备简单两端器件、场效应晶体管器件、逻辑器件等多种不同功能器件。
以上这些特点使得这种将柔性衬底结构和二维半导体材料相结合的可拉伸器件的制备方法具备很大的应用潜力和推广价值。
附图说明
以下,结合附图来详细说明本发明的实施方案,其中:
图1示出了具有可拉伸场效应的晶体管器件的制备方法工艺流程示意图。
图2示出了采用本发明的方法制作的可拉伸二硫化钼场效应晶体管器件的光学显微镜照片。图2A示出了所述器件在拉伸之后的光学显微镜照片,图2B示出了所述器件在拉伸状态下无损坏的光学显微镜照片。
图3示出了对制作完成的可拉伸二硫化钼场效应晶体管器件进行电学测量的结果,图3A示出了拉伸前的转移曲线,图3B示出了拉伸后的转移曲线。
图4示出了对制作完成的可拉伸二硫化钼场效应晶体管器件在栅极电压-1V下施加蓝光光照脉冲时进行电学测量的结果,器件电流在光照时增加且有记忆效应。
具体实施方式
下面通过具体的实施例进一步说明本发明,但是,应当理解为,这些实施例仅仅是用于更详细具体地说明之用,而不应理解为用于以任何形式限制本发明。
本部分对本发明试验中所使用到的材料以及试验方法进行一般性的描述。虽然为实现本发明目的所使用的许多材料和操作方法是本领域公知的,但是本发明仍然在此作尽可能详细描述。本领域技术人员清楚,在上下文中,如果未特别说明,本发明所用材料和操作方法是本领域公知的。
以下实施例中使用的材料、试剂和仪器如下:
材料:
钛金、金,均购自中诺新材(北京)科技有限公司。
试剂:
氮化硼,购自hq graphene公司;PMMA购自MICROCHEM公司,PDMS购自道康宁公司;KOH,购自西陇科学股份有限公司;光刻胶,购自Allresist公司;二硫化钼通过在化学气相沉积系统中放入硫粉(Alfa Aesar)和三氧化钼粉(Alfa Aesar)加热反应得到。
仪器:
化学气相沉积系统(购自东莞市卓聚科技有限公司,型号PECVD-ZJ407a);
紫外光刻机(购自德国Suss MicroTec Gmbh,型号MA6);
电子束蒸发系统(购自台湾聚昌科技有限公司,型号Peva-600E);
反应离子刻蚀系统(购自英国Oxford Instruments Plasma Technology,型号Plasmalab 80plus);
原子层沉积系统(购自美国Cambridge NanoTech Inc.,型号Savannah-100);
光学显微镜(购自日本Nikon,型号MM-400);
半导体分析仪(美国Agilent公司,型号B1500A)。
实施例1
作为示例,本实施例用于说明本发明具有可拉伸场效应的晶体管器件的制备。
图1是本发明具有可拉伸场效应的晶体管器件的制备流程示意图。如图所示,本发明的制备方法依次包括以下步骤:
(1)将柔性衬底进行预拉伸,所用柔性衬底为PDMS。拉伸量5%。
(2)在拉伸的衬底上贴上PET掩膜,掩膜用紫外光刻和感应耦合等离子刻蚀制备。用电子束蒸发沉积2纳米钛和10纳米金作为栅电极。
(3)在栅电极上转移氮化硼,厚度40纳米。
(4)化学气相沉积方法在蓝宝石衬底上生长的二硫化钼薄膜,表面旋涂PMMA,用KOH溶液刻蚀衬底,转移到氮化硼层上。用紫外光刻和反应离子刻蚀方法保留定义形状沟道。
(5)转移源漏电极,金电极用电子束蒸发,厚度30纳米。
(6)使衬底解除固定。
经上述步骤制作完成后的器件,在光学显微镜下,可以看出,图2A示出了器件在拉伸之后的光学显微镜照片,图2B示出了器件在拉伸状态下无损坏的照片。
由该实施例可以看出,本发明的制备方法可以对衬底拉伸的时候实现二维半导体材料及金属电极完好,不会出现碎裂的效果。有效解决了二维半导体材料柔性器件不能承受较大应变,在应变条件下不能稳定工作的问题。
试验例1
本实验例用来说明实施例1制备的具有可拉伸场效应的晶体管器件的电学特性。
实验步骤:具体步骤如下:
(1)将器件放入探针台中,使用探针接触栅极和源漏电极施加电压;
(2)使用半导体分析仪测量得到器件拉伸前的电流曲线;
(3)将器件拉伸后接入探针,施加栅极和源漏电极电压;
(4)使用半导体分析仪测量得到器件拉伸后的电流曲线。
结果:通过对实施例1中制备的具有可拉伸场效应的晶体管器件进行电学测量,得到器件在拉伸前后的转移曲线如图3所示。图3A示出了拉伸前的转移曲线,图3B示出了拉伸后的转移曲线。器件的电学特性基本保持不变。
表明在PDMS衬底上采用预拉伸方法制备的二硫化钼场效应晶体管器件能够在应变大于10%的条件下重复稳定地工作。
试验例2
本实验例用来说明实施例1制备的具有可拉伸场效应的晶体管器件在施加光照脉冲后的电流特性。
实验步骤:具体步骤如下:
(1)将器件放入探针台中,使用探针接触栅极和源漏电极施加电压;
(2)使用半导体分析仪对小灯泡施加电压脉冲,使光脉冲信号照射到器件上;
(3)使用半导体分析仪测量得到器件在施加光照脉冲后的电流曲线。
结果:通过对实施例1中制备的具有可拉伸场效应的晶体管器件施加光照脉冲之后,器件电流变化曲线如图4所示。器件电流在光照时增加且有记忆效应。在不同的拉伸量下,器件在光照脉冲下的电流基本不变。
表明制备的器件具有良好的光响应。
试验例3
本实验例用来说明实施例1制备的晶体管器件具有良好的开关性能。
通过转移特性电流曲线图3可以看出,预拉伸方法制备的可拉伸二硫化钼晶体管器件开关比可达108,迁移率可达28厘米2-1-1
表明制备的器件具有良好的开关性能。
尽管本发明已进行了一定程度的描述,明显地,在不脱离本发明的精神和范围的条件下,可进行各个条件的适当变化。可以理解,本发明不限于所述实施方案,而归于权利要求的范围,其包括所述每个因素的等同替换。

Claims (10)

1.一种具有可拉伸场效应的晶体管器件,其特征在于,所述器件依次包括:
可拉伸的柔性衬底;
经沉积的金属栅电极;
转移或涂覆于所述金属栅电极上的二维绝缘材料层/或柔性介电层;
位于所述二维绝缘材料层/或柔性介电层上形成沟道的二维半导体材料;和
源漏金属电极。
2.根据权利要求1所述的具有可拉伸场效应的晶体管器件,其特征在于,
所述可拉伸的柔性衬底材料为:PDMS或SEBS;
所述经沉积的金属栅电极选自以下一种或多种:钛金、金、铂金、钯金、铜金、镍金;优选为钛金、金、铂金、钯金,更优选为钛金、金、铂金,最优选为钛金和/或金;
所述二维绝缘材料为六方氮化硼;
所述柔性介电层材料为:PVA或SEBS;
所述二维半导体材料为金属硫族化合物或黑磷,优选为二维过渡金属硫族化合物,更优选自以下一种或多种:二硫化钼、二硫化钨、二硒化钼、二硒化钨;和/或
所述源漏金属电极的材料选自以下一种或多种:钛金、金、钯金、铂金、镍金。
3.根据权利要求1或2所述的晶体管器件,其特征在于,
所述可拉伸的柔性衬底拉伸量为2-20%,优选为5-15%,进一步优选为5-10%,最优选为7%;
所述的金属栅电极厚度为3-50纳米,优选为5-40纳米,更优选为5-30纳米,进一步优选为5-20纳米,最优选为10纳米;
所述柔性介电层厚度为5-80纳米,优选为5-60纳米,更优选为10-50纳米,进一步优选为20-40纳米,最优选为30纳米;和/或
所述源漏金属电极厚度为10-80纳米,优选为20-70纳米,更优选为20-60纳米,进一步优选为20-50纳米,最优选为30纳米。
4.根据权利要求1至3中任一项的晶体管器件,其特征在于,所述的晶体管器件选自以下一种或多种:场效应晶体管器件、反相器、与门逻辑器件、或门逻辑器件。
5.一种制备如权利要求1至4中任一项所述的晶体管器件的方法,其特征在于,所述方法依次包括以下步骤:
(1)预拉伸柔性衬底;
(2)在步骤(1)的衬底上沉积金属栅电极;
(3)在步骤(2)的栅电极上转移或涂覆二维绝缘材料和/或柔性介电层;
(4)将二维半导体材料转移至步骤(3)的二维绝缘材料和/或介电层上,以形成沟道;和
(5)转移源漏金属电极,即得所述的晶体管器件。
6.根据权利要求5所述的方法,其特征在于,所述的制备方法在步骤(5)后还包括:(6)解除柔性衬底固定。
7.根据权利要求5或6所述的方法,其特征在于,在步骤(2)中,所述沉积金属栅电极的方法为蒸镀,
优选地,所述蒸镀包括以下步骤:
(1)在通过步骤(1)拉伸好的柔性衬底上贴上掩膜;
(2)通过掩膜法沉积金属电极作为金属栅电极;
更优选地,所述的掩膜法沉积在电子束蒸发设备中进行;
进一步优选地,所述的掩膜选自以下一种或多种:PET、PDMS、硅、铝、不锈钢;
更进一步优选地,掩膜的制备方法为:紫外光刻和/或感应耦合等离子刻蚀。
8.根据权利要求5至7中任一项所述的方法,其特征在于,在步骤(4)中,
所述生长得到二维半导体材料的方法选为:机械剥离法或化学气相沉积法;
所述形成沟道的方法选自以下一种或多种:紫外光刻、电子束曝光、反应离子刻蚀、感应耦合等离子刻蚀。
9.根据权利要求5至8中任一项所述的方法,其特征在于,在步骤(5)中,所述的源漏金属电极用电子束蒸发。
10.一种光探测器件、光存储器件和/或对于光照响应敏感的神经突触形态器件,其特征在于,所述的光探测器件、光存储器件和/或对于光照响应敏感的神经突触形态器件包括如权利要求1至4中任一项所述的具有可拉伸场效应的晶体管器件或按照权利要求5至9中任一项所述方法制备的可拉伸场效应的晶体管器件。
CN202110749551.8A 2021-07-02 2021-07-02 一种具有可拉伸场效应的晶体管器件及其制备方法和产品 Active CN113471328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110749551.8A CN113471328B (zh) 2021-07-02 2021-07-02 一种具有可拉伸场效应的晶体管器件及其制备方法和产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110749551.8A CN113471328B (zh) 2021-07-02 2021-07-02 一种具有可拉伸场效应的晶体管器件及其制备方法和产品

Publications (2)

Publication Number Publication Date
CN113471328A true CN113471328A (zh) 2021-10-01
CN113471328B CN113471328B (zh) 2023-10-31

Family

ID=77877571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110749551.8A Active CN113471328B (zh) 2021-07-02 2021-07-02 一种具有可拉伸场效应的晶体管器件及其制备方法和产品

Country Status (1)

Country Link
CN (1) CN113471328B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203541A (zh) * 2021-11-26 2022-03-18 华中科技大学 一种将金属电极转移至二维材料上的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140231886A1 (en) * 2013-02-18 2014-08-21 Samsung Electronics Co., Ltd. Two-dimensional material stacked flexible photosensor
US20150053927A1 (en) * 2013-08-20 2015-02-26 Wisconsin Alumni Research Foundation Stretchable transistors with buckled carbon nanotube films as conducting channels
EP2975652A1 (en) * 2014-07-15 2016-01-20 Fundació Institut de Ciències Fotòniques Optoelectronic apparatus and fabrication method of the same
CN105702776A (zh) * 2016-02-03 2016-06-22 北京科技大学 一种自驱动光探测器及其制作方法
CN107068745A (zh) * 2017-03-31 2017-08-18 北京交通大学 一种场效应晶体管及其制备方法
CN107655397A (zh) * 2017-08-22 2018-02-02 中国科学院上海硅酸盐研究所 一种兼备高电阻应变灵敏系数与高形变能力的多功能石墨烯柔性传感器及其制备方法
CN109037064A (zh) * 2018-07-28 2018-12-18 张玉英 一种用于柔性显示器的黑磷烯波形薄膜晶体管及制备方法
CN109411544A (zh) * 2018-09-26 2019-03-01 上海集成电路研发中心有限公司 一种过渡金属硫化物晶体管及其制备方法
CN110224022A (zh) * 2019-06-12 2019-09-10 南京邮电大学 一种基于非对称范德华异质结构的场效应管及其制备方法
US20200194595A1 (en) * 2018-12-14 2020-06-18 Korea Advanced Institute Of Science And Technology Flexible thin-film transistor using two-dimensional semiconductor material
WO2020188951A1 (en) * 2019-03-18 2020-09-24 Mitsubishi Electric Corporation Ferroelectric low power 2d memory transistor and fabrication method thereof
CN111987153A (zh) * 2020-09-15 2020-11-24 电子科技大学 一种具有超低功耗的场效应晶体管及其制备方法
CN111987173A (zh) * 2020-09-15 2020-11-24 电子科技大学 一种可集成的二维光电突触器件阵列及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140231886A1 (en) * 2013-02-18 2014-08-21 Samsung Electronics Co., Ltd. Two-dimensional material stacked flexible photosensor
US20150053927A1 (en) * 2013-08-20 2015-02-26 Wisconsin Alumni Research Foundation Stretchable transistors with buckled carbon nanotube films as conducting channels
EP2975652A1 (en) * 2014-07-15 2016-01-20 Fundació Institut de Ciències Fotòniques Optoelectronic apparatus and fabrication method of the same
CN105702776A (zh) * 2016-02-03 2016-06-22 北京科技大学 一种自驱动光探测器及其制作方法
CN107068745A (zh) * 2017-03-31 2017-08-18 北京交通大学 一种场效应晶体管及其制备方法
CN107655397A (zh) * 2017-08-22 2018-02-02 中国科学院上海硅酸盐研究所 一种兼备高电阻应变灵敏系数与高形变能力的多功能石墨烯柔性传感器及其制备方法
CN109037064A (zh) * 2018-07-28 2018-12-18 张玉英 一种用于柔性显示器的黑磷烯波形薄膜晶体管及制备方法
CN109411544A (zh) * 2018-09-26 2019-03-01 上海集成电路研发中心有限公司 一种过渡金属硫化物晶体管及其制备方法
US20200194595A1 (en) * 2018-12-14 2020-06-18 Korea Advanced Institute Of Science And Technology Flexible thin-film transistor using two-dimensional semiconductor material
WO2020188951A1 (en) * 2019-03-18 2020-09-24 Mitsubishi Electric Corporation Ferroelectric low power 2d memory transistor and fabrication method thereof
CN110224022A (zh) * 2019-06-12 2019-09-10 南京邮电大学 一种基于非对称范德华异质结构的场效应管及其制备方法
CN111987153A (zh) * 2020-09-15 2020-11-24 电子科技大学 一种具有超低功耗的场效应晶体管及其制备方法
CN111987173A (zh) * 2020-09-15 2020-11-24 电子科技大学 一种可集成的二维光电突触器件阵列及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAMIN PARK: "Flexible and Transparent Thin-Film Transistors Based on TwoDimensional Materials for Active-Matrix Display.", 《ACS APPL. MATER. INTERFACES》 *
HAMIN PARK: "Flexible and Transparent Thin-Film Transistors Based on TwoDimensional Materials for Active-Matrix Display.", 《ACS APPL. MATER. INTERFACES》, 3 January 2020 (2020-01-03), pages 4749 *
HSIAO-YU CHANG等: "High-Performance, Highly Bendable MoS2 Transistors with High‑K Dielectrics for Flexible Low-Power Systems.", 《ACS NANO》 *
HSIAO-YU CHANG等: "High-Performance, Highly Bendable MoS2 Transistors with High‑K Dielectrics for Flexible Low-Power Systems.", 《ACS NANO》, vol. 7, no. 6, 13 May 2013 (2013-05-13), pages 5446 - 5452 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203541A (zh) * 2021-11-26 2022-03-18 华中科技大学 一种将金属电极转移至二维材料上的方法

Also Published As

Publication number Publication date
CN113471328B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
Patil et al. Wafer-scale growth and transfer of aligned single-walled carbon nanotubes
KR101089066B1 (ko) 그라핀 옥사이드를 이용한 플렉서블 저항변화 메모리 소자 및 이의 제조방법
US8614435B2 (en) Utilization of organic buffer layer to fabricate high performance carbon nanoelectronic devices
CN107833940B (zh) 一种基于二维二硫化钼-二硫化铼异质结的光电子器件、制备方法及应用
KR101375124B1 (ko) 그래핀 투명 전극 및 이를 포함하는 플렉시블 실리콘 박막 반도체 소자
Thanh et al. Transfer‐Printing of As‐Fabricated Carbon Nanotube Devices onto Various Substrates
KR20120034349A (ko) 플렉시블 전계효과 트랜지스터 및 이의 제조 방법
CN109801739A (zh) 一种高精度图案化可拉伸电极及其制备方法
WO2021114905A1 (zh) 一种各向异性器件及其制备方法和应用
Deng et al. A high-yield two-step transfer printing method for large-scale fabrication of organic single-crystal devices on arbitrary substrates
CN107464847A (zh) 基于碱金属溶液掺杂的二硫化钼晶体管及制备方法
Rahman et al. Oxygen-deficient strontium titanate based stretchable resistive memories
Khan et al. Flexible FETs using ultrathin Si microwires embedded in solution processed dielectric and metal layers
CN113471328B (zh) 一种具有可拉伸场效应的晶体管器件及其制备方法和产品
CN109273438A (zh) 电子元件用图案制造方法及包含该图案的纤维型电子元件
Hwang et al. A Bioinspired Ultra Flexible Artificial van der Waals 2D‐MoS2 Channel/LiSiOx Solid Electrolyte Synapse Arrays via Laser‐Lift Off Process for Wearable Adaptive Neuromorphic Computing
CN108735820B (zh) 以光刻胶为栅绝缘层的碳纳米管薄膜晶体管及制作和应用
CN111987173B (zh) 一种可集成的二维光电突触器件阵列及其制备方法
CN108183165B (zh) 有机晶体管、阵列基板、显示装置及相关制备方法
KR20120130149A (ko) 플렉시블 전계효과 트랜지스터 및 이의 제조 방법
CN111916524A (zh) 一种仿视网膜成像的硫化钼光探测器及其制备方法
US10424479B2 (en) Method for making nano-scaled channels with nanowires as masks
CN210837755U (zh) 一种各向异性器件
CN106744669A (zh) 一种基于波导器件的单根纳米线的转移方法
CN111128728A (zh) 一种可拉伸晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant