CN111987153A - 一种具有超低功耗的场效应晶体管及其制备方法 - Google Patents

一种具有超低功耗的场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN111987153A
CN111987153A CN202010966726.6A CN202010966726A CN111987153A CN 111987153 A CN111987153 A CN 111987153A CN 202010966726 A CN202010966726 A CN 202010966726A CN 111987153 A CN111987153 A CN 111987153A
Authority
CN
China
Prior art keywords
field effect
ultra
effect transistor
low power
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010966726.6A
Other languages
English (en)
Other versions
CN111987153B (zh
Inventor
熊杰
王雪芃
汪洋
储隽伟
张淼
饶高峰
龚传辉
陈心睿
周婷
晏超贻
王显福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202010966726.6A priority Critical patent/CN111987153B/zh
Publication of CN111987153A publication Critical patent/CN111987153A/zh
Application granted granted Critical
Publication of CN111987153B publication Critical patent/CN111987153B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种具有超低功耗的场效应晶体管及其制备方法,属于场效应晶体管技术领域。本发明场效应晶体管创新性地采用具有良好铁电性和稳定性的LiNbO3作为铁电栅极材料,不同于现有常规的铁电材料HfZrO2、PVDF以及PZT等,使得基于LiNbO3材料的场效应晶体管具有超低的亚阈值特性,同时还具有小回滞的稳定转移特性。

Description

一种具有超低功耗的场效应晶体管及其制备方法
技术领域
本发明属于场效应晶体管技术领域,具体涉及一种基于二维半导体材料具有超低功耗的负电容场效应晶体管及其制备方法。
背景技术
目前计算机的主频停滞不前,其中集成度和能耗是两大限制原因。首先提升电子器件的性能需要更小沟道的晶体管,进而提升芯片的集成度,但是目前摩尔定律已接近极限,随着电子器件沟道缩小,沟道长度缩短到几纳米级别,短沟道效应非常显著;其次随着芯片的集成度提升,芯片的热耗散能量就变多。因此,如何制造出具有更优性能与更低功耗的电子器件,成为后摩尔时代,全球半导体市场共同关注的难题。
负电容晶体管的概念的提出是用铁电-氧化物绝缘体替换场效应晶体管中的氧化绝缘体栅极。该理念的核心在于铁电绝缘体存在的负电容现象会产生栅极电压放大效应,从而导致室温下晶体管的亚阈值摆幅(SS)突破目前热发射的极限60mV/dec,进而降低晶体管的能耗。同时,目前二维半导体材料由于其独特的原子级别的厚度和超高迁移率,可以有效避免短沟道效应,成为了后摩尔时代最具前景的半导体材料。但是近年来绝大部分负电容晶体管的亚阈值摆幅被限制在30-60mV/dec之间,如:A.Rusu(A.Rusu,G.A.Salvatore,D.Jimenez,A.M.Ionescu,in Int.Electron Devices Meet.(IEDM),2010,1631.)等人采用PVDF作为铁电材料,实现了Si基MOSFET的SS最低为46mV/dec;Y.Zhao(Y.Zhao,Z.Liang,Q.Huang,C.Chen,M.Yang,Z.Sun,K.Zhu,H.Wang,S.Liu,T.Liu,Y.Peng,G.Han,R.Huang,IEEE Electron Device Lett.2019,40,989.)等人采用HZO作为铁电材料,构建了负电容隧穿晶体管,实现了最低SS为44mV/dec,但目前很难获得具有超低亚阈值摆幅(<10mV/dec)的晶体管器件。因此,如何获得具有超低亚阈值摆幅的场效应晶体管,就成为一个亟需解决的难题。
发明内容
针对背景技术所存在的问题,本发明的目的在于提供一种具有超低功耗的效应晶体管及其制备方法。本发明场效应晶体管创新性地采用具有良好铁电性和稳定性的LiNbO3(LNO)作为铁电栅极材料,不同于现有常规的铁电材料HfZrO2、PVDF以及PZT等,使得基于LiNbO3材料的负电容场效应晶体管(NC-FET)具有超低的亚阈值特性,同时还具有小回滞的稳定转移特性。
为实现上述目的,本发明的技术方案如下:
一种具有超低功耗的场效应晶体管,从下至上依次为衬底、控制栅电极、铁电栅极层、高k介电层、二维半导体材料层和源漏电极,其特征在于,所述铁电栅极层为LiNbO3材料,厚度50nm-2μm。
进一步地,所述控制栅电极为Cr/Pt,厚度为10/100nm。
进一步地,所述高k介电层材料为HfO2、Al2O3或BN,厚度优选为5-20nm。
进一步地,所述二维半导体材料为n型MoS2纳米片或P型WSe2纳米片、黑磷等,厚度优选为0.7-50nm。
进一步地,所述源漏电极为具有较低功函数的金属源漏电极Cr/Au、Ti/Au、Pt/Au或Ni/Au,能够和二维n型或者p型纳米片之间形成较低的电子肖特基势垒。
本发明还提供了一种制备上述具有超低功耗的的效应晶体管的方法,包括以下步骤:
步骤1.在衬底上制备控制栅电极,然后利用剥离法制备LiNbO3铁电栅极层;
步骤2.采用原子层沉积(ALD)方法在LiNbO3铁电栅极层表面沉积稳定介电匹配的高k介电层;
步骤3.采用机械剥离的方法制备单晶二维半导体材料,然后将单晶二维半导体材料转移至高k介电层表面;
步骤4.利用电子束曝光和热蒸发方法在二维半导体材料表面制备源漏电极,即可得到所需的负电容场效应晶体管。
进一步地,步骤1所述原子层沉积温度优选为150℃-220℃,源脉冲(pump)时间为45s-60s。
进一步地,步骤3所述电子束曝光电流大小500-1500pA;热蒸发制备源漏电极的速率0.1-0.3埃/秒。
本发明的机理为:本发明器件创新性地采用LiNbO3绝缘铁电衬底,在铁电性的LiNbO3上方沉积了一层高k介质层,再转移二维半导体材料作为沟道材料,基于此种结构的器件的电容匹配度更好,让器件工作范围在LNO的负电容区域,而且可以通过改变LiNbO3、高k介电层的厚度以及沟道材料的厚度改变整个器件结构的电容匹配关系,从而达到所需的电容匹配状态,减小器件的亚阈值摆幅和回滞特性。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1.本发明采用LiNbO3作铁电栅极,与目前应用于负电容晶体管其他铁电栅极材料相比,单晶LiNbO3具有更好的铁电特性,可以与高k介电层形成更好的介面和电容匹配,减小负电容特性的不稳定性。本发明基于LiNbO3材料制备的负电容场效应晶体管的亚阈值摆幅可低至4.97mV/dec。
2.本发明制备方法中二维材料采用机械剥离的方法制备,具有更好的晶体质量,可以获得更好的器件输出转移特性;同时采用定位转移的方法将沟道材料转移到介电层表面,大大减少了介面的掺杂效应,获得洁净平整的介面环境,减小器件的回滞特性。
附图说明
图1为本发明超低功耗的场效应晶体管的结构示意图。
图2为本发明实施例1和实施例2所制备的超低功耗的场效应晶体管的LNO厚度SEM表征图。
图3为本发明实施例1制备的超低功耗的场效应晶体管的LNO的XRD表征图。
图4为本发明实施例1制备的超低功耗的场效应晶体管的LNO铁电P-V表征图。
图5为本发明实施例1制备的超低功耗的场效应晶体管的器件SEM图和MoS2厚度AFM示意图。
图6为本发明实施例1和对比例制备的场效应晶体管的电学性能示意图,
其中,(a)为I-V曲线图,(b)为亚阈值摆幅性能图。
图7为本发明实施例2的场效应晶体管的电学性能示意图,
其中,(a)为150nm LNO示意图,(b)为800nm LNO示意图。
图8为本发明实施例4的WSe2负电容场效应晶体管的电学性能示意图,
其中,(a)为I-V曲线图,(b)为亚阈值摆幅性能图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合实施方式和附图,对本发明作进一步地详细描述。
图1为本发明超低功耗的场效应晶体管的结构示意图。如图1所示,一种具有超低功耗的负电容场效应晶体管,包括:绝缘铁电衬底LiNbO3,厚度为50nm-2μm;位于LiNbO3衬底下的控制栅电极;位于LiNbO3衬底上的高k介电层HfO2,厚度为5nm-20nm;位于高k介电层HfO2上的二维半导体沟道材料MoS2,厚度在0.7nm-50nm;位于二维半导体材料上的源漏电极。
实施例1
一种具有超低功耗的场效应晶体管的制备方法,包括以下步骤:
步骤1.在Si衬底上制备厚度为10/100nm的Cr/Pt控制栅电极,然后剥离制备400nm厚的LiNbO3铁电栅极层;
步骤2.通过原子层沉积的方法在步骤制备的LiNbO3铁电栅极层表面沉积制备8nm厚介电HfO2层,所述原子层沉积的具体工艺参数为:沉积温度为200℃,气压为0.2mtorr,沉积周期为80个周期;
步骤3.采用机械剥离的方法制备单晶MoS2半导体纳米片,具体过程为:使用3M胶带,对单晶MoS2块体进行手撕剥离,最后黏附在氧化硅片上,MoS2厚度在10nm以下,使用PVA和PDMS作为过渡层,将单晶MoS2半导体纳米片从氧化硅片上定位转移至步骤2沉积的介电HfO2层表面;
步骤4.利用电子束曝光在MoS2二维材料表面暴露出沟道相应区域,使用的曝光电流为2nA,再以0.01nm/s的蒸发速率热蒸发蒸镀5/50nm的Cr/Au电极,最后用丙酮剥离和酒精清洗,即可得到所需的负电容场效应晶体管。
实施例2
按照实施例1的步骤制备超低功耗的场效应晶体管,仅将步骤1中的LiNbO3为绝缘衬底的厚度调整为150nm和800nm,其他步骤不变。
实施例3
按照实施例1的步骤制备超低功耗的场效应晶体管,仅将步骤2中的单晶MoS2半导体纳米片的厚度调整为1.5nm和4.9nm,其他步骤不变。
实施例4
按照实施例1的步骤制备超低功耗的场效应晶体管,仅将步骤2中的单晶MoS2半导体纳米片调整为Wse2,其他步骤不变。
本实施例制备的负电容场效应晶体管为P型。
对比例
按照实施例1的步骤制备超低功耗的场效应晶体管的对比器件,利用二氧化硅片作为衬底,在上面沉积相同的高k介电层其他步骤不变。
图1为本发明超低功耗的场效应晶体管的结构示意图。从图1可以看出,晶体管的结构从下至上依次为基底、LNO、HfO2、MoS2、源漏电极。
图2为本发明实施例1和实施例2所制备的超低功耗的场效应晶体管的LNO厚度SEM表征图。从图2可以看出,三种LNO的厚度分别为150、400、800nm。
图3为本发明实施例1制备的超低功耗的场效应晶体管中的LNO的XRD表征图。从图3可以看出LNO具有很有的单晶性。
图4为本发明实施例1制备的超低功耗的场效应晶体管的LNO铁电P-V表征图。从图4可以看出LNO的极化随电压的变化趋势,体现了LNO良好的铁电性能。
图5为本发明实施例1制备的超低功耗的场效应晶体管的器件SEM图和MoS2厚度AFM示意图。从图5可以看出MoS2厚度为3.5nm。
图6为本发明实施例1和对比例制备的场效应晶体管的电学性能示意图,其中,(a)为I-V曲线图,(b)为亚阈值摆幅性能图。从图6可以看出LNO铁电材料的引入制备的负电容器件开关比比没有LNO的器件大两个数量级,而亚阈值摆幅却小两个数量级。
图7为本发明实施例2的场效应晶体管的电学性能示意图,其中,(a)为150nm LNO示意图,(b)为800nm LNO示意图。从图7可以看出不同厚度的LNO所制备的场效应晶体管都具有小于60mV/dec的SS,但是回滞大小略有不同,这与不同厚度LNO所具有的电容有关。
图8为本发明实施例4的WSe2负电容场效应晶体管的电学性能示意图,其中,(a)为I-V曲线图,(b)为亚阈值摆幅性能图。从图8可以看出WSe2也具有小于60mV/dec的SS。说明n型MoS2和p型WSe2均适用于该结构。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (8)

1.一种具有超低功耗的场效应晶体管,从下至上依次为衬底、控制栅电极、铁电栅极层、高k介电层、二维半导体材料层和源漏电极,其特征在于,所述铁电栅极层为单晶LiNbO3材料,厚度50nm-2μm。
2.如权利要求1所述具有超低功耗的场效应晶体管,其特征在于,所述控制栅电极为Cr/Pt,厚度为10/100nm。
3.如权利要求1所述具有超低功耗的场效应晶体管,其特征在于,所述高k介电层材料为HfO2、Al2O3或BN,厚度为5-20nm。
4.如权利要求1所述具有超低功耗的场效应晶体管,其特征在于,所述二维半导体材料为n型MoS2纳米片,或P型WSe2纳米片、黑磷,厚度为0.7-50nm。
5.如权利要求1所述具有超低功耗的场效应晶体管,其特征在于,所述源漏电极为具有较低功函数的金属源漏电极Cr/Au、Ti/Au、Pt/Au或Ni/Au。
6.本发明还提供一种制备如权利要求1~5任一权利要求所述具有超低功耗的的场效应晶体管的方法,其特征在于,包括以下步骤:
步骤1.在衬底上制备控制栅电极,然后利用剥离法制备LiNbO3铁电栅极层;
步骤2.采用原子层沉积(ALD)方法在LiNbO3铁电栅极层表面沉积稳定的高k介电层;
步骤3.采用机械剥离的方法制备单晶二维半导体材料,然后将单晶二维半导体材料转移至高k介电层表面;
步骤4.利用电子束曝光和热蒸发方法在二维半导体材料表面制备源漏电极,即可得到所需的负电容场效应晶体管。
7.如权利要求6所述具有超低功耗的的场效应晶体管的方法,其特征在于,步骤1所述原子层沉积温度为150℃-220℃,源脉冲时间为45s-60s。
8.如权利要求6所述具有超低功耗的的场效应晶体管的方法,其特征在于,步骤3所述电子束曝光电流为500-1500pA;热蒸发制备源漏电极的速率为0.1-0.3埃/秒。
CN202010966726.6A 2020-09-15 2020-09-15 一种具有超低功耗的场效应晶体管及其制备方法 Active CN111987153B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010966726.6A CN111987153B (zh) 2020-09-15 2020-09-15 一种具有超低功耗的场效应晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010966726.6A CN111987153B (zh) 2020-09-15 2020-09-15 一种具有超低功耗的场效应晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN111987153A true CN111987153A (zh) 2020-11-24
CN111987153B CN111987153B (zh) 2022-10-11

Family

ID=73449798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010966726.6A Active CN111987153B (zh) 2020-09-15 2020-09-15 一种具有超低功耗的场效应晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN111987153B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471328A (zh) * 2021-07-02 2021-10-01 中国科学院物理研究所 一种具有可拉伸场效应的晶体管器件及其制备方法和产品

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060038242A1 (en) * 2004-08-20 2006-02-23 Sharp Laboratories Of America, Inc. Semiconductive metal oxide thin film ferroelectric memory transistor
CN102299176A (zh) * 2011-08-30 2011-12-28 电子科技大学 一种铁电薄膜栅增强型GaN异质结场效应晶体管
CN102820322A (zh) * 2012-09-06 2012-12-12 电子科技大学 含铁电层的GaN基增强型器件及制备方法
US20140264515A1 (en) * 2013-03-15 2014-09-18 Acreo Swedish Ict Ab Ferroelectric field-effect transistor
US20160211849A1 (en) * 2015-01-19 2016-07-21 Korea Advanced Institute Of Science And Technology Negative capacitance logic device, clock generator including the same and method of operating clock generator
US20160233338A1 (en) * 2015-02-09 2016-08-11 The Hong Kong University Of Science And Technology Metal oxide thin film transistor with source and drain regions doped at room temperature
US20160308070A1 (en) * 2015-04-14 2016-10-20 National Chiao Tung University Semiconductor device
CN106887460A (zh) * 2017-03-20 2017-06-23 北京大学 负电子压缩率‑超陡亚阈斜率场效应晶体管及其制备方法
CN107195681A (zh) * 2017-05-27 2017-09-22 中国科学院上海技术物理研究所 一种二维半导体负电容场效应管及制备方法
US20180166582A1 (en) * 2016-12-14 2018-06-14 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing methods thereof
CN108400165A (zh) * 2018-03-22 2018-08-14 武汉大学 低功耗氮化镓基负电容场效应晶体管及制备方法
US20180358474A1 (en) * 2017-06-13 2018-12-13 National Applied Research Laboratories Field-effect transistor structure having two-dimensional transition metal dichalcogenide
US20190088760A1 (en) * 2017-09-18 2019-03-21 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device
CN110098256A (zh) * 2019-04-24 2019-08-06 中国科学院微电子研究所 场效应晶体管及其制备方法
US20190273087A1 (en) * 2016-12-12 2019-09-05 Intel Corporation One transistor and ferroelectric fet based memory cell
CN110491943A (zh) * 2019-08-01 2019-11-22 复旦大学 一种可擦除全铁电场效应晶体管及其操作方法
CN110534573A (zh) * 2019-08-01 2019-12-03 复旦大学 一种集存算一体的全铁电场效应晶体管
CN111554737A (zh) * 2020-04-20 2020-08-18 清华大学 超低功耗的薄膜晶体管及其制备方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060038242A1 (en) * 2004-08-20 2006-02-23 Sharp Laboratories Of America, Inc. Semiconductive metal oxide thin film ferroelectric memory transistor
CN102299176A (zh) * 2011-08-30 2011-12-28 电子科技大学 一种铁电薄膜栅增强型GaN异质结场效应晶体管
CN102820322A (zh) * 2012-09-06 2012-12-12 电子科技大学 含铁电层的GaN基增强型器件及制备方法
US20140264515A1 (en) * 2013-03-15 2014-09-18 Acreo Swedish Ict Ab Ferroelectric field-effect transistor
US20160211849A1 (en) * 2015-01-19 2016-07-21 Korea Advanced Institute Of Science And Technology Negative capacitance logic device, clock generator including the same and method of operating clock generator
US20160233338A1 (en) * 2015-02-09 2016-08-11 The Hong Kong University Of Science And Technology Metal oxide thin film transistor with source and drain regions doped at room temperature
US20160308070A1 (en) * 2015-04-14 2016-10-20 National Chiao Tung University Semiconductor device
US20190273087A1 (en) * 2016-12-12 2019-09-05 Intel Corporation One transistor and ferroelectric fet based memory cell
US20180166582A1 (en) * 2016-12-14 2018-06-14 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing methods thereof
CN106887460A (zh) * 2017-03-20 2017-06-23 北京大学 负电子压缩率‑超陡亚阈斜率场效应晶体管及其制备方法
CN107195681A (zh) * 2017-05-27 2017-09-22 中国科学院上海技术物理研究所 一种二维半导体负电容场效应管及制备方法
US20180358474A1 (en) * 2017-06-13 2018-12-13 National Applied Research Laboratories Field-effect transistor structure having two-dimensional transition metal dichalcogenide
US20190088760A1 (en) * 2017-09-18 2019-03-21 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device
CN108400165A (zh) * 2018-03-22 2018-08-14 武汉大学 低功耗氮化镓基负电容场效应晶体管及制备方法
CN110098256A (zh) * 2019-04-24 2019-08-06 中国科学院微电子研究所 场效应晶体管及其制备方法
CN110491943A (zh) * 2019-08-01 2019-11-22 复旦大学 一种可擦除全铁电场效应晶体管及其操作方法
CN110534573A (zh) * 2019-08-01 2019-12-03 复旦大学 一种集存算一体的全铁电场效应晶体管
CN111554737A (zh) * 2020-04-20 2020-08-18 清华大学 超低功耗的薄膜晶体管及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIAOJIE CHAI, JUN JIANG, QINGHUA ZHANG, AND ETAL.: "Nonvolatile ferroelectric field-effect transistors", 《NATURE COMMUNICATIONS》 *
解培涛: "负介材料的异质复合构筑与性能调控", 《中国优秀博硕士学位论文全文数据库(博士) 工程科技Ⅰ辑》 *
陈艳: "铁电局域场调控二维半导体及其异质结构的光电特性研究", 《中国优秀博硕士学位论文全文数据库(博士) 工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471328A (zh) * 2021-07-02 2021-10-01 中国科学院物理研究所 一种具有可拉伸场效应的晶体管器件及其制备方法和产品
CN113471328B (zh) * 2021-07-02 2023-10-31 中国科学院物理研究所 一种具有可拉伸场效应的晶体管器件及其制备方法和产品

Also Published As

Publication number Publication date
CN111987153B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US20040144972A1 (en) Carbon nanotube circuits with high-kappa dielectrics
CN108831928B (zh) 一种二维半导体材料负电容场效应晶体管及制备方法
US10872973B2 (en) Semiconductor structures with two-dimensional materials
CN106910776B (zh) 基于高k栅介质的大面积二硫化钼场效应晶体管及其制备
CN111554737B (zh) 超低功耗的薄膜晶体管及其制备方法
CN107611033B (zh) 基于铁电栅介质的负电容二硫化钼晶体管及其制备方法
CN108091693B (zh) 铁电场效应晶体管及其制备方法
Han et al. Graphene technology with inverted-T gate and RF passives on 200 mm platform
CN111446288B (zh) 基于二维材料的ns叠层晶体管及其制备方法
CN103384917B (zh) 半导体基板及其制造方法
Li et al. Negative-capacitance FinFET inverter, ring oscillator, SRAM cell, and Ft
Yeh et al. Area-selective-CVD technology enabled top-gated and scalable 2D-heterojunction transistors with dynamically tunable Schottky barrier
CN107919396B (zh) 基于WO3/Al2O3双层栅介质的零栅源间距金刚石场效应晶体管及制作方法
CN111987153B (zh) 一种具有超低功耗的场效应晶体管及其制备方法
Tian et al. Negative capacitance black phosphorus transistors with low SS
Chen et al. I ON enhancement of Ge 0.98 Si 0.02 nanowire nFETs by high-κ dielectrics
US11777010B2 (en) Semiconductor structure and method for forming the same
Zou et al. Top-Gated MoS₂ Negative-Capacitance Transistors Fabricated by an Integral-Transfer of Pulsed Laser Deposited HfZrO₂ on Mica
Nagashio Graphene field-effect transistor application-electric band structure of graphene in transistor structure extracted from quantum capacitance
Dominguez et al. Incorporation of ZnO nanoparticles on solution processed zinc oxide thin-film transistors
Wang et al. Improved Tradeoff Between Subthreshold Swing and Hysteresis for MoS 2 Negative-Capacitance FETs by Optimizing Gate-Stack of Hf 1− x Zr x O 2/Al 2 O 3
Zou et al. MoS2 transistors gated by ferroelectric HfZrO2 with MoS2/mica heterojunction interface
Shin et al. MFSFET with 5nm Thick Ferroelectric Nondoped HfO 2 Gate Insulator Utilizing Low Power Sputtering for Pt Gate Electrode Deposition
Chung et al. Characteristics of poly-Si junctionless FinFETs with HfZrO using forming gas annealing
CN109155333B (zh) 一种隧穿晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant