TWI731481B - Producing device of mask integrated frame - Google Patents

Producing device of mask integrated frame Download PDF

Info

Publication number
TWI731481B
TWI731481B TW108142939A TW108142939A TWI731481B TW I731481 B TWI731481 B TW I731481B TW 108142939 A TW108142939 A TW 108142939A TW 108142939 A TW108142939 A TW 108142939A TW I731481 B TWI731481 B TW I731481B
Authority
TW
Taiwan
Prior art keywords
mask
frame
unit
temperature
template
Prior art date
Application number
TW108142939A
Other languages
Chinese (zh)
Other versions
TW202036958A (en
Inventor
李裕進
李炳一
Original Assignee
南韓商Tgo科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商Tgo科技股份有限公司 filed Critical 南韓商Tgo科技股份有限公司
Publication of TW202036958A publication Critical patent/TW202036958A/en
Application granted granted Critical
Publication of TWI731481B publication Critical patent/TWI731481B/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2063Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam for the production of exposure masks or reticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本發明涉及一種框架一體型掩模的製造裝置。本發明涉及的框架一體型掩模的製造裝置包括:工作臺部,其用於安置並支撐的框架;夾具部,其用於夾緊黏合且支撐有掩模的模板;夾具移動部,其向X、Y、Z、θ軸中的至少任意一個方向移動夾具部;頭部,其用於向掩模的焊接部照射鐳射,且用於感應掩模的對準狀態;以及頭移動部,其向X、Y、Z軸中的至少任意一個方向移動頭部,工作臺部包括加熱單元,所述加熱單元用於將包括框架的工藝區域的溫度上升至第一溫度。The invention relates to a manufacturing device of a frame-integrated mask. The manufacturing device of the frame-integrated mask according to the present invention includes: a worktable part, which is used to place and support a frame; a clamp part, which is used to clamp a template that is bonded and supported by a mask; Move the jig part in at least any one of the X, Y, Z, and θ axes; a head for irradiating the welding part of the mask with laser, and for sensing the alignment state of the mask; and a head moving part, which The head is moved in at least any one of the X, Y, and Z axes, and the workbench includes a heating unit for raising the temperature of the process area including the frame to the first temperature.

Description

框架一體型掩模的製造裝置Manufacturing device for frame-integrated mask

發明領域 本發明涉及一種框架一體型掩模的製造裝置。更具體地,涉及一種使掩模不發生變形且可穩定地得到支撐並移動,而且將掩模與框架一體形成,並能夠準確地在各掩模間進行對準(align),在從框架上分離替換掩模的過程中能夠防止框架的變形的框架一體型掩模的製造裝置。Field of invention The invention relates to a manufacturing device of a frame-integrated mask. More specifically, it relates to a mask that does not deform and can be stably supported and moved, and the mask and the frame are integrally formed, and the masks can be accurately aligned (align) on the frame. A frame-integrated mask manufacturing device that can prevent deformation of the frame during the process of separating and replacing the mask.

發明背景 作為OLED(有機發光二極體)製造工藝中形成像素的技術,主要使用FMM(Fine Metal Mask,精細金屬掩模)方法,該方法將薄膜形式的金屬掩模(Shadow Mask,陰影掩模)緊貼於基板並且在所需位置上沉積有機物。Background of the invention As a technology for forming pixels in the OLED (organic light-emitting diode) manufacturing process, the FMM (Fine Metal Mask) method is mainly used, which tightens a thin-film metal mask (Shadow Mask). Stick to the substrate and deposit organics on the desired location.

在現有的OLED製造工藝中,將掩模製造成條狀、板狀等後,將掩模焊接固定到OLED像素沉積框架並使用。一個掩模上可以具備與一個顯示器對應的多個單元。另外,為了製造大面積OLED,可將多個掩模固定於OLED像素沉積框架,在固定於框架的過程中,拉伸各個掩模,以使其變得平坦。調節拉伸力以使掩模的整體部分變得平坦是非常困難的作業。特別是,為了使各個單元全部變得平坦,同時對準尺寸僅為數μm至數十μm的掩模圖案,需要微調施加到掩模各側的拉伸力並且即時確認對準狀態的高度作業要求。In the existing OLED manufacturing process, after the mask is manufactured into a strip shape, a plate shape, etc., the mask is welded and fixed to the OLED pixel deposition frame and used. One mask may have a plurality of cells corresponding to one display. In addition, in order to manufacture a large-area OLED, multiple masks can be fixed to the OLED pixel deposition frame, and during the process of fixing to the frame, each mask is stretched to make it flat. It is very difficult to adjust the stretching force to flatten the entire part of the mask. In particular, in order to make each unit flat while aligning a mask pattern with a size of only a few μm to several tens of μm, it is necessary to fine-tune the tensile force applied to each side of the mask and confirm the alignment status immediately. .

儘管如此,在將多個掩模固定於一個框架過程中,仍然存在掩模之間以及掩模單元之間對準不好的問題。另外,在將掩模焊接固定於框架的過程中,掩模膜的厚度過薄且面積大,因此存在掩模因荷重而下垂或者扭曲的問題;由於焊接過程中在焊接部分產生的皺紋、毛刺(burr)等,導致掩模單元的對準不准的問題等。Nevertheless, in the process of fixing multiple masks to one frame, there is still a problem of poor alignment between the masks and between the mask units. In addition, in the process of welding and fixing the mask to the frame, the thickness of the mask film is too thin and the area is large, so there is a problem of the mask sagging or twisting due to the load; due to wrinkles and burrs generated in the welding part during the welding process (burr) and so on, causing the problem of inaccurate alignment of the mask unit.

在超高清的OLED中,現有的QHD畫質為500-600PPI(pixelperinch,每英吋像素),像素的尺寸達到約30-50μm,而4KUHD、8KUHD高清具有比之更高的~860PPI,~1600PPI等的解析度。如此,考慮到超高清的OLED的像素尺寸,需要將各單元之間的對準誤差縮減為數μm左右,超出這一誤差將導致產品的不良,所以收率可能極低。因此,需要開發能夠防止掩模的下垂或者扭曲等變形並且使對準精確的技術,以及將掩模固定於框架的技術等。In ultra-high-definition OLED, the existing QHD image quality is 500-600PPI (pixelperinch, pixels per inch), and the pixel size reaches about 30-50μm, while 4KUHD and 8KUHD HD have higher than that of ~860PPI, ~1600PPI And other resolutions. In this way, considering the pixel size of the ultra-high-definition OLED, the alignment error between the units needs to be reduced to a few μm. Exceeding this error will lead to product failure, so the yield may be extremely low. Therefore, it is necessary to develop a technology that can prevent deformation such as sagging or twisting of the mask and make the alignment accurate, and a technology that fixes the mask to the frame.

另外,部分掩模沒有準確對準地固定或者掩模中發生缺陷時,需要將掩模分離,但是在分離及替換焊接的掩模的過程中,存在打亂其他掩模的對準的問題。In addition, when part of the mask is not accurately aligned and fixed or when a defect occurs in the mask, the mask needs to be separated. However, in the process of separating and replacing the soldered mask, there is a problem of disrupting the alignment of other masks.

發明概要 因此,本發明為了解決如上所述的現有技術的各種問題而提出的,其目的在於,提供一種能夠使掩模與框架形成一體型結構的框架一體型掩模的製造裝置。Summary of the invention Therefore, the present invention is proposed in order to solve the various problems of the prior art as described above, and its object is to provide a frame-integrated mask manufacturing apparatus capable of forming an integrated structure of the mask and the frame.

另外,本發明的目的在於,提供一種框架一體型掩模的製造裝置,能夠防止掩模的下垂或者扭曲等變形且能夠準確地對準。In addition, an object of the present invention is to provide an apparatus for manufacturing a frame-integrated mask that can prevent deformation such as sagging or twisting of the mask and can accurately align the mask.

另外,本發明的目的在於,提供一種框架一體型掩模的製造裝置,能夠顯著地減少製造時間,而且能夠顯著地提升收率。In addition, an object of the present invention is to provide a frame-integrated mask manufacturing apparatus that can significantly reduce the manufacturing time and can significantly improve the yield.

另外,本發明的目的在於,提供一種框架一體型掩模的製造裝置,能夠使掩模不發生變形且可穩定地得到支撐並移動。In addition, an object of the present invention is to provide an apparatus for manufacturing a frame-integrated mask that can stably support and move the mask without deformation.

另外,本發明的目的在於,提供一種框架一體型掩模的製造裝置,在使掩模與框架形成一體型結構的框架一體型掩模中能夠進行掩模分離及替換以防止框架的扭曲等變形,且準確地對準掩模。 [解決手段]In addition, an object of the present invention is to provide a frame-integrated mask manufacturing device that can separate and replace the mask in a frame-integrated mask in which the mask and the frame have an integrated structure to prevent distortion such as distortion of the frame. , And accurately align the mask. [Solution]

本發明的所述目的是通過以下框架一體型掩模的製造裝置來實現的,所述框架一體型掩模的製造裝置框架包括:工作臺部,其用於安置並支撐框架;夾具部,其用於夾緊黏合且支撐有掩模的模板;夾具移動部,其向X、Y、Z、θ軸中的至少任意一個方向移動夾具部;頭部,其用於向掩模的焊接部照射鐳射,且用於感應掩模的對準狀態;以及頭移動部,其向X、Y、Z軸中的至少任意一個方向移動頭部,工作臺部包括用於使包括框架的工藝區域的溫度上升至第一溫度加熱單元。The object of the present invention is achieved by the following frame-integrated mask manufacturing device. The frame of the frame-integrated mask manufacturing device frame includes: a table portion for positioning and supporting the frame; a clamp portion, which Used to clamp the template that is bonded and supported by the mask; the jig moving part, which moves the jig part in at least any one of the X, Y, Z, and θ axes; the head, which is used to irradiate the welding part of the mask Laser, and used to sense the alignment state of the mask; and a head moving part that moves the head in at least any one of the X, Y, and Z axes, and the workbench part includes a temperature for the process area including the frame Raise the heating unit to the first temperature.

還可包括預熱部,所述預熱部在夾具部夾緊模板之前提供用於預熱黏合且支撐有掩模的模板的空間。It may further include a preheating part which provides a space for preheating the template which is bonded and supported with the mask before the template is clamped by the clamp part.

夾具部通過吸附模板的上部面的至少一部分可進行夾緊。The clamp part can be clamped by sucking at least a part of the upper surface of the template.

工作臺部可包括用於對準框架的位置的框架對準單元。The table part may include a frame alignment unit for aligning the position of the frame.

夾具部包括:夾具單元,其用於夾緊模板;夾具移動單元,其向X、Y、Z、θ軸中的至少任意一個方向移動夾具單元;以及連接單元,其用於將夾具移動單元連接至夾具移動部。The clamp part includes: a clamp unit for clamping the template; a clamp moving unit for moving the clamp unit in at least any one of the X, Y, Z, and θ axes; and a connecting unit for connecting the clamp moving unit To the moving part of the fixture.

夾具部還可包括用於向夾緊的模板施加熱的夾具加熱單元。The clamp part may further include a clamp heating unit for applying heat to the clamped template.

夾具單元上可相距間隔地形成有向模板施加吸附壓力的多個吸附單元。A plurality of adsorption units that apply adsorption pressure to the template may be formed on the clamp unit at intervals.

多個吸附單元在掩模的焊接部與Z軸上的區域上可以不發生重疊地佈置。A plurality of suction units may be arranged without overlapping on the welding part of the mask and the area on the Z axis.

頭部可包括鐳射單元,其通過向掩模照射鐳射使掩模與框架焊接,或者通過向掩模照射鐳射進行鐳射微調(trimming)。The head may include a laser unit that welds the mask and the frame by irradiating a laser onto the mask, or performs laser trimming by irradiating a laser onto the mask.

一雙鐳射單元可相隔地佈置,每個鐳射單元分別向掩模的一側、另一側的焊接部照射鐳射。A pair of laser units can be arranged at intervals, and each laser unit irradiates the welding part on one side and the other side of the mask with laser respectively.

框架可包括:邊緣框架部,其包括中空區域;掩模單元片材部,其具有多個掩模單元區域,且與邊緣框架部連接。The frame may include: an edge frame part, which includes a hollow area; and a mask unit sheet part, which has a plurality of mask unit areas and is connected to the edge frame part.

與存在掩模單元區域的掩模單元片材部的稜角相隔預定距離的部分上可形成有多個吸附孔,工作臺部還包括向框架的下部生成吸附壓力的下部支撐單元。A plurality of suction holes may be formed in a portion separated by a predetermined distance from the corners of the mask unit sheet portion where the mask unit area exists, and the table portion further includes a lower support unit that generates suction pressure to the lower part of the frame.

在下部支撐單元的下部可佈置有加熱單元。A heating unit may be arranged at the lower part of the lower supporting unit.

第一溫度大於或者等於OLED像素沉積工藝溫度,將掩模附著在框架上之後,將包括框架的工藝區域的溫度下降至小於第一溫度的第二溫度,第一溫度是25℃至60℃中的任意一溫度,第二溫度是小於第一溫度的20℃至30℃中的任意一溫度,OLED像素沉積工藝溫度可以是25℃至45℃中的任意一溫度。 [發明效果]The first temperature is greater than or equal to the OLED pixel deposition process temperature. After the mask is attached to the frame, the temperature of the process area including the frame is lowered to a second temperature lower than the first temperature. The first temperature is 25°C to 60°C The second temperature is any temperature from 20°C to 30°C that is less than the first temperature, and the OLED pixel deposition process temperature can be any temperature from 25°C to 45°C. [Effects of the invention]

根據具有如上所述結構的本發明,具有掩模和框架能夠形成一體式結構的效果。According to the present invention having the structure as described above, there is an effect that the mask and the frame can form an integrated structure.

另外,根據本發明,具有能夠防止掩模下垂或者扭曲等的變形並使對準精確的效果。In addition, according to the present invention, it is possible to prevent deformation such as sagging or twisting of the mask and to make the alignment accurate.

另外,根據本發明,具有能夠顯著縮短製造時間並顯著提升收率的效果。In addition, according to the present invention, there is an effect that the manufacturing time can be significantly shortened and the yield can be significantly improved.

另外,根據本發明,具有能夠使掩模不變形且穩定地得到支撐並移動的效果。In addition, according to the present invention, there is an effect that the mask can be stably supported and moved without being deformed.

另外,根據本發明,具有在使掩模與框架形成一體型結構的框架一體型掩模中能夠進行掩模分離及替換以防止框架的扭曲等變形,且準確地對準掩模的效果。In addition, according to the present invention, the mask can be separated and replaced in the frame-integrated mask in which the mask and the frame have an integrated structure to prevent distortion such as distortion of the frame, and has the effect of accurately aligning the mask.

較佳實施例之詳細說明 後述的對於本發明的詳細說明將參照附圖,該附圖將能夠實施本發明的特定實施例作為示例示出。充分詳細地說明這些實施例,以使本領域技術人員能夠實施本發明。應當理解,本發明的多種實施例雖然彼此不同,但是不必相互排斥。例如,在此記載的特定形狀、結構及特性與一實施例有關,在不脫離本發明的精神及範圍的情況下,能夠實現為其他實施例。另外,應當理解,各個公開的實施例中的個別構成要素的位置或配置,在不脫離本發明的精神及範圍的情況下,能夠進行變更。因此,後述的詳細說明不應被視為具有限制意義,只要適當地說明,則本發明的範圍僅由所附的權利要求書及與其等同的所有範圍限定。圖中相似的附圖標記從多方面表示相同或相似的功能,為了方便起見,長度、面積、厚度及其形狀可以誇大表示。Detailed description of the preferred embodiment The detailed description of the present invention described later will refer to the accompanying drawings, which illustrate specific embodiments capable of implementing the present invention as examples. These embodiments are explained in sufficient detail to enable those skilled in the art to implement the present invention. It should be understood that although the various embodiments of the present invention are different from each other, they are not necessarily mutually exclusive. For example, the specific shapes, structures, and characteristics described herein are related to one embodiment, and can be implemented in other embodiments without departing from the spirit and scope of the present invention. In addition, it should be understood that the position or arrangement of the individual constituent elements in each disclosed embodiment can be changed without departing from the spirit and scope of the present invention. Therefore, the following detailed description should not be regarded as having a restrictive meaning, and the scope of the present invention is limited only by the appended claims and all equivalent ranges thereof as long as they are appropriately described. Similar reference numerals in the figures represent the same or similar functions from many aspects. For convenience, the length, area, thickness and shape thereof may be exaggerated.

以下,將參照附圖對本發明的優選實施例進行詳細說明,以便本領域技術人員能夠容易地實施本發明。Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, so that those skilled in the art can easily implement the present invention.

圖1和圖2是示出現有的將掩模1附著至框架2的過程的示意圖。圖3是示出在現有的拉伸F1~F2掩模1的過程中發生單元C1~C3之間的對準誤差的示意圖。1 and 2 are schematic diagrams showing a process of attaching the mask 1 to the frame 2 in the prior art. FIG. 3 is a schematic diagram showing that the alignment error between the cells C1 to C3 occurs in the process of stretching the F1 to F2 mask 1 in the prior art.

參照圖1,現有的掩模1可製成條型(Stick-Type)或者板型(Plate-Type)。圖1圖示的掩模1作為條型掩模,可將條的兩側焊接固定在OLED像素沉積框架2上並使用。1, the existing mask 1 can be made into a stick-type or a plate-type. The mask 1 illustrated in FIG. 1 is used as a strip mask, and both sides of the strip can be welded and fixed on the OLED pixel deposition frame 2 and used.

在掩模1的主體(Body,或者掩模膜1a)中,具備多個顯示單元C。一個單元C與智慧型手機等的一個顯示器(display)對應。單元C中形成有像素圖案P,以便與顯示器的各個像素對應。放大單元C時,顯示與R、G、B對應的多個像素圖案P。作為一例,在單元C中形成有像素圖案P,以便具有70×140解析度。即,大量的像素圖案P形成集合,以構成一個單元C,並且多個單元C可以形成於掩模10。以下以具有6個單元C(C1~C6)的條型掩模1為例進行說明。In the main body (body, or mask film 1a) of the mask 1, a plurality of display units C are provided. One cell C corresponds to one display of a smart phone or the like. A pixel pattern P is formed in the cell C so as to correspond to each pixel of the display. When the unit C is enlarged, a plurality of pixel patterns P corresponding to R, G, and B are displayed. As an example, the pixel pattern P is formed in the cell C so as to have a resolution of 70×140. That is, a large number of pixel patterns P form a set to constitute one cell C, and a plurality of cells C may be formed on the mask 10. Hereinafter, the strip mask 1 with 6 cells C (C1 to C6) is taken as an example for description.

參照圖1的(a)、圖2的(a)及圖2的(b),首先,將條型掩模1平坦地展開。將框架2置於中間且相互面對的一雙夾持器3夾持(clamping)掩模1的兩側,隨著向掩模1的長軸方向施加拉伸力F1~F2並進行拉拽,從而使掩模1展開。然後,沿著佔有框架2的外側的y軸移動軌道4夾持器3向與框架2對應的位置移動。掩模1的單元C1~C6將位於框架2的框內部空白區域部分。框架2具有可使一個條型掩模1的單元C1~C6位於框內部空白區域的尺寸,也可具有使多個條型掩模1的單元C1~C6位於框內部空白區域的尺寸。Referring to Fig. 1(a), Fig. 2(a), and Fig. 2(b), first, the strip mask 1 is spread out flat. The frame 2 is placed in the middle and a pair of clamps 3 facing each other clamps both sides of the mask 1, and pulls the mask 1 with the tensile force F1~F2 applied to the long axis direction of the mask 1. , Thereby unfolding the mask 1. Then, the gripper 3 is moved to a position corresponding to the frame 2 along the y-axis moving rail 4 occupying the outside of the frame 2. The cells C1 to C6 of the mask 1 will be located in the blank area inside the frame of the frame 2. The frame 2 has a size that allows the cells C1 to C6 of one strip mask 1 to be located in a blank area inside the frame, and may also have a size that allows the cells C1 to C6 of a plurality of strip mask 1 to be located in a blank area inside the frame.

然後,參照圖2的(c),一雙夾持器3沿著Z軸移動軌道5下降,以拉伸掩模1的狀態將掩模1裝載在四邊形框狀的框架2上。掩模1的單元C1~C6將位於框架2的框內部空白區域部分。框架2具有可使一個掩模1的單元C1~C6位於框內部空白區域的尺寸,也可具有使多個掩模1的單元C1~C6位於框內部空白區域的尺寸。Then, referring to FIG. 2( c ), a pair of grippers 3 descend along the Z-axis moving rail 5, and the mask 1 is loaded on the quadrilateral frame-shaped frame 2 in a state of stretching the mask 1. The cells C1 to C6 of the mask 1 will be located in the blank area inside the frame of the frame 2. The frame 2 has a size that allows the cells C1 to C6 of one mask 1 to be located in a blank area inside the frame, and may also have a size that allows the cells C1 to C6 of a plurality of masks 1 to be located in a blank area inside the frame.

然後,參照圖1的(b)及圖2的(d),對施加在掩模1的各側上的拉伸力F1~F2進行微調的同時進行對準之後,利用鐳射L等焊接W掩模1側面的一部分,從而使掩模1與框架2相互連接。然後,夾持器3解除掩模1的夾持。圖1的(c)示出相互連接的掩模1與框架2的側截面。Then, referring to Fig. 1(b) and Fig. 2(d), the tensile forces F1 to F2 applied to each side of the mask 1 are fine-tuned while aligning, and then the laser L or the like is used to weld the W mask. A part of the side of the mold 1 so that the mask 1 and the frame 2 are connected to each other. Then, the clamper 3 releases the clamp of the mask 1. FIG. 1(c) shows a side section of the mask 1 and the frame 2 connected to each other.

參照圖3,儘管微調施加到條式掩模1的各側的拉伸力F1~F2,但是顯示出掩模單元C1~C3彼此之間對準不好的問題。例如,單元C1~C3的圖案P之間的距離D1~D1''、D2~D2''彼此不同,或者圖案P歪斜。由於條式掩模1具有包括多個(作為一例,為6個)單元C1~C6的大面積,並且具有數十μm的非常薄的厚度,所以容易因荷重而下垂或者扭曲。另外,調節拉伸力F1~F2,以使各個單元C1~C6全部變得平坦,同時通過顯微鏡即時確認各個單元C1~C6之間的對準狀態是非常困難的作業。Referring to FIG. 3, although the tensile forces F1 to F2 applied to each side of the strip mask 1 are fine-tuned, the problem of poor alignment of the mask units C1 to C3 with each other is shown. For example, the distances D1 to D1" and D2 to D2" between the patterns P of the cells C1 to C3 are different from each other, or the patterns P are skewed. Since the stripe mask 1 has a large area including a plurality of (for example, six) cells C1 to C6 and has a very thin thickness of several tens of μm, it is likely to sag or twist due to a load. In addition, it is very difficult to adjust the stretching forces F1 to F2 so that all the units C1 to C6 become flat, and to check the alignment state of the units C1 to C6 in real time through a microscope.

因此,拉伸力F1~F2的微小誤差可能引起條式掩模1各單元C1~C3的拉伸或者展開程度的誤差,由此,導致掩模圖案P之間的距離D1~D1''、D2~D2''不同。雖然完美地對準以使誤差為0是非常困難的,但是為了避免尺寸為數μm至數十μm的掩模圖案P對超高清OLED的像素工藝造成壞影響,優選對準誤差不大於3μm。將如此相鄰的單元之間的對準誤差稱為像素定位精度(pixel position accuracy,PPA)。Therefore, the slight error of the stretching force F1~F2 may cause the error of the stretching or unfolding degree of each unit C1~C3 of the strip mask 1, thereby resulting in the distance D1~D1'' between the mask patterns P. D2~D2'' are different. Although it is very difficult to align perfectly so that the error is zero, in order to avoid the mask pattern P with a size of several μm to tens of μm from adversely affecting the pixel process of the ultra-high-definition OLED, it is preferable that the alignment error is not more than 3 μm. The alignment error between such adjacent units is referred to as pixel position accuracy (PPA).

另外,將大概6-20個條式掩模1分別連接在一個框架2,同時使多個條式掩模1之間,以及條式掩模1的多個單元C-C6之間的對準狀態精確是非常困難的作業,並且只能增加基於對準的工藝時間,這成為降低生產性的重要理由。In addition, approximately 6-20 strip masks 1 are connected to a frame 2, and the alignment between the strip masks 1 and the cells C-C6 of the strip mask 1 Accurate state is a very difficult task, and it can only increase the process time based on alignment, which becomes an important reason for reducing productivity.

另一方面,將條式掩模1連接固定到框架2後,施加到條式掩模1的拉伸力F1~F2會反向地作用於框架2。即,由於拉伸力F1~F2而繃緊拉伸的條式掩模1連接在框架2後,能夠將張力(tension)作用於框架2。通常,該張力不大,不會對框架2產生大的影響,但是在框架2的尺寸實現小型化且強度變低的情況下,這種張力可能使框架2細微變形。如此,可能發生破壞多個單元C~C6間的對準狀態的問題。On the other hand, after the strip mask 1 is connected and fixed to the frame 2, the tensile forces F1 to F2 applied to the strip mask 1 will act on the frame 2 in reverse. That is, after the strip mask 1 stretched tightly by the stretching forces F1 to F2 is connected to the frame 2, tension can be applied to the frame 2. Normally, this tension is not large and does not have a large impact on the frame 2. However, when the size of the frame 2 is reduced and the strength becomes low, this tension may slightly deform the frame 2. In this way, a problem of destroying the alignment state between the plurality of cells C to C6 may occur.

鑒於此,本發明提出能夠使掩模100與框架200形成一體式結構的框架一體型掩模及其製造裝置。與框架200形成一體的掩模100能夠防止下垂或者扭曲等變形,並且精確地對準於框架200。當掩模100連接到框架200上時,不對掩模100施加任何拉伸力,因此掩模100連接到框架200後,不會對掩模200施加引起變形的張力。並且,能夠顯著地縮短將掩模100一體地連接到框架200的製造時間,並且顯著提升收率。In view of this, the present invention proposes a frame-integrated mask capable of forming an integrated structure of the mask 100 and the frame 200 and a manufacturing device thereof. The mask 100 integrated with the frame 200 can prevent deformation such as sagging or twisting, and is accurately aligned with the frame 200. When the mask 100 is connected to the frame 200, no stretching force is applied to the mask 100, so after the mask 100 is connected to the frame 200, no tension that causes deformation is applied to the mask 200. Also, the manufacturing time for integrally connecting the mask 100 to the frame 200 can be significantly shortened, and the yield can be significantly improved.

圖4是示出本發明的一實施例涉及的框架一體型掩模的主視圖(圖4的(a))以及側剖視圖(圖4的(b)),圖5是示出本發明的一實施例涉及的框架的主視圖(圖5的(a))以及側剖視圖(圖5的b)。4 is a front view (FIG. 4(a)) and a side cross-sectional view (FIG. 4(b)) of a frame-integrated mask according to an embodiment of the present invention, and FIG. 5 is a view showing an aspect of the present invention The front view (FIG. 5( a )) and the side sectional view (FIG. 5 b) of the frame according to the embodiment.

參照圖4以及圖5,框架一體型掩模可以包括多個掩模100以及一個框架200。換句話說,將多個掩模100分別附著至框架200的形態。以下,為了便於說明,以四角形狀的掩模100為例進行說明,但是掩模100在附著至框架200之前,可以是兩側具備用於夾持的突出部的條式掩模形狀,附著至框架200後,可以去除突出部。4 and 5, the frame-integrated mask may include a plurality of masks 100 and one frame 200. In other words, a form in which a plurality of masks 100 are attached to the frame 200, respectively. Hereinafter, for the convenience of description, a rectangular mask 100 is used as an example for description. However, before the mask 100 is attached to the frame 200, it may be in the shape of a stripe mask with protrusions for clamping on both sides, and attached to After the frame 200, the protrusions can be removed.

各個掩模100上形成有多個掩模圖案P,一個掩模100上可以形成有一個單元C。一個掩模單元C可以與智慧型手機等的一個顯示器對應A plurality of mask patterns P are formed on each mask 100, and one cell C may be formed on one mask 100. One mask unit C can correspond to one display of a smartphone, etc.

掩模100可為熱膨脹係數約為1.0X10-6 /℃的因瓦合金(invar),膨脹係數約為1.0X10-7 /℃的超因瓦合金(super invar)材料。該材料的掩模100由於熱膨脹係數十分低因此很少存在因熱能導致掩模的圖案變形的憂慮,進而在高解析度OLED製造中可作為FMM(Fine Metal Mask)、陰影掩模(Shadow Mask)使用。除此之外,考慮到最近開發的在溫度變化值不大的範圍內執行像素沉積工藝的技術,掩模100也可以是熱膨脹係數略大於此的鎳(Ni)、鎳-鈷(Ni-Co)等材料。掩模100可使用由壓延(rolling)工藝或者電鑄(electroforming)生成的金屬片材(sheet)。The mask 100 may be an invar material with a thermal expansion coefficient of about 1.0×10 -6 /°C, and a super invar material with an expansion coefficient of about 1.0×10 -7 /°C. The mask 100 of this material has a very low coefficient of thermal expansion, so there is little concern about the pattern deformation of the mask due to thermal energy, and can be used as FMM (Fine Metal Mask) and shadow mask (Shadow Mask) in high-resolution OLED manufacturing. use. In addition, considering the recently developed technology for performing the pixel deposition process within the range of small temperature changes, the mask 100 may also be made of nickel (Ni) or nickel-cobalt (Ni-Co) with a slightly larger thermal expansion coefficient. ) And other materials. The mask 100 may use a metal sheet produced by a rolling process or electroforming.

框架200可以以附著多個掩模100的形式形成。包括最外圍邊緣在內,框架200可以包括沿著第一方向(例如,橫向)、第二方向(例如,豎向)形成的多個稜角。這種多個稜角可以在框架200上劃分用於附著掩模100的區域。The frame 200 may be formed in a form in which a plurality of masks 100 are attached. Including the outermost periphery, the frame 200 may include a plurality of edges and corners formed along a first direction (for example, a lateral direction) and a second direction (for example, a vertical direction). Such multiple edges and corners may divide the area for attaching the mask 100 on the frame 200.

框架200可以包括大概呈四角形狀、方框形狀的邊緣框架部210。邊緣框架部210的內部可以是中空形狀。即,邊緣框架部210可以包括中空區域R。框架200可以由因瓦合金、超級因瓦合金、鋁、鈦等金屬材料形成,考慮到熱變形,優選由與掩模具有相同熱膨脹係數的因瓦合金、超級因瓦合金、鎳、鎳-鈷等材料形成,這些材料均可應用於所有作為框架200的構成要素的邊緣框架部210、掩模單元片材部220。The frame 200 may include an edge frame part 210 roughly in a square shape and a box shape. The inside of the edge frame part 210 may be a hollow shape. That is, the edge frame part 210 may include the hollow region R. The frame 200 may be formed of metal materials such as Invar, Super Invar, aluminum, and titanium. Considering thermal deformation, it is preferably made of Invar, Super Invar, nickel, and nickel-cobalt having the same thermal expansion coefficient as the mask. These materials can be applied to all the edge frame parts 210 and the mask unit sheet part 220 that are the constituent elements of the frame 200.

另外,框架200具備多個掩模單元區域CR,並且可以包括連接到邊緣框架部210的掩模單元片材部220。掩模單元片材部220可以與掩模100相同地通過壓延形成,或者也可以通過使用如電鑄的其他成膜工藝形成。另外,掩模單元片材部220可以通過鐳射劃線、蝕刻等在平面狀片材(sheet)上形成多個掩模單元區域CR後,連接到邊緣框架部210。或者,掩模單元片材部220可以將平面狀的片材連接到邊緣框架部210後,通過鐳射劃線、蝕刻等形成多個掩模單元區域CR。本說明書中主要對首先在掩模單元片材部220形成多個掩模單元區域CR後,連接到邊緣框架部210的情況進行說明。In addition, the frame 200 is provided with a plurality of mask cell regions CR, and may include a mask cell sheet part 220 connected to the edge frame part 210. The mask unit sheet part 220 may be formed by calendering like the mask 100, or may also be formed by using another film forming process such as electroforming. In addition, the mask unit sheet portion 220 may be connected to the edge frame portion 210 after forming a plurality of mask unit regions CR on a planar sheet by laser scribing, etching, or the like. Alternatively, the mask unit sheet portion 220 may connect a planar sheet to the edge frame portion 210, and then form a plurality of mask unit regions CR by laser scribing, etching, or the like. In this specification, the case where a plurality of mask cell regions CR are first formed in the mask cell sheet section 220 and then connected to the edge frame section 210 will be mainly described.

掩模單元片材部220可以包括邊緣片材部221以及第一柵格片材部223、第二柵格片材部225中的至少一種。邊緣片材部221以及第一柵格片材部223、第二柵格片材部225是指在同一片材上劃分的各個部分,它們彼此之間形成一體。The mask unit sheet part 220 may include an edge sheet part 221 and at least one of a first grid sheet part 223 and a second grid sheet part 225. The edge sheet portion 221, the first grid sheet portion 223, and the second grid sheet portion 225 refer to the respective portions divided on the same sheet, and they are integrated with each other.

邊緣片材部221可以實質上連接到邊緣框架部210。因此,邊緣片材部221可以具有與邊緣框架部210對應的大致四角形狀、方框形狀。The edge sheet part 221 may be substantially connected to the edge frame part 210. Therefore, the edge sheet part 221 may have a substantially square shape or a box shape corresponding to the edge frame part 210.

另外,第一柵格片材部223可以沿著第一方向(橫向)延伸形成。第一柵格片材部223以直線形態形成,其兩端可以連接到邊緣片材部221。當掩模單元片材部220包括多個第一柵格片材部223時,各個第一柵格片材部223優選具有相同的間距。In addition, the first grid sheet portion 223 may be formed to extend along the first direction (lateral direction). The first grid sheet portion 223 is formed in a linear form, and both ends of the first grid sheet portion 223 may be connected to the edge sheet portion 221. When the mask unit sheet part 220 includes a plurality of first grid sheet parts 223, each of the first grid sheet parts 223 preferably has the same pitch.

另外,進一步地,第二柵格片材部225可以沿著第二方向(豎向)延伸形成,第二柵格片材部225以直線形態形成,其兩端可以連接到邊緣片材部221。第一柵格片材部223和第二柵格片材部225可以彼此垂直交叉。當掩模單元片材部220包括多個第二柵格片材部225時,各個第二柵格片材部225優選具有相同的間距。In addition, further, the second grid sheet portion 225 may be formed to extend along the second direction (vertical direction), and the second grid sheet portion 225 may be formed in a linear form, and both ends of the second grid sheet portion 225 may be connected to the edge sheet portion 221 . The first grid sheet part 223 and the second grid sheet part 225 may perpendicularly cross each other. When the mask unit sheet part 220 includes a plurality of second grid sheet parts 225, each of the second grid sheet parts 225 preferably has the same pitch.

另一方面,第一柵格片材部223之間的間距和第二柵格片材部225之間的間距,可以根據掩模單元C的尺寸而相同或不同。On the other hand, the spacing between the first grid sheet portions 223 and the spacing between the second grid sheet portions 225 may be the same or different according to the size of the mask unit C.

第一柵格片材部223以及第二柵格片材部225雖然具有薄膜形態的薄的厚度,但是垂直於長度方向的截面的形狀可以是諸如矩形、如梯形的四邊形形狀、三角形形狀等,邊、角的一部分可以形成圓形。截面形狀可以在鐳射劃線、蝕刻等過程中進行調節。Although the first grid sheet portion 223 and the second grid sheet portion 225 have a thin thickness in the form of a film, the shape of the cross section perpendicular to the length direction may be a rectangle, a quadrangular shape such as a trapezoid, a triangular shape, etc., Part of the sides and corners can be rounded. The cross-sectional shape can be adjusted during laser scribing, etching, etc.

邊緣框架部210的厚度可以大於掩模單元片材部220的厚度。由於邊緣框架部210負責框架200的整體剛性,可以以數mm至數十cm的厚度形成。The thickness of the edge frame part 210 may be greater than the thickness of the mask unit sheet part 220. Since the edge frame part 210 is responsible for the overall rigidity of the frame 200, it can be formed with a thickness of several mm to several tens of cm.

就掩模單元片材部220而言,實際上製造厚片材的工藝困難,過厚,則有可能在OLED像素沉積工藝中有機物源600(參照圖25)堵塞通過掩模100的路徑。相反,過薄,則有可能難以確保足以支撐掩模100的剛性。由此,掩模單元片材部220優選比邊緣框架部210的厚度薄,但是比掩模100更厚。掩模單元片材部220的厚度可以約為0.1mm至1mm。並且,第一柵格片材部223、第二柵格片材部225的寬度可以約為1~5mm。Regarding the mask unit sheet portion 220, the process of manufacturing a thick sheet is actually difficult. If it is too thick, the organic source 600 (refer to FIG. 25) may block the path through the mask 100 during the OLED pixel deposition process. On the contrary, if it is too thin, it may be difficult to ensure sufficient rigidity to support the mask 100. Thus, the mask unit sheet portion 220 is preferably thinner than the thickness of the edge frame portion 210, but thicker than the mask 100. The thickness of the mask unit sheet part 220 may be about 0.1 mm to 1 mm. In addition, the width of the first grid sheet portion 223 and the second grid sheet portion 225 may be about 1 to 5 mm.

在平面狀片材中,除了邊緣片材部221、第一柵格片材部223、第二柵格片材部225佔據的區域以外,可以提供多個掩模單元區域CR(CR11~CR56)。從另一個角度來說,掩模單元區域CR可以是指在邊緣框架部210的中空區域R中,除了邊緣片材部221、第一柵格片材部223、第二柵格片材部225佔據的區域以外的空白區域。In the planar sheet, in addition to the area occupied by the edge sheet portion 221, the first grid sheet portion 223, and the second grid sheet portion 225, a plurality of mask unit regions CR (CR11 to CR56) may be provided . From another perspective, the mask unit area CR may refer to the hollow area R of the edge frame portion 210, except for the edge sheet portion 221, the first grid sheet portion 223, and the second grid sheet portion 225. Blank area outside of the occupied area.

隨著掩模100的單元C與該掩模單元區域CR對應,實際上可以用作通過掩模圖案P沉積OLED的像素的通道。如前所述,一個掩模單元C與智慧型手機等的一個顯示器對應。一個掩模100中可以形成有用於構成一個單元C的掩模圖案P。或者,一個掩模100具備多個單元C且各個單元C可以與框架200的各個單元區域CR對應,但是為了精確地對準掩模100,需要避免大面積掩模100,優選為具備一個單元C的小面積掩模100。或者,也可以是具有多個單元C的一個掩模100與掩模200的一個單元區域CR對應。此時,為了精確地對準,可以考慮具有2-3個單元C的掩模100與掩模200的一個單元區域CR對應。As the cell C of the mask 100 corresponds to the mask cell region CR, it can actually be used as a channel for depositing pixels of the OLED through the mask pattern P. As described above, one mask unit C corresponds to one display of a smartphone or the like. A mask pattern P for constituting one cell C may be formed in one mask 100. Alternatively, one mask 100 has multiple cells C and each cell C can correspond to each cell area CR of the frame 200. However, in order to accurately align the mask 100, a large area mask 100 needs to be avoided, and one cell C is preferred. The small area mask 100. Alternatively, one mask 100 having a plurality of cells C may correspond to one cell region CR of the mask 200. At this time, in order to accurately align, it can be considered that the mask 100 having 2-3 cells C corresponds to one cell region CR of the mask 200.

掩模200具備多個掩模單元區域CR,可以將各個掩模100以各個掩模單元C與各個掩模單元區域CR分別對應的方式附著。各個掩模100可以包括形成有多個掩模圖案P的掩模單元C以及掩模單元C周邊的虛擬部(相當於除了單元C以外的掩模膜110部分)。虛擬部可以只包括掩模膜110,或者可以包括形成有與掩模圖案P類似形態的規定的虛擬圖案的掩模膜110。掩模單元C與框架200的掩模單元區域CR對應,虛擬部的一部分或者全部可以附著至框架200(掩模單元片材部220)。由此,掩模100和框架200可以形成一體式結構。The mask 200 includes a plurality of mask cell regions CR, and each mask 100 can be attached so that each mask cell C corresponds to each mask cell region CR. Each mask 100 may include a mask unit C in which a plurality of mask patterns P are formed, and a dummy portion around the mask unit C (equivalent to a portion of the mask film 110 other than the unit C). The dummy part may include only the mask film 110, or may include the mask film 110 formed with a predetermined dummy pattern in a similar form to the mask pattern P. The mask unit C corresponds to the mask unit region CR of the frame 200, and a part or all of the dummy part may be attached to the frame 200 (mask unit sheet part 220). Thus, the mask 100 and the frame 200 may form an integrated structure.

另一方面,根據另一實施例,框架不是以將掩模單元片材部220附著至邊緣框架部210的方式製造,而是可以使用在邊緣框架部210的中空區域R部分直接形成與邊緣框架部210成為一體的柵格框架(相當於柵格片材部223、225)的框架。這種形態的框架也包括至少一個掩模單元區域CR,可以使掩模100與掩模單元區域CR對應,以製造框架一體型掩模。On the other hand, according to another embodiment, the frame is not manufactured by attaching the mask unit sheet part 220 to the edge frame part 210, but can be used in the hollow area R part of the edge frame part 210 to be directly formed with the edge frame The part 210 becomes a frame of an integrated grid frame (equivalent to the grid sheet parts 223 and 225). The frame of this form also includes at least one mask unit region CR, and the mask 100 can be made to correspond to the mask unit region CR to manufacture a frame-integrated mask.

以下,對框架一體型掩模的製造過程進行說明。Hereinafter, the manufacturing process of the frame-integrated mask will be described.

首先,可以提供圖4以及圖5中所述的框架200。圖6是示出本發明的一實施例涉及的框架200的製造過程的示意圖。First, the frame 200 described in FIG. 4 and FIG. 5 may be provided. FIG. 6 is a schematic diagram showing the manufacturing process of the frame 200 according to an embodiment of the present invention.

參照圖6的(a),提供邊緣框架部210。邊緣框架部210可以是包括中空區域R的方框形狀。Referring to FIG. 6(a), an edge frame part 210 is provided. The edge frame part 210 may be a box shape including a hollow area R.

其次,參照圖6的(b),製造掩模單元片材部220。掩模單元片材部220使用壓延、電鑄或者其他的成膜工藝,製造平面狀的片材後,通過鐳射劃線、蝕刻等,去除掩模單元區域CR部分,從而可以製造。本說明書中,以形成6×5的掩模單元區域CR(CR11~CR56)為例進行說明。可以存在5個第一柵格片材部223以及4個第二柵格片材部225。Next, referring to FIG. 6(b), the mask unit sheet portion 220 is manufactured. The mask unit sheet portion 220 uses rolling, electroforming, or other film forming processes to manufacture a planar sheet, and then removes the mask unit region CR by laser scribing, etching, etc., so that it can be manufactured. In this specification, description is given by taking the formation of 6×5 mask cell regions CR (CR11 to CR56) as an example. There may be five first grid sheet parts 223 and four second grid sheet parts 225.

然後,可以將掩模單元片材部220與邊緣框架部210對應。在對應的過程中,可以在拉伸F1~F4掩模單元片材部220的所有側部以使掩模單元片材部220平坦伸展的狀態下,使邊緣片材部221與邊緣框架部210對應。在一側部也能以多個點(作為圖6的(b)的例,1~3點)夾持掩模單元片材部220並進行拉伸。另一方面,也可以不是所有側部,而是沿著一部分側部方向,拉伸F1、F2掩模單元片材部220。Then, the mask unit sheet part 220 may correspond to the edge frame part 210. In the corresponding process, the edge sheet part 221 and the edge frame part 210 may be stretched on all sides of the F1~F4 mask unit sheet part 220 to make the mask unit sheet part 220 stretched flat. correspond. It is also possible to sandwich and stretch the mask unit sheet portion 220 at a plurality of points (as an example of FIG. 6(b), 1 to 3 points) on one side. On the other hand, the F1 and F2 mask unit sheet parts 220 may be stretched along the direction of a part of the sides instead of all sides.

然後,使掩模單元片材部220與邊緣框架部210對應時,可以將掩模單元片材部220的邊緣片材部221以焊接W方式附著。優選地,焊接W所有側部,以便掩模單元片材部220牢固地附著至邊緣框架部210,但不限於此。應當最大限度地接近框架部210的稜角側進行焊接W,才能最大限度地減少邊緣框架部210和掩模單元片材部220之間的翹起空間,並提升黏合性。焊接W部分可以以線(line)或者點(spot)形狀生成,具有與掩模單元片材部220相同的材料,並可以成為將邊緣框架部210和掩模單元片材部220連接成一體的媒介。Then, when the mask unit sheet part 220 is made to correspond to the edge frame part 210, the edge sheet part 221 of the mask unit sheet part 220 can be attached by welding W method. Preferably, all sides of W are welded so that the mask unit sheet part 220 is firmly attached to the edge frame part 210, but it is not limited thereto. The welding W should be carried out as close as possible to the corners of the frame portion 210 to minimize the warped space between the edge frame portion 210 and the mask unit sheet portion 220 and improve the adhesion. The welding W part can be generated in a line or spot shape, has the same material as the mask unit sheet part 220, and can be a unit that connects the edge frame part 210 and the mask unit sheet part 220 into one body medium.

圖7是示出本發明的另一實施例涉及的框架的製造過程的示意圖。圖6的實施例首先製造具備掩模單元區域CR的掩模單元片材部220後,附著至邊緣框架部210,而圖7的實施例將平面狀的片材附著至邊緣框架部210後,形成掩模單元區域CR部分。Fig. 7 is a schematic diagram showing a manufacturing process of a frame according to another embodiment of the present invention. The embodiment of FIG. 6 first manufactures the mask cell sheet portion 220 with the mask cell region CR, and then attaches it to the edge frame portion 210, while the embodiment of FIG. 7 attaches a flat sheet to the edge frame portion 210, A portion of the mask cell region CR is formed.

首先,與圖6的(a)相同地提供包括中空區域R的邊緣框架部210。First, the edge frame portion 210 including the hollow region R is provided in the same manner as in (a) of FIG. 6.

然後,參照圖7的(a),可以使平面狀的片材(平面狀的掩模單元片材部220')與邊緣框架部210對應。掩模單元片材部220'是還未形成掩模單元區域CR的平面狀態。在對應的過程中,可以在拉伸F1~F4掩模單元片材部220'的所有側部以使掩模單元片材部220'平坦伸展狀態下,使其與邊緣框架部210對應。在一側部也能以多個點(作為圖7的(a)的例,1~3點)夾持單元片材部220'並進行拉伸。另一方面,也可以不是所有側部,而是沿著一部分側部方向,拉伸F1、F2掩模單元片材部220'。Then, referring to FIG. 7( a ), a planar sheet (a planar mask unit sheet portion 220 ′) can be made to correspond to the edge frame portion 210. The mask cell sheet portion 220' is in a planar state in which the mask cell region CR has not yet been formed. In the corresponding process, all sides of the F1 to F4 mask unit sheet portion 220 ′ may be stretched to make the mask unit sheet portion 220 ′ flat and stretched to make it correspond to the edge frame portion 210. It is also possible to sandwich the unit sheet portion 220' at a plurality of points (as an example of FIG. 7(a), 1 to 3 points) and stretch the unit sheet portion 220' on one side. On the other hand, the F1 and F2 mask unit sheet portions 220' may be stretched along a part of the side portions instead of all the side portions.

然後,使掩模單元片材部220'與邊緣框架部210對應時,可以將掩模單元片材部220'的邊緣部分以焊接W方式進行附著。優選地,焊接W所有側部,以便掩模單元片材部220'牢固地附著至邊緣框架部220,但不限於此。應當最大限度地接近邊緣框架部210的稜角側進行焊接W,才能最大限度地減少邊緣框架部210和掩模單元片材部220'之間的翹起空間,並提升黏合性。焊接W部分可以以線(line)或者點(spot)形狀生成,與掩模單元片材部220'具有相同材料,並可以成為將邊緣框架部210和掩模單元片材部220'連接成一體的媒介。Then, when the mask unit sheet portion 220' corresponds to the edge frame portion 210, the edge portion of the mask unit sheet portion 220' can be attached by welding W. Preferably, all sides of W are welded so that the mask unit sheet part 220' is firmly attached to the edge frame part 220, but it is not limited thereto. The welding W should be carried out as close as possible to the corners of the edge frame portion 210, so as to minimize the warping space between the edge frame portion 210 and the mask unit sheet portion 220' and improve the adhesion. The welding W part can be generated in a line or spot shape, which has the same material as the mask unit sheet part 220', and can be integrated into the edge frame part 210 and the mask unit sheet part 220' Medium.

然後,參照圖7的(b),在平面狀的片材(平面狀的掩模單元片材部220')上形成掩模單元區域CR。通過鐳射劃線、蝕刻等,去除掩模單元區域CR部分的片材,從而可以形成掩模單元區域CR。本說明書中,以形成6×5的掩模單元區域CR(CR11~CR56)為例進行說明。當形成掩模單元區域CR時,可以構成掩模單元片材部220,其中,與邊緣框架部210焊接W的部分成為邊緣片材部221,並且具備5個第一柵格片材部223以及4個第二柵格片材部225。Then, referring to FIG. 7( b ), the mask cell region CR is formed on the planar sheet (the planar mask cell sheet portion 220 ′). By laser scribing, etching, etc., the sheet material in the portion of the mask cell region CR is removed, so that the mask cell region CR can be formed. In this specification, description is given by taking the formation of 6×5 mask cell regions CR (CR11 to CR56) as an example. When the mask cell region CR is formed, the mask cell sheet portion 220 may be formed, in which the portion welded W to the edge frame portion 210 becomes the edge sheet portion 221, and is provided with five first grid sheet portions 223 and 4 second grid sheet parts 225.

圖8是示出用於形成現有的高解析度OLED的掩模的示意圖。FIG. 8 is a schematic diagram showing a mask used to form an existing high-resolution OLED.

為了實現高解析度的OLED,圖案的尺寸逐漸變小,其使用的掩模金屬膜的厚度也有必要變薄。如圖8的(a)所示,如果想要實現高解析度的OLED像素6,則在掩模10'中需要縮減像素間隔及像素尺寸等(PD->PD')。此外,為了防止因陰影效應導致OLED像素6不均勻地沉積,有必要將掩模10'的圖案傾斜地形成14。然而,在具有約30~50㎛的厚度T1的較厚的掩模10'中將圖案傾斜地形成14的過程中,由於在細微的像素間隔PD'和像素尺寸上很難形成與其匹配的圖案13,因此成為加工工藝中導致收率降低的因素。換而言之,具有細微的像素間隔PD'且為了將圖案傾斜地形成14,有必要使用較薄厚度的掩模10'。In order to realize a high-resolution OLED, the size of the pattern gradually becomes smaller, and the thickness of the mask metal film used therefor must also become thinner. As shown in FIG. 8(a), if a high-resolution OLED pixel 6 is to be realized, the pixel interval and pixel size, etc. (PD->PD') need to be reduced in the mask 10'. In addition, in order to prevent the OLED pixels 6 from being deposited unevenly due to the shadow effect, it is necessary to form the pattern of the mask 10 ′ at an angle 14. However, in the process of forming the pattern 14 obliquely in a thicker mask 10' having a thickness T1 of about 30-50㎛, it is difficult to form a pattern 13 matching it due to the fine pixel interval PD' and pixel size. , So it becomes a factor that causes the yield to decrease in the processing technology. In other words, in order to have a fine pixel interval PD' and to form the pattern 14 obliquely, it is necessary to use a thinner mask 10'.

特別是,為了實現UHD級別的高解析度,如圖8的(b)所示,只有使用具有20㎛以下厚度T2的薄的掩模10',才能進行細微的圖案化。此外,為了實現UHD以上的超高解析度,可考慮使用具有10㎛厚度T2的薄掩模10'。In particular, in order to achieve high resolution of the UHD level, as shown in FIG. 8(b), only a thin mask 10' with a thickness T2 of 20 mm or less can be used for fine patterning. In addition, in order to achieve ultra-high resolution above UHD, a thin mask 10' with a thickness T2 of 10㎛ can be considered.

圖9是示出本發明的一實施例涉及的掩模100的示意圖。FIG. 9 is a schematic diagram showing a mask 100 according to an embodiment of the present invention.

掩模100可包括形成有多個掩模圖案P的掩模單元C及掩模單元C周圍的虛擬部DM。如上所述,利用壓延工藝,電鑄等生成的金屬片材可製造掩模100,掩模100中可形成有一個單元C。虛擬部DM與除單元C以外的掩模膜110[掩模金屬膜110]部分對應,且可以只包括掩模膜110,或者包括形成有類似於掩模圖案P形態的預定的虛擬部圖案的掩模膜110。虛擬部DM對應掩模100的邊緣且虛擬部DM的一部分或者全部可附著在框架200[掩模單元片材部220]。The mask 100 may include a mask unit C formed with a plurality of mask patterns P and a dummy part DM around the mask unit C. As described above, the mask 100 can be manufactured using a metal sheet produced by electroforming or the like by a calendering process, and a cell C can be formed in the mask 100. The dummy portion DM corresponds to the mask film 110 [mask metal film 110] except for the cell C, and may include only the mask film 110, or include a predetermined dummy portion pattern formed with a form similar to the mask pattern P Mask film 110. The dummy part DM corresponds to the edge of the mask 100 and a part or all of the dummy part DM may be attached to the frame 200 [mask unit sheet part 220].

掩模圖案P的寬度可小於40㎛,而且掩模100的厚度可約為5~20㎛。由於框架200具有多個掩模單元區域CR(CR11~CR56),因此也可具有多個掩模100,所述掩模100具有對應每個掩模單元區域CR(CR11~CR56)的掩模單元C(C11~C56)。The width of the mask pattern P may be less than 40㎛, and the thickness of the mask 100 may be about 5-20㎛. Since the frame 200 has a plurality of mask cell regions CR (CR11~CR56), it may also have a plurality of masks 100 which have a mask cell corresponding to each mask cell region CR (CR11~CR56) C(C11~C56).

由於掩模100的一面101是接觸並附著在框架200的一面,因此優選為平坦面。可利用以下敘述的平坦化工藝使一面101平坦並鏡面化。掩模100的另一面102可與以下敘述的模板50的一面相面對。Since one side 101 of the mask 100 is in contact with and attached to the side of the frame 200, it is preferably a flat surface. The planarization process described below can be used to planarize and mirror-surface one side 101. The other side 102 of the mask 100 may face one side of the template 50 described below.

以下將對製造掩模金屬膜110'並將其支撐在模板50上來製造掩模100,通過將支撐有掩模100的模板50裝載在框架200上並將掩模100附著在框架200來製造框架一體型掩模的裝置及一系列製造工藝進行說明。In the following, the mask metal film 110' will be manufactured and supported on the template 50 to manufacture the mask 100. The frame is manufactured by mounting the template 50 supporting the mask 100 on the frame 200 and attaching the mask 100 to the frame 200. The device of the integrated mask and a series of manufacturing processes will be described.

圖10和圖11是示出本發明一實施例涉及的框架一體型掩模的製造裝置10的平面示意圖和正面示意圖。圖12是本發明一實施例涉及的框架一體型掩模的製造裝置10的部分放大示意圖。根據一實施例,圖10至圖12中以框架200具有2X5的掩模單元區域CR(CR11~CR52)為例進行說明。10 and 11 are a schematic plan view and a schematic front view showing a manufacturing apparatus 10 of a frame-integrated mask according to an embodiment of the present invention. FIG. 12 is a partially enlarged schematic diagram of a manufacturing apparatus 10 for a frame-integrated mask according to an embodiment of the present invention. According to an embodiment, in FIGS. 10 to 12, the frame 200 has a 2×5 mask unit area CR (CR11 to CR52) as an example for description.

參照圖10至圖12,框架一體型掩模的製造裝置10包括桌子15、工作臺部20、夾具部30、夾具移動部40、頭部60、頭移動部70、消振台80等。10 to 12, the frame-integrated mask manufacturing apparatus 10 includes a table 15, a table section 20, a clamp section 30, a clamp moving section 40, a head 60, a head moving section 70, a vibration absorbing table 80, and the like.

首先,又稱為旋轉機架(gantry)的桌子15設置在結構物上,所述結構物牢固地設置在地面上能夠防止外部的振動或者衝擊。為了使桌子15上面執行的工藝更值得信賴,桌子15的上部面應形成準確的水平面。First, a table 15 also called a gantry is installed on a structure, and the structure is firmly installed on the ground to prevent external vibration or impact. In order to make the process performed on the table 15 more trustworthy, the upper surface of the table 15 should form an accurate horizontal plane.

桌子15上設置有用於安置並支撐框架200的工作臺部20。工作臺部20可包括裝載部21、框架對準單元23及框架支撐單元25。而且,還可包括加熱單元(未圖示)、背光單元(未圖示)。The table 15 is provided with a workbench part 20 for placing and supporting the frame 200. The workbench part 20 may include a loading part 21, a frame alignment unit 23 and a frame support unit 25. Moreover, a heating unit (not shown) and a backlight unit (not shown) may also be included.

裝載部21可對應工作臺部20的軀體,而且具有寬板形態,從而能夠提供用於裝載框架200的區域。桌子15上還可包括工作臺移動部27,工作臺移動部27可使工作臺部20[或者裝載部21]向X、Y、Z、θ軸中的至少任意一個方向移動。θ軸方向可指在XY平面、YZ平面、XZ平面上旋轉的角度。為了使裝載部21能夠向Y軸方向移動,圖10和圖11中將工作臺移動部27圖示為軌道形態。但不限於此,為了向各方向移動/旋轉可使用軌道形態、皮帶形態、鏈軌形態、發動機、齒輪等眾所周知的移動/旋轉手段。The loading portion 21 can correspond to the body of the table portion 20, and has a wide plate shape, so that an area for loading the frame 200 can be provided. The table 15 may further include a table moving part 27, which can move the table part 20 [or the loading part 21] in at least any one of the X, Y, Z, and θ axes. The θ-axis direction can refer to the angle of rotation on the XY plane, YZ plane, and XZ plane. In order to enable the loading part 21 to move in the Y-axis direction, the table moving part 27 is shown in the form of a rail in FIGS. 10 and 11. However, it is not limited to this. In order to move/rotate in various directions, well-known moving/rotating means such as rails, belts, chain rails, engines, gears, etc. can be used.

框架對準單元23通過佈置在框架支撐部25或者框架200的各側面或者各稜角,從而可對準框架200的位置。The frame aligning unit 23 is arranged on each side or each corner of the frame supporting portion 25 or the frame 200 so as to align the position of the frame 200.

為了安置並支撐框架200,框架支撐單元25可具有類似於框架200的四邊形邊框形態,並可佈置在裝載部21或者框架對準部23上。框架支撐單元25可防止在將掩模100附著在框架200的工藝中邊緣框架部210和掩模單元片材部220因張力發生變形。框架支撐單元25可在框架200的下部以緊貼框架200的形式佈置。框架支撐單元25上面可形成有使邊緣框架部210和柵格框架部220完全吻合地插入的多個槽,框架200可以插在多個槽中的形式佈置。因此,即使在掩模100附著在框架200上並施加張力的狀態下,也能夠防止框架200的變形。框架支撐單元25也可以與後面圖19中描述的下部支撐單元90一體形成。In order to place and support the frame 200, the frame support unit 25 may have a quadrangular frame shape similar to the frame 200, and may be arranged on the loading part 21 or the frame aligning part 23. The frame support unit 25 can prevent the edge frame part 210 and the mask unit sheet part 220 from being deformed due to tension in the process of attaching the mask 100 to the frame 200. The frame support unit 25 may be arranged in a form close to the frame 200 at the lower part of the frame 200. The frame support unit 25 may be formed with a plurality of grooves into which the edge frame part 210 and the grid frame part 220 are inserted completely in a consistent manner, and the frame 200 may be arranged in a form of being inserted into the plurality of grooves. Therefore, even in a state where the mask 100 is attached to the frame 200 and tension is applied, the deformation of the frame 200 can be prevented. The frame support unit 25 may also be integrally formed with the lower support unit 90 described later in FIG. 19.

一個掩模100附著在單元C上之後,如果在相鄰的單元C再附著掩模100,則相鄰的掩模100會對佈置於中間的框架200施加相反的力,結果導致框架200上施加的張力可相互抵消。在如上張力相互抵消之前,即,只附著有一個掩模100時,通過在框架支撐單元25上安裝並容納框架200,可防止在掩模100附著工藝中框架200發生變形。當然,通過後述的將工藝區域的溫度上升至第一溫度後再將掩模100附著在框架200上的過程,可防止張力施加於框架200上。After a mask 100 is attached to the cell C, if the mask 100 is attached to the adjacent cell C, the adjacent mask 100 will exert an opposite force on the frame 200 arranged in the middle, resulting in the application of the mask 100 on the frame 200 The tensions can cancel each other out. Before the above tensions cancel each other out, that is, when only one mask 100 is attached, by mounting and accommodating the frame 200 on the frame supporting unit 25, the frame 200 can be prevented from being deformed during the mask 100 attaching process. Of course, the process of attaching the mask 100 to the frame 200 after raising the temperature of the process area to the first temperature described later can prevent tension from being applied to the frame 200.

加熱單元29可控制將掩模100附著在框架200上的工藝中的工藝區域的溫度,或者可向框架200加熱。加熱單元29可佈置在框架支撐單元25或者後面圖19中描述的下部支撐單元90的下部。但不限於此,在控制工藝區域的溫度或者向框架加熱的範圍內可調整佈置位置。The heating unit 29 may control the temperature of a process area in the process of attaching the mask 100 to the frame 200 or may heat the frame 200. The heating unit 29 may be arranged at the lower portion of the frame support unit 25 or the lower support unit 90 described later in FIG. 19. But not limited to this, the arrangement position can be adjusted within the range of controlling the temperature of the process area or heating the frame.

加熱單元29可將工藝區域的溫度上升至第一溫度,並且可通過控制將工藝區域的溫度下降至低於第一溫度的第二溫度後並維持。The heating unit 29 can raise the temperature of the process area to a first temperature, and can be controlled to lower the temperature of the process area to a second temperature lower than the first temperature and maintain it.

背光單元(未圖示)通過向垂直上部(Z軸)方向放射光,可有助於頭部60的照相機單元65確認掩模圖案P的對準形態。向垂直上部方向放射光的方式可使用作為透過型的直接放射光的形態和作為反射型向垂直下部方向照射的光被反射後向上部方向放射光的形態等。The backlight unit (not shown) can help the camera unit 65 of the head 60 to confirm the alignment form of the mask pattern P by emitting light in the vertical upper portion (Z axis) direction. As the method of radiating light in the vertical upper direction, a transmission type which directly emits light and a reflection type which radiates light in the vertical lower direction after being reflected and then radiates light in the upper direction can be used.

夾具部30可包括夾具單元31、夾具移動單元35、連接單元37。而且,還可包括夾具加熱單元34。夾具部30可夾緊(Gripping)黏合並支撐掩模100的模板50。此時,夾緊可通過吸附模板50的上部面的至少一部分來執行。或者,夾緊可包括在不影響掩模100的範圍內能夠把持模板50的一部分並進行作業的形態。The clamp part 30 may include a clamp unit 31, a clamp moving unit 35, and a connection unit 37. Moreover, a jig heating unit 34 may also be included. The clamp part 30 can clamp (grip) the template 50 for bonding and supporting the mask 100. At this time, the clamping may be performed by sucking at least a part of the upper surface of the template 50. Alternatively, the clamping may include a form capable of holding a part of the template 50 and performing work within a range that does not affect the mask 100.

夾具單元31可通過吸附模板50的上部面來進行夾緊。夾具單元31可以與XY平面水平的形態形成,下部面可形成有多個吸附單元32。The clamp unit 31 can be clamped by sucking the upper surface of the template 50. The clamp unit 31 may be formed in a form horizontal to the XY plane, and a plurality of suction units 32 may be formed on the lower surface.

吸附單元32可另行連接在夾具單元31的下部,或者可以是夾具單元31中以吸附孔形態形成的部分。隨著通過吸附單元32向模板50的上部面施加吸附壓力,可使模板50吸附在夾具單元31的下部面上。吸附單元32的佈置形態雖不受限制,但是為了不妨礙鐳射的進入路徑,優選在Z軸上的區域與掩模100的焊接部WP(執行鐳射焊接的區域)[參照圖9]不發生重疊。The suction unit 32 may be separately connected to the lower part of the clamp unit 31, or may be a part of the clamp unit 31 formed in the form of suction holes. As the adsorption pressure is applied to the upper surface of the template 50 by the adsorption unit 32, the template 50 can be adsorbed on the lower surface of the clamp unit 31. Although the layout of the suction unit 32 is not limited, it is preferable that the area on the Z axis does not overlap with the welding part WP (area where laser welding is performed) of the mask 100 [refer to FIG. 9] in order not to hinder the entry path of the laser. .

夾具加熱單元34可向夾具部30夾緊的模板50[和掩模100]加熱。夾具加熱單元34可在模板50和掩模100向框架200附近的工藝區域移動之前預熱模板50和掩模100。夾具加熱單元34類似於加熱單元29可以第一溫度的水準預熱模板50和掩模100。由此,當夾具部30夾緊模板50[和掩模100]並向框架200上移動時,由於無需等待而直接在第一溫度的工藝區域執行附著工藝,因此可有助於工藝迅速進行。The jig heating unit 34 can heat the template 50 [and the mask 100] clamped by the jig part 30. The jig heating unit 34 may preheat the template 50 and the mask 100 before the template 50 and the mask 100 are moved to the process area near the frame 200. The jig heating unit 34 is similar to the heating unit 29 and can preheat the template 50 and the mask 100 at the first temperature level. Thus, when the clamp part 30 clamps the template 50 [and the mask 100] and moves to the frame 200, since the attachment process is directly performed in the process area of the first temperature without waiting, it can help the process to proceed quickly.

夾具加熱單元34可以發熱線圈形態包含在夾具單元31內,但不限於此,也可以是在夾具單元31表面佈置發熱體的形態,只要在通過加熱模板50[和掩模100]來進行預熱的範圍內,夾具部30佈置在任何位置上都無關緊要。The jig heating unit 34 can be included in the jig unit 31 in the form of a heating coil, but it is not limited to this, and it can also be a form in which a heating element is arranged on the surface of the jig unit 31, as long as it is preheated by heating the template 50 [and the mask 100] Within the scope of, it does not matter whether the clamp part 30 is arranged at any position.

另外,在夾具加熱單元34的基礎上,本發明的框架一體型掩模的製造裝置10還可具有預熱部5。在圖10和圖12中預熱部5雖圖示為佈置在桌子15的外部,但是在不影響執行掩模100和框架200的附著工藝的工藝區域的範圍內也可以佈置在桌子15的內部。只是,預熱部5優選佈置在夾具部30可靠近的位置。In addition, in addition to the jig heating unit 34, the manufacturing apparatus 10 of the frame-integrated mask of the present invention may further include a preheating part 5. In FIGS. 10 and 12, although the preheating part 5 is illustrated as being arranged outside the table 15, it can also be arranged inside the table 15 within a range that does not affect the process area where the attaching process of the mask 100 and the frame 200 is performed. . However, the preheating part 5 is preferably arranged at a position where the clamp part 30 can be approached.

預熱部5可提供在夾具部30夾緊模板50[和掩模100]之前,用於裝載並預熱支撐有掩模100的模板50的空間。預熱部5的內部或者外部佈置有發熱體,從而可向支撐有掩模100的模板50加熱。預熱部5類似於加熱單元29可以第一溫度水準預熱模板50和掩模100。因此,被夾具部30夾緊之前,使模板50和掩模100維持第一溫度水準,從而當夾具部30夾緊模板50[和掩模100]並向框架200上移動時可直接在第一溫度水準的工藝區域執行附著工藝,從而具有進一步縮短待機時間的優點。The preheating part 5 may provide a space for loading and preheating the template 50 supporting the mask 100 before the clamp part 30 clamps the template 50 [and the mask 100]. A heating element is arranged inside or outside the preheating part 5 so as to be able to heat the template 50 supporting the mask 100. The preheating part 5 is similar to the heating unit 29 and can preheat the template 50 and the mask 100 at the first temperature level. Therefore, before being clamped by the clamp part 30, the template 50 and the mask 100 are maintained at the first temperature level, so that when the clamp part 30 clamps the template 50 [and the mask 100] and moves to the frame 200, the first temperature can be directly The adhesion process is performed in the process area of the temperature level, which has the advantage of further shortening the standby time.

夾具移動單元35可向X、Y、Z、θ軸中的至少任意一個方向移動夾具單元31。在本發明中,夾具單元31向X軸和Y軸方向的移動由夾具移動部40代替進行,假設夾具移動單元35向Z,θ軸方向移動並進行說明。夾具移動單元35可不受限制地使用能夠向各方向移動/旋轉的公知的移動/旋轉手段。另外,還可包括在連接夾具單元31和夾具移動單元35中起到媒介作用的輔助單元33。The clamp moving unit 35 can move the clamp unit 31 in at least any one of the X, Y, Z, and θ axes. In the present invention, the movement of the clamp unit 31 in the X-axis and Y-axis directions is performed by the clamp moving part 40 instead, and the description will be made assuming that the clamp moving unit 35 moves in the Z and θ-axis directions. The jig moving unit 35 can use well-known moving/rotating means capable of moving/rotating in various directions without limitation. In addition, an auxiliary unit 33 that functions as an intermediary in connecting the clamp unit 31 and the clamp moving unit 35 may also be included.

連接單元37可起到將夾具移動單元35連接到夾具移動部40[或者夾具支撐單元43]上的媒介作用。而且,連接單元37可不受限制地使用能夠使夾具移動單元35向θ軸方向移動/旋轉的公知的移動/旋轉手段。因此,夾具單元31可旋轉並向預熱部5上的模板50靠近。The connecting unit 37 may function as an intermediary for connecting the clamp moving unit 35 to the clamp moving part 40 [or the clamp supporting unit 43]. Furthermore, the connecting unit 37 can use a known moving/rotating means capable of moving/rotating the clamp moving unit 35 in the θ-axis direction without limitation. Therefore, the clamp unit 31 can rotate and approach the template 50 on the preheating part 5.

夾具移動部40可向X、Y、Z、θ軸中至少任意一個方向移動夾具部30。其中,移動的概念應理解為不僅包括將夾具部30固定在夾具移動部40上的狀態下通過使夾具移動部40向X、Y、Z、θ軸中至少任意一個方向移動從而使夾具部30一起移動,而且還包括夾具移動部40不移動的狀態下僅移動夾具部30。在本發明中,假設夾具移動部40向夾具部30的X、Y軸方向移動,而且夾具移動單元35或者夾具支撐單元45向夾具部30的Z、θ軸方向移動並進行說明。The clamp moving part 40 can move the clamp part 30 in at least any one of the X, Y, Z, and θ axes. Among them, the concept of movement should be understood as not only including fixing the clamp part 30 on the clamp moving part 40 by moving the clamp moving part 40 to at least any one of the X, Y, Z, and θ axes to make the clamp part 30 Moving together, but also includes moving only the clamp part 30 in a state where the clamp moving part 40 is not moving. In the present invention, it is assumed that the clip moving part 40 moves in the X and Y axis directions of the clip part 30, and the clip moving unit 35 or the clip support unit 45 moves in the Z and θ axis directions of the clip part 30.

夾具移動部40可包括基座單元41、夾具支撐單元43及夾具軌道單元45。The clamp moving part 40 may include a base unit 41, a clamp support unit 43 and a clamp rail unit 45.

基座單元41作為寬板形態,上部可提供用於佈置夾具支撐單元43的空間。而且,兩側部連接在夾具軌道單元45上,從而可沿著夾具軌道單元45的形成方向移動。The base unit 41 is in the form of a wide plate, and the upper part can provide a space for arranging the clamp support unit 43. Moreover, both sides are connected to the clamp rail unit 45 so as to be movable along the forming direction of the clamp rail unit 45.

夾具支撐單元43可佈置在基座單元41上並用於支撐夾具部30。夾具支撐單元43可沿著基座單元41上形成的基座軌道單元44的形成方向移動。The clamp support unit 43 may be arranged on the base unit 41 and used to support the clamp part 30. The jig support unit 43 is movable along the formation direction of the base rail unit 44 formed on the base unit 41.

夾具軌道單元45可沿著工作臺部20[或者裝載部21]的形成方向形成在工作臺部20的兩側,並且基座單元41可在夾具軌道單元45上移動。The clamp rail unit 45 may be formed on both sides of the table part 20 along the formation direction of the table part 20 [or the loading part 21 ], and the base unit 41 may move on the clamp rail unit 45.

根據一實施例,工作臺部20大致上沿著X軸方向長長地形成,一雙夾具軌道單元45可沿著X軸方向形成在工作臺部20長邊的稜角部分上。而且,基座單元41沿著Y軸方向延伸地形成,兩端分別連接在一雙夾具軌道單元45上,從而可向X軸方向移動。而且,在基座單元41上沿著Y軸方向可形成有基座軌道單元44,夾具支撐單元43連接在基座軌道單元44上,從而可沿著Y向方向移動。According to an embodiment, the table portion 20 is formed substantially along the X-axis direction long, and a double clamp rail unit 45 may be formed on the corner portion of the long side of the table portion 20 along the X-axis direction. Furthermore, the base unit 41 is formed to extend along the Y-axis direction, and both ends are respectively connected to a double clamp rail unit 45 so as to be movable in the X-axis direction. Furthermore, a base rail unit 44 may be formed on the base unit 41 along the Y-axis direction, and the clamp support unit 43 is connected to the base rail unit 44 so as to be movable in the Y direction.

工作臺部20的左側部分佈置有框架200,右側部分佈置有夾具部30與夾具移動部40。基座單元41與工作臺部20在Z軸上相隔地佈置。因此,即使基座單元41通過夾具軌道單元45沿著X軸方向朝佈置有左側的框架200的區域移動,也不會使框架200與基座單元41相互干涉。基於此,可將支撐在基座單元41上的夾具部30夾緊的模板50對應至框架200上的特定單元區域CR。The frame 200 is arranged on the left part of the table part 20, and the clamp part 30 and the clamp moving part 40 are arranged on the right part. The base unit 41 and the table portion 20 are arranged spaced apart on the Z axis. Therefore, even if the base unit 41 moves along the X-axis direction by the clamp rail unit 45 toward the area where the frame 200 on the left side is arranged, the frame 200 and the base unit 41 will not interfere with each other. Based on this, the template 50 clamped by the clamp part 30 supported on the base unit 41 can be mapped to the specific unit area CR on the frame 200.

頭部60可佈置在工作臺部20或者夾具部30的上部。頭部60上可設置有鐳射單元61(61a、61b)、照相機單元65、間隙感測器(gap sensor)以及不良分析單元67等。The head 60 may be arranged on the upper part of the table part 20 or the clamp part 30. The head 60 can be provided with a laser unit 61 (61a, 61b), a camera unit 65, a gap sensor, a failure analysis unit 67, and the like.

鐳射單元61可生成用於焊接掩模100和框架200的鐳射L。或者,鐳射單元61也可通過照射掩模100生成用於鐳射微調(trimming)的切割鐳射。一雙鐳射單元61(61a、61b)相隔佈置,而且以能夠調節X軸、Y軸位置的方式設置。相隔的距離可與掩模100的左側焊接部WP和右側焊接部WP的距離對應。為了在框架200上附著掩模100而進行鐳射L照射時,無需向掩模100的左側/右側焊接部WP分別照射鐳射L,只需要照射鐳射L一次便可進行焊接。因此,掩模100的兩側同上附著在框架200,因此相比於一次附著一側的工藝,具有可縮短工藝時間,使掩模100不變形且穩定地附著在框架200上的優點。The laser unit 61 can generate a laser L for welding the mask 100 and the frame 200. Alternatively, the laser unit 61 can also generate a cutting laser for laser trimming by irradiating the mask 100. A pair of laser units 61 (61a, 61b) are spaced apart and arranged in such a way that the positions of the X-axis and the Y-axis can be adjusted. The separation distance may correspond to the distance between the left welding part WP and the right welding part WP of the mask 100. When the laser L is irradiated in order to attach the mask 100 to the frame 200, it is not necessary to irradiate the laser L to the left/right welding parts WP of the mask 100, and the laser L only needs to be irradiated once to perform welding. Therefore, both sides of the mask 100 are attached to the frame 200 as above. Therefore, compared with the process of attaching one side at a time, the process time can be shortened, and the mask 100 can be attached to the frame 200 stably without deformation.

照相機單元65可通過拍攝掩模100、掩模圖案P的對準狀態來進行感應。間隙感測器(gap sensor)單元可測量掩模100的Z軸移位,或者可感應頭部60與掩模100、框架200等的距離。不良分析單元可檢測掩模100的不良狀態。The camera unit 65 can sense by photographing the alignment state of the mask 100 and the mask pattern P. The gap sensor unit can measure the Z-axis displacement of the mask 100, or can sense the distance between the head 60 and the mask 100, the frame 200, and the like. The failure analysis unit can detect the failure state of the mask 100.

頭移動部70(71、75)可使頭部60向X、Y、Z軸中至少任意一個方向移動。本發明假定頭移動部70向X軸移動頭部60並進行說明。第一頭移動部71與頭部60的上部連接並接收移動動力,與第一頭移動部71的下部相隔設置的第二頭移動部75上連接有頭部60的主要構件,並且頭部60接受X軸引導器76的引導向X軸方向移動。The head moving part 70 (71, 75) can move the head 60 in at least any one of the X, Y, and Z axes. The present invention will be described assuming that the head moving part 70 moves the head 60 to the X axis. The first head moving part 71 is connected to the upper part of the head 60 and receives the moving power, and the second head moving part 75 provided at a distance from the lower part of the first head moving part 71 is connected with the main components of the head 60, and the head 60 The X-axis guide 76 is guided to move in the X-axis direction.

為了防止桌子15的振動可設置消振台80。將掩模100附著在框架200上時,即使在發生十分微小的振動的環境下,也會影響掩模圖案P的對準誤差(PPA)。因此,消振台80可優選將被動隔振器(passive isolator)設置在桌子15的下部,從而防止振動。In order to prevent the vibration of the table 15, a vibration absorbing table 80 may be provided. When the mask 100 is attached to the frame 200, even in an environment where a very small vibration occurs, the alignment error (PPA) of the mask pattern P will be affected. Therefore, the vibration absorbing table 80 may preferably be provided with a passive isolator (passive isolator) at the lower part of the table 15 to prevent vibration.

圖13至圖14是示出本發明一實施例涉及的通過在模板50上黏合掩模金屬膜110並形成掩模100,從而製造掩模支撐模板的過程的示意圖。13 to 14 are schematic diagrams illustrating a process of manufacturing a mask support template by bonding a mask metal film 110 on a template 50 and forming a mask 100 according to an embodiment of the present invention.

參照圖13的(a),可提供模板50(template)。模板50是一種媒介,其一面上附著有掩模100並以支撐掩模100的狀態移動掩模100。模板50的一面優選為平坦面以支撐並搬運平坦的掩模100。中心部50a可對應掩模金屬膜110的掩模單元C,邊緣部50b可對應掩模金屬膜110的虛擬部。為了能夠整體上支撐掩模金屬膜110,模板50的面積大於掩模金屬膜110的面積,且可為平坦形狀。Referring to (a) of FIG. 13, a template 50 (template) may be provided. The template 50 is a medium on which the mask 100 is attached to one surface and the mask 100 is moved while supporting the mask 100. One surface of the template 50 is preferably a flat surface to support and carry the flat mask 100. The central part 50a may correspond to the mask unit C of the mask metal film 110, and the edge part 50b may correspond to the dummy part of the mask metal film 110. In order to be able to support the mask metal film 110 as a whole, the area of the template 50 is larger than that of the mask metal film 110, and may have a flat shape.

模板50優選為透明材料以便於在將掩模100與框架200對準並附著的過程中進行視覺(vision)觀察等。此外,採用透明材料時,也可使鐳射穿過。作為透明的材料可使用玻璃(glass)、矽膠(silica)、耐熱玻璃,石英(quartz),氧化鋁(Al2O3)、硼矽酸鹽玻璃(borosilicate glass)、氧化鋯(zirconia)等材料。作為一例,模板50可使用硼矽酸鹽玻璃中具有優異的耐熱性、化學耐久性、機械強度、透明性等的BOROFLOAT®33材料。此外,BOROFLOAT®33的熱膨脹係數約為3.3,熱膨脹係數與因瓦合金掩模金屬膜110相差很小,具有容易控制掩模金屬膜110的優點。The template 50 is preferably a transparent material to facilitate vision observation and the like during the process of aligning and attaching the mask 100 and the frame 200. In addition, when transparent materials are used, lasers can also pass through. As transparent materials, glass, silica, heat-resistant glass, quartz, alumina (Al2O3), borosilicate glass, zirconia, and other materials can be used. As an example, the template 50 may use BOROFLOAT® 33 material that has excellent heat resistance, chemical durability, mechanical strength, transparency, etc. among borosilicate glass. In addition, the thermal expansion coefficient of BOROFLOAT® 33 is about 3.3, and the thermal expansion coefficient is very small from the Invar mask metal film 110, which has the advantage of easy control of the mask metal film 110.

另外,為了防止與掩模金屬膜110[或者掩模100]的分界之間發生氣隙(air gap),模板50與掩模金屬膜110接觸的一面可為鏡面。考慮到這一點,模板50的一面的表面粗糙度Ra可為100nm以下。為了實現表面粗糙度Ra為100nm以下的模板50,模板50可使用晶圓(wafer)。晶圓(wafer)其表面粗糙度Ra約為10nm左右,市面上具有很多產品,表面處理工藝廣為所知,因此可作為模板50使用。由於模板50的表面粗糙度Ra為nm級別,因此可為沒有氣隙或者幾乎沒有氣隙的水準,從而基於鐳射焊接容易生成焊珠WB,對掩模圖案P的對準誤差不產生影響。In addition, in order to prevent an air gap from occurring between the boundary with the mask metal film 110 [or the mask 100], the contact surface of the template 50 and the mask metal film 110 may be a mirror surface. Taking this into consideration, the surface roughness Ra of one side of the template 50 may be 100 nm or less. In order to realize the template 50 with a surface roughness Ra of 100 nm or less, the template 50 may use a wafer. The surface roughness Ra of a wafer is about 10 nm. There are many products on the market, and the surface treatment process is widely known, so it can be used as a template 50. Since the surface roughness Ra of the template 50 is on the nm level, it can be at a level with no air gap or almost no air gap, so that the bead WB is easily generated based on laser welding, and the alignment error of the mask pattern P is not affected.

為了使從模板50的上部照射的鐳射L能夠到達掩模100的焊接部WP(執行焊接的區域)[參照圖9],模板50上可形成有鐳射貫穿孔51。鐳射貫穿孔51能夠以與焊接部WP的位置和數量對應的方式形成在模板50上。由於在掩模100的邊緣或者虛擬部DM部分上以預定的間隔佈置多個焊接部WP,因此鐳射貫穿孔51也與之對應地以預定間隔形成多個。作為一例,由於在掩模100的兩側(左側/右側)虛擬部DM部分上以預定間隔佈置多個焊接部WP,因此鐳射貫穿孔51也可以在模板50的兩側(左側/右側)以預定間隔可形成多個。In order for the laser L irradiated from the upper part of the template 50 to reach the welding part WP (area where welding is performed) of the mask 100 [refer to FIG. 9], a laser through hole 51 may be formed in the template 50. The laser through-holes 51 can be formed in the template 50 in a manner corresponding to the positions and the number of the welding parts WP. Since a plurality of welding parts WP are arranged at predetermined intervals on the edge of the mask 100 or the dummy part DM portion, the laser through-holes 51 are also formed in plural at predetermined intervals corresponding thereto. As an example, since a plurality of welding parts WP are arranged at predetermined intervals on both sides (left/right) of the dummy part DM of the mask 100, the laser through-holes 51 may also be arranged on both sides (left/right) of the template 50. A plurality of predetermined intervals may be formed.

鐳射貫穿孔51不必一定與焊接部WP的位置和數量對應。例如,也可以僅對鐳射貫穿孔51中的一部分進行鐳射L照射,並進行焊接。此外,與焊接部WP不對應的鐳射貫穿孔51中的一部分在對準掩模100與模板50時也可以代替對準標記而使用。假設,模板50的材料對於鐳射L的光透明,則也可以不形成鐳射貫穿孔51。The laser through-hole 51 does not necessarily correspond to the position and number of the welding part WP. For example, only a part of the laser through hole 51 may be irradiated with the laser L and welded. In addition, a part of the laser through-hole 51 that does not correspond to the welding part WP may be used instead of the alignment mark when aligning the mask 100 and the template 50. Assuming that the material of the template 50 is transparent to the light of the laser L, the laser through hole 51 may not be formed.

模板50的一面可形成臨時黏合部55。掩模100附著在框架200之前,臨時黏合部55可使掩模100[或者掩模金屬膜110]臨時附著在模板50的一面並支撐在模板50上。A temporary bonding part 55 may be formed on one side of the template 50. Before the mask 100 is attached to the frame 200, the temporary adhesive part 55 can temporarily attach the mask 100 [or the mask metal film 110] to one side of the template 50 and support it on the template 50.

臨時黏合部55可使用基於加熱可分離的黏合劑或者黏合片材(thermal release type),基於照射UV可分離的黏合劑或者黏合片材(UV release type)。The temporary adhesive part 55 may use an adhesive or adhesive sheet (thermal release type) that is separable based on heating, or an adhesive or adhesive sheet (UV release type) that is separable based on irradiation with UV.

作為一例,臨時黏合部55可使用液蠟(liquid wax)。液蠟可使用與半導體晶圓的拋光步驟等中使用的相同的蠟,其類型沒有特別限制。作為主要用於控制與維持力有關的黏合力、耐衝擊性等的樹脂成分,液蠟可包括如丙烯酸、醋酸乙烯酯,尼龍及各種聚合物的物質及溶劑。作為一例,臨時黏合部55可使用包括作為樹脂成分的丁腈橡膠(ABR,Acrylonitrilebutadiene rubber),作為溶劑成分的n-丙醇的SKYLIQUIDABR-4016。在臨時黏合部55上使用旋塗方法形成液蠟。As an example, liquid wax (liquid wax) can be used for the temporary bonding part 55. The liquid wax can be the same wax used in the polishing step of a semiconductor wafer or the like, and its type is not particularly limited. As a resin component mainly used to control adhesion and impact resistance related to maintaining power, liquid wax may include substances and solvents such as acrylic acid, vinyl acetate, nylon, and various polymers. As an example, the temporary adhesive part 55 may use SKYLIQUIDABR-4016 including Acrylonitrilebutadiene rubber (ABR) as a resin component and n-propanol as a solvent component. A spin coating method is used to form liquid wax on the temporary bonding part 55.

作為液蠟的臨時黏合部55在高於85℃~100℃的溫度下黏性下降,在低於85℃的溫度下黏性增加,一部分可如固體固化,從而可將掩模金屬膜110與模板50固定黏合。Temporary adhesive part 55, which is a liquid wax, decreases in viscosity at a temperature higher than 85°C to 100°C, and increases in viscosity at a temperature lower than 85°C. A part of it can be solidified as a solid, so that the mask metal film 110 can be combined with The template 50 is fixedly bonded.

可在準備模板50之前或者之後準備掩模金屬膜110。The mask metal film 110 may be prepared before or after the template 50 is prepared.

作為一實施例,可通過壓延方式準備掩模金屬膜110。由壓延工藝製造的金屬片材基於製造工藝可具有數十至數百㎛的厚度。如前面在圖8中所述,為了得到UHD級別的高解析度只有使用具有20㎛以下厚度的薄掩模金屬膜110才能進行細微的圖案化,為了獲得UHD以上的超高解析度,需要使用具有10㎛厚度的薄掩模金屬膜110。然而,由壓延(rolling)工藝生成的掩模金屬膜110'具有約為25~500㎛的厚度,因此有必要將厚度縮小。As an example, the mask metal film 110 may be prepared by calendering. The metal sheet manufactured by the calendering process may have a thickness of tens to hundreds of ㎛ based on the manufacturing process. As described above in Figure 8, in order to obtain UHD-level high resolution, only a thin mask metal film 110 with a thickness of 20㎛ or less can be used for fine patterning. In order to obtain ultra-high resolution above UHD, it is necessary to use A thin mask metal film 110 having a thickness of 10㎛. However, the mask metal film 110' generated by the rolling process has a thickness of about 25 to 500 mm, so it is necessary to reduce the thickness.

因此,可進一步執行平坦化PS[參照圖13的(b)]掩模金屬膜110'的一面的工藝。其中,平坦化PS是指對掩模金屬膜110'的一面(上面)進行鏡面化的同時,通過部分地去除掩模金屬膜110'的上部,使厚度變薄。平坦化PS可利用CMP(Chemical Mechanical Polishing)方法執行,只要是公知的CMP方法,可不受限制地使用。此外,利用化學濕式蝕刻(chemical wet etching)或者乾式蝕刻(dry etching)方法可使掩模金屬膜110'的厚度變薄。除此之外,可不受限制地使用使掩模金屬膜110'的厚度變薄的平坦化的工藝。Therefore, a process of planarizing one side of the masking metal film 110' of the PS [refer to FIG. 13(b)] can be further performed. Among them, the planarization PS means that one side (upper surface) of the mask metal film 110' is mirror-finished, and the upper part of the mask metal film 110' is partially removed to make the thickness thinner. The planarization PS can be performed by the CMP (Chemical Mechanical Polishing) method, and it can be used without limitation as long as it is a well-known CMP method. In addition, the thickness of the mask metal film 110' can be reduced by using a chemical wet etching or dry etching method. In addition to this, a planarization process that thins the thickness of the mask metal film 110' can be used without limitation.

在執行平坦化PS的過程中,作為一例,在CMP過程中,可控制掩模金屬膜110'上部面的表面粗糙度Ra。優選地,可執行用於進一步減小表面粗糙度的鏡面化。或者,作為另一例子,還可以通過化學濕式蝕刻或者乾式蝕刻過程進行平坦化PS之後,再附加進行額外的CMP工藝等拋光工藝以減小表面粗糙度Ra。In the process of performing the planarization PS, as an example, during the CMP process, the surface roughness Ra of the upper surface of the mask metal film 110' can be controlled. Preferably, mirroring for further reducing the surface roughness can be performed. Or, as another example, after the PS is planarized through a chemical wet etching or dry etching process, an additional polishing process such as a CMP process may be additionally performed to reduce the surface roughness Ra.

如此,可將掩模金屬膜110'製成約50㎛以下較薄的厚度。由此,掩模金屬膜110的厚度優選約為2㎛至50㎛左右,厚度更優選約為5㎛至20㎛左右。但非一定受限於此。In this way, the mask metal film 110' can be made into a thinner thickness of about 50 mm or less. Therefore, the thickness of the mask metal film 110 is preferably about 2 ㎛ to 50 ㎛, and more preferably about 5 ㎛ to 20 ㎛. But it is not necessarily limited to this.

作為另一實施例,可由電鑄方式準備掩模金屬膜110。As another example, the mask metal film 110 may be prepared by electroforming.

為了能夠執行電鑄(electroforming),母板的基材可以是導電性材料。在電鑄中母板可作為陰極(cathode)電極使用。In order to be able to perform electroforming, the base material of the motherboard may be a conductive material. The mother board can be used as a cathode electrode in electroforming.

作為導電性材料,對於金屬,表面可能生成有金屬氧化物,金屬製造過程中可能會摻入雜質,對於多晶矽基材,可能存在夾雜物或者晶界(GrainBoundary),對於導電性高分子基材,可能存在很高的含雜質的可能性,可能強度、耐酸性等比較脆弱。如金屬氧化物、雜質、夾雜物、晶界等妨礙在母板(或者陰極)的表面上均勻地形成電磁場的要素被稱之為“缺陷”(Defect)。由於缺陷(Defect)上述材料的陰極上不能引入均勻的電磁場,從而可使鍍膜110[或者掩模金屬膜110]的一部分不均勻地形成。As a conductive material, for metals, metal oxides may be formed on the surface, and impurities may be doped in the metal manufacturing process. For polysilicon substrates, there may be inclusions or grain boundaries (GrainBoundary). For conductive polymer substrates, There may be a high possibility of impurities, and may be weak in strength and acid resistance. Elements such as metal oxides, impurities, inclusions, and grain boundaries that hinder the uniform formation of electromagnetic fields on the surface of the mother board (or cathode) are called "Defects". Due to the defect (Defect), a uniform electromagnetic field cannot be introduced into the cathode of the above-mentioned material, so that a part of the plating film 110 [or the mask metal film 110] can be formed unevenly.

在實現UHD級別以上的超高畫質像素的過程中,鍍膜及鍍膜圖案[掩模圖案P]的不均勻會對像素的形成造成不良的影響。例如,目前的QHD畫質為500~600PPI(pixel per inch),像素的尺寸達到約30~50㎛,而4K UHD、8K UHD高清晰具有比之更高的~860PPI,~1600PPI等解析度。而且直接應用在VR機器的微顯示器或插入VR機器中並使用的微顯示器以大約2000PPI以上級的超高畫質作為目標,且像素尺寸約為5~10μm左右。在此使用的FMM、陰影掩模的圖案寬度可為數μm ~數十μm,優選小於30μm,因此即便是數μm的缺陷,也在掩模的圖案尺寸中佔據大幅比重。而且,為了去除上述材料的陰極中的缺陷,可進行用於去除金屬氧化物、雜質等的附加工藝,在該工藝中還會引發陰極材料被蝕刻等的其他缺陷。In the process of realizing ultra-high image quality pixels above the UHD level, the unevenness of the coating film and the coating pattern [mask pattern P] will adversely affect the formation of the pixel. For example, the current QHD image quality is 500~600PPI (pixel per inch), and the pixel size is about 30~50㎛, while 4K UHD and 8K UHD have higher resolutions of ~860PPI, ~1600PPI. In addition, the micro-display directly applied to the VR machine or the micro-display inserted into the VR machine aims at ultra-high image quality above about 2000PPI, and the pixel size is about 5-10μm. The pattern width of the FMM and shadow mask used here can be several μm to several tens of μm, preferably less than 30 μm. Therefore, even defects of several μm occupy a large proportion in the pattern size of the mask. Moreover, in order to remove the defects in the cathode of the above-mentioned materials, an additional process for removing metal oxides, impurities, etc. may be performed, and other defects such as etching of the cathode material may also be caused in this process.

因此,本發明可使用單晶材料的母板(或者陰極)。特別地,優選為單晶矽材料。為了具有導電性,單晶矽材料的母板中可執行1019 /cm3 以上高濃度摻雜。摻雜可對母板的全部進行,也可僅對母板表面部分進行。Therefore, the present invention can use a mother board (or cathode) of a single crystal material. In particular, it is preferably a single crystal silicon material. In order to have conductivity, a high-concentration doping of 10 19 /cm 3 or more can be performed in the mother board of monocrystalline silicon material. The doping can be performed on the entire motherboard or only on the surface of the motherboard.

另外,作為單晶材料可使用Ti、Cu、Ag等金屬,GaN、SiC、GaAs、GaP、AlN、InN、InP、Ge等半導體,石墨(graphite)、石墨烯(graphene)等碳系材料,包括CH3 NH3 PbCl3 ,CH3 NH3 PbBr3 ,CH3 NH3 PbI3 ,SrTiO3 等的鈣鈦礦(perovskite)結構等的超導體用單晶陶瓷,航空器部件用單晶超耐熱合金等。對於金屬、碳系材料,基本上為導電性材料。對於半導體材料,為了具有導電性可進行1019 /cm3 以上高濃度的摻雜。對於其他材料,可通過進行摻雜或者形成氧空位(oxygen vacancy)等來形成導電性。摻雜可對母板的全部進行,也可僅對母板表面部分進行。In addition, as single crystal materials, metals such as Ti, Cu, Ag, semiconductors such as GaN, SiC, GaAs, GaP, AlN, InN, InP, Ge, and carbon-based materials such as graphite and graphene can be used, including CH 3 NH 3 PbCl 3, CH 3 NH 3 PbBr 3, CH 3 NH 3 PbI 3, SrTiO 3 perovskite-like (Transition of perovskite) crystal structure of the ceramic superconductor, aircraft parts and the like with the single crystal superalloy. Metals and carbon-based materials are basically conductive materials. For semiconductor materials, doping at a high concentration of 10 19 /cm 3 or more can be performed in order to have conductivity. For other materials, conductivity can be formed by doping or forming oxygen vacancy. The doping can be performed on the entire motherboard or only on the surface of the motherboard.

對於單晶材料,由於其不存在缺陷,因此具有電鑄時由於在整個表面均勻地形成電磁場,從而可均勻地形成鍍膜110的優點。通過均勻鍍膜製造的框架一體型掩模100、200能夠進一步改善OLED像素的畫質水平。此外,由於無需執行去除、解除缺陷的額外的工藝,因此具有降低工藝成本、提高生產效率的優點。For the single crystal material, since it does not have defects, it has the advantage of uniformly forming an electromagnetic field on the entire surface during electroforming, so that the plating film 110 can be uniformly formed. The frame-integrated masks 100 and 200 manufactured by uniform coating can further improve the image quality level of OLED pixels. In addition, since there is no need to perform additional processes for removing and resolving defects, it has the advantages of reducing process costs and improving production efficiency.

通過將導電性基材作為母板[陰極(Cathode Body)]使用,將陽極(未圖示)相隔地佈置,從而可利用電鑄在導電性基材上形成鍍膜110[或者掩模金屬膜110]。By using a conductive substrate as a mother board [cathode (Cathode Body)] and arranging anodes (not shown) apart, electroforming can be used to form a plating film 110 [or a mask metal film 110 on the conductive substrate ].

然後,可將鍍膜110從導電性基材進行分離。Then, the plating film 110 may be separated from the conductive substrate.

另外,在將鍍膜110從導電性基材分離之前,可執行熱處理H。為了降低掩模100的熱膨脹係數的同時為了防止因熱導致的掩模100及掩模圖案P的變形,將鍍膜110從導電性基材[或者母板、陰極]分離之前執行熱處理。熱處理可以300℃至800℃的溫度執行。In addition, before separating the plating film 110 from the conductive substrate, heat treatment H may be performed. In order to reduce the thermal expansion coefficient of the mask 100 and to prevent deformation of the mask 100 and the mask pattern P due to heat, heat treatment is performed before the plating film 110 is separated from the conductive base material [or mother board, cathode]. The heat treatment can be performed at a temperature of 300°C to 800°C.

通常由電鑄生成的因瓦合金薄板的熱膨脹係數高於由壓延生成的因瓦合金薄板的熱膨脹係數。因此,通過對因瓦合金薄板進行熱處理可降低熱膨脹係數,但是在該熱處理過程中因瓦合金薄板可發生變形等。因此,在黏合在導電性基材的狀態下,如果將鍍膜110形成在導電性基材的上部面、側面及下部面的一部分上,則即使進行熱處理也不會發生剝離、變形等,從而可穩定地進行熱處理。Generally, the thermal expansion coefficient of Invar alloy sheet produced by electroforming is higher than that of Invar alloy sheet produced by rolling. Therefore, the thermal expansion coefficient of the Invar alloy sheet can be reduced by heat treatment, but the Invar alloy sheet may be deformed during the heat treatment process. Therefore, if the plating film 110 is formed on a part of the upper surface, side surface, and lower surface of the conductive substrate in the state of being bonded to the conductive substrate, even if heat treatment is performed, peeling, deformation, etc. will not occur, so that it can be The heat treatment is performed stably.

由電鑄工藝生成的掩模金屬膜110其厚度可薄於由壓延工藝生成的掩模金屬膜110。由此,雖然還可以省略用於縮減厚度的平坦化PS工藝,但基於鍍金掩模金屬膜110的表面層的組成、結晶結構/細微結構,可具有不同蝕刻特徵,因此有必要通過平坦化PS控制表面特性、厚度。The thickness of the mask metal film 110 generated by the electroforming process may be thinner than that of the mask metal film 110 generated by the calendering process. Therefore, although the planarization PS process for reducing the thickness can also be omitted, the composition, crystal structure/fine structure of the surface layer of the gold-plated mask metal film 110 may have different etching characteristics, so it is necessary to planarize the PS. Control surface characteristics and thickness.

然後,參照圖13的(b),可在模板50上黏合掩模金屬膜110'。將液蠟加熱至85℃以上,將掩模金屬膜110'接觸到模板50上之後,使掩模金屬膜110'和模板50通過滾軸之間從而執行黏合。Then, referring to (b) of FIG. 13, the mask metal film 110 ′ may be bonded on the template 50. The liquid wax is heated to 85° C. or higher, and after the mask metal film 110' is in contact with the template 50, the mask metal film 110' and the template 50 are passed between the rollers to perform bonding.

根據一實施例,在模板50上約以120℃烘焙(baking)60秒,將臨時黏合部55的溶劑氣化後,可立即執行掩模金屬膜層壓(lamination)工藝。層壓通過在一面上形成有臨時黏合部55的模板50上裝載掩模金屬膜110'並使其通過約100℃的上部滾軸(roll)和約0℃的下部滾軸之間來執行。其結果,掩模金屬膜110'可與模板50接觸且中間夾設有臨時黏合部55。According to one embodiment, after baking on the template 50 at about 120° C. for 60 seconds, and vaporizing the solvent of the temporary bonding portion 55, the mask metal film lamination process can be performed immediately. The lamination is performed by loading the mask metal film 110' on the template 50 with the temporary bonding part 55 formed on one surface and passing it between the upper roll of about 100°C and the lower roll of about 0°C. As a result, the mask metal film 110 ′ can be in contact with the template 50 with a temporary adhesive part 55 interposed therebetween.

圖15是示出本發明的一實施例涉及的臨時黏合部55的放大截面示意圖。作為又一例,臨時黏合部55可使用熱剝離膠帶(thermal release tape)。熱剝離膠帶的中間佈置有PET膜等芯膜56(core film),芯膜56的兩面上佈置有可熱剝離的黏合層57a、57b(thermal release adhesive),黏合層57a、57b的外輪廓可為佈置有剝離膜/離型膜58a、58b的形態。其中,佈置在芯膜56的兩面上的黏合層57a、57b的相互剝離溫度可相互不同。FIG. 15 is an enlarged schematic cross-sectional view showing the temporary bonding part 55 according to an embodiment of the present invention. As another example, thermal release tape may be used for the temporary bonding part 55. A core film 56 (core film) such as a PET film is arranged in the middle of the thermal release tape, and thermal release adhesive layers 57a, 57b (thermal release adhesive) are arranged on both sides of the core film 56. The outer contours of the adhesive layers 57a, 57b can be It is a form in which release films/release films 58a and 58b are arranged. Among them, the mutual peeling temperature of the adhesive layers 57a, 57b arranged on both sides of the core film 56 may be different from each other.

根據一實施例,在去除剝離膜/離型膜58a、58b的狀態下,熱剝離膠帶的下部面[第二黏合層57b]黏合在模板50上,熱剝離膠帶的上部面[第一黏合層57a]可黏合在掩模金屬膜110'上。由於第一黏合層57a和第二黏合層57b具有相互不同的剝離溫度,因此,後述的圖20中將模板50從掩模100分離時,通過施加使第一黏合層57a剝離的熱,掩模100可從模板50和臨時黏合部55分離。According to one embodiment, with the release film/release film 58a, 58b removed, the lower surface of the thermal peeling tape [the second adhesive layer 57b] is adhered to the template 50, and the upper surface of the thermal peeling tape [the first adhesive layer] 57a] can be bonded to the mask metal film 110'. Since the first adhesive layer 57a and the second adhesive layer 57b have different peeling temperatures, when the template 50 is separated from the mask 100 in FIG. 20 described later, by applying heat to peel off the first adhesive layer 57a, the mask 100 can be separated from the template 50 and the temporary bonding part 55.

接下來,再參照圖13的(b),可平坦化PS掩模金屬膜110'的一面。如上所述,由壓延工藝製造的掩模金屬膜110'可由平坦化PS工藝縮減厚度(110'->110)。此外,由電鑄工藝製造的掩模金屬膜110為了控制表面特性、厚度,也可進行平坦化PS工藝。Next, referring to FIG. 13(b) again, one side of the PS mask metal film 110' can be planarized. As described above, the mask metal film 110' manufactured by the calendering process can be reduced in thickness (110'->110) by the planarization PS process. In addition, in order to control the surface characteristics and thickness of the mask metal film 110 manufactured by the electroforming process, a planarization PS process may also be performed.

由此,如圖13的(c),隨著掩模金屬膜110'的厚度縮減(110'->110),掩模金屬膜110的厚度可約為5㎛至20㎛。Thus, as shown in (c) of FIG. 13, as the thickness of the mask metal film 110 ′ decreases (110 ′->110 ), the thickness of the mask metal film 110 may be about 5 ㎛ to 20 ㎛.

然後,參照圖14的(d),可在掩模金屬膜110上形成經圖案化的絕緣部25。絕緣部25利用印刷法等可由光刻膠材料形成。Then, referring to (d) of FIG. 14, the patterned insulating portion 25 may be formed on the mask metal film 110. The insulating portion 25 may be formed of a photoresist material using a printing method or the like.

接下來,可對掩模金屬膜110進行蝕刻。此時,可不受限制地使用乾式蝕刻、濕式蝕刻等方法,經蝕刻的結果,由絕緣部25之間的空白空間26露出的掩模金屬膜110部分可被蝕刻。掩模金屬膜110中被蝕刻部分構成掩模圖案P,從而可製造形成有多個掩模圖案P的掩模100。Next, the mask metal film 110 may be etched. At this time, methods such as dry etching, wet etching, etc. can be used without limitation, and as a result of the etching, the portion of the mask metal film 110 exposed from the blank space 26 between the insulating portions 25 can be etched. The etched portion of the mask metal film 110 constitutes the mask pattern P, so that the mask 100 formed with a plurality of mask patterns P can be manufactured.

然後,參照圖14的(e),通過去除絕緣部25可結束用於支撐掩模100的模板50的製造。Then, referring to (e) of FIG. 14, the manufacturing of the template 50 for supporting the mask 100 can be completed by removing the insulating portion 25.

由於框架200具有多個掩模單元區域CR,因此還可具有多個掩模100,所述掩模100具有與每個掩模單元區域CR對應的掩模單元C。此外,可具有多個模板50,其用於分別支撐多個掩模100。Since the frame 200 has a plurality of mask unit regions CR, it may also have a plurality of masks 100 having a mask unit C corresponding to each mask unit region CR. In addition, there may be a plurality of templates 50 for supporting the plurality of masks 100 respectively.

圖16是示出本發明的一實施例涉及的將掩模支撐模板裝載在框架上的過程的示意圖。FIG. 16 is a schematic diagram showing a process of loading a mask support template on a frame according to an embodiment of the present invention.

參照圖16,模板50可通過夾具部30被移送。夾具部30的吸附單元32通過吸附黏合有掩模100的模板50的面的反面可並進行移送。夾具部30通過吸附模板50並移送,而掩模100以臨時黏合部55為媒介黏合並支撐在模板50上,因此向框架200移送模板50的過程中,也不會對掩模100的黏合狀態及對準狀態產生影響。Referring to FIG. 16, the template 50 may be transferred through the clamp part 30. The suction unit 32 of the jig part 30 can perform simultaneous transfer by suctioning the back surface of the template 50 to which the mask 100 is adhered. The clamp part 30 is transferred by absorbing the template 50, and the mask 100 is adhered and supported on the template 50 by the temporary bonding part 55. Therefore, the process of transferring the template 50 to the frame 200 will not affect the adhesive state of the mask 100. And the alignment status has an impact.

圖17是示出本發明一實施例涉及的將工藝區域的溫度上升之後將模板50裝載在框架200上並將掩模100對應至框架200的單元區域CR(CR11~CR52)的狀態的示意圖。以下以具有2X5的掩模單元區域CR(CR11~CR52)的框架200為例進行說明。圖17雖例舉了將一個掩模100對應/附著至單元區域CR的例子,但是也可以執行通過將多個掩模100同時分別對應至所有單元區域CR上以將掩模100附著在框架200上的過程。這種情況下,可具有多個模板50用以分別支撐多個掩模100。FIG. 17 is a schematic diagram showing a state in which the template 50 is loaded on the frame 200 after the temperature of the process area is increased, and the mask 100 is corresponding to the cell area CR (CR11 to CR52) of the frame 200 according to an embodiment of the present invention. The following takes the frame 200 with 2×5 mask cell regions CR (CR11 to CR52) as an example for description. Although FIG. 17 exemplifies an example of corresponding/attaching one mask 100 to the cell region CR, it can also be performed by attaching a plurality of masks 100 to all the cell regions CR at the same time to attach the mask 100 to the frame 200. On the process. In this case, there may be multiple templates 50 for supporting multiple masks 100 respectively.

然後,參照圖17,使工藝區域的溫度上升ET之後,可將掩模100對應至框架200的一個掩模單元區域CR。本發明的特徵在於,在將掩模100對應至框架200的掩模單元區域CR的過程中,不向掩模100施加任何拉伸力。Then, referring to FIG. 17, after the temperature of the process area is increased by ET, the mask 100 can be mapped to one mask cell area CR of the frame 200. The present invention is characterized in that in the process of mapping the mask 100 to the mask unit area CR of the frame 200, no stretching force is applied to the mask 100.

框架200的掩模單元片材部220由於具有很薄的厚度,因此如果掩模100以被施加拉伸力的狀態附著在掩模單元片材部220上,則掩模100上殘留的拉伸力可能會作用在掩模單元片材部220及掩模單元區域CR上,並使其發生變形。因此,應以不施加拉伸力於掩模100上的狀態將掩模100附著在掩模單元片材部220上。因此,可防止施加在掩模100上的拉伸力反過來以張力(tension)的形式作用在框架200上使框架200[或者掩模單元片材部220]發生變形。Since the mask unit sheet portion 220 of the frame 200 has a very thin thickness, if the mask 100 is attached to the mask unit sheet portion 220 in a state where a stretching force is applied, the remaining stretch on the mask 100 Force may act on the mask unit sheet portion 220 and the mask unit area CR and deform them. Therefore, the mask 100 should be attached to the mask unit sheet portion 220 in a state where no tensile force is applied to the mask 100. Therefore, it is possible to prevent the tensile force applied to the mask 100 from acting on the frame 200 in the form of tension to deform the frame 200 [or the mask unit sheet portion 220].

只是,對掩模100不施加拉伸力地附著在框架200[或者掩模單元片材部220]上以製造框架一體型掩模,而且將該框架一體型掩模用於像素沉積工藝時可發生一個問題。在約25~45℃左右的溫度下執行像素沉積工藝時,掩模100以預定長度膨脹。即使是因瓦合金材料的掩模100,基於用於形成像素沉積工藝氣氛的10℃左右的溫度上升,其長度也會發生約1~3ppm的變化。例如,掩模100的總長度為500mm時,其長度可增加約5~15㎛。由此,導致掩模100因自身的重量發生下垂,或者以固定在框架200的狀態被拉長並發生扭曲等變形,同時引發圖案P間的對準誤差變大的問題。However, the mask 100 is attached to the frame 200 [or the mask unit sheet portion 220] without applying tensile force to manufacture a frame-integrated mask, and the frame-integrated mask can be used in a pixel deposition process. A problem occurred. When the pixel deposition process is performed at a temperature of about 25 to 45° C., the mask 100 expands by a predetermined length. Even for the mask 100 made of Invar alloy material, its length will vary by about 1 to 3 ppm based on a temperature rise of about 10° C. for forming the atmosphere of the pixel deposition process. For example, when the total length of the mask 100 is 500 mm, its length can be increased by about 5 to 15 mm. As a result, the mask 100 sags due to its own weight, or the mask 100 is stretched while being fixed to the frame 200 and deformed such as twisting, and at the same time, a problem in which the alignment error between the patterns P increases.

因此,本發明的特徵在於,在高於常溫的非常溫溫度下,以對掩模100不施加拉伸力的狀態對應並附著至框架200的掩模單元區域CR上。本說明書中敘述為在將工藝區域的溫度上升至第一溫度ET後將掩模100對應並附著至框架200上。Therefore, the present invention is characterized in that it corresponds to and adheres to the mask unit area CR of the frame 200 in a state where no tensile force is applied to the mask 100 at an extraordinary temperature higher than normal temperature. In this specification, it is described that the mask 100 is correspondingly attached to the frame 200 after the temperature of the process area is raised to the first temperature ET.

“工藝區域”可指用於放置掩模100、框架200等構成要素,而且用於執行掩模100的附著工藝等的空間。工藝區域也可以是封閉腔室內的空間,也可以是開放空間。而且,“第一溫度”可指,將框架一體型掩模用於OLED像素沉積工藝中時,等於或者高於像素沉積工藝溫度的溫度。考慮到像素沉積工藝溫度約為25~45℃,第一溫度可約為25℃至60℃。工藝區域的溫度上升可通過驅動加熱單元29或者在腔室設置加熱手段,或者在工藝區域的周圍設置加熱手段的方法等來執行。The "process area" may refer to a space for placing constituent elements such as the mask 100 and the frame 200, and for performing an attaching process of the mask 100 and the like. The process area can also be a space in a closed chamber or an open space. Moreover, the “first temperature” may refer to a temperature equal to or higher than the temperature of the pixel deposition process when the frame-integrated mask is used in the OLED pixel deposition process. Considering that the temperature of the pixel deposition process is about 25°C to 45°C, the first temperature may be about 25°C to 60°C. The temperature increase of the process area can be performed by driving the heating unit 29 or installing heating means in the chamber, or installing heating means around the process area, or the like.

再參照圖17,將包括框架200的工藝區域的溫度上升至第一溫度ET之後,可將掩模100對應至掩模單元區域CR。或者,將掩模100對應至掩模單元區域CR之後,可將包括框架200的工藝區域的溫度上升至第一溫度ET。17 again, after the temperature of the process area including the frame 200 is increased to the first temperature ET, the mask 100 may be mapped to the mask cell area CR. Alternatively, after the mask 100 is mapped to the mask cell area CR, the temperature of the process area including the frame 200 may be increased to the first temperature ET.

通過將模板50裝載在框架200[或者掩模單元片材部220]上,可將掩模100對應至掩模單元區域CR。控制夾具部30的位置的同時可通過頭部60的照相機單元65觀察掩模100是否對應於掩模單元區域CR。由於模板50擠壓掩模100,因此掩模100可與框架200緊貼。由於可通過控制模板50的位置便可將掩模100對應至掩模單元區域CR,因此可以不向掩模100不直接施加任何拉伸力。By loading the template 50 on the frame 200 [or the mask unit sheet part 220], the mask 100 can be mapped to the mask unit area CR. While controlling the position of the jig section 30, it is possible to observe through the camera unit 65 of the head 60 whether the mask 100 corresponds to the mask unit area CR. Since the template 50 presses the mask 100, the mask 100 can be closely attached to the frame 200. Since the mask 100 can be mapped to the mask unit region CR by controlling the position of the template 50, it is not necessary to directly apply any stretching force to the mask 100.

另外,還可將下部支撐單元90[參照圖19]佈置在框架200下部。下部支撐單元90可以與框架支撐單元26一體形成。下部支撐單元90可具有恰好放入框架邊緣部210的中空區域內的尺寸且具有平板形狀。而且,下部支撐單元90的上部面也可形成有對應掩模單元片材部220形狀的預定的支撐槽(未圖示)。這種情況下,由於邊緣片材部221和第一柵格片材部223及第二柵格片材部225插在支撐槽中,因此掩模單元片材部220會被更加牢固地固定。In addition, the lower support unit 90 [refer to FIG. 19] may also be arranged at the lower portion of the frame 200. The lower support unit 90 may be integrally formed with the frame support unit 26. The lower supporting unit 90 may have a size just to fit into the hollow area of the frame edge portion 210 and have a flat plate shape. Furthermore, a predetermined support groove (not shown) corresponding to the shape of the mask unit sheet portion 220 may be formed on the upper surface of the lower support unit 90. In this case, since the edge sheet portion 221, the first grid sheet portion 223, and the second grid sheet portion 225 are inserted in the supporting groove, the mask unit sheet portion 220 is more firmly fixed.

下部支撐單元90可擠壓掩模100接觸的掩模單元區域CR的反面。即,下部支撐單元90通過向上部方向支撐掩模單元片材部220,從而可防止在掩模100的附著過程中掩模單元片材部220向下部方向下垂。與此同時,通過使下部支撐單元90和模板50以相反的方向擠壓掩模100的邊緣和框架200[或者掩模單元片材部220],從而可使掩模100維持對準狀態而不被打亂。The lower support unit 90 may press the reverse surface of the mask unit region CR with which the mask 100 contacts. That is, the lower support unit 90 supports the mask unit sheet portion 220 in the upward direction, thereby preventing the mask unit sheet portion 220 from sagging in the downward direction during the attaching process of the mask 100. At the same time, by making the lower support unit 90 and the template 50 squeeze the edges of the mask 100 and the frame 200 [or the mask unit sheet portion 220] in opposite directions, the mask 100 can be maintained in an aligned state. Was disrupted.

如此,只通過在模板50上附著掩模100並將模板50裝載到框架200上,便可結束將掩模100對應至框架200的掩模單元區域CR上的過程,該過程中可做到對掩模100不施加任何拉伸力。In this way, only by attaching the mask 100 to the template 50 and loading the template 50 on the frame 200, the process of mapping the mask 100 to the mask unit area CR of the frame 200 can be ended, and the process can be corrected. The mask 100 does not apply any tensile force.

圖18是示出本發明一實施例涉及的將掩模100附著在框架200上的過程的示意圖。FIG. 18 is a schematic diagram showing a process of attaching the mask 100 to the frame 200 according to an embodiment of the present invention.

然後,可以向掩模100照射鐳射L並基於鐳射焊接將掩模100附著在框架200上。由鐳射焊接的掩模的焊接部WP部分上生成焊珠WB,焊珠WB可具有與掩模100/框架200相同的材料且與它們一體連接。相隔佈置的一雙鐳射單元61a、61b可通過同時向掩模100的左側焊接部WP和右側焊接部WP照射鐳射L並進行焊接。Then, the mask 100 may be irradiated with laser L and attached to the frame 200 based on laser welding. A welding bead WB is generated on the welding part WP of the mask welded by the laser, and the welding bead WB may have the same material as the mask 100/frame 200 and be integrally connected with them. A pair of laser units 61a and 61b arranged apart can be welded by irradiating the laser L to the left welding part WP and the right welding part WP of the mask 100 at the same time.

圖19是示出本發明的一實施例涉及的通過吸附孔229向掩模100施加吸附力的狀態的示意圖。FIG. 19 is a schematic diagram showing a state in which suction force is applied to the mask 100 through the suction holes 229 according to an embodiment of the present invention.

另外,根據另一實施例,多個吸附孔229可形成於存在掩模單元區域CR的框架200的稜角附近。具體地,可在與掩模單元片材部220的稜角相隔預定距離的部分上形成多個吸附孔229,更具體地,可形成於與邊緣片材部221的內側稜角相隔預定距離的部分及在與第一柵格片材部223、第二柵格片材部225的稜角相隔預定距離的部分。In addition, according to another embodiment, a plurality of suction holes 229 may be formed near the corners of the frame 200 where the mask unit region CR exists. Specifically, a plurality of suction holes 229 may be formed at a portion separated by a predetermined distance from the corners of the mask unit sheet portion 220, and more specifically, may be formed at a portion separated by a predetermined distance from the inner corners of the edge sheet portion 221 and In the part separated by a predetermined distance from the corners of the first grid sheet portion 223 and the second grid sheet portion 225.

在能夠起到真空吸附壓力作用的目的的範圍內,多個吸附孔229的形態、尺寸等不受任何限制。只是,多個吸附孔229的位置優選不與掩模100的焊接部WP重疊。如果焊接部WP與吸附孔229重疊,則掩模100與框架200[或者掩模單元片材部220]由於沒能緊密接觸,因此不能通過鐳射焊接符合要求地生成焊珠WB。優選地,多個吸附孔229形成於靠近焊接部WP的部分以使掩模100的焊接部WP部分能夠更加緊貼在框架200[或者掩模單元片材部220]上。The shape, size, etc. of the plurality of adsorption holes 229 are not limited in any way within the range capable of serving the purpose of the vacuum adsorption pressure. However, it is preferable that the positions of the plurality of suction holes 229 do not overlap with the welding part WP of the mask 100. If the welding part WP overlaps with the suction hole 229, the mask 100 and the frame 200 [or the mask unit sheet part 220] are not in close contact, and therefore the bead WB cannot be generated by laser welding as required. Preferably, a plurality of suction holes 229 are formed in a part close to the welding part WP so that the welding part WP part of the mask 100 can be more closely attached to the frame 200 [or the mask unit sheet part 220].

如圖19所示,如果將模板50裝載在框架200[或者掩模單元片材部220]上,掩模100的下部面的一部分與框架200[或者掩模單元片材部220]上部抵接。形成於框架200[或者掩模單元片材部220]的吸附孔229的上部與掩模100的下部面對應,對應於吸附孔229下部的吸附力(吸附壓力)施加手段通過吸附孔229將吸附力VS[或者吸附壓力VS]施加到掩模100,從而可拉拽對應吸附孔229的掩模100部分。由此,掩模100可更加緊貼在框架200上,且在執行鐳射焊接時可更加穩定地生成焊珠WB。As shown in FIG. 19, if the template 50 is loaded on the frame 200 [or the mask unit sheet portion 220], a part of the lower surface of the mask 100 abuts against the upper portion of the frame 200 [or the mask unit sheet portion 220] . The upper part of the suction hole 229 formed in the frame 200 [or the mask unit sheet portion 220] corresponds to the lower surface of the mask 100, and the suction force (suction pressure) applying means corresponding to the lower part of the suction hole 229 will be sucked through the suction hole 229 The force VS [or suction pressure VS] is applied to the mask 100 so that the part of the mask 100 corresponding to the suction hole 229 can be pulled. As a result, the mask 100 can be more closely attached to the frame 200, and the bead WB can be generated more stably when laser welding is performed.

下部支撐單元90的上部可形成有吸附部95。吸附部95優選佈置在與形成於框架200[或者掩模單元片材部220]上的吸附孔229對應的位置。換而言之,吸附部95可佈置在能夠在下部支撐單元90上向吸附孔229集中地施加吸附力VS[或者吸附壓力VS]的位置。吸附部95可使用公知的可真空吸附的裝置,而且可以與外部的吸附壓力發生手段連接。作為一例,下部支撐單元90的內部形成有真空管道96,另一端與泵等的外部吸附壓力發生手段(未圖示)連接,一端可與吸附部95連接。與真空管道96連接的吸附部95的上部面形成有多個洞、狹縫等,從而可作為施加吸附壓力的通道使用。外部的吸附壓力發生手段與下部支撐單元90的多個真空管道96連接,從而可個別地針對每個真空管道96的吸附壓力進行控制,也可以同時對所有真空管道96的吸附壓力進行控制。The upper part of the lower support unit 90 may be formed with a suction part 95. The suction part 95 is preferably arranged at a position corresponding to the suction hole 229 formed on the frame 200 [or the mask unit sheet part 220]. In other words, the adsorption part 95 may be arranged at a position where the adsorption force VS [or the adsorption pressure VS] can be collectively applied to the adsorption hole 229 on the lower support unit 90. The adsorption part 95 can use a well-known vacuum adsorption device, and can be connected to an external adsorption pressure generating means. As an example, a vacuum pipe 96 is formed inside the lower support unit 90, the other end is connected to an external suction pressure generating means (not shown) such as a pump, and one end can be connected to the suction part 95. A plurality of holes, slits, etc. are formed on the upper surface of the suction part 95 connected to the vacuum pipe 96, so that it can be used as a passage for applying suction pressure. The external suction pressure generating means is connected to the plurality of vacuum pipes 96 of the lower support unit 90, so that the suction pressure of each vacuum pipe 96 can be controlled individually, or the suction pressure of all vacuum pipes 96 can be controlled at the same time.

下部支撐單元90的吸附部95提供吸附力VS[或者吸附壓力VS],而且該吸附力VS通過吸附孔229施加在掩模100上,由此掩模100可受到向吸附部95側(下部側)的拉拽。與此同時,掩模100與框架200[或者主單元片材部220]的介面可相互緊密地接觸。The suction portion 95 of the lower support unit 90 provides suction force VS [or suction pressure VS], and the suction force VS is applied to the mask 100 through the suction holes 229, whereby the mask 100 can be received to the suction portion 95 side (lower side) ) Of the pull. At the same time, the interface of the mask 100 and the frame 200 [or the main unit sheet portion 220] can be in close contact with each other.

由於吸附部95用力拉拽掩模100,因此掩模100與框架200的介面之間不存在細微的氣隙。結果,由於掩模100與框架200[圖19的放大圖中,第一柵格片材部223]緊貼,因此即使鐳射L照射到焊接部WP的任何位置,也可使焊珠WB在掩模100與框架200之間很好地生成。焊珠WB使掩模100與框架200一體連接,從而具有可穩定地進行焊接的優點。Since the suction part 95 strongly pulls the mask 100, there is no fine air gap between the interface of the mask 100 and the frame 200. As a result, since the mask 100 and the frame 200 [the enlarged view of FIG. 19, the first grid sheet portion 223] are in close contact, even if the laser L is irradiated to any position of the welding part WP, the welding bead WB can be hidden. The mold 100 and the frame 200 are well generated. The solder ball WB connects the mask 100 and the frame 200 integrally, and thus has an advantage that the soldering can be performed stably.

如圖10中所述,下部支撐單元90也可以與框架支撐單元25一體形成。再參照圖19,下部支撐單元90[框架支撐單元25]的下部佈置有加熱單元29,從而可通過加熱使工藝區域的溫度控制為第一溫度、第二溫度等。As described in FIG. 10, the lower support unit 90 may also be integrally formed with the frame support unit 25. 19 again, a heating unit 29 is arranged at the lower portion of the lower support unit 90 [frame support unit 25] so that the temperature of the process area can be controlled to the first temperature, the second temperature, etc. by heating.

圖20是示出本發明的一實施例涉及的將掩模100附著在框架200之後將掩模100與模板50分離的過程的示意圖。FIG. 20 is a schematic diagram showing a process of separating the mask 100 from the template 50 after attaching the mask 100 to the frame 200 according to an embodiment of the present invention.

參照圖20,將掩模100附著在框架200之後,可將掩模100與模板50進行分離(debonding)。掩模100與模板50的分離可通過對臨時黏合部55進行加熱EP、化學處理CM、施加超聲波US,施加紫外線UV中至少任意一個而執行。由於掩模100維持附著在框架200的狀態,因此可只抬起模板50。作為一例,如果施加高於85℃~100℃的溫度的熱EP,則臨時黏合部55的黏性降低,掩模100與模板50的黏合力減弱,從而可分離掩模100與模板50。作為另一例,可通過利用將臨時黏合部55沉浸CM在IPA、丙酮、乙醇等化學物質中以使臨時黏合部55溶解、去除等方式來分離掩模100與模板50。作為另一例,通過施加超聲波US或者施加之紫外線UV使掩模100與模板50的黏合力減弱,從而可分離掩模100與模板50。Referring to FIG. 20, after the mask 100 is attached to the frame 200, the mask 100 and the template 50 may be debonded. The separation of the mask 100 and the template 50 can be performed by heating EP, chemical treatment CM, applying ultrasonic waves US, and applying ultraviolet UV to the temporary bonding part 55 by at least any one of them. Since the mask 100 remains attached to the frame 200, only the template 50 can be lifted. As an example, if heat EP at a temperature higher than 85° C. to 100° C. is applied, the viscosity of the temporary bonding portion 55 decreases, and the adhesive force between the mask 100 and the template 50 is weakened, so that the mask 100 and the template 50 can be separated. As another example, the mask 100 and the template 50 can be separated by immersing the temporary bonding part 55 in a chemical substance such as IPA, acetone, ethanol, etc. to dissolve or remove the temporary bonding part 55. As another example, the adhesive force between the mask 100 and the template 50 is weakened by applying ultrasonic waves US or applying ultraviolet rays, so that the mask 100 and the template 50 can be separated.

進一步而言,作為黏合掩模100與模板50的媒介的臨時黏合部55為TBDB黏合材料(temporary bonding & debonding adhesive),從而可使用各種分離(debonding)方法。Furthermore, the temporary bonding part 55 as a medium for bonding the mask 100 and the template 50 is a TBDB bonding material (temporary bonding & debonding adhesive), so that various debonding methods can be used.

作為一例,可使用基於化學處理CM的溶劑分離(Solvent Debonding)方法。可基於溶劑(solvent)的滲透使臨時黏合部55溶解並進行分離。此時,掩模100上已形成有圖案P,因此溶劑可通過掩模圖案P及掩模100與模板50的分界滲透。溶劑分離可在常溫(room temperature)下進行,由於無需額外的複雜的分離設備,因此相比於其他分離方法具有相對廉價的優點。As an example, a solvent separation (Solvent Debonding) method based on chemical treatment of CM can be used. The temporary bonding part 55 can be dissolved and separated based on the penetration of a solvent. At this time, the pattern P is already formed on the mask 100, so the solvent can penetrate through the mask pattern P and the boundary between the mask 100 and the template 50. Solvent separation can be carried out at room temperature. Since no additional complicated separation equipment is required, it has the advantage of being relatively inexpensive compared to other separation methods.

作為另一例,可使用基於加熱EP的熱分離(Heat Debonding)方法。通過利用高溫的熱來誘導臨時黏合部55的分解,如果掩模100與模板50間的黏合力減弱,則可向上下方向或者左右方向進行分離。As another example, a heat debonding method based on heating EP can be used. By using high-temperature heat to induce the decomposition of the temporary adhesive part 55, if the adhesive force between the mask 100 and the template 50 is weakened, the separation can be carried out in the up and down direction or the left and right direction.

作為另一例,可使用基於加熱EP、施加紫外線UV等的剝離黏合劑分離(Peelable Adhesive Debonding)方法。當臨時黏合部55為熱剝離膠帶時,可利用剝離黏合劑分離方法來進行分離,該方法無需進行如熱分離方法的高溫熱處理且無需額外設置高價的熱處理設備,具有進行過程相對簡單的優點。As another example, a Peelable Adhesive Debonding method based on heating EP, applying ultraviolet UV, or the like can be used. When the temporary bonding part 55 is a thermal peeling tape, the peeling adhesive separation method can be used for separation. This method does not require high-temperature heat treatment such as the thermal separation method and does not require additional expensive heat treatment equipment, which has the advantage of relatively simple process.

作為另一例,可使用基於化學處理CM、施加超聲波US、施加紫外線UV等的常溫分離(Room Temperature Debonding)方法。如果在掩模100或者模板50的一部分(中心部)進行non-sticky處理,則通過使用臨時黏合部55只黏合在邊緣部分上。此外,分離時溶劑滲透到邊緣部分使臨時黏合部55溶解從而實現分離。該方法具有在黏合和分離的過程中除掩模100、模板50的邊緣區域以外的剩餘部分不發生直接的損失或者分離時不發生因黏合材料殘留物(residue)導致的缺陷等優點。此外,不同於熱分離法,由於在分離時無需高溫熱處理過程,因此具有可相對縮減工藝成本的優點。As another example, a room temperature separation (Room Temperature Debonding) method based on chemical treatment of CM, application of ultrasonic waves US, application of ultraviolet rays UV, etc. may be used. If the non-sticky process is performed on a part (central part) of the mask 100 or the template 50, the temporary adhesive part 55 is used to adhere only to the edge part. In addition, during separation, the solvent penetrates to the edge portion to dissolve the temporary adhesive portion 55 to achieve separation. This method has the advantages of no direct loss of the remaining parts except the edge regions of the mask 100 and the template 50 during the bonding and separation process or the defects caused by the residue of the bonding material during the separation. In addition, unlike the thermal separation method, since high-temperature heat treatment is not required during separation, it has the advantage of relatively reducing process costs.

圖21是示出本發明一實施例涉及的將掩模100對應至相鄰的框架200的單元區域CR的狀態的示意圖。FIG. 21 is a schematic diagram showing a state in which the mask 100 is corresponding to the cell region CR of the adjacent frame 200 according to an embodiment of the present invention.

參照圖21,可將掩模100對應至與附著有掩模100的掩模單元區域CR111相鄰的掩模單元區域CR121。工藝區域的溫度可維持圖17中上升至第一溫度ET的狀態。由此,掩模100可以在不施加拉伸力的狀態下維持第一溫度的體積。Referring to FIG. 21, the mask 100 may be corresponded to the mask cell region CR121 adjacent to the mask cell region CR111 to which the mask 100 is attached. The temperature of the process area can maintain the state of rising to the first temperature ET in FIG. 17. As a result, the mask 100 can maintain the volume at the first temperature in a state where no stretching force is applied.

可通過將模板50裝載在框架200[或者掩模單元片材部220]上來將掩模100對應至掩模單元區域CR121。通過控制模板50的位置將掩模100對應至掩模單元區域CR121的方法與圖17的過程相同。另外,也可將掩模100首先對應至與掩模單元區域CR111相鄰的掩模單元區域CR121以外的其他掩模單元區域CR。The mask 100 can be mapped to the mask unit area CR121 by loading the template 50 on the frame 200 [or the mask unit sheet part 220]. The method of mapping the mask 100 to the mask unit region CR121 by controlling the position of the template 50 is the same as the process in FIG. 17. In addition, the mask 100 may first correspond to the mask cell region CR other than the mask cell region CR121 adjacent to the mask cell region CR111.

接下來,可通過向掩模100照射鐳射L並基於鐳射焊接將掩模100附著在框架200上。鐳射焊接的掩模的焊接部部分上形成有焊珠WB,焊珠WB可具有與掩模100/框架200相同的材料且與它們一體連接。Next, the mask 100 may be attached to the frame 200 by irradiating the laser L to the mask 100 and based on laser welding. Solder beads WB are formed on the welding part of the laser-welded mask, and the solder beads WB may have the same material as the mask 100/frame 200 and be integrally connected with them.

圖22是示出本發明是示出本發明一實施例涉及的將掩模100附著至相鄰的框架200的單元區域CR之後將掩模100與模板50分離的過程示意圖。FIG. 22 is a schematic diagram showing the process of separating the mask 100 from the template 50 after attaching the mask 100 to the cell region CR of the adjacent frame 200 according to an embodiment of the present invention.

參照圖22,將掩模100附著在框架200之後,可將掩模100與模板50進行分離(debonding)。掩模100與模板50的分離可通過對臨時黏合部55進行加熱EP、化學處理CM、施加超聲波US、施加紫外線UV中至少任意一個而執行。由於掩模100維持附著在框架200的狀態,因此可只抬起模板50。這與圖20中敘述的內容相同。Referring to FIG. 22, after the mask 100 is attached to the frame 200, the mask 100 and the template 50 may be debonded. The separation of the mask 100 and the template 50 can be performed by at least any one of heating EP, chemical treatment CM, applying ultrasonic waves US, and applying ultraviolet UV to the temporary bonding part 55. Since the mask 100 remains attached to the frame 200, only the template 50 can be lifted. This is the same as described in Figure 20.

圖23是示出本發明一實施例涉及的將掩模100附著到框架200的狀態的示意圖。FIG. 23 is a schematic diagram showing a state in which the mask 100 is attached to the frame 200 according to an embodiment of the present invention.

然後,參照圖23,可執行將掩模100對應至剩餘的掩模單元區域CR並進行附著的過程。所有的掩模100可附著在框架200的掩模單元區域CR上。Then, referring to FIG. 23, a process of mapping and attaching the mask 100 to the remaining mask cell region CR may be performed. All the masks 100 may be attached on the mask unit area CR of the frame 200.

現有的圖1的掩模10包括6個單元C1~C6,因此具有較長的長度,而本發明的掩模100包括一個單元C,因此具有較短的長度,因此PPA(pixel position accuracy)扭曲的程度會變小。假設包括多個單元C1~C6…的掩模10的長度為1m,並且在1m的總長度中發生10μm的PPA誤差,則本發明的掩模100可以隨著相對長度減小(相當於單元C數量減少)而將上述誤差範圍變成1/n。例如,本發明的掩模100長度為100mm,則具有從現有的掩模10的1m減小為1/10的長度,因此在100mm的總長度中發生1μm的PPA誤差,顯著降低對準誤差。The existing mask 10 of FIG. 1 includes 6 cells C1 to C6, and therefore has a relatively long length, while the mask 100 of the present invention includes one cell C, and therefore has a relatively short length, and therefore PPA (pixel position accuracy) is distorted. The degree will become smaller. Assuming that the length of the mask 10 including a plurality of cells C1~C6... is 1m, and a PPA error of 10μm occurs in the total length of 1m, the mask 100 of the present invention can be reduced with the relative length (equivalent to cell C The number is reduced) and the above-mentioned error range becomes 1/n. For example, the mask 100 of the present invention has a length of 100 mm, which has a length reduced from 1 m of the existing mask 10 to 1/10. Therefore, a PPA error of 1 μm occurs in a total length of 100 mm, which significantly reduces the alignment error.

另一方面,掩模100具備多個單元C,並且即使使各個單元C與框架200的各個單元區域CR對應仍處於對準誤差最小化的範圍內,則掩模100也可以與框架200的多個掩模單元區域CR對應。或者,具有多個單元C的掩模100也可以與一個掩模單元區域CR對應。在這種情況下,考慮到基於對準的工藝時間和生產性,掩模100優選具備盡可能少量的單元C。On the other hand, the mask 100 includes a plurality of cells C, and even if each cell C corresponds to each cell area CR of the frame 200, the alignment error is still minimized, the mask 100 can also be more than the frame 200. Each mask cell area CR corresponds to each other. Alternatively, the mask 100 having a plurality of cells C may also correspond to one mask cell region CR. In this case, in consideration of the process time and productivity based on alignment, the mask 100 is preferably provided with as few cells C as possible.

在本發明中,由於只需匹配掩模100的一個單元C並確認對準狀態即可,因此與同時匹配多個單元C(C1~C6)並需要確認全部對準狀態的現有方法相比,可以顯著縮短製造時間。In the present invention, since only one cell C of the mask 100 needs to be matched and the alignment state is confirmed, compared with the existing method that simultaneously matches a plurality of cells C (C1 to C6) and needs to confirm all the alignment states, The manufacturing time can be significantly reduced.

即,本發明的框架一體型掩模的製造方法與同時匹配6個單元C1~C6並同時確認6個單元C1~C6的對準狀態的現有方法相比,通過使包含於6個掩模100的各個單元C11~C16分別與一個單元區域CR11~CR16對應並通過確認各個對準狀態的6次過程,能夠明顯縮短時間。That is, the manufacturing method of the frame-integrated mask of the present invention is compared with the conventional method of matching 6 cells C1 to C6 at the same time and confirming the alignment state of the 6 cells C1 to C6 at the same time. Each of the cells C11~C16 corresponds to a cell area CR11~CR16, and the time can be significantly shortened through the 6 processes of confirming the alignment status of each.

另外,在本發明的框架一體型掩模的製造方法,在使30個掩模100分別與30個單元區域CR(CR11~CR56)對應並對準的30次的過程中的產品收率,可以明顯高於使分別包括6個單元C1~C6的5個掩模10(參照圖2的(a))與框架20對應並對準的5次過程中的現有產品的收率。由於在每次對應於6個單元C的區域中對準6個單元C1~C6的現有方法是明顯繁瑣且困難的作業,而且產品收率低。In addition, in the manufacturing method of the frame-integrated mask of the present invention, the product yield in the process of aligning 30 masks 100 with 30 cell regions CR (CR11 to CR56) for 30 times can be It is significantly higher than the yield of the existing product in five processes in which five masks 10 (refer to (a) of FIG. 2) each including six cells C1 to C6 correspond to and align with the frame 20. Because the existing method of aligning the 6 cells C1 to C6 in the area corresponding to the 6 cells C at a time is an obviously tedious and difficult operation, and the product yield is low.

圖24是示出本發明一實施例涉及的將掩模100附著至框架200的單元區域CR之後使工藝區域的溫度下降的過程的示意圖。FIG. 24 is a schematic diagram showing a process of lowering the temperature of the process area after attaching the mask 100 to the cell area CR of the frame 200 according to an embodiment of the present invention.

然後,參照圖24,將工藝區域的溫度下降至第二溫度LT。“第二溫度”可指,低於第一溫度的溫度。考慮到第一溫度約為25℃至60℃,第二溫度以低於第一溫度為前提,可約為20℃至30℃,優選地,第二溫度可以是常溫。工藝區域的溫度下降可通過加熱單元29來控制,或者在腔室設置冷卻手段或者在工藝區域周圍設置冷卻手段的方法,以及常溫下自然冷卻的方法等來執行。Then, referring to FIG. 24, the temperature of the process area is lowered to the second temperature LT. The "second temperature" may refer to a temperature lower than the first temperature. Considering that the first temperature is about 25°C to 60°C, the second temperature is assumed to be lower than the first temperature, and may be about 20°C to 30°C. Preferably, the second temperature may be normal temperature. The temperature drop in the process area can be controlled by the heating unit 29, or performed by a method of installing a cooling means in the chamber or a cooling means around the process area, or a method of natural cooling at room temperature.

如果工藝區域的溫度下降至第二溫度LT,則掩模100可以預定的長度進行熱收縮。掩模100可沿著所有側面方向以各向同性地進行熱收縮。只是,由於掩模100通過焊接固定連接在框架200[或者掩模單元片材部220],因此掩模100的熱收縮本身向周圍的掩模單元片材部220施加張力TS。基於掩模100自身施加的張力TS,掩模100可更加繃緊地附著在框架200上。If the temperature of the process area drops to the second temperature LT, the mask 100 may be thermally shrunk by a predetermined length. The mask 100 may be thermally shrunk isotropically along all side directions. However, since the mask 100 is fixedly connected to the frame 200 [or the mask unit sheet portion 220] by welding, the thermal shrinkage of the mask 100 itself applies tension TS to the surrounding mask unit sheet portion 220. Based on the tension TS applied by the mask 100 itself, the mask 100 may be more tightly attached to the frame 200.

此外,在掩模100全部附著在對應的掩模單元區域CR上之後,工藝區域的溫度將下降至第二溫度LT,由此所有掩模100同時產生熱收縮,因此導致框架200發生變形或者圖案P的對準誤差變大的問題。進一步說明,即使張力TS施加到掩模單元片材部220,也由於多個掩模100施加向相反的方向收縮的張力TS,所述張力TS相互抵消,因此掩模單元片材部220上不會發生變形。例如,在CR11單元區域上附著的掩模100與CR12單元區域上附著的掩模100之間的第一柵格片材部223中,附著在CR11單元區域上的掩模100向右側方向作用的張力TS與附著在CR12單元區域上的掩模100向左側方向作用的張力TS可相互抵消。由此,通過最小化框架200[或者掩模單元片材部220]因張力TS發生的變形,從而具有可最小化掩模100[或者,掩模圖案P]的對準誤差的優點。In addition, after the mask 100 is all attached to the corresponding mask unit area CR, the temperature of the process area will drop to the second temperature LT, and thus all the masks 100 will be thermally contracted at the same time, thus causing the frame 200 to be deformed or patterned. The problem that the alignment error of P becomes large. To further explain, even if the tension TS is applied to the mask unit sheet portion 220, since the plurality of masks 100 apply the tension TS contracting in opposite directions, the tensions TS cancel each other out, and therefore, the mask unit sheet portion 220 does not It will be deformed. For example, in the first grid sheet portion 223 between the mask 100 attached to the CR11 cell area and the mask 100 attached to the CR12 cell area, the mask 100 attached to the CR11 cell area acts on the right side. The tension TS and the tension TS acting in the left direction of the mask 100 attached to the CR12 cell area can cancel each other out. Therefore, by minimizing the deformation of the frame 200 [or the mask unit sheet portion 220] due to the tension TS, there is an advantage that the alignment error of the mask 100 [or the mask pattern P] can be minimized.

圖25是示出本發明的一實施例涉及的利用框架一體型掩模100、200的OLED像素沉積裝置1000的示意圖。FIG. 25 is a schematic diagram showing an OLED pixel deposition apparatus 1000 using frame-integrated masks 100 and 200 according to an embodiment of the present invention.

參照圖25,OLED像素沉積裝置1000包括:磁板300,其容納有磁體310,並且排布有冷卻水管350;沉積源供給部500,其從磁板300的下部供給有機物原料600。25, the OLED pixel deposition apparatus 1000 includes a magnetic plate 300 containing a magnet 310 and arranged with cooling water pipes 350, and a deposition source supply part 500 that supplies an organic material 600 from a lower portion of the magnetic plate 300.

磁板300與沉積源沉積部500之間可以插入有用於沉積有機物源600的玻璃等目標基板900。目標基板900上可以以緊貼或非常接近的方式配置有使有機物源600按不同像素沉積的框架一體型掩模100、200(或者FMM)。磁體310可以產生磁場,並通過磁場緊貼到目標基板900上。A target substrate 900 such as glass for depositing the organic matter source 600 may be inserted between the magnetic plate 300 and the deposition source deposition part 500. The target substrate 900 may be provided with a frame-integrated mask 100, 200 (or FMM) for depositing the organic matter source 600 according to different pixels in a close or very close manner. The magnet 310 can generate a magnetic field and tightly adhere to the target substrate 900 through the magnetic field.

沉積源供給部500可以往返左右路徑並供給有機物源600,由沉積源供給部500供給的有機物源600可以通過形成於框架一體型掩模100、200的圖案P附著至目標基板900的一側。通過框架一體型掩模100、200的圖案P後沉積的有機物源600,可以用作OLED的像素700。The deposition source supply part 500 can reciprocate left and right paths and supply the organic material source 600. The organic material source 600 supplied by the deposition source supply part 500 can be attached to one side of the target substrate 900 through the pattern P formed on the frame-integrated mask 100, 200. The organic material source 600 deposited after passing through the pattern P of the frame-integrated mask 100 and 200 can be used as the pixel 700 of the OLED.

為了防止由於陰影效應(Shadow Effect)發生的像素700的不均勻沉積,框架一體型掩模100、200的圖案可以傾斜地形成S(或者以錐形S形成)。沿著傾斜表面,在對角線方向上通過圖案的有機物源600,也可以有助於像素700的形成,因此,能夠整體上厚度均勻地沉積像素700。In order to prevent the uneven deposition of the pixels 700 due to the shadow effect, the pattern of the frame-integrated masks 100, 200 may be formed in an obliquely S (or formed in a tapered S). The organic material source 600 passing through the pattern in the diagonal direction along the inclined surface can also contribute to the formation of the pixel 700, and therefore, the pixel 700 can be deposited with a uniform thickness as a whole.

在高於像素沉積工藝溫度的第一溫度下,掩模100附著固定於框架200上,因此即使提升至用於沉積像素工藝的溫度,也對掩模圖案P的位置幾乎不構成影響,掩模100和與其相鄰的掩模100之間的PPA能夠保持為不超過3μm。At a first temperature higher than the temperature of the pixel deposition process, the mask 100 is attached and fixed on the frame 200, so even if it is raised to the temperature used for the pixel deposition process, the position of the mask pattern P is hardly affected. The PPA between 100 and the mask 100 adjacent thereto can be maintained to be no more than 3 μm.

另外,當發生附著在框架200的掩模100中夾雜有雜質或者掩模圖案P發生損傷等缺陷時,有必要替換掩模100。或者,當掩模100附著到框架200上但掩模圖案P的一部分對準不準確時,也有必要通過替換掩模100使對準準確。In addition, when defects such as impurities are included in the mask 100 attached to the frame 200 or the mask pattern P is damaged, it is necessary to replace the mask 100. Or, when the mask 100 is attached to the frame 200 but a part of the mask pattern P is incorrectly aligned, it is also necessary to replace the mask 100 to make the alignment accurate.

這種情況下,無需工藝區域的溫度變化就直接將掩模100從框架200分離時,由於除單元區域CR11以外的剩餘的單元區域CR12、CR13、CR21、…上附著的掩模100的張力TS,框架200可發生細微的變形。這種變形可導致掩模圖案P及掩模單元C沿著PL線依次發生對準誤差(參照圖23的放大部分)。即,隨著將任意一個掩模100[單元區域CR111的掩模100]從框架200分離,多個掩模100向相互相反方向的施加張力TS而相互抵消的力將重新作用於框架200,從而發生對準誤差。In this case, when the mask 100 is directly separated from the frame 200 without a temperature change in the process area, due to the tension TS of the mask 100 attached to the remaining cell areas CR12, CR13, CR21, ... except for the cell area CR11 , The frame 200 may be slightly deformed. Such deformation may cause alignment errors of the mask pattern P and the mask unit C to occur sequentially along the PL line (refer to the enlarged part of FIG. 23). That is, as any one of the masks 100 [the mask 100 of the cell area CR111] is separated from the frame 200, the forces that cancel each other by applying tension TS in opposite directions from the multiple masks 100 will act on the frame 200 again, thereby An alignment error has occurred.

因此,本發明的特徵在於,重新調整至使這種張力TS不作用於框架200的狀態之後,再將發生缺陷而需要分離/替換的目標掩模100[作為一例,包括掩模單元C11的掩模100]進行分離/替換。Therefore, the present invention is characterized in that after readjusting to a state where this tension TS does not act on the frame 200, the target mask 100 that needs to be separated/replaced due to defects occurs again [As an example, the mask including the mask unit C11 Module 100] for separation/replacement.

首先,可使工藝區域的溫度上升至第一溫度ET。第一溫度可指,將框架一體型掩模用於OLED像素沉積工藝時,等於或者高於像素沉積工藝溫度的溫度。考慮到像素沉積工藝溫度可約為25~45℃,第一溫度可約為25℃至60℃。這與圖17中上升至第一溫度ET的情況相同。First, the temperature of the process area can be raised to the first temperature ET. The first temperature may refer to a temperature equal to or higher than the temperature of the pixel deposition process when the frame-integrated mask is used in the OLED pixel deposition process. Considering that the pixel deposition process temperature may be about 25 to 45°C, the first temperature may be about 25 to 60°C. This is the same as the case of rising to the first temperature ET in FIG. 17.

如果工藝區域的溫度上升至第一溫度ET,則熱收縮的掩模100同時產生預定的熱膨脹。熱膨脹的程度相當於解除張力TS的程度。換而言之,如果工藝區域的溫度上升至第一溫度ET,則附著在框架200上的掩模100上施加的張力TS將被解除。因此,掩模100及框架200可變為無應力(stree free)的狀態。If the temperature of the process area rises to the first temperature ET, the thermally contracted mask 100 simultaneously generates a predetermined thermal expansion. The degree of thermal expansion corresponds to the degree of release of the tension TS. In other words, if the temperature of the process area rises to the first temperature ET, the tension TS applied to the mask 100 attached to the frame 200 will be released. Therefore, the mask 100 and the frame 200 can be changed to a stree free state.

然後,可將需要分離替換的目標掩模100從框架200分離。可通過向目標掩模100施加物理力來使掩模100從框架200分離。只是,為了防止作用於框架200的力導致發生變形,當揭下一個邊時有必要對剩餘的邊進行擠壓。Then, the target mask 100 that needs to be separated and replaced may be separated from the frame 200. The mask 100 can be separated from the frame 200 by applying a physical force to the target mask 100. However, in order to prevent deformation caused by the force acting on the frame 200, it is necessary to squeeze the remaining side when one side is peeled off.

將包括掩模單元C11的掩模100的一側稜角(右側稜角)從框架200揭下之後,可將另一側稜角(左側稜角)從框架200揭下。具體來說,掩模100的一側稜角可以是附著在作為掩模單元區域CR111的右側稜角的第一柵格片材部223上的狀態。因此,通過向掩模100的一側稜角施加外力以將其揭下時,存在由於掩模100與框架200[第一柵格片材部223]的附著力導致第一柵格片材部223的部分發生變形的問題。因此,有必要將框架200[第一柵格片材部223]緊緊地固定之後揭下掩模100。After peeling off one side corner (right side corner) of the mask 100 including the mask unit C11 from the frame 200, the other side corner (left side corner) can be peeled off from the frame 200. Specifically, one side corner of the mask 100 may be attached to the first grid sheet portion 223 as the right corner of the mask unit region CR111. Therefore, when an external force is applied to one edge of the mask 100 to remove it, there is the first grid sheet portion 223 due to the adhesion force between the mask 100 and the frame 200 [first grid sheet portion 223] Deformation of the part occurred. Therefore, it is necessary to remove the mask 100 after tightly fixing the frame 200 [the first grid sheet portion 223].

為了抵抗外力而牢牢地固定框架200,可對外力直接作用的掩模100的一側稜角(右側稜角)的外側部分進行擠壓。即,可對位於附著的掩模100一側稜角的外側的框架200[第一柵格片材部223]部分進行擠壓。擠壓優選對相較於一側稜角更靠近外側的框架200[第一柵格片材部223]部分的上部面和下部面的兩面進行。上部面可使用加壓條(未圖示)進行擠壓,下部面可使用用於支撐框架200的下部支撐單元90[參照圖19]進行擠壓。將另一側稜角(左側稜角)從框架200揭下時,也可同樣對另一側稜角(左側稜角)的外側部分進行擠壓。In order to firmly fix the frame 200 against external forces, the outer part of one side corner (right side corner) of the mask 100 that can directly act on the external force is squeezed. That is, the part of the frame 200 [the first grid sheet portion 223] located outside the corner of the attached mask 100 can be pressed. The pressing is preferably performed on both the upper surface and the lower surface of the portion of the frame 200 [first grid sheet portion 223] that is closer to the outside than one side corner. The upper surface can be squeezed using a pressure bar (not shown), and the lower surface can be squeezed using a lower support unit 90 [refer to FIG. 19] for supporting the frame 200. When the other side corner (left side corner) is peeled off from the frame 200, the outer part of the other side corner (left side corner) can also be squeezed in the same way.

然後,可將待替換的新掩模100對應至掩模單元區域CR111。通過將模板50裝載到框架200[或者,掩模單元片材部220]上可實現將掩模100對應至掩模單元區域CR111。接下來,通過向掩模100照射鐳射L並基於鐳射焊接將掩模100附著在框架200上。這與圖18的過程相同。Then, the new mask 100 to be replaced can be mapped to the mask unit area CR111. By loading the template 50 on the frame 200 [or, the mask unit sheet part 220], the mask 100 can be mapped to the mask unit area CR111. Next, the mask 100 is attached to the frame 200 by irradiating the laser L to the mask 100 and based on laser welding. This is the same process as in Figure 18.

然後,可將工藝區域的溫度下降至第二溫度LT。考慮到第一溫度約為25℃至60℃,第二溫度以低於第一溫度為前提,可約為20℃至30℃,優選地,第二溫度可為常溫。這與圖21中下降至第二溫度LT的情況相同。Then, the temperature of the process zone can be lowered to the second temperature LT. Considering that the first temperature is about 25°C to 60°C, and the second temperature is lower than the first temperature, it may be about 20°C to 30°C. Preferably, the second temperature may be normal temperature. This is the same as the case of dropping to the second temperature LT in FIG. 21.

如果工藝區域的溫度下降至第二溫度LT,則掩模100可以以預定長度進行熱收縮。掩模100可沿著側面方向進行熱收縮。與此同時,由於多個掩模100以相互相反的方向施加張力TS導致該力相互抵消,因此,掩模單元片材部220上不發生變形。If the temperature of the process area drops to the second temperature LT, the mask 100 may be thermally shrunk by a predetermined length. The mask 100 may be thermally shrunk in the lateral direction. At the same time, since the plurality of masks 100 apply tension TS in opposite directions to each other, the forces cancel each other out. Therefore, the mask unit sheet portion 220 does not deform.

如上所述,當分離/替換發生缺陷的掩模100時,由於通過將工藝區域的溫度上升至第一溫度使分離/替換在無應力的狀態下進行,因此可防止框架200的變形,而且不產生掩模圖案P、掩模單元C的對準誤差,具有可穩定地分離/替換掩模100的優點。As described above, when the defective mask 100 is separated/replaced, since the separation/replacement is performed in a stress-free state by raising the temperature of the process area to the first temperature, the deformation of the frame 200 can be prevented, and the deformation of the frame 200 can be prevented. The occurrence of alignment errors of the mask pattern P and the mask unit C has the advantage that the mask 100 can be stably separated/replaced.

如上所述,本發明列舉了優選實施例進行圖示和說明,但是不限於上述實施例,在不脫離本發明的精神的範圍內,本領域技術人員能夠進行各種變形和變更。這種變形及變更均落在本發明和所附的申請專利範圍的範圍內。As described above, the present invention exemplifies preferred embodiments for illustration and description, but is not limited to the above-mentioned embodiments, and those skilled in the art can make various modifications and changes within the scope not departing from the spirit of the present invention. Such deformations and changes fall within the scope of the present invention and the attached patent application.

1:掩模 2:OLED像素沉積框架 3:夾持器 4:y軸移動軌道 5:預熱部、Z軸移動軌道 6:OLED像素 10:製造裝置 10':薄掩模 13:圖案 14:圖案傾斜地形成 15:桌子 19:後面圖 20:工作臺部 21:裝載部 23:框架對準單元 25:框架支撑單元 26:空白空間 27:工作臺移動部 29:加熱單元 30:夾具部 31:夾具單元 32:吸附單元 33:輔助單元 34:夾具加熱單元 35:夾具移動單元 34:夾具加熱單元 37:連接單元 40:夾具移動部 41:基座單元 43:夾具支撑單元 44:基座軌道單元 45:夾具支撑單元 50:模板 50a:中心部 50b:邊緣部 51:鐳射貫穿孔 55:臨時黏合部 56:芯膜 57a、57b:黏合層 58a、58b:剝離膜、離型膜 60:頭部 61、61a、61b:鐳射單元 65:照相機單元 67:不良分析單元 70、71、75:頭移動部 76:X軸引導器 80:消振台 90:下部支撐單元 95:吸附部 96:真空管道 100:掩模 110:掩模膜 110':掩模金屬膜 200:框架 210:邊緣框架部 220、220':掩模單元片材部 221:邊緣片材部 223:第一柵格片材部 225:第二柵格片材部 229:吸附孔 1000:OLED像素沉積裝置 C(C1~C6):單元 CM:化學處理 CR(CR11~CR56)、CR111、CR121、CR111:掩模單元區域 D1~D1''、D2~D2'':距離 DM:(掩模)虛擬部 ET:將工藝區域的溫度上升至第一溫度 EP:加熱 F1~F2:拉伸 H:熱處理 L:鐳射 LT:將工藝區域的溫度下降至第二溫度 P:掩模圖案 PL:線 PD':像素間隔 T1、T2:厚度 TS:張力 R:中空區域 W:焊接 WB:焊珠 WP:焊接部 VS:吸附(壓)力 US:施加超聲波 UV:紫外線 X、Y、Z、θ:軸1: mask 2: OLED pixel deposition frame 3: gripper 4: y-axis moving track 5: Preheating part, Z-axis moving track 6: OLED pixels 10: Manufacturing device 10': thin mask 13: pattern 14: The pattern is formed obliquely 15: table 19: Rear view 20: Workbench Department 21: Loading department 23: Frame alignment unit 25: Frame support unit 26: Blank space 27: Workbench mobile department 29: heating unit 30: Fixture Department 31: Fixture unit 32: Adsorption unit 33: auxiliary unit 34: Fixture heating unit 35: Fixture moving unit 34: Fixture heating unit 37: Connection unit 40: Fixture moving part 41: base unit 43: Fixture support unit 44: Base rail unit 45: Fixture support unit 50: template 50a: Center 50b: Edge 51: laser through hole 55: Temporary bonding part 56: core membrane 57a, 57b: Adhesive layer 58a, 58b: peeling film, release film 60: head 61, 61a, 61b: laser unit 65: camera unit 67: Bad Analysis Unit 70, 71, 75: head moving part 76: X-axis guide 80: Vibration absorbing table 90: Lower support unit 95: Adsorption part 96: Vacuum pipeline 100: mask 110: Mask film 110': Mask metal film 200: frame 210: edge frame 220, 220': Mask unit sheet part 221: Edge sheet section 223: The first grid sheet part 225: The second grid sheet part 229: Adsorption hole 1000: OLED pixel deposition device C(C1~C6): unit CM: Chemical treatment CR (CR11~CR56), CR111, CR121, CR111: mask unit area D1~D1``、D2~D2'': distance DM: (Mask) Virtual Department ET: Raise the temperature of the process area to the first temperature EP: heating F1~F2: Stretch H: Heat treatment L: Laser LT: Decrease the temperature of the process area to the second temperature P: Mask pattern PL: line PD': pixel interval T1, T2: thickness TS: Tension R: hollow area W: welding WB: Solder bead WP: Welding Department VS: Adsorption (pressure) force US: Apply ultrasound UV: Ultraviolet X, Y, Z, θ: axis

圖1和圖2是示出現有的將掩模附著至框架的過程的示意圖。 圖3是示出在現有的拉伸掩模的過程中發生單元之間的對準誤差的示意圖。 圖4是示出本發明的一實施例涉及的框架一體型掩模的主視圖以及側剖視圖。 圖5是示出本發明的一實施例涉及的框架的主視圖以及側剖視圖。 圖6是示出本發明的一實施例涉及的框架製造過程的示意圖。 圖7是示出本發明的另一實施例涉及的框架的製造過程的示意圖。 圖8是示出現有的用於形成高解析度OLED的掩模的示意圖。 圖9是示出本發明的一實施例涉及的掩模的示意圖。 圖10和圖11是示出本發明一實施例涉及的框架一體型掩模的製造裝置的平面示意圖及正面示意圖。 圖12是本發明一實施例涉及的框架一體型掩模的製造裝置的部分放大示意圖。 圖13至圖14是示出本發明一實施例涉及的通過在模板上黏合掩模金屬膜並形成掩模,從而製造掩模支撐模板的過程的示意圖。 圖15是示出本發明一實施例涉及的臨時黏合部的放大截面示意圖。 圖16是示出本發明一實施例涉及的將掩模支撐模板裝載到框架上的過程的示意圖。 圖17是示出本發明一實施例涉及的將工藝區域的溫度上升之後將模板裝載在框架上並將掩模對應至框架的單元區域的狀態的示意圖。 圖18是示出本發明一實施例涉及的將掩模附著在框架上的過程的示意圖。 圖19是示出本發明的一實施例涉及的通過吸附孔向掩模施加吸附力的狀態的示意圖。 圖20是示出本發明的一實施例涉及的將掩模附著到框架上之後將掩模與模板進行分離的過程的示意圖。 圖21是示出本發明一實施例涉及的將掩模對應至相鄰的框架的單元區域的狀態的示意圖。 圖22是示出本發明一實施例涉及的將掩模附著至相鄰的框架的單元區域之後將掩模與模板分離的過程示意圖。 圖23是示出本發明一實施例涉及的將掩模附著到框架的狀態的示意圖。 圖24是示出本發明一實施例涉及的將掩模附著至框架的單元區域之後使工藝區域的溫度下降的過程的示意圖。 圖25是示出本發明一實施例涉及的利用框架一體型掩模的OLED像素沉積裝置的示意圖。Fig. 1 and Fig. 2 are schematic diagrams showing an existing process of attaching a mask to a frame. FIG. 3 is a schematic diagram showing that an alignment error between units occurs in the process of stretching a mask in the prior art. 4 is a front view and a side cross-sectional view showing a frame-integrated mask according to an embodiment of the present invention. Fig. 5 is a front view and a side sectional view showing a frame according to an embodiment of the present invention. Fig. 6 is a schematic diagram showing a frame manufacturing process related to an embodiment of the present invention. Fig. 7 is a schematic diagram showing a manufacturing process of a frame according to another embodiment of the present invention. FIG. 8 is a schematic diagram showing a conventional mask used to form a high-resolution OLED. Fig. 9 is a schematic diagram showing a mask according to an embodiment of the present invention. 10 and 11 are a schematic plan view and a schematic front view showing a manufacturing apparatus of a frame-integrated mask according to an embodiment of the present invention. FIG. 12 is a partially enlarged schematic diagram of a manufacturing apparatus of a frame-integrated mask according to an embodiment of the present invention. 13 to 14 are schematic diagrams illustrating a process of manufacturing a mask support template by bonding a mask metal film on the template and forming a mask according to an embodiment of the present invention. 15 is an enlarged schematic cross-sectional view showing a temporary bonding part according to an embodiment of the present invention. FIG. 16 is a schematic diagram showing a process of loading a mask support template on a frame according to an embodiment of the present invention. FIG. 17 is a schematic diagram showing a state in which a template is loaded on a frame after the temperature of a process area is increased, and the mask is corresponding to a unit area of the frame according to an embodiment of the present invention. FIG. 18 is a schematic diagram showing a process of attaching a mask to a frame according to an embodiment of the present invention. 19 is a schematic diagram showing a state in which an adsorption force is applied to a mask through an adsorption hole according to an embodiment of the present invention. 20 is a schematic diagram showing a process of separating the mask from the template after attaching the mask to the frame according to an embodiment of the present invention. FIG. 21 is a schematic diagram showing a state in which a mask is associated with a unit area of an adjacent frame according to an embodiment of the present invention. 22 is a schematic diagram showing a process of separating the mask from the template after attaching the mask to the unit area of the adjacent frame according to an embodiment of the present invention. FIG. 23 is a schematic diagram showing a state in which a mask is attached to a frame according to an embodiment of the present invention. FIG. 24 is a schematic diagram showing a process of lowering the temperature of a process area after attaching a mask to a cell area of a frame according to an embodiment of the present invention. FIG. 25 is a schematic diagram showing an OLED pixel deposition apparatus using a frame-integrated mask according to an embodiment of the present invention.

5:預熱部、Z軸移動軌道 5: Preheating part, Z-axis moving track

10:製造裝置 10: Manufacturing device

15:桌子 15: table

20:工作臺部 20: Workbench Department

21:裝載部 21: Loading department

23:框架對準單元 23: Frame alignment unit

25:框架支撑單元 25: Frame support unit

27:工作臺移動部 27: Workbench mobile department

29:加熱單元 29: heating unit

30:夾具部 30: Fixture Department

37:連接單元 37: Connection unit

40:夾具移動部 40: Fixture moving part

41:基座單元 41: base unit

43、45:夾具支撑單元 43, 45: fixture support unit

50:模板 50: template

60:頭部 60: head

61、61a、61b:鐳射單元 61, 61a, 61b: laser unit

65:照相機單元 65: camera unit

67:不良分析單元 67: Bad Analysis Unit

100:掩模 100: mask

200:框架 200: frame

CR:掩模單元區域 CR: Mask unit area

X、Y、Z:軸 X, Y, Z: axis

Claims (14)

一種框架一體型掩模的製造裝置,其特徵在於包括:工作臺部,其用於安置並支撐框架;夾具部,其用於夾緊黏合且支撐有掩模的模板;夾具移動部,其向X、Y、Z、θ軸中的至少任意一個方向移動夾具部;頭部,其用於向掩模的焊接部照射鐳射,且用於感應掩模的對準狀態;以及頭移動部,其向X、Y、Z軸中的至少任意一個方向移動頭部,工作臺部包括用於對準框架的位置的框架對準單元。 A manufacturing device for a frame-integrated mask, which is characterized by comprising: a worktable part for placing and supporting the frame; a clamp part for clamping a template that is bonded and supporting the mask; and a clamp moving part that faces Move the jig part in at least any one of the X, Y, Z, and θ axes; a head for irradiating the welding part of the mask with laser, and for sensing the alignment state of the mask; and a head moving part, which The head is moved in at least any one of the X, Y, and Z axes, and the worktable includes a frame alignment unit for aligning the position of the frame. 如請求項1所述的框架一體型掩模的製造裝置,其特徵在於,還包括預熱部,所述預熱部在夾具部夾緊模板之前,提供用於預熱黏合且支撐有掩模的模板的空間。 The apparatus for manufacturing a frame-integrated mask according to claim 1, further comprising a preheating part, which is provided for preheating bonding and supporting the mask before the clamping part clamps the template. Space for the template. 如請求項1所述的框架一體型掩模的製造裝置,其特徵在於,夾具部通過吸附模板的上部面的至少一部分進行夾緊。 The apparatus for manufacturing a frame-integrated mask according to claim 1, wherein the clamp portion is clamped by sucking at least a part of the upper surface of the template. 如請求項1所述的框架一體型掩模的製造裝置,其特徵在於,工作臺部包括用於使包括框架的工藝區域的溫度上升至第一溫度的加熱單元。 The apparatus for manufacturing a frame-integrated mask according to claim 1, wherein the table portion includes a heating unit for increasing the temperature of the process area including the frame to the first temperature. 如請求項1所述的框架一體型掩模的製造裝置,其特徵在於,夾具部包括: 夾具單元,其用於夾緊模板;夾具移動單元,其向X、Y、Z、θ軸中的至少任意一個方向移動夾具單元;以及連接單元,其用於將夾具移動單元連接至夾具移動部。 The apparatus for manufacturing a frame-integrated mask according to claim 1, wherein the jig part includes: A clamp unit for clamping the template; a clamp moving unit for moving the clamp unit to at least any one of the X, Y, Z, and θ axes; and a connecting unit for connecting the clamp moving unit to the clamp moving part . 如請求項5所述的框架一體型掩模的製造裝置,其特徵在於,夾具部還包括向夾緊的模板施加熱的夾具加熱單元。 The apparatus for manufacturing a frame-integrated mask according to claim 5, wherein the jig section further includes a jig heating unit that applies heat to the clamped template. 如請求項5所述的框架一體型掩模的製造裝置,其特徵在於,夾具單元上相距間隔地形成有向模板施加吸附壓力的多個吸附單元。 The apparatus for manufacturing a frame-integrated mask according to claim 5, wherein a plurality of suction units that apply suction pressure to the template are formed on the clamp unit at intervals. 如請求項7所述的框架一體型掩模的製造裝置,其特徵在於,多個吸附單元在掩模的焊接部與Z軸的區域上不發生重疊地佈置。 The apparatus for manufacturing a frame-integrated mask according to claim 7, wherein the plurality of suction units are arranged so as not to overlap the welding portion of the mask and the Z-axis area. 如請求項1所述的框架一體型掩模的製造裝置,其特徵在於,頭部包括鐳射單元,其通過向掩模照射鐳射使掩模與框架焊接,或者通過向掩模照射鐳射進行鐳射微調。 The apparatus for manufacturing a frame-integrated mask according to claim 1, wherein the head includes a laser unit that welds the mask to the frame by irradiating a laser to the mask, or performs laser fine adjustment by irradiating a laser to the mask . 如請求項9所述的框架一體型掩模的製造裝置,其特徵在於,一雙鐳射單元相隔地佈置,每個鐳射單元分別向掩模的一側、另一側的焊接部照射鐳射。 The device for manufacturing a frame-integrated mask according to claim 9, characterized in that a pair of laser units are spaced apart, and each laser unit irradiates the welding parts on one side and the other side of the mask with laser. 如請求項1所述的框架一體型掩模的製造裝置,其特徵在於,框架包括:邊緣框架部,其包括中空區域; 掩模單元片材部,其具有多個掩模單元區域,且與邊緣框架部連接。 The apparatus for manufacturing a frame-integrated mask according to claim 1, wherein the frame includes: an edge frame portion including a hollow area; The mask unit sheet part has a plurality of mask unit regions and is connected to the edge frame part. 如請求項11所述的框架一體型掩模的製造裝置,其特徵在於,與存在掩模單元區域的掩模單元片材部的稜角相隔預定距離的部分上形成有多個吸附孔,工作臺部還包括向框架的下部生成吸附壓力的下部支撐單元。 The apparatus for manufacturing a frame-integrated mask according to claim 11, wherein a plurality of suction holes are formed in a portion separated by a predetermined distance from the corners of the mask unit sheet portion where the mask unit area exists, and the workbench The part further includes a lower support unit that generates suction pressure to the lower part of the frame. 如請求項12所述的框架一體型掩模的製造裝置,其特徵在於,下部支撐單元的下部佈置有加熱單元。 The apparatus for manufacturing a frame-integrated mask according to claim 12, wherein a heating unit is arranged at a lower portion of the lower supporting unit. 如請求項1所述的框架一體型掩模的製造裝置,其特徵在於,第一溫度大於或者等於OLED像素沉積工藝溫度,將掩模附著在框架上之後,將包括框架的工藝區域的溫度下降至小於第一溫度的第二溫度,第一溫度是25℃至60℃中的任意一溫度,第二溫度是小於第一溫度的20℃至30℃中的任意一溫度,OLED像素沉積工藝溫度是25℃至45℃中的任意一溫度。 The apparatus for manufacturing a frame-integrated mask according to claim 1, wherein the first temperature is greater than or equal to the OLED pixel deposition process temperature, and after the mask is attached to the frame, the temperature of the process area including the frame is lowered To a second temperature less than the first temperature, the first temperature is any temperature from 25°C to 60°C, the second temperature is any temperature from 20°C to 30°C less than the first temperature, the OLED pixel deposition process temperature It is any temperature from 25°C to 45°C.
TW108142939A 2018-11-28 2019-11-26 Producing device of mask integrated frame TWI731481B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0149589 2018-11-28
KR1020180149589A KR102217812B1 (en) 2018-11-28 2018-11-28 Producing device of mask integrated frame

Publications (2)

Publication Number Publication Date
TW202036958A TW202036958A (en) 2020-10-01
TWI731481B true TWI731481B (en) 2021-06-21

Family

ID=70866500

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108142939A TWI731481B (en) 2018-11-28 2019-11-26 Producing device of mask integrated frame

Country Status (3)

Country Link
KR (1) KR102217812B1 (en)
CN (1) CN111230295B (en)
TW (1) TWI731481B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115537717B (en) * 2021-06-30 2024-06-11 上海微电子装备(集团)股份有限公司 Screen stretching device and method for metal mask and screen stretching equipment
US20230069081A1 (en) * 2021-08-30 2023-03-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for adjusting the gap between a wafer and a top plate in a thin-film deposition process
KR20230071472A (en) * 2021-11-16 2023-05-23 (주)에스티아이 Mask dry apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW459319B (en) * 1999-06-01 2001-10-11 Mitsubishi Electric Corp Method for mounting semiconductor elements
KR20040008314A (en) * 2002-07-18 2004-01-31 요업기술원 A preparation method of hydroxy apatite with improved antimicrobial property
TW200947156A (en) * 2007-11-20 2009-11-16 Samsung Mobile Display Co Ltd Method and apparatus for fabricating vertical deposition mask
TW201306652A (en) * 2011-08-25 2013-02-01 Hansong Co Ltd Apparatus for manufacturing divided mask frame assembly for big size of amoled multi cell TV and mobile panel using horizontal moving type gripper and anticline lighting device
TW201424060A (en) * 2012-10-17 2014-06-16 Nobukazu Kato Conductive pattern element and manufacturing method thereof
JP2015127441A (en) * 2013-12-27 2015-07-09 大日本印刷株式会社 Manufacturing method of vapor deposition mask device
CN107425135A (en) * 2017-05-05 2017-12-01 京东方科技集团股份有限公司 Mask plate fixes bottom plate and mask board fixer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100534580B1 (en) * 2003-03-27 2005-12-07 삼성에스디아이 주식회사 Deposition mask for display device and Method for fabricating the same
CN102717187B (en) * 2011-03-31 2015-03-25 昆山允升吉光电科技有限公司 Metal mask plate assembling machine
CN104097027A (en) * 2013-04-10 2014-10-15 昆山思拓机器有限公司 Manufacturing method of OLED (Organic Light Emitting Diode) metal mask plate
KR102227473B1 (en) * 2013-04-15 2021-03-15 삼성디스플레이 주식회사 Thin film deposition apparatus and method for forming thin film using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW459319B (en) * 1999-06-01 2001-10-11 Mitsubishi Electric Corp Method for mounting semiconductor elements
KR20040008314A (en) * 2002-07-18 2004-01-31 요업기술원 A preparation method of hydroxy apatite with improved antimicrobial property
TW200947156A (en) * 2007-11-20 2009-11-16 Samsung Mobile Display Co Ltd Method and apparatus for fabricating vertical deposition mask
TW201306652A (en) * 2011-08-25 2013-02-01 Hansong Co Ltd Apparatus for manufacturing divided mask frame assembly for big size of amoled multi cell TV and mobile panel using horizontal moving type gripper and anticline lighting device
TW201424060A (en) * 2012-10-17 2014-06-16 Nobukazu Kato Conductive pattern element and manufacturing method thereof
JP2015127441A (en) * 2013-12-27 2015-07-09 大日本印刷株式会社 Manufacturing method of vapor deposition mask device
CN107425135A (en) * 2017-05-05 2017-12-01 京东方科技集团股份有限公司 Mask plate fixes bottom plate and mask board fixer

Also Published As

Publication number Publication date
TW202036958A (en) 2020-10-01
CN111230295A (en) 2020-06-05
KR20200063638A (en) 2020-06-05
CN111230295B (en) 2021-12-24
KR102217812B1 (en) 2021-02-22

Similar Documents

Publication Publication Date Title
TWI731482B (en) Template for supporting mask, template for supporting mask metal sheet, producing method of template for supporting mask and producing method of mask integrated frame
TWI825149B (en) Producing method of mask integrated frame and frame
TWI758661B (en) Template for supporting mask and producing method thereof and producing method of mask integrated frame
TWI730512B (en) Producing method of mask integrated frame and mask changing method of mask integrated frame
TWI731481B (en) Producing device of mask integrated frame
KR101988498B1 (en) Template for supporting mask and producing methoe thereof and producing method of mask integrated frame
CN111224019A (en) Mask supporting template, method for manufacturing the same, and method for manufacturing frame-integrated mask
KR102217811B1 (en) Producing method of template for supporting mask and producing method of mask integrated frame
KR102101257B1 (en) Producing method of mask integrated frame
KR102196797B1 (en) Template for supporting mask and producing methoe thereof and producing method of mask integrated frame
KR102152686B1 (en) Producing device of mask integrated frame
TW202032833A (en) Producing method of mask, producing method of template for supporting mask and producing method of mask integrated frame
TWI826497B (en) Template for supporting mask and producing methoe thereof and producing method of mask integrated frame
KR101986527B1 (en) Producing method of mask integrated frame and frame
KR20210023918A (en) Template for supporting mask and producing method of mask integrated frame
KR20200143313A (en) Template for supporting mask
KR20200098297A (en) Producing method of mask integrated frame

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees