TWI730041B - 半導體裝置及其製造方法 - Google Patents

半導體裝置及其製造方法 Download PDF

Info

Publication number
TWI730041B
TWI730041B TW106103844A TW106103844A TWI730041B TW I730041 B TWI730041 B TW I730041B TW 106103844 A TW106103844 A TW 106103844A TW 106103844 A TW106103844 A TW 106103844A TW I730041 B TWI730041 B TW I730041B
Authority
TW
Taiwan
Prior art keywords
insulator
transistor
conductor
oxide
addition
Prior art date
Application number
TW106103844A
Other languages
English (en)
Other versions
TW201735130A (zh
Inventor
山崎舜平
遠藤佑太
加藤清
岡本悟
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW201735130A publication Critical patent/TW201735130A/zh
Application granted granted Critical
Publication of TWI730041B publication Critical patent/TWI730041B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/3115Doping the insulating layers
    • H01L21/31155Doping the insulating layers by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/76813Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving a partial via etch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76825Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76828Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76832Multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

本發明提供一種適合於微型化及高集成化的可靠性高的半導體裝置。該半導體裝置包括:第一絕緣體;第一絕緣體上的電晶體;電晶體上的第二絕緣體;嵌入在第二絕緣體的開口中的第一導電體;第一導電體上的障壁層;在第二絕緣體及障壁層上的第三絕緣體;以及第三絕緣體上的第二導電體,其中第一絕緣體、第三絕緣體及障壁層對氧及氫具有阻擋性,第二絕緣體包括過量氧區域,電晶體包括氧化物半導體,並且障壁層、第三絕緣體及第二導電體被用作電容器。

Description

半導體裝置及其製造方法
本發明係關於一種物體、方法或製造方法。另外,本發明係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。本發明的一個實施方式係關於一種半導體裝置、發光裝置、顯示裝置、電子裝置、照明設備以及其製造方法。尤其是,本發明的一個實施方式係關於以安裝在電源電路中的功率裝置、記憶體或CPU等LSI、以及包括閘流體、轉換器、影像感測器等的半導體積體電路為部件而安裝的電子裝置。本發明的一個實施方式例如係關於一種利用有機電致發光(Electroluminescence,以下也稱為EL)現象的發光裝置以及其製造方法。
注意,本發明的一個實施方式不侷限於上述技術領域。
在本說明書中,半導體裝置是指能夠藉由利用半導體特性起作用的所有裝置。電光裝置、半導體電路及電子裝置有時包括半導體裝置。
近年來,對使用半導體元件的CPU或記憶體等LSI已在進行開發。此外,CPU是包括從半導體晶圓分開的半導體積體電路(至少包括電晶體及記憶體)且形成有作為連接端子的電極的半導體元件的集合體。
包括記憶體或CPU等LSI的半導體電路安裝在電路基板例如安裝在印刷線路板上,並用作各種電子裝置的部件之一。
此外,藉由使用形成在具有絕緣表面的基板上的半導體薄膜構成電晶體的技術受到注目。該電晶體被廣泛地應用於積體電路(IC)、影像顯示裝置(簡單地記載為顯示裝置)等的電子裝置。作為可以應用於電晶體的半導體薄膜,矽類半導體材料被廣泛地周知。但是,作為其他材料,氧化物半導體受到關注。
已知使用氧化物半導體的電晶體的非導通狀態下的洩漏電流極小。例如,應用了使用氧化物半導體的電晶體的洩漏電流低的特性的低功耗CPU等已被公開(參照專利文獻1)。
雖然使用氧化物半導體的電晶體的工作速度比使用非晶矽的電晶體的工作速度快,且與使用多晶矽的電晶體相比更容易製造,但是,已知使用氧化物半導體的電晶體具有電特性容易變動而導致其可靠性低的問題。例如,在偏壓-熱壓力測試(BT測試)的前後,電晶體的臨界電壓會變動。
[專利文獻1]日本專利申請公開第2012-257187號公報
本發明的一個實施方式的目的是提高使用氧化物半導體的半導體裝置的可靠性。此外,使用氧化物半導體的電晶體具有如下問題:容易具有常開啟特性;以及在驅動電路中難以設置適當地工作的邏輯電路。於是,本發明的一個實施方式的目的是在使用氧化物半導體的電晶體中得到常關閉特性。
此外,本發明的一個實施方式的目的之一是提供一種可靠性高的電晶體。或者,本發明的一個實施方式的目的之一是提供一種在非導通狀態下洩漏電流被抑制為極小的電晶體。
本發明的一個實施方式的目的之一是提供一種可靠性高的半導體裝置。本發明的一個實施方式的目的之一是提供一種生產率高的半導體裝置。本發明的一個實施方式的目的之一是提供一種良率高的半導體裝置。或者,本發明的一個實施方式的目的之一是提供一種佔有面積小的半導體裝置。
本發明的一個實施方式的目的之一是提供一種集成度高的半導體裝置。本發明的一個實施方式的目的之一是提供一種工作速度快的半導體裝置。或者,本發明的一個實施方式的目的之一是提供一種低功耗的半導體裝 置。
本發明的一個實施方式的目的之一是提供一種新穎的半導體裝置。本發明的一個實施方式的目的之一是提供一種包括該半導體裝置的模組。或者,本發明的一個實施方式的目的之一是提供一種包括該半導體裝置或該模組的電子裝置。
此外,這些目的的記載不妨礙其他目的的存在。此外,本發明的一個實施方式並不需要實現所有上述目的。另外,從說明書、圖式、申請專利範圍等的記載中可明顯看出這些目的以外的目的,而可以從說明書、圖式、申請專利範圍等的記載中衍生這些目的以外的目的。
本發明的一個實施方式是一種半導體裝置,包括:第一絕緣體;第一絕緣體上的電晶體;電晶體上的第二絕緣體;嵌入第二絕緣體的開口中的第一導電體;第一導電體上的障壁層;第二絕緣體上及障壁層上的第三絕緣體;以及第三絕緣體上的第二導電體,其中,第一絕緣體、第三絕緣體及障壁層對氧及氫具有阻擋性,第二絕緣體包括過量氧區域,電晶體包含氧化物半導體,並且,障壁層、第三絕緣體、第二導電體被用作電容器。
本發明的一個實施方式是一種半導體裝置,包括:第一絕緣體;第一絕緣體上的電晶體;電晶體上的第二絕緣體;嵌入第二絕緣體的開口中的第一導電體;第一導電體上的障壁層;第二絕緣體上及障壁層上的第三絕緣體;以及第三絕緣體上的第二導電體,其中,第一絕緣 體、第三絕緣體及障壁層對氧及氫具有阻擋性,第二絕緣體包括過量氧區域,電晶體包含氧化物半導體,並且,第一導電體、障壁層、第三絕緣體、第二導電體被用作電容器。
在上述結構中,在設置有電晶體的區域的邊緣,第一絕緣體與障壁層接觸,以包圍電晶體及第二絕緣體被第一絕緣體及障壁層。
在上述結構中,障壁層的結構是具有導電性的膜和具有絕緣性的膜的疊層結構。
在上述結構中,第一導電體被用作佈線。
本發明的一個實施方式是一種半導體晶圓,包括:多個上述結構的半導體裝置;以及用於切割的區域。
本發明的一個實施方式是一種半導體裝置的製造方法,包括如下步驟:形成對氧及氫具有阻擋性的第一絕緣體;在第一絕緣體上形成電晶體;在電晶體上形成第二絕緣體;在第二絕緣體中形成到達電晶體的開口;在開口及第二絕緣體上形成第一導電體;去除第一導電體的一部分,使第二絕緣體的頂面露出,以在第二絕緣體中嵌入第一導電體;在第一導電體上形成對氧及氫具有阻擋性的障壁層;在對障壁層及第二絕緣體進行氧電漿處理之後,在障壁層及第二絕緣體上形成對氧及氫具有阻擋性的第三絕緣體;以及藉由在隔著第三絕緣體與第一導電體重疊的區域中形成第二導電體,形成電容器。
在上述結構中,障壁層包含藉由ALD法形成的氮化鉭。
在上述結構中,障壁層包含藉由ALD法形成的氧化鋁。
在上述結構中,第三絕緣體包含藉由濺射法形成的氧化鋁。
本發明的一個實施方式在使用具有氧化物半導體的電晶體的半導體裝置中可以抑制電特性變動且提高可靠性。本發明的一個實施方式可以提供一種通態電流(on-state current)大的具有氧化物半導體的電晶體。本發明的一個實施方式可以提供一種關態電流(off-state current)小的具有氧化物半導體的電晶體。或者,本發明的一個實施方式可以提供一種低功耗的半導體裝置。
本發明的一個實施方式可以提供一種新穎的半導體裝置。本發明的一個實施方式可以提供一種包括該半導體裝置的模組。或者,本發明的一個實施方式可以提供一種包括該半導體裝置或該模組的電子裝置。
此外,這些效果的記載不妨礙其他效果的存在。此外,本發明的一個實施方式並不需要具有所有上述效果。另外,從說明書、圖式、申請專利範圍等的記載中可明顯看出這些效果以外的效果,而可以從說明書、圖式、申請專利範圍等的記載中衍生這些效果以外的效果。
100‧‧‧電容器
101‧‧‧電容器
102‧‧‧電容器
112‧‧‧導電體
112a‧‧‧導電體
112b‧‧‧導電體
116‧‧‧導電體
124‧‧‧導電體
124a‧‧‧導電體
124A‧‧‧導電體
124b‧‧‧導電體
124d‧‧‧導電體
130‧‧‧絕緣體
132‧‧‧絕緣體
134‧‧‧絕緣體
150‧‧‧絕緣體
200‧‧‧電晶體
201‧‧‧電晶體
202‧‧‧電晶體
205‧‧‧導電體
205a‧‧‧導電體
205A‧‧‧導電體
205b‧‧‧導電體
205B‧‧‧導電體
205c‧‧‧導電體
210‧‧‧絕緣體
212‧‧‧絕緣體
213‧‧‧絕緣體
214‧‧‧絕緣體
216‧‧‧絕緣體
218‧‧‧導電體
218a‧‧‧導電體
218b‧‧‧導電體
218c‧‧‧導電體
219‧‧‧導電體
219a‧‧‧導電體
219b‧‧‧導電體
219c‧‧‧導電體
220‧‧‧絕緣體
222‧‧‧絕緣體
224‧‧‧絕緣體
230‧‧‧氧化物
230a‧‧‧氧化物
230A‧‧‧氧化物
230b‧‧‧氧化物
230B‧‧‧氧化物
230c‧‧‧氧化物
230d‧‧‧氧化物
240a‧‧‧導電體
240A‧‧‧導電膜
240b‧‧‧導電體
240B‧‧‧導電層
241a‧‧‧導電體
241b‧‧‧導電體
243a‧‧‧絕緣體
243b‧‧‧絕緣體
244‧‧‧導電體
244a‧‧‧導電體
244A‧‧‧導電膜
244b‧‧‧導電體
244B‧‧‧導電膜
244c‧‧‧導電體
244d‧‧‧導電體
244e‧‧‧導電體
246‧‧‧導電體
246a‧‧‧導電體
246A‧‧‧導電體
246b‧‧‧導電體
246d‧‧‧導電體
250‧‧‧絕緣體
260‧‧‧導電體
260a‧‧‧導電體
260A‧‧‧導電膜
260b‧‧‧導電體
260c‧‧‧導電體
270‧‧‧絕緣體
271‧‧‧障壁層
279‧‧‧絕緣體
280‧‧‧絕緣體
281‧‧‧障壁層
281a‧‧‧障壁層
281A‧‧‧障壁膜
281b‧‧‧障壁層
281c‧‧‧障壁層
281d‧‧‧障壁層
282‧‧‧絕緣體
284‧‧‧絕緣體
285‧‧‧絕緣體
286‧‧‧絕緣體
290‧‧‧光阻遮罩
292‧‧‧光阻遮罩
294‧‧‧光阻遮罩
296‧‧‧光阻遮罩
300‧‧‧電晶體
301‧‧‧電晶體
302‧‧‧電晶體
311‧‧‧基板
312‧‧‧半導體區域
314‧‧‧絕緣體
316‧‧‧導電體
318a‧‧‧低電阻區域
318b‧‧‧低電阻區域
320‧‧‧絕緣體
322‧‧‧絕緣體
324‧‧‧絕緣體
326‧‧‧絕緣體
328‧‧‧導電體
328a‧‧‧導電體
328b‧‧‧導電體
328c‧‧‧導電體
330‧‧‧導電體
330a‧‧‧導電體
330b‧‧‧導電體
330c‧‧‧導電體
350‧‧‧絕緣體
352‧‧‧絕緣體
354‧‧‧絕緣體
356‧‧‧導電體
356a‧‧‧導電體
356b‧‧‧導電體
356c‧‧‧導電體
358‧‧‧絕緣體
400‧‧‧半導體裝置
401‧‧‧CPU核
402‧‧‧功率控制器
403‧‧‧功率開關
404‧‧‧快取記憶體
405‧‧‧匯流排介面
406‧‧‧除錯介面
407‧‧‧控制裝置
408‧‧‧PC
409‧‧‧管線暫存器
410‧‧‧管線暫存器
411‧‧‧ALU
412‧‧‧暫存器檔案
421‧‧‧電源管理單元
422‧‧‧週邊電路
423‧‧‧資料匯流排
500‧‧‧半導體裝置
501‧‧‧記憶體電路
502‧‧‧記憶體電路
503‧‧‧記憶體電路
504‧‧‧電路
509‧‧‧電晶體
510‧‧‧電晶體
512‧‧‧電晶體
513‧‧‧電晶體
515‧‧‧電晶體
517‧‧‧電晶體
518‧‧‧電晶體
519‧‧‧電容器
520‧‧‧電容器
540‧‧‧佈線
541‧‧‧佈線
542‧‧‧佈線
543‧‧‧佈線
544‧‧‧佈線
711‧‧‧基板
712‧‧‧電路區域
713‧‧‧分離區域
714‧‧‧分離線
715‧‧‧晶片
750‧‧‧電子構件
752‧‧‧印刷電路板
753‧‧‧半導體裝置
754‧‧‧電路板
755‧‧‧引線
800‧‧‧反相器
810‧‧‧OS電晶體
820‧‧‧OS電晶體
831‧‧‧信號波形
832‧‧‧信號波形
840‧‧‧虛線
841‧‧‧實線
850‧‧‧OS電晶體
860‧‧‧CMOS反相器
900‧‧‧半導體裝置
901‧‧‧電源電路
902‧‧‧電路
903‧‧‧電壓生成電路
903A‧‧‧電壓生成電路
903B‧‧‧電壓生成電路
903C‧‧‧電壓生成電路
903D‧‧‧電壓生成電路
903E‧‧‧電壓生成電路
904‧‧‧電路
905‧‧‧電壓生成電路
905A‧‧‧電壓生成電路
905E‧‧‧電壓生成電路
906‧‧‧電路
911‧‧‧電晶體
912‧‧‧電晶體
912A‧‧‧電晶體
912B‧‧‧電晶體
921‧‧‧控制電路
922‧‧‧電晶體
1901‧‧‧外殼
1902‧‧‧外殼
1903‧‧‧顯示部
1904‧‧‧顯示部
1905‧‧‧麥克風
1906‧‧‧揚聲器
1907‧‧‧操作鍵
1908‧‧‧觸控筆
1911‧‧‧外殼
1912‧‧‧外殼
1913‧‧‧顯示部
1914‧‧‧顯示部
1915‧‧‧連接部
1916‧‧‧操作鍵
1921‧‧‧外殼
1922‧‧‧顯示部
1923‧‧‧鍵盤
1924‧‧‧指向裝置
1931‧‧‧外殼
1932‧‧‧冷藏室門
1933‧‧‧冷凍室門
1941‧‧‧外殼
1942‧‧‧外殼
1943‧‧‧顯示部
1944‧‧‧操作鍵
1945‧‧‧鏡頭
1946‧‧‧連接部
1951‧‧‧車體
1952‧‧‧車輪
1953‧‧‧儀表板
1954‧‧‧燈
2200‧‧‧攝像裝置
2201‧‧‧開關
2202‧‧‧開關
2203‧‧‧開關
2210‧‧‧像素部
2211‧‧‧像素
2212‧‧‧子像素
2212B‧‧‧子像素
2212G‧‧‧子像素
2212R‧‧‧子像素
2220‧‧‧光電轉換元件
2230‧‧‧像素電路
2231‧‧‧佈線
2247‧‧‧佈線
2248‧‧‧佈線
2249‧‧‧佈線
2250‧‧‧佈線
2253‧‧‧佈線
2254‧‧‧濾光片
2254B‧‧‧濾光片
2254G‧‧‧濾光片
2254R‧‧‧濾光片
2255‧‧‧透鏡
2256‧‧‧光
2257‧‧‧佈線
2260‧‧‧週邊電路
2270‧‧‧週邊電路
2280‧‧‧週邊電路
2290‧‧‧週邊電路
2291‧‧‧光源
2300‧‧‧矽基板
2310‧‧‧層
2320‧‧‧層
2330‧‧‧層
2340‧‧‧層
2351‧‧‧電晶體
2352‧‧‧電晶體
2353‧‧‧電晶體
2360‧‧‧光電二極體
2361‧‧‧陽極
2363‧‧‧低電阻區域
2370‧‧‧插頭
2371‧‧‧佈線
2372‧‧‧佈線
2373‧‧‧佈線
2379‧‧‧絕緣體
2380‧‧‧絕緣體
2381‧‧‧絕緣體
2390a‧‧‧導電體
2390b‧‧‧導電體
2390c‧‧‧導電體
2390d‧‧‧導電體
2390e‧‧‧導電體
3001‧‧‧佈線
3002‧‧‧佈線
3003‧‧‧佈線
3004‧‧‧佈線
3005‧‧‧佈線
3006‧‧‧佈線
3200‧‧‧電晶體
3500‧‧‧電晶體
4001‧‧‧佈線
4003‧‧‧佈線
4005‧‧‧佈線
4006‧‧‧佈線
4007‧‧‧佈線
4008‧‧‧佈線
4009‧‧‧佈線
4021‧‧‧層
4023‧‧‧層
4100‧‧‧電晶體
4200‧‧‧電晶體
4300‧‧‧電晶體
4400‧‧‧電晶體
4500‧‧‧電容器
4600‧‧‧電容器
在圖式中:圖1是說明根據實施方式的半導體裝置的剖面結構的圖;圖2是說明根據實施方式的半導體裝置的剖面結構的圖;圖3是說明根據實施方式的半導體裝置的剖面結構的圖;圖4是說明根據實施方式的半導體裝置的剖面結構的圖;圖5是說明根據實施方式的半導體裝置的剖面結構的圖;圖6是說明根據實施方式的半導體裝置的剖面結構的圖;圖7A及圖7B是說明根據實施方式的半導體裝置的剖面結構的圖;圖8A及圖8B是根據實施方式的半導體裝置的電路圖;圖9A及圖9B是說明根據實施方式的半導體裝置的剖面結構的圖;圖10A及圖10B是根據實施方式的半導體裝置的電路圖及說明剖面結構的圖;圖11是說明根據實施方式的半導體裝置的剖面結構的圖; 圖12A至圖12D是說明根據實施方式的半導體裝置的製造方法例子的圖;圖13A至圖13C是說明根據實施方式的半導體裝置的製造方法例子的圖;圖14A及圖14B是說明根據實施方式的半導體裝置的製造方法例子的圖;圖15A及圖15B是說明根據實施方式的半導體裝置的製造方法例子的圖;圖16A及圖16B是說明根據實施方式的半導體裝置的製造方法例子的圖;圖17是說明根據實施方式的半導體裝置的製造方法例子的圖;圖18是說明根據實施方式的半導體裝置的製造方法例子的圖;圖19是說明根據實施方式的半導體裝置的製造方法例子的圖;圖20是說明根據實施方式的半導體裝置的製造方法例子的圖;圖21是說明根據實施方式的半導體裝置的製造方法例子的圖;圖22是說明根據實施方式的半導體裝置的製造方法例子的圖;圖23是說明根據實施方式的半導體裝置的製造方法例子的圖; 圖24A至圖24C是根據實施方式的電晶體的俯視圖及說明其剖面結構的圖;圖25A至圖25C是根據實施方式的電晶體的俯視圖及說明其剖面結構的圖;圖26A至圖26C是根據實施方式的電晶體的俯視圖及說明其剖面結構的圖;圖27A至圖27C是根據實施方式的電晶體的俯視圖及說明其剖面結構的圖;圖28A至圖28C是根據實施方式的電晶體的俯視圖及說明其剖面結構的圖;圖29A至圖29C是根據實施方式的電晶體的俯視圖及說明其剖面結構的圖;圖30A至圖30C是根據實施方式的電晶體的俯視圖及說明其剖面結構的圖;圖31A至圖31C是根據實施方式的電晶體的俯視圖及說明其剖面結構的圖;圖32A至圖32E是說明根據實施方式的電晶體的製造方法例子的圖;圖33A至圖33D是說明根據實施方式的電晶體的製造方法例子的圖;圖34A至圖34C是說明根據實施方式的電晶體的製造方法例子的圖;圖35A至圖35C是說明根據實施方式的電晶體的製造方法例子的圖; 圖36A至圖36C是說明本發明的氧化物半導體的原子個數比的範圍的圖;圖37是說明InMZnO4的結晶的圖;圖38A至圖38C是氧化物半導體的疊層結構的帶圖;圖39A至圖39E是說明利用XRD的CAAC-OS及單晶氧化物半導體的結構解析的圖以及示出CAAC-OS的選區電子繞射圖案的圖;圖40A至圖40E是CAAC-OS的剖面TEM影像、平面TEM影像及分析影像;圖41A至圖41D是示出nc-OS的電子繞射圖案的圖及nc-OS的剖面TEM影像;圖42A及圖42B是a-like OS的剖面TEM影像;圖43是示出藉由電子照射的In-Ga-Zn氧化物的結晶部的變化的圖;圖44是說明將氧化物半導體膜用於通道區域的電晶體中的能帶的圖;圖45是示出本發明的一個實施方式的記憶體裝置的電路圖;圖46是示出本發明的一個實施方式的記憶體裝置的電路圖;圖47A至圖47C是用來說明本發明的一個實施方式的電路圖和時序圖;圖48A至圖48C是用來說明本發明的一個實施方式 的圖表和電路圖;圖49A及圖49B是用來說明本發明的一個實施方式的電路圖和時序圖;圖50A及圖50B是用來說明本發明的一個實施方式的電路圖和時序圖;圖51A至圖51E是用來說明本發明的一個實施方式的方塊圖、電路圖及波形圖;圖52A及圖52B是用來說明本發明的一個實施方式的電路圖和時序圖;圖53A及圖53B是用來說明本發明的一個實施方式的電路圖;圖54A至圖54C是用來說明本發明的一個實施方式的電路圖;圖55A及圖55B是用來說明本發明的一個實施方式的電路圖;圖56A至圖56C是用來說明本發明的一個實施方式的電路圖;圖57A及圖57B是用來說明本發明的一個實施方式的電路圖;圖58是示出根據本發明的一個實施方式的半導體裝置的方塊圖;圖59是示出根據本發明的一個實施方式的半導體裝置的電路圖;圖60A及圖60B是示出根據本發明的一個實施方式 的半導體裝置的俯視圖;圖61A及圖61B是示出根據本發明的一個實施方式的半導體裝置的方塊圖;圖62A及圖62B是示出根據本發明的一個實施方式的半導體裝置的剖面圖;圖63是示出根據本發明的一個實施方式的半導體裝置的剖面圖;圖64A及圖64B是示出根據本發明的一個實施方式的半導體裝置的俯視圖;圖65A及圖65B是用來說明本發明的一個實施方式的流程圖及示出半導體裝置的透視圖;圖66A至圖66F是示出根據本發明的一個實施方式的電子裝置的透視圖。
下面,參照圖式對實施方式進行說明。但是,所屬技術領域的通常知識者可以很容易地理解一個事實,就是實施方式可以以多個不同形式來實施,其方式和詳細內容可以在不脫離本發明的精神及其範圍的條件下被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在下面的實施方式所記載的內容中。
在圖式中,為便於清楚地說明,有時誇大表示大小、層的厚度或區域。因此,本發明並不一定限定於上述尺寸。此外,在圖式中,示意性地示出理想的例子, 因此本發明不侷限於圖式所示的形狀或數值等。另外,在圖式中,在不同的圖式之間共同使用相同的元件符號來表示相同的部分或具有相同功能的部分,而省略其重複說明。此外,當表示具有相同功能的部分時有時使用相同的陰影線,而不特別附加元件符號。
此外,在本說明書等中,為了方便起見,附加了第一、第二等序數詞,而其並不表示製程順序或疊層順序。因此,例如可以將“第一”適當地替換為“第二”或“第三”等來進行說明。此外,本說明書等所記載的序數詞與用於指定本發明的一個實施方式的序數詞有時不一致。
在本說明書中,為方便起見,使用了“上”、“下”等表示配置的詞句,以參照圖式說明組件的位置關係。另外,組件的位置關係根據描述各組件的方向適當地改變。因此,不侷限於本說明書中所說明的詞句,可以根據情況適當地更換。
此外,在本說明書等中,半導體裝置是指能夠藉由利用半導體特性而工作的所有裝置。除了電晶體等半導體元件之外,半導體電路、算術裝置或記憶體裝置也是半導體裝置的一個實施方式。攝像裝置、顯示裝置、液晶顯示裝置、發光裝置、電光裝置、發電裝置(包括薄膜太陽能電池、有機薄膜太陽能電池等)及電子裝置有時包括半導體裝置。
在本說明書等中,電晶體是指至少包括閘 極、汲極以及源極這三個端子的元件。電晶體在汲極(汲極端子、汲極區域或汲極電極)與源極(源極端子、源極區域或源極電極)之間具有通道區域,並且電流能夠流過汲極、通道區域以及源極。注意,在本說明書等中,通道區域是指電流主要流過的區域。
另外,在使用極性不同的電晶體的情況或電路工作中的電流方向變化的情況等下,源極及汲極的功能有時相互調換。因此,在本說明書等中,源極和汲極可以相互調換。
另外,在本說明書等中,“氧氮化矽膜”是指在其組成中氧含量多於氮含量的物質,較佳為具有如下濃度範圍的物質:氧濃度為55原子%以上且65原子%以下,氮濃度為1原子%以上且20原子%以下,矽濃度為25原子%以上且35原子%以下,並且氫濃度為0.1原子%以上且10原子%以下。另外,“氮氧化矽膜”是指在其組成中氮含量多於氧含量的物質,較佳為具有如下濃度範圍的物質:氮濃度為55原子%以上且65原子%以下,氧濃度為1原子%以上且20原子%以下,矽濃度為25原子%以上且35原子%以下,並且氫濃度為0.1原子%以上且10原子%以下。
另外,在本說明書等中,可以將“膜”和“層”相互調換。例如,有時可以將“導電層”變換為“導電膜”。此外,例如,有時可以將“絕緣膜”變換為“絕緣層”。
在本說明書等中,“平行”是指兩條直線形成的角度為-10°以上且10°以下的狀態。因此,也包括該角度為-5°以上且5°以下的狀態。“大致平行”是指兩條直線形成的角度為-30°以上且30°以下的狀態。另外,“垂直”是指兩條直線的角度為80°以上且100°以下的狀態。因此,也包括該角度為85°以上且95°以下的狀態。“大致垂直”是指兩條直線形成的角度為60°以上且120°以下的狀態。
例如,在本說明書等中,當明確地記載為“X與Y連接”時,意味著如下情況:X與Y電連接;X與Y在功能上連接;X與Y直接連接。因此,不侷限於規定的連接關係(例如,圖式或文中所示的連接關係等),圖式或文中所示的連接關係以外的連接關係也包含於圖式或文中所記載的內容中。
這裡,X和Y為物件(例如,裝置、元件、電路、佈線、電極、端子、導電膜及層等)。
作為X與Y直接連接的情況的一個例子,可以舉出在X與Y之間沒有連接能夠電連接X與Y的元件(例如開關、電晶體、電容器、電感器、電阻器、二極體、顯示元件、發光元件及負載等),並且X與Y沒有藉由能夠電連接X與Y的元件(例如開關、電晶體、電容器、電感器、電阻器、二極體、顯示元件、發光元件及負載等)連接的情況。
作為X與Y電連接的情況的一個例子,例如 可以在X與Y之間連接一個以上的能夠電連接X與Y的元件(例如開關、電晶體、電容器、電感器、電阻器、二極體、顯示元件、發光元件及負載等)。另外,開關具有控制開啟和關閉的功能。換言之,藉由使開關處於導通狀態(開啟狀態)或非導通狀態(關閉狀態)來控制是否使電流流過。或者,開關具有選擇並切換電流路徑的功能。另外,X與Y電連接的情況包括X與Y直接連接的情況。
作為X與Y在功能上連接的情況的一個例子,例如可以在X與Y之間連接一個以上的能夠在功能上連接X與Y的電路(例如,邏輯電路(反相器、NAND電路、NOR電路等)、信號轉換電路(DA轉換電路、AD轉換電路、伽瑪校正電路等)、電位位準轉換電路(電源電路(升壓電路、降壓電路等)、改變信號的電位位準的位準轉移電路等)、電壓源、電流源、切換電路、放大電路(能夠增大信號振幅或電流量等的電路、運算放大器、差動放大電路、源極隨耦電路、緩衝電路等)、信號生成電路、記憶體電路、控制電路等)。注意,例如,即使在X與Y之間夾有其他電路,當從X輸出的信號傳送到Y時,也可以說X與Y在功能上是連接著的。另外,X與Y在功能上連接的情況包括X與Y直接連接的情況及X與Y電連接的情況。
此外,當明確地記載為“X與Y電連接”時,在本說明書等中意味著如下情況:X與Y電連接(亦即, 以中間夾有其他元件或其他電路的方式連接X與Y);X與Y在功能上連接(亦即,以中間夾有其他電路的方式在功能上連接X與Y);X與Y直接連接(亦即,以中間不夾有其他元件或其他電路的方式連接X與Y)。亦即,當明確地記載為“電連接”時與只明確地記載為“連接”時的情況相同。
注意,例如,在電晶體的源極(或第一端子等)藉由Z1(或沒有藉由Z1)與X電連接,電晶體的汲極(或第二端子等)藉由Z2(或沒有藉由Z2)與Y電連接的情況下以及在電晶體的源極(或第一端子等)與Z1的一部分直接連接,Z1的另一部分與X直接連接,電晶體的汲極(或第二端子等)與Z2的一部分直接連接,Z2的另一部分與Y直接連接的情況下,可以表示為如下。
例如,可以表示為“X、Y、電晶體的源極(或第一端子等)與電晶體的汲極(或第二端子等)互相電連接,X、電晶體的源極(或第一端子等)、電晶體的汲極(或第二端子等)、Y依次電連接”。或者,可以表示為“電晶體的源極(或第一端子等)與X電連接,電晶體的汲極(或第二端子等)與Y電連接,X、電晶體的源極(或第一端子等)、電晶體的汲極(或第二端子等)、Y依次電連接”。或者,可以表示為“X藉由電晶體的源極(或第一端子等)及汲極(或第二端子等)與Y電連接,X、電晶體的源極(或第一端子等)、電晶體的汲極(或第二端子等)、Y依次設置為相互連接”。藉由使用 與這種例子相同的表示方法規定電路結構中的連接順序,可以區別電晶體的源極(或第一端子等)與汲極(或第二端子等)而決定技術範圍。
另外,作為其他表示方法,例如可以表示為“電晶體的源極(或第一端子等)至少經過第一連接路徑與X電連接,所述第一連接路徑不具有第二連接路徑,所述第二連接路徑是電晶體的源極(或第一端子等)與電晶體的汲極(或第二端子等)之間的路徑,所述第一連接路徑是經過Z1的路徑,電晶體的汲極(或第二端子等)至少經過第三連接路徑與Y電連接,所述第三連接路徑不具有所述第二連接路徑,所述第三連接路徑是經過Z2的路徑”。或者,也可以表示為“電晶體的源極(或第一端子等)至少經過第一連接路徑,藉由Z1與X電連接,所述第一連接路徑不具有第二連接路徑,所述第二連接路徑具有藉由電晶體的連接路徑,電晶體的汲極(或第二端子等)至少經過第三連接路徑,藉由Z2與Y電連接,所述第三連接路徑不具有所述第二連接路徑”。或者,也可以表示為“電晶體的源極(或第一端子等)至少經過第一電路徑,藉由Z1與X電連接,所述第一電路徑不具有第二電路徑,所述第二電路徑是從電晶體的源極(或第一端子等)到電晶體的汲極(或第二端子等)的電路徑,電晶體的汲極(或第二端子等)至少經過第三電路徑,藉由Z2與Y電連接,所述第三電路徑不具有第四電路徑,所述第四電路徑是從電晶體的汲極(或第二端子等)到電晶體的 源極(或第一端子等)的電路徑”。藉由使用與這種例子同樣的表示方法規定電路結構中的連接路徑,可以區別電晶體的源極(或第一端子等)和汲極(或第二端子等)來決定技術範圍。
注意,這種表示方法只是一個例子而已,不侷限於上述表示方法。在此,X、Y、Z1及Z2為物件(例如,裝置、元件、電路、佈線、電極、端子、導電膜及層等)。
另外,即使圖式示出在電路圖上獨立的組件彼此電連接,也有一個組件兼有多個組件的功能的情況。例如,在佈線的一部分被用作電極時,一個導電膜兼有佈線和電極的兩個組件的功能。因此,本說明書中的“電連接”的範疇內還包括這種一個導電膜兼有多個組件的功能的情況。
實施方式1
在本實施方式中,參照圖1至圖11說明半導體裝置的一個實施方式。
[結構實例]
圖1至圖8B示出使用本發明的一個實施方式的半導體裝置(記憶體裝置)的一個例子。此外,圖8A是圖1至圖4所示的半導體裝置的電路圖。圖7A及圖7B示出圖1至圖4所示的半導體裝置的形成區域的端部。
〈半導體裝置的電路結構〉
圖8A以及圖1至圖6所示的半導體裝置包括電晶體300、電晶體200及電容器100。
電晶體200是其通道形成在包含氧化物半導體的半導體層中的電晶體。因為電晶體200的關態電流小,所以藉由將該電晶體用於半導體裝置(記憶體裝置),可以長期保持存儲內容。換言之,由於不需要更新工作或更新工作的頻率極低,所以可以充分降低半導體裝置(記憶體裝置)的功耗。
在圖8A中,佈線3001與電晶體300的源極電連接,佈線3002與電晶體300的汲極電連接。此外,佈線3003與電晶體200的源極和汲極中的一個電連接,佈線3004與電晶體200的閘極電連接。再者,電晶體300的閘極及電晶體200的源極和汲極中的另一個與電容器100的一個電極電連接,佈線3005與電容器100的另一個電極電連接。
圖8A所示的半導體裝置藉由具有能夠保持電晶體300的閘極的電位的特徵,可以如下所示進行資料的寫入、保持以及讀出。
對資料的寫入及保持進行說明。首先,將佈線3004的電位設定為使電晶體200處於導通狀態的電位,而使電晶體200處於導通狀態。由此,佈線3003的電位施加到與電晶體300的閘極及電容器100的一個電極 電連接的節點FG。換言之,對電晶體300的閘極施加規定的電荷(寫入)。這裡,施加賦予兩種不同電位位準的電荷(以下,稱為低位準電荷、高位準電荷)中的任一個。然後,藉由將佈線3004的電位設定為使電晶體200成為非導通狀態的電位而使電晶體200處於非導通狀態,使電荷保持在節點FG(保持)。
在電晶體200的關態電流較小時,節點FG的電荷被長時間保持。
接著,對資料的讀出進行說明。當在對佈線3001施加規定的電位(恆電位)的狀態下對佈線3005施加適當的電位(讀出電位)時,佈線3002具有對應於保持在節點FG中的電荷量的電位。這是因為:在電晶體300為n通道電晶體的情況下,對電晶體300的閘極施加高位準電荷時的外觀上的臨界電壓Vth_H低於對電晶體300的閘極施加低位準電荷時的外觀上的臨界電壓Vth_L。在此,外觀上的臨界電壓是指為了使電晶體300成為“導通狀態”而需要的佈線3005的電位。由此,藉由將佈線3005的電位設定為Vth_H與Vth_L之間的電位V0,可以辨別施加到節點FG的電荷。例如,在寫入時節點FG被供應高位準電荷的情況下,若佈線3005的電位為V0(>Vth_H),電晶體300則成為“導通狀態”。另一方面,當節點FG被供應低位準電荷時,即便佈線3005的電位為V0(<Vth_L),電晶體300也保持“非導通狀態”。因此,藉由辨別佈線3002的電位,可以讀出節點FG所保 持的資料。
藉由將圖8A所示的半導體裝置配置為矩陣狀,可以構成記憶體裝置(記憶單元陣列)。
注意,當將記憶單元設置為陣列狀時,在讀出時必須讀出所希望的記憶單元的資料。例如,在電晶體300為p通道型電晶體時,記憶單元具有NOR型的結構。因此,在不讀出資料的記憶單元中,可以藉由對佈線3005施加不管施加到節點FG的電位如何都使電晶體300成為“非導通狀態”的電位(亦即,低於Vth_H的電位),來僅讀出所希望的記憶單元的資料。或者,在電晶體300為n通道型電晶體時,記憶單元具有NAND型的結構。因此,在不讀出資料的記憶單元中,可以藉由對佈線3005施加不管施加到節點FG的電荷如何都使電晶體300成為“導通狀態”的電位(亦即,高於Vth_L的電位),來僅讀出所希望的記憶單元的資料。
〈半導體裝置的電路結構2〉
圖8B所示的半導體裝置與圖8A所示的半導體裝置不同之處為圖8B所示的半導體裝置不包括電晶體300。在此情況下也可以藉由與圖8A所示的半導體裝置相同的工作進行資料的寫入及保持工作。
下面,說明圖8B所示的半導體裝置中的資料讀出。在電晶體200成為導通狀態時,處於浮動狀態的佈線3003和電容器100導通,且在佈線3003和電容器100 之間再次分配電荷。其結果是,佈線3003的電位產生變化。佈線3003的電位的變化量根據電容器100的電極的一個的電位(或積累在電容器100中的電荷)而具有不同的值。
例如,在電容器100的電極的一個的電位為V,電容器100的電容為C,佈線3003所具有的電容成分為CB,在再次分配電荷之前的佈線3003的電位為VB0時,再次分配電荷之後的佈線3003的電位為(CB×VB0+CV)/(CB+C)。因此,在假定作為記憶單元的狀態,電容器100的電極的一個的電位成為兩種狀態,亦即V1和V0(V1>V0)時,可以知道保持電位V1時的佈線3003的電位(=(CB×VB0+CV1)/(CB+C))高於保持電位V0時的佈線3003的電位(=(CB×VB0+CV0)/(CB+C))。
而且,藉由對佈線3003的電位和規定的電位進行比較可以讀出資料。
在採用本結構的情況下,例如可以採用一種結構,其中對用來驅動記憶單元的驅動電路使用應用矽的電晶體,且將應用氧化物半導體的電晶體作為電晶體200層疊於驅動電路上。
上述半導體裝置可以應用使用氧化物半導體的關態電流小的電晶體來長期間地保持存儲內容。也就是說,不需要更新工作或可以使更新工作的頻率極低,從而可以實現低耗電的半導體裝置。此外,在沒有電力的供應 時(但是,較佳為固定電位)也可以長期間地保持存儲內容。
此外,因為該半導體裝置在寫入資料時不需要高電壓,所以其中不容易產生元件的劣化。由於例如不如習知的非揮發性記憶體那樣地對浮動閘極注入電子或從浮動閘極抽出電子,因此不會發生如絕緣體的劣化等的問題。換言之,與習知的非揮發性記憶體不同,根據本發明的一個實施方式的半導體裝置是對重寫的次數沒有限制而其可靠性得到極大提高的半導體裝置。再者,根據電晶體的導通狀態或非導通狀態而進行資料寫入,從而可以進行高速工作。
〈半導體裝置的結構1〉
如圖1所示,本發明的一個實施方式的半導體裝置包括電晶體300、電晶體200、電容器100。電晶體200設置在電晶體300的上方,電容器100設置在電晶體300及電晶體200的上方。
電晶體300設置在基板311上,並包括:導電體316、絕緣體314、由基板311的一部分構成的半導體區域312;以及被用作源極區域或汲極區域的低電阻區域318a及低電阻區域318b。
電晶體300可以為p通道型電晶體或n通道型電晶體。
半導體區域312的形成通道的區域或其附近 的區域、被用作源極區域或汲極區域的低電阻區域318a及低電阻區域318b等較佳為包含矽類半導體等半導體,更佳為包含單晶矽。另外,也可以使用包含Ge(鍺)、SiGe(矽鍺)、GaAs(砷化鎵)、GaAlAs(鎵鋁砷)等的材料形成。可以使用對晶格施加應力,改變晶面間距而控制有效質量的矽。此外,電晶體300也可以是使用GaAs和GaAlAs等的HEMT(High Electron Mobility Transistor:高電子移動率電晶體)。
在低電阻區域318a及低電阻區域318b中,除了應用於半導體區域312的半導體材料之外,還包含砷、磷等賦予n型導電性的元素或硼等賦予p型導電性的元素。
作為被用作閘極電極的導電體316,可以使用包含砷、磷等賦予n型導電性的元素或硼等賦予p型導電性的元素的矽等半導體材料、金屬材料、合金材料或金屬氧化物材料等導電材料。
另外,藉由根據導電體的材料設定功函數,可以調整臨界電壓。明確而言,作為導電體較佳為使用氮化鈦或氮化鉭等材料。為了兼具導電性和埋入性,作為導電體較佳為使用鎢或鋁等金屬材料的疊層,尤其在耐熱性方面上較佳為使用鎢。
注意,圖1所示的電晶體300的結構只是一個例子,不侷限於上述結構,根據電路結構或驅動方法使用適當的電晶體即可。另外,在採用圖8B所示的電路結 構的情況下,也可以不設置電晶體300。
以覆蓋電晶體300的方式依次層疊有絕緣體320、絕緣體322、絕緣體324及絕緣體326。
作為絕緣體320、絕緣體322、絕緣體324及絕緣體326,例如可以使用氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋁、氧氮化鋁、氮氧化鋁及氮化鋁等。
絕緣體322也可以被用作使因設置在其下方的電晶體300等而產生的步階平坦化的平坦化膜。例如,為了提高絕緣體322的頂面的平坦性,其頂面也可以藉由利用化學機械拋光(CMP:Chemical Mechanical Polishing)法等的平坦化處理被平坦化。
作為絕緣體324,較佳為使用能夠防止氫等雜質從基板311或電晶體300等擴散到設置有電晶體200的區域中的具有阻擋性的膜。在此,阻擋性是指耐氧化性高且抑制以氧、氫及水為代表的雜質的擴散的功能。例如,在350℃或400℃的氛圍下,具有阻擋性的膜中的每小時的氧或氫擴散距離可以為50nm以下。較佳的是,在350℃或400℃的氛圍下,具有阻擋性的膜中的每小時的氧或氫擴散距離較佳為30nm以下,更佳為20nm以下。
作為對氫具有阻擋性的膜的一個例子,可以使用藉由CVD法形成的氮化矽。在此,有時氫擴散到電晶體200等具有氧化物半導體的半導體元件中導致該半導體元件的特性下降。因此,較佳為在電晶體200與電晶體300之間設置抑制氫的擴散的膜。明確而言,抑制氫的擴 散的膜是指氫的脫離量少的膜。
氫的脫離量例如可以利用熱脫附譜分析法(TDS(Thermal Desorption Spectroscopy))等測量。例如,在TDS分析中的50℃至500℃的範圍內,當將換算為氫原子的脫離量換算為絕緣體324的每個面積的量時,絕緣體324中的氫的脫離量為10×1015atoms/cm2以下,較佳為5×1015atoms/cm2以下,即可。
注意,絕緣體326的介電常數較佳為比絕緣體324低。例如,絕緣體324的相對介電常數較佳為低於4,更佳為低於3。例如,絕緣體326的相對介電常數較佳為絕緣體324的相對介電常數的0.7倍以下,更佳為0.6倍以下。藉由將介電常數低的材料用於層間膜,可以減少產生在佈線之間的寄生電容。
另外,在絕緣體320、絕緣體322、絕緣體324及絕緣體326中嵌入與電容器100或電晶體200電連接的導電體328、導電體330等。另外,導電體328及導電體330被用作插頭或佈線。注意,如後面說明,有時使用同一元件符號表示被用作插頭或佈線的多個導電體。此外,在本說明書等中,佈線、與佈線電連接的插頭也可以是一個組件。就是說,導電體的一部分有時被用作佈線,並且導電體的一部分有時被用作插頭。
作為各插頭及佈線(導電體328及導電體330等)的材料,可以使用金屬材料、合金材料、金屬氮化物材料或金屬氧化物材料等導電材料的單層或疊層。明確而 言,較佳為使用兼具耐熱性和導電性的鎢或鉬等高熔點材料,尤其較佳為使用鎢。或者,較佳為使用鋁或銅等低電阻導電材料。藉由使用低電阻導電材料可以降低佈線電阻。
也可以在絕緣體326及導電體330上形成佈線層。例如,在圖1中,依次層疊有絕緣體350、絕緣體352及絕緣體354。另外,在絕緣體350、絕緣體352及絕緣體354中形成有導電體356。導電體356被用作插頭或佈線。此外,導電體356可以使用與導電體328及導電體330同樣的材料形成。
另外,與絕緣體324同樣,絕緣體350例如較佳為使用對氫具有阻擋性的絕緣體。此外,導電體356較佳為包含對氫具有阻擋性的導電體。尤其是,在對氫具有阻擋性的絕緣體350所具有的開口中形成對氫具有阻擋性的導電體。藉由採用該結構,可以使障壁層將電晶體300與電晶體200分離,從而可以抑制氫從電晶體300擴散到電晶體200中。
注意,作為對氫具有阻擋性的導電體,例如較佳為使用氮化鉭等。另外,藉由層疊氮化鉭和導電性高的鎢,可以在保持作為佈線的導電性的狀態下抑制氫從電晶體300擴散。此時,對氫具有阻擋性的氮化鉭層較佳為與對氫具有阻擋性的絕緣體350接觸。
在絕緣體354上,依次層疊有絕緣體358、絕緣體210、絕緣體212、絕緣體213、絕緣體214及絕緣 體216。作為絕緣體358、絕緣體210、絕緣體212、絕緣體213、絕緣體214和絕緣體216中的任何一個,較佳為使用對氧或氫具有阻擋性的物質。
例如,作為絕緣體358及絕緣體212,例如較佳為使用能夠防止氫等雜質從設置有基板311或電晶體300的區域等擴散到設置有電晶體200的區域中的具有阻擋性的膜。因此,上述膜可以使用與絕緣體324同樣的材料。
作為對氫具有阻擋性的膜的一個例子,可以使用藉由CVD法形成的氮化矽。在此,有時氫擴散到電晶體200等具有氧化物半導體的半導體元件中導致該半導體元件的特性下降。因此,較佳為在電晶體200與電晶體300之間設置抑制氫的擴散的膜。明確而言,抑制氫的擴散的膜是指氫的脫離量少的膜。
例如,作為對於氫具有阻擋性的膜,絕緣體213及絕緣體214較佳為使用氧化鋁、氧化鉿、氧化鉭等金屬氧化物。
尤其是,氧化鋁的不使膜透過氧及導致電晶體的電特性變動的氫、水分等雜質的阻擋效果高。因此,在電晶體的製程中及製程之後,氧化鋁可以防止氫、水分等雜質混入電晶體200中。另外,氧化鋁可以抑制氧從構成電晶體200的氧化物釋放。因此,氧化鋁適合用作電晶體200的保護膜。
例如,作為絕緣體210及絕緣體216,可以使 用與絕緣體320同樣的材料。此外,藉由將介電常數較低的材料用於層間膜,可以減少產生在佈線之間的寄生電容。例如,作為絕緣體216,可以使用氧化矽膜和氧氮化矽膜等。
另外,作為絕緣體358、絕緣體210、絕緣體212、絕緣體213、絕緣體214及絕緣體216,嵌入導電體218及構成電晶體200的導電體(導電體205)等。此外,導電體218被用作與電容器100或電晶體300電連接的插頭或佈線。導電體218可以使用與導電體328及導電體330同樣的材料形成。
尤其是,與絕緣體358、絕緣體212、絕緣體213及絕緣體214接觸的區域的導電體218較佳為對氧、氫及水具有阻擋性的導電體。藉由採用該結構,可以利用對氧、氫及水具有阻擋性的層將電晶體300與電晶體200完全分離,從而可以抑制氫從電晶體300擴散到電晶體200中。
例如,當絕緣體224包括過量氧區域時,較佳為作為與絕緣體224接觸的導電體諸如導電體218等,使用耐氧化性高的導電體。此外,如圖式所示,也可以在導電體218及構成電晶體200的導電體(導電體205)上設置具有阻擋性的導電體219。藉由採用本結構,可以抑制導電體218及構成電晶體200的導電體(導電體205)與過量氧區域的氧起反應而生成氧化物。
在絕緣體224的上方設置有電晶體200。另 外,作為電晶體200,可以採用在後面的實施方式中說明的電晶體的結構。注意,圖1所示的電晶體200的結構只是一個例子,不侷限於上述結構,根據電路結構或驅動方法使用適當的電晶體即可。
在電晶體200的上方設置絕緣體280。在絕緣體280中,較佳為形成過量氧區域。尤其是,在將氧化物半導體用於電晶體200時,作為電晶體200附近的層間膜等形成具有過量氧區域的絕緣體,降低電晶體200的氧空位,而可以提高電晶體200的可靠性。
明確而言,作為具有過量氧區域的絕緣體,較佳為使用藉由加熱使一部分的氧脫離的氧化物材料。藉由加熱使氧脫離的氧化物是指在TDS分析中換算為氧原子的氧的脫離量為1.0×1018atoms/cm3以上,較佳為3.0×1020atoms/cm3以上的氧化物膜。另外,進行上述TDS分析時的膜的表面溫度較佳為在100℃以上且700℃以下,或者100℃以上且500℃以下的範圍內。
例如,作為這種材料,較佳為使用包含氧化矽或氧氮化矽的材料。另外,也可以使用金屬氧化物。注意,在本說明書中,“氧氮化矽”是指在其組成中氧含量多於氮含量的材料,而“氮氧化矽”是指在其組成中氮含量多於氧含量的材料。
另外,覆蓋電晶體200的絕緣體280也可以被用作覆蓋其下方的凹凸形狀的平坦化膜。此外,在絕緣體280中嵌入導電體244等。
導電體244被用作與電容器100、電晶體200或電晶體300電連接的插頭或佈線。導電體244可以使用與導電體328及導電體330同樣的材料形成。
例如,當導電體244具有疊層結構時,較佳為包含不容易氧化(耐氧化性高)的導電體。尤其較佳的是,在與具有過量氧區域的絕緣體280接觸的區域中包含耐氧化性高的導電體。藉由採用該結構,可以抑制過量氧從絕緣體280被吸收到導電體244中。另外,導電體244較佳為包含對氫具有阻擋性的導電體。尤其是,藉由在與具有過量氧區域的絕緣體280接觸的區域中包含對氫等雜質具有阻擋性的導電體,可以抑制導電體244中的雜質及導電體244的一部分擴散或成為來自外部的雜質的擴散路徑。
也可以在導電體244上設置導電體246、導電體124、導電體112a及導電體112b。導電體246及導電體124被用作與電容器100、電晶體200或電晶體300電連接的插頭或者佈線。此外,導電體112a及導電體112b被用作電容器100的電極。此外,導電體246及導電體112a可以同時形成。此外,導電體124及導電體112b可以同時形成。
導電體246、導電體124、導電體112a及導電體112b可以使用包含選自鉬、鈦、鉭、鎢、鋁、銅、鉻、釹、鈧中的元素的金屬膜或以上述元素為成分的金屬氮化物膜(氮化鉭膜、氮化鈦膜、氮化鉬膜、氮化鎢膜) 等。或者,作為導電體246、導電體124、導電體112a及導電體112b,也可以使用銦錫氧化物、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦鋅氧化物、添加有氧化矽的銦錫氧化物等導電材料。
尤其是,作為導電體246及導電體112a較佳為使用氮化鉭膜等金屬氮化物膜,該金屬氮化物膜具有對氫或氧的阻擋性,並且不容易氧化(耐氧化性高)。另一方面,作為導電體124及導電體112b例如較佳為使用鎢等導電性高的材料層疊。藉由使用該組合,可以在保持作為佈線的導電性的同時抑制氫擴散到絕緣體280及電晶體200。此外,在圖1中,示出導電體246及導電體124的兩層結構,但是也可以不侷限於該結構,既可以是單層又可以是三層以上的疊層結構。例如,也可以在具有阻擋性的導電體與導電性高的導電體之間形成與具有阻擋性的導電體以及導電性高的導電體之間的緊密性高的導電體。
也可以在導電體124上設置障壁層281。藉由包括障壁層281,可以抑制導電體124在後面的製程中被氧化。此外,可以抑制包含在導電體124中的雜質或導電體124的一部分擴散。另外,可以抑制雜質透過導電體124、導電體246及導電體244擴散到絕緣體280。
障壁層281可以使用絕緣性材料。此時,障壁層281也可以具有電容器100的介電質的一部分的功能。此外,障壁層281也可以使用導電材料形成。此時, 也可以具有佈線或電極的一部分的功能。
作為障壁層281,例如較佳為使用氧化鋁、氧化鉿、氧化鉭等金屬氧化物或氮化鉭等金屬氮化物等。尤其是,氧化鋁的不使氧及導致電晶體的電特性變動的氫、水分等雜質透過膜的阻擋效果高。因此,在半導體裝置的製程中及製程之後,氧化鋁可以防止導電體124、氫、水分等雜質混入電晶體200中。
在障壁層281及絕緣體280上設置有絕緣體282。絕緣體282較佳為使用對氧或氫具有阻擋性的物質。因此,絕緣體282可以使用與絕緣體214同樣的材料。例如,絕緣體282較佳為使用氧化鋁、氧化鉿、氧化鉭等金屬氧化物。
尤其是,氧化鋁的不使膜透過氧及導致電晶體的電特性變動的氫、水分等雜質的阻擋效果高。因此,在電晶體的製程中及製程之後,氧化鋁可以防止氫、水分等雜質混入電晶體200中。另外,氧化鋁可以抑制氧從構成電晶體200的氧化物釋放。因此,氧化鋁適合用作電晶體200的保護膜。
因此,可以由絕緣體212、絕緣體213和絕緣體214的疊層結構與絕緣體282夾住電晶體200及包括過量氧區域的絕緣體280。絕緣體212、絕緣體213、絕緣體214及絕緣體282具有抑制氧或雜質諸如氫及水的擴散的阻擋性。
可以抑制從絕緣體280及電晶體200釋放的 氧擴散到形成有電容器100或電晶體300的層中。或者,可以抑制氫及水等雜質從絕緣體282的上方的層及絕緣體214的下方的層擴散到電晶體200中。
就是說,可以將氧從絕緣體280的過量氧區域高效地供應到電晶體200中的其中形成通道的氧化物,而可以減少氧空位。另外,可以防止由於雜質而在電晶體200中的其中形成通道的氧化物中形成氧空位。因此,可以將電晶體200中的其中形成通道的氧化物形成為缺陷態密度低且特性穩定的氧化物半導體。就是說,在抑制電晶體200的電特性變動的同時,可以提高可靠性。
這裡,對當將大面積基板按每個半導體元件分割而得到晶片形狀的多個半導體裝置時設置的切割線(也稱為分割線、分離線或截斷線)進行說明。作為分割方法,例如,有時,首先在基板中形成用來分離半導體元件的槽(切割線)之後,在切割線處截斷,得到被分離(被分割)的多個半導體裝置。圖7A及圖7B示出切割線附近的剖面圖。
例如,如圖7A所示,在與設置在包括電晶體200的記憶單元的邊緣的切割線(在圖式中,以點劃線表示)重疊的區域附近,在絕緣體212、絕緣體213、絕緣體214、絕緣體216、絕緣體224及絕緣體280中形成開口。另外,以覆蓋絕緣體212、絕緣體213、絕緣體214、絕緣體216、絕緣體224及絕緣體280的側面的方式設置絕緣體282。
這裡,當障壁層281具有絕緣性時,較佳為在該開口中在絕緣體282與開口的內面之間夾著障壁層281設置絕緣體282。藉由包括障壁層281,可以進一步抑制雜質的擴散。
因此,在該開口中,絕緣體212、絕緣體213及絕緣體214與障壁層281接觸。此時,藉由使用相同材料及相同方法形成絕緣體212、絕緣體213和絕緣體214中的至少一個及絕緣體282,可以提高它們之間的緊密性。此外,較佳為使用相同材料形成障壁層281及絕緣體282。例如,可以使用氧化鋁。藉由在利用ALD法等能夠形成緻密的膜的方法形成障壁層281之後,利用濺射法等成膜速率高的方法形成絕緣體282,可以提高生產率及阻擋性。
藉由採用該結構,可以使絕緣體212、絕緣體213、絕緣體214及絕緣體282包圍絕緣體280及電晶體200。絕緣體212、絕緣體213、絕緣體214及絕緣體282由於具有抑制氧、氫及水的擴散的功能,所以即使將基板按每個形成有本實施方式所示的半導體元件的電路區域分割而加工為多個晶片,也可以防止從截斷的基板的側面方向混入氫或水等雜質且該雜質擴散到電晶體200。
另外,藉由採用該結構,可以防止絕緣體280中的過量氧擴散到絕緣體282及絕緣體214的外部。因此,絕緣體280中的過量氧高效地被供應到在電晶體200中形成通道的氧化物中。藉由該氧,可以減少在電晶體 200中形成通道的氧化物中的氧空位。由此,可以使在電晶體200中形成通道的氧化物成為缺陷態密度低且具有穩定的特性的氧化物半導體。換言之,可以在抑制電晶體200的電特性變動的同時提高可靠性。
另外,例如,如圖7B所示,也可以在切割線(在圖式中,以點劃線表示)的兩側的區域中且在絕緣體212、絕緣體213、絕緣體214、絕緣體216、絕緣體224及絕緣體280中形成開口。注意,雖然在圖式中形成兩個開口,但是可以根據需要形成更多的開口。
因此,在形成於切割線的兩側的開口中,絕緣體212、絕緣體213及絕緣體214至少在兩處與障壁層281接觸,所以具有緊密性更高的結構。在此情況下,藉由使用相同材料及相同方法形成絕緣體212、絕緣體213和絕緣體214中的至少一個及絕緣體282,也可以提高它們之間的緊密性。
另外,藉由形成多個開口,可以實現絕緣體282與絕緣體212、絕緣體213及絕緣體214在多個區域中接觸的結構。由此,可以防止從切割線混入的雜質到達電晶體200。
藉由採用該結構,可以嚴密地密封電晶體200與絕緣體280。因此,可以將電晶體200中的其中形成通道的氧化物形成為缺陷態密度低且特性穩定的氧化物半導體。就是說,在抑制電晶體200的電特性變動的同時,可以提高可靠性。
接著,在電晶體200的上方設置有電容器100。電容器100包括導電體112(導電體112a及導電體112b)、障壁層281、絕緣體282、絕緣體130、導電體116。
導電體112被用作電容器100的電極。例如,圖1所示的結構是被用作與電晶體200及電晶體300連接的插頭或佈線的導電體244的一部分被用作導電體112的結構。此外,當障壁層281具有導電性時,障壁層281被用作電容器100的電極的一部分。此外,當障壁層281具有絕緣性時,障壁層281被用作電容器100的電介質的一部分。
藉由採用該結構,與分別形成電極及佈線的情況相比,可以降低製程數,所以可以提高生產率。
另外,絕緣體282被夾在導電體112與導電體116之間的區域被用作電介質。例如,當絕緣體282使用氧化鋁等高介電常數(high-k)材料時,電容器100可以確保充分的電容。
此外,作為電介質的一部分也可以設置絕緣體130。絕緣體130例如可以使用氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋁、氧氮化鋁、氮氧化鋁、氮化鋁、氧化鉿、氧氮化鉿、氮氧化鉿、氮化鉿等,並採用疊層或單層。
例如,當絕緣體282使用氧化鋁等高介電常數(high-k)材料時,絕緣體130使用氧氮化矽等介電強 度大的材料。藉由採用該結構,電容器100包括絕緣體130,增大介電強度,可以抑制電容器100的靜電破壞。
導電體116以隔著障壁層281、絕緣體282及絕緣體130覆蓋導電體112的側面及頂面的方式設置。藉由採用該結構,由導電體116隔著絕緣體包圍導電體112的側面。藉由採用該結構,在導電體112的側面還形成電容,因此可以增大電容器的每投影面積的容量。因此,可以實現半導體裝置的小面積化、高集成化以及微型化。
作為導電體116可以使用金屬材料、合金材料、金屬氧化物材料等導電材料。較佳為使用兼具耐熱性和導電性的鎢或鉬等高熔點材料,尤其較佳為使用鎢。當與導電體等其他結構同時形成該導電體116時,使用低電阻金屬材料的Cu(銅)或Al(鋁)等即可。
在導電體116及絕緣體130上設置有絕緣體150。作為絕緣體150可以使用與絕緣體320同樣的材料。另外,絕緣體150可以被用作覆蓋其下方的凹凸形狀的平坦化膜。
以上是結構實例的說明。藉由採用本結構,可以在使用具有包含氧化物半導體的電晶體的半導體裝置中抑制電特性變動的同時提高可靠性。另外,可以提供一種包含通態電流大的氧化物半導體的電晶體。此外,可以提供一種包含關態電流小的氧化物半導體的電晶體。另外,可以提供一種功耗得到減少的半導體裝置。
〈變形例子1〉
作為本實施方式的變形例子,也可以如圖2所示那樣形成導電體244及障壁層281。也就是說,也可以在絕緣體280中嵌入將成為插頭或佈線的導電體244及將成為電容器100的電極的一部分的導電體112,在導電體244上使用具有阻擋性的導電體或絕緣體設置障壁層281。此外,此時障壁層281較佳為使用不僅具有阻擋性也具有高耐氧化性的導電體。藉由採用該結構,由於導電體244的一部分被用作電容器的電極(導電體112),所以不需要另行設置導電體。
因此,如圖2所示,電容器100包括導電體244的一區域的導電體112、絕緣體282、絕緣體130、導電體116。
被用作電容器100的電極的導電體112可以與導電體244同時形成。藉由採用該結構,可以提高生產率。此外,由於不需要用來形成電容器的電極的遮罩,所以可以減少製程數。
在絕緣體216上依次層疊有絕緣體220、絕緣體222及絕緣體224。絕緣體220、絕緣體222和絕緣體224中的任一個較佳為使用對氧或氫具有阻擋性的物質。此外,絕緣體220、絕緣體222及絕緣體224有時被用作電晶體200的一部分(閘極絕緣體)。
絕緣體224較佳為使用其氧含量超過化學計量組成的氧化物。就是說,在絕緣體224中,較佳為形成 有與化學計量組成相比氧過剩的區域(以下,也稱為過量氧區域)。尤其是,在將氧化物半導體用於電晶體200時,在電晶體200附近的基底膜等中設置具有過量氧區域的絕緣體,降低電晶體200的氧空位,而可以提高電晶體200的可靠性。
明確而言,作為具有過量氧區域的絕緣體,較佳為使用藉由加熱使一部分的氧脫離的氧化物材料。藉由加熱使氧脫離的氧化物是指在TDS分析中換算為氧原子的氧的脫離量為1.0×1018atoms/cm3以上,較佳為3.0×1020atoms/cm3以上的氧化物膜。另外,進行上述TDS分析時的膜的表面溫度較佳為在100℃以上且700℃以下,或者100℃以上且500℃以下的範圍內。
例如,作為這種材料,較佳為使用包含氧化矽或氧氮化矽的材料。另外,也可以使用金屬氧化物。注意,在本說明書中,“氧氮化矽”是指在其組成中氧含量多於氮含量的材料,而“氮氧化矽”是指在其組成中氮含量多於氧含量的材料。
當絕緣體224包括過量氧區域時,絕緣體222或絕緣體220較佳為對氧、氫及水具有阻擋性。藉由絕緣體222或絕緣體220對氧具有阻擋性,過量氧區域的氧高效地供應給電晶體200所包括的氧化物230而不擴散到電晶體300一側。此外,可以抑制導電體218及構成電晶體200的導電體(導電體205)與過量氧區域的氧起反應來生成氧化物。
以上是對變形例子的說明。藉由採用本結構,可以在使用具有包含氧化物半導體的電晶體的半導體裝置中抑制電特性變動的同時提高可靠性。另外,可以提供一種包含通態電流大的氧化物半導體的電晶體。此外,可以提供一種包含關態電流小的氧化物半導體的電晶體。另外,可以提供一種功耗得到減少的半導體裝置。
〈變形例子2〉
在本實施方式的變形例子中,也可以如圖3所示那樣形成導電體219、導電體244及具有阻擋性的導電體246。也就是說,也可以在絕緣體280中嵌入將成為插頭或佈線的導電體244,在導電體244上設置具有阻擋性的導電體246。此外,此時,導電體246較佳為使用不僅具有阻擋性也具有高耐氧化性的導電體。此外,藉由採用該結構,可以同時形成導電體246及用作電容器的電極的導電體112。此外,藉由採用該結構,由於導電體246也被用作障壁層,所以不需要另行設置障壁層。
因此,電容器100如圖3所示包括導電體112、絕緣體282、絕緣體130、導電體116。被用作電容器100的電極的導電體112可以與導電體246同時形成。
以上是對變形例子的說明。藉由採用本結構,可以在使用具有包含氧化物半導體的電晶體的半導體裝置中抑制電特性變動的同時提高可靠性。另外,可以提供一種包含通態電流大的氧化物半導體的電晶體。此外, 可以提供一種包含關態電流小的氧化物半導體的電晶體。另外,可以提供一種功耗得到減少的半導體裝置。
〈變形例子3〉
在本實施方式的變形例子中,也可以如圖4所示那樣設置電容器100。也就是說,在絕緣體280中嵌入將成為插頭或佈線的導電體244,在導電體244上設置具有阻擋性的障壁層281之後,設置具有阻擋性的絕緣體282及絕緣體284。接著,在絕緣體284上設置平坦性高的絕緣體286,由此可以在平坦性高的絕緣體286上設置電容器100。
電容器100形成在絕緣體286上,並包括導電體112(導電體112a及導電體112b)、絕緣體130、絕緣體132、絕緣體134及導電體116。導電體124被用作與電容器100、電晶體200或電晶體300電連接的插頭或佈線。
作為導電體112可以使用金屬材料、合金材料、金屬氧化物材料等導電材料。較佳為使用兼具耐熱性和導電性的鎢或鉬等高熔點材料,尤其較佳為使用鎢。當與導電體等其他結構同時形成該導電體112時,使用低電阻金屬材料的Cu(銅)或Al(鋁)等即可。
在導電體112上形成絕緣體130、絕緣體132及絕緣體134。作為絕緣體130、絕緣體132及絕緣體134例如可以使用氧化矽、氧氮化矽、氮氧化矽、氮化 矽、氧化鋁、氧氮化鋁、氮氧化鋁、氮化鋁、氧化鉿、氧氮化鉿、氮氧化鉿、氮化鉿等。在圖式中,採用三層結構,也可以採用單層、兩層或四層以上的疊層結構。
例如,較佳的是,作為絕緣體130及絕緣體134使用氧氮化矽等介電強度大的材料,作為絕緣體132使用氧化鋁等介電常數高(high-k)的材料。在具有該結構的電容器100中,由於介電常數高(high-k)的絕緣體而可以確保充分的電容,並且在包括介電強度大的絕緣體時絕緣強度得到提高而可以抑制電容器100的靜電放電。
在導電體112上隔著絕緣體130、絕緣體132及絕緣體134設置導電體116。作為導電體116可以使用金屬材料、合金材料、金屬氧化物材料等導電材料。較佳為使用兼具耐熱性和導電性的鎢或鉬等高熔點材料,尤其較佳為使用鎢。當與導電體等其他結構同時形成該導電體116時,使用低電阻金屬材料的Cu(銅)或Al(鋁)等即可。
此外,藉由作為被用作一個電極的導電體112採用如導電體112b那樣的具有凸狀的結構體,可以增大電容器的每投影面積的容量。因此,可以實現半導體裝置的小面積化、高集成化以及微型化。
以上是對變形例子的說明。藉由採用本結構,可以在使用具有包含氧化物半導體的電晶體的半導體裝置中抑制電特性變動的同時提高可靠性。另外,可以提供一種包含通態電流大的氧化物半導體的電晶體。此外, 可以提供一種包含關態電流小的氧化物半導體的電晶體。另外,可以提供一種功耗得到減少的半導體裝置。
〈變形例子4〉
圖5示出本實施方式的一個變形例子。圖5與圖1的不同之處在於電晶體300及電晶體200的結構。
在圖5所示的電晶體300中,形成通道的半導體區域312(基板311的一部分)具有凸形狀。另外,以隔著絕緣體314覆蓋半導體區域312的側面及頂面的方式設置導電體316。另外,導電體316可以使用調整功函數的材料。因為利用半導體基板的凸部,所以這種電晶體300也被稱為FIN型電晶體。另外,也可以以與凸部的上表面接觸的方式具有用作用來形成凸部的遮罩的絕緣體。此外,雖然在此示出對半導體基板的一部分進行加工來形成凸部的情況,但是也可以對SOI基板進行加工來形成具有凸部的半導體膜。
圖3所示的電晶體200的結構的詳細內容後面在其他實施方式中進行說明。在形成在絕緣體280中的開口形成有氧化物、閘極絕緣體及將成為閘極的導電體。因此,較佳為至少在將成為閘極的導電體上形成具有阻擋性的導電體246。
當作為導電體112(導電體246)層疊氮化鉭等對氧、氫或水具有阻擋性的導電體以及鎢或銅等導電性高的導電體使用時,鎢或銅等導電性高的導電體被氮化鉭 及障壁層281完全密封。因此,可以抑制銅等的導電體本身的擴散,並可以抑制從絕緣體282上方透過導電體244侵入雜質。
在電晶體200的上方設置有電容器100。在圖5所示的結構中,在電容器100中包括導電體112、具有阻擋性的導電體246、絕緣體282、絕緣體130、導電體116。
導電體112被用作電容器100的電極。例如,圖5所示的結構是被用作與電晶體200及電晶體300連接的插頭或佈線的導電體244的一部分被用作導電體112的結構。此外,當障壁層281具有導電性時,障壁層281被用作電容器100的電極的一部分。此外,當障壁層281具有絕緣性時,障壁層281被用作電容器100的電介質。
藉由採用該結構,與分別形成電極及佈線的情況相比,可以降低製程數,所以可以提高生產率。
以上是對變形例子的說明。藉由採用本結構,可以在使用具有包含氧化物半導體的電晶體的半導體裝置中抑制電特性變動的同時提高可靠性。另外,可以提供一種包含通態電流大的氧化物半導體的電晶體。此外,可以提供一種包含關態電流小的氧化物半導體的電晶體。另外,可以提供一種功耗得到減少的半導體裝置。
〈變形例子5〉
圖6示出本實施方式的一個變形例子。圖6與圖4的不同之處在於電晶體200的結構。
如圖6所示,也可以設置絕緣體279及障壁層271。絕緣體279可以使用與絕緣體280相同的材料及製造方法形成。也就是說,絕緣體279與絕緣體280同樣地較佳為使用其氧含量超過化學計量組成的氧化物。因此,絕緣體279是包含氧的絕緣體,諸如氧化矽膜、氧氮化矽膜等。作為形成包含過量氧的絕緣體的方法,可以適當地設定CVD法或濺射法中的成膜條件,形成使其膜中包含多量氧的氧化矽膜或氧氮化矽膜。此外,在形成成為絕緣體279的絕緣體之後,也可以進行採用CMP法等的平坦化處理以提高該絕緣體的頂面的平坦性。另外,為了在絕緣體279中形成過量氧區域,例如也可以利用離子植入法、離子摻雜法、電漿處理添加氧。
障壁層271使用對氧具有阻擋性的絕緣體或導電體。障壁層271例如可以利用濺射法或原子層沉積(ALD:Atomic Layer Deposition)法使用氧化鋁、氧化鉿、氧化鉭、氮化鉭等形成。
在絕緣體279及障壁層271上設置絕緣體280。藉由使用同一材料及同一製造方法設置絕緣體279及絕緣體280,在對絕緣體280進行過氧化處理時,被引入的過量氧不僅擴散到絕緣體280,也擴散到絕緣體279。因此,為了在絕緣體280及絕緣體279中形成過量氧區域,例如也可以利用離子植入法、離子摻雜法、電漿 處理對絕緣體280添加氧。
以上是對變形例子的說明。藉由採用本結構,可以在使用具有包含氧化物半導體的電晶體的半導體裝置中抑制電特性變動的同時提高可靠性。另外,可以提供一種包含通態電流大的氧化物半導體的電晶體。此外,可以提供一種包含關態電流小的氧化物半導體的電晶體。另外,可以提供一種功耗得到減少的半導體裝置。
〈變形例子6〉
圖9A及圖9B示出本實施方式的一個變形例子。圖9A及圖9B分別示出以點劃線A1-A2為軸的電晶體200的通道長度及通道寬度方向的剖面。
如圖9A及圖9B所示,也可以採用使用絕緣體212和絕緣體214的疊層及絕緣體282和絕緣體284的疊層包圍電晶體200及包括過量氧區域的絕緣體280的結構。此時,在使電晶體300與電容器100連接的貫通電極與電晶體200之間,絕緣體212和絕緣體214的疊層結構較佳為與絕緣體282和絕緣體284的疊層結構接觸。
因此,可以抑制從絕緣體280及電晶體200釋放的氧擴散到形成有電容器100或電晶體300的層中。或者,可以抑制氫及水等雜質從絕緣體282的上方的層及絕緣體214的下方的層擴散到電晶體200中。
就是說,可以將氧從絕緣體280的過量氧區域高效地供應到電晶體200中的其中形成通道的氧化物, 而可以減少氧空位。另外,可以防止由於雜質而在電晶體200中的其中形成通道的氧化物中形成氧空位。因此,可以將電晶體200中的其中形成通道的氧化物形成為缺陷態密度低且特性穩定的氧化物半導體。就是說,在抑制電晶體200的電特性變動的同時,可以提高可靠性。
〈變形例子7〉
圖10A及圖10B示出本實施方式的一個變形例子。圖10A是抽出將圖8A所示的半導體裝置配置為矩陣狀時的行的一部分的電路圖。此外,圖10B是對應於圖10A的電路圖的半導體裝置的剖面圖。
在圖10A及圖10B中,在同一行中設置有如下半導體裝置,亦即包括電晶體300、電晶體200及電容器100的半導體裝置;包括電晶體301、電晶體201及電容器101的半導體裝置;以及包括電晶體302、電晶體202及電容器102的半導體裝置。
如圖10B所示,也可以採用使用絕緣體212和絕緣體214的疊層及絕緣體282和絕緣體284的疊層包圍多個電晶體(在圖式中為電晶體200和電晶體201)及包括過量氧區域的絕緣體280的結構。此時,在使電晶體300、電晶體301或電晶體302與電容器100、電容器101或電容器102連接的貫通電極與電晶體200、電晶體201或電晶體202之間,絕緣體212和絕緣體214及絕緣體282和絕緣體284較佳為具有疊層結構。
因此,可以抑制從絕緣體280及電晶體200釋放的氧擴散到形成有電容器100或電晶體300的層中。或者,可以抑制氫及水等雜質從絕緣體282的上方的層及絕緣體214的下方的層擴散到電晶體200中。
就是說,可以將氧從絕緣體280的過量氧區域高效地供應到電晶體200中的其中形成通道的氧化物,而可以減少氧空位。另外,可以防止由於雜質而在電晶體200中的其中形成通道的氧化物中形成氧空位。因此,可以將電晶體200中的其中形成通道的氧化物形成為缺陷態密度低且特性穩定的氧化物半導體。就是說,在抑制電晶體200的電特性變動的同時,可以提高可靠性。
〈變形例子8〉
圖11示出本實施方式的一個變形例子。圖11是在圖10A及圖10B所示的半導體裝置中集成電晶體201及電晶體202時的半導體裝置的剖面圖。
如圖11所示,也可以使成為電晶體201的源極電極或汲極電極的導電體具有成為電容器101的一個電極的導電體112的功能。此時,電晶體201的氧化物以及被用作電晶體201的閘極絕緣體的絕緣體在成為電晶體201的源極電極或汲極電極的導電體上延伸的區域被用作電容器101的絕緣體。因此,將成為電容器101的另一個電極的導電體116隔著絕緣體250及氧化物230c層疊在導電體240a上即可。藉由採用該結構,可以實現半導體 裝置的小面積化、高集成化以及微型化。
另外,也可以層疊電晶體201和電晶體202。藉由採用該結構,可以實現半導體裝置的小面積化、高集成化以及微型化。
另外,也可以採用使用絕緣體212和絕緣體214的疊層及絕緣體282和絕緣體284的疊層包圍多個電晶體(在圖式中為電晶體201和電晶體202)及包括過量氧區域的絕緣體280的結構。此時,在使電晶體300、電晶體301或電晶體302與電容器100、電容器101或電容器102連接的貫通電極與電晶體200、電晶體201或電晶體202之間,絕緣體212和絕緣體214及絕緣體282和絕緣體284較佳為具有疊層結構。
因此,可以抑制從絕緣體280及電晶體200釋放的氧擴散到形成有電容器100或電晶體300的層中。或者,可以抑制氫及水等雜質從絕緣體282的上方的層及絕緣體214的下方的層擴散到電晶體200中。
就是說,可以將氧從絕緣體280的過量氧區域高效地供應到電晶體200中的其中形成通道的氧化物,而可以減少氧空位。另外,可以防止由於雜質而在電晶體200中的其中形成通道的氧化物中形成氧空位。因此,可以將電晶體200中的其中形成通道的氧化物形成為缺陷態密度低且特性穩定的氧化物半導體。就是說,在抑制電晶體200的電特性變動的同時,可以提高可靠性。
本實施方式的至少一部分可以與本說明書所 記載的其他實施方式適當地組合而實施。
實施方式2
在本實施方式中,參照圖12A至圖23說明上述結構實例所示的半導體裝置的製造方法的一個例子。
〈半導體裝置的製造方法〉
首先,準備基板311。作為基板311,使用半導體基板。例如可以使用單晶矽基板(包括p型半導體基板或n型半導體基板)、以碳化矽或氮化鎵為材料的化合物半導體基板等。另外,作為基板311,也可以使用SOI基板。以下,對作為基板311使用單晶矽的情況進行說明。
接著,在基板311中形成元件分離層。元件分離層可以利用LOCOS(Local Oxidation of Silicon:矽局部氧化)法或STI(Shallow Trench Isolation:淺溝槽隔離)法等形成。
另外,當在同一基板上形成p型電晶體和n型電晶體時,也可以在基板311的一部分形成n井或p井。例如,也可以對n型基板311添加賦予p型導電性的硼等雜質元素形成p井,並在同一基板上形成n型電晶體和p型電晶體。
接著,在基板311上形成成為絕緣體314的絕緣膜。例如,也可以在表面氮化處理之後進行氧化處理,使矽與氮化矽之間的介面氧化而形成氧氮化矽膜。例 如,在NH3氛圍下以700℃在表面上形成熱氮化矽膜,然後進行氧自由基氧化,由此得到氧氮化矽膜。
該絕緣體也可以藉由濺射法、CVD(Chemical Vapor Deposition)法(包括熱CVD法、MOCVD(Metal Organic CVD)法、PECVD(Plasma Enhanced CVD)法等)、MBE(Molecular Beam Epitaxy)法、ALD(Atomic Layer Deposition)法或PLD(Pulsed Laser Deposition)法等形成。
接著,形成成為導電體316的導電膜。作為導電膜,較佳為使用選自鉭、鎢、鈦、鉬、鉻、鈮等的金屬或以這些金屬為主要成分的合金材料或化合物材料。另外,還可以使用添加有磷等雜質的多晶矽。此外,還可以使用金屬氮化物膜和上述金屬膜的疊層結構。作為金屬氮化物,可以使用氮化鎢、氮化鉬或氮化鈦。藉由設置金屬氮化物膜,可以提高金屬膜的緊密性,從而能夠防止剝離。另外,因為藉由設定導電體316的功函數來調整電晶體300的臨界電壓,所以較佳為根據電晶體300被要求的特性適當地選擇導電膜的材料。
導電膜可以藉由濺射法、蒸鍍法、CVD法(包括熱CVD法、MOCVD法、PECVD法等)等形成。另外,為了減少電漿所導致的損傷,較佳為利用熱CVD法、MOCVD法或ALD法。
接著,藉由光微影法等在該導電膜上形成光阻遮罩,來去除該導電膜的不需要的部分。然後,去除光 阻遮罩,由此可以形成導電體316。
在形成導電體316之後,也可以形成覆蓋導電體316的側面的側壁。在形成比導電體316的厚度厚的絕緣體之後,進行各向異性蝕刻,只殘留導電體316的側面部分的該絕緣體,由此可以形成側壁。
在形成側壁的同時,成為絕緣體314的絕緣膜也被蝕刻,由此在導電體316及側壁的下部形成絕緣體314。另外,也可以在形成導電體316之後以導電體316或用來形成導電體316的光阻遮罩為蝕刻遮罩對該絕緣膜進行蝕刻,由此形成絕緣體314。在此情況下,在導電體316的下方形成絕緣體314。或者,也可以將該絕緣膜用作絕緣體314而不對該絕緣膜進行蝕刻。
接著,對基板311的沒有設置導電體316(及側壁)的區域添加磷等賦予n型導電性的元素或硼等賦予p型導電性的元素。
接著,在形成絕緣體320之後,進行用來使上述賦予導電性的元素活化的加熱處理。
絕緣體320例如可以利用氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋁、氧氮化鋁、氮氧化鋁、氮化鋁等,以疊層或單層設置。另外,當使用包含氧和氫的氮化矽(SiNOH)時,因為可以增大藉由加熱脫離的氫量,所以是較佳的。此外,使用使TEOS(Tetra-Ethyl-Ortho-Silicate:四乙氧基矽烷)或矽烷等與氧或一氧化二氮等起反應而形成的步階覆蓋性良好的氧化矽。
絕緣體320可以藉由例如濺射法、CVD法(包括熱CVD法、MOCVD法、PECVD法等)、MBE法、ALD法或PLD法等形成。尤其是,當藉由CVD法、較佳為藉由電漿CVD法形成該絕緣體時,可以提高覆蓋性,所以是較佳的。另外,為了減少電漿所導致的損傷,較佳為利用熱CVD法、MOCVD法或ALD法。
可以在稀有氣體或氮氣體等惰性氣體氛圍下或者在減壓氛圍下,例如以400℃以上且低於基板的應變點的溫度進行加熱處理。
在這階段中形成電晶體300。另外,在採用圖8B所示的電路結構時,可以不設置電晶體300。在此情況下,對基板沒有特別的限制。例如,可以使用玻璃基板如硼矽酸鋇玻璃基板和硼矽酸鋁玻璃基板等、陶瓷基板、石英基板、藍寶石基板等。此外,也可以利用:使用矽或碳化矽等的單晶半導體基板或多晶半導體基板;使用矽鍺、砷化鎵、砷化銦、砷化銦鎵的化合物半導體基板;SOI(Silicon On Insulator)基板;或GOI(Germanium on Insulator)基板等,並且也可以使用在這些基板上設置有半導體元件的基板。
另外,作為基板也可以使用撓性基板。既可以在撓性基板上直接製造電晶體,也可以在其他製造基板上製造電晶體,然後從製造基板剝離電晶體並將其轉置到撓性基板上。另外,為了從製造基板剝離電晶體並將其轉置到撓性基板上,較佳為在製造基板與包括氧化物半導體 的電晶體之間設置剝離層。
接著,在絕緣體320上形成絕緣體322。絕緣體322可以藉由採用與絕緣體320同樣的材料及方法製造。此外,藉由CMP法等對絕緣體322的頂面進行平坦化(圖12A)。
接著,藉由光微影法等在絕緣體320及絕緣體322中形成到達低電阻區域318a、低電阻區域318b及導電體316等的開口(圖12B)。然後,以填埋開口的方式形成導電膜(圖12C)。例如可以藉由濺射法、CVD法(包括熱CVD法、MOCVD法、PECVD法等)、MBE法、ALD法或PLD法等形成導電膜。
接著,藉由以使絕緣體322的頂面露出的方式對該導電膜進行平坦化處理,形成導電體328a、導電體328b及導電體328c等(圖12D)。另外,圖中的箭頭表示CMP處理。此外,在說明書及圖式中,導電體328a、導電體328b及導電體328c用作插頭或佈線,有時將它們總稱為導電體328。另外,在本說明書中,同樣地處理具有插頭或佈線的功能的導電體。
接著,在絕緣體320上藉由採用鑲嵌法等形成導電體330a、導電體330b及導電體330c(圖13A)。
絕緣體324及絕緣體326可以藉由採用與絕緣體320同樣的材料及方法形成。
作為絕緣體324,例如較佳為使用能夠防止氫等雜質從基板311或電晶體300等擴散到設置有電晶體 200的區域中的具有阻擋性的膜。例如,作為對氫具有阻擋性的膜的一個例子,可以使用藉由CVD法形成的氮化矽。
此外,絕緣體326較佳為介電常數低的絕緣體(Low-k材料)。例如,可以使用藉由CVD法形成的氧化矽。藉由將介電常數低的材料用於層間膜,可以減少在佈線之間產生的寄生電容。
此外,成為導電體330的導電膜可以藉由採用與導電體328同樣的材料及方法形成。
另外,在導電體330採用疊層結構時,作為與絕緣體324接觸的導電體,較佳為層疊氮化鉭等的對氧、氫或水具有阻擋性的導電體及鎢或銅等的導電性高的導電體。例如,具有阻擋性的氮化鉭膜可以以250℃的基板溫度使用不包含氯的沉積氣體且利用ALD法形成。藉由採用ALD法,可以形成裂縫或針孔等缺陷少或具有均勻厚度的緻密的導電體。此外,藉由使對氧、氫或水具有阻擋性的絕緣體324和對氧、氫或水具有阻擋性的導電體接觸,可以更確實地抑制氧、氫或水的擴散。
接著,形成絕緣體350、絕緣體352、絕緣體354、導電體356a、導電體356b及導電體356c(圖13B)。絕緣體352及絕緣體354可以藉由採用與絕緣體320同樣的材料及方法形成。此外,導電體356可以藉由採用雙鑲嵌法等並使用與導電體328同樣的材料形成。
另外,在導電體356採用疊層結構時,作為 與絕緣體350接觸的導電體,較佳為層疊氮化鉭等的對氧、氫或水具有阻擋性的導電體及鎢或銅等的導電性高的導電體。尤其是,當導電體356使用銅等容易擴散的材料時,較佳為層疊該材料及對銅等具有阻擋性的導電體。此外,絕緣體354較佳為對銅等具有阻擋性的絕緣體。此外,藉由使絕緣體354與對氧、氫或水具有阻擋性的導電體接觸,可以更確實地抑制氧、氫或水的擴散。
接著,形成對氫或氧具有阻擋性的絕緣體358。絕緣體358較佳為與絕緣體354同樣地對用於導電體356的導電體具有阻擋性。
在絕緣體358上形成絕緣體210、絕緣體212、絕緣體213及絕緣體214。絕緣體210、絕緣體212、絕緣體213及絕緣體214可以藉由採用與絕緣體324及絕緣體326等同樣的材料及方法形成。
此外,絕緣體210較佳為介電常數低的絕緣體(Low-k材料)。例如,可以使用藉由CVD法形成的氧化矽。藉由將介電常數低的材料用於層間膜,可以減少在佈線之間產生的寄生電容。
此外,作為絕緣體212,較佳為使用能夠防止氫等雜質從基板311或電晶體300等擴散到設置有電晶體200的區域中的具有阻擋性的膜。例如,作為對氫具有阻擋性的膜的一個例子,可以使用藉由CVD法形成的氮化矽。
此外,作為對氫具有阻擋性的膜的一個例 子,絕緣體213可以使用藉由採用ALD法形成的氧化鋁。藉由採用ALD法,可以形成裂縫或針孔等缺陷少或具有均勻厚度的緻密的絕緣體。
另外,作為對氫具有阻擋性的膜的一個例子,絕緣體214可以使用藉由採用濺射法形成的氧化鋁。
接著,在絕緣體214上形成絕緣體216。絕緣體216可以藉由採用與絕緣體210同樣的材料及方法形成(圖13C)。
接著,在絕緣體212、絕緣體213、絕緣體214和絕緣體216的疊層結構中,在與導電體356a、導電體356b及導電體356c等重疊的區域中形成凹部(圖14A)。另外,該凹部較佳為具有至少在使用難蝕刻材料的絕緣體中形成開口的程度的深度。在此,難蝕刻材料是指金屬氧化物等的難以被蝕刻的材料。作為難蝕刻材料的金屬氧化膜的典型例子有氧化鋁、氧化鋯、氧化鉿、包含它們的矽化物(HfSixOy、ZrSixOy等)以及包含它們中的兩個以上的複合氧化物(Hf1-xAlxOy、Zr1-xAlxOy等)。
接著,在絕緣體214和絕緣體216的疊層結構中,在要形成導電體205的區域中形成開口,且去除形成在絕緣體212、絕緣體213、絕緣體214和絕緣體216的疊層結構中的凹部的底部,由此形成到達導電體356a、導電體356b及導電體356c的開口(圖14B)。此時,藉由擴大形成在凹部的上部,例如形成在絕緣體216中的開口,可以對在後面的製程中形成的插頭或佈線確保 充分的設計餘地。
然後,以填埋開口的方式形成導電膜。導電膜可以藉由採用與導電體328同樣的材料及方法形成。接著,藉由對導電膜進行平坦化處理,使絕緣體216的頂面露出且形成導電體218a、導電體218b、導電體218c及導電體205。
這裡,例如,在絕緣體224包括過量氧區域時,導電體218等與絕緣體224接觸的導電體使用耐氧化性高的導電體即可。此外,如圖式所示,也可以在導電體218上設置具有阻擋性的導電體219a、導電體219b及導電體219c(圖15A)。藉由採用本結構,可以抑制導電體218與過量氧區域的氧起反應,生成氧化物。
接著,形成電晶體200。此外,電晶體200使用在後面的實施方式中說明的製造方法形成即可。
接著,在電晶體200上形成絕緣體280。絕緣體280較佳為使用其氧含量超過化學計量組成的氧化物。此外,絕緣體280是包含氧的絕緣體,諸如氧化矽膜、氧氮化矽膜等。作為形成包含過量氧的絕緣體的方法,可以適當地設定CVD法或濺射法中的成膜條件,形成使其膜中包含多量氧的氧化矽膜或氧氮化矽膜。此外,在形成成為絕緣體280的絕緣體之後,也可以進行採用CMP法等的平坦化處理以提高該絕緣體的頂面的平坦性(圖15B)。
這裡,也可以在絕緣體280中形成過量氧區 域。為了形成過量氧區域,例如藉由離子植入法、離子摻雜法或電漿處理添加氧。
接著,在電晶體200的一部分(在圖式中,絕緣體224、絕緣體250及氧化物230c)及絕緣體280中形成到達導電體219a、導電體219b、導電體219c及電晶體200等中的開口(圖16A)。
然後,以嵌入開口的方式形成導電膜244A及導電膜244B(圖16B)。接著,藉由對導電膜進行平坦化處理,去除導電膜244A及導電膜244B的一部分,使絕緣體280的頂面露出,形成導電體244a、導電體244b、導電體244c、導電體244d及導電體244e(圖17,其中箭頭表示CMP處理)。
接著,在絕緣體280及導電體244上形成導電體246A及導電體124A(圖18)。接著,藉由利用光微影法等去除導電體246A及導電體124A的不需要的部分,形成導電體246a、導電體246b、導電體246d、導電體124a、導電體124b、導電體124d、導電體112a及導電體112b。
接著,形成障壁膜281A(圖19)。作為障壁膜281A,可以使用利用ALD法形成的氧化鋁。藉由採用ALD法,可以形成裂縫或針孔等缺陷少或具有均勻厚度的緻密的絕緣體。藉由設置障壁層281,可以抑制包含在導電體244中的雜質或導電體244的一部分擴散。另外,在電晶體的製程中及製程之後,氧化鋁可以防止氫、水分等 雜質混入電晶體200中。
接著,使用光阻遮罩利用蝕刻去除障壁膜281A的不需要的部分,形成障壁層281a、障壁層281b、障壁層281c及障壁層281d(圖20)。
在此,去除絕緣體280中的雜質形成過量氧區域。在絕緣體280中有時殘留起因於在形成導電體244的製程中使用的蝕刻氣體的雜質。尤其是,用於蝕刻氣體等的鹵素,尤其是氯(Cl)等有可能阻礙絕緣體280中的氧的擴散,所以較佳為去除。
例如,為了從絕緣體280去除在形成開口的製程中產生的起因於蝕刻氣體的雜質,使用10ppm以上且200ppm以下,較佳為50ppm以上且100ppm以下的氫氟酸進行洗滌。藉由使用稀氫氟酸進行洗滌,可以去除殘留在絕緣體280表面的雜質。此外,除了氫氟酸以外可以使用臭氧水、磷酸或硝酸進行洗滌。
為了去除絕緣體280中的雜質,較佳為進行氧電漿處理。此外,為了形成過量氧區域,例如,可以利用離子植入法、離子摻雜法、電漿處理添加氧。
例如,進行氧電漿處理(圖21,其中箭頭表示電漿處理)。典型的氧電漿處理是指:利用藉由氧氣體的輝光放電電漿產生的自由基對氧化物半導體表面進行處理。但是產生電漿的氣體不侷限於氧,也可以是氧氣體和稀有氣體的混合氣體。例如,以250℃以上且400℃以下,較佳為300℃以上且400℃以下的溫度,在包含氧化 氣體的氛圍或減壓狀態下進行氧電漿處理即可。
藉由氧電漿處理,在對絕緣體280及在電晶體200中被用作活性層的氧化物進行脫鹵素化、脫水化或脫氫化處理的同時對絕緣體280引入過量氧,由此可以形成過量氧區域。另外,在被脫水化或脫氫化的氧化物230中產生氧空位,而低電阻化。另一方面,絕緣體280中的過量氧填補氧化物230中的氧空位。因此,藉由氧電漿處理,可以在絕緣體280中形成過量氧區域的同時去除雜質的氫及水。此外,氧化物230邊填補氧空位邊去除雜質的氫或水。因此,可以提高電晶體200的電特性,並且可以減少電特性的不均勻。
藉由包括障壁層281,可以防止導電體124、導電體246及導電體244因氧電漿處理被氧化。此外,在使用耐氧化性高的導電體形成導電體124時,由於導電體124被用作障壁層,所以並不一定需要障壁層281。
此外,也可以進行加熱處理。藉由進行加熱處理,可以去除絕緣體280中的雜質形成過量氧區域。加熱處理在250℃以上且400℃以下,較佳為320℃以上且380℃以下的溫度下且在惰性氣體氛圍、包含10ppm以上的氧化氣體的氛圍或減壓狀態下進行即可。此外,在惰性氣體氛圍下進行加熱處理之後,還可以在包含10ppm以上的氧化氣體的氛圍下進行加熱處理以填補脫離的氧。藉由加熱處理,可以去除絕緣體280及電晶體200的雜質的氫。此外,氧從形成在電晶體200的下方的絕緣體供應給 電晶體200所包括的氧化物230,可以降低被形成通道區域的氧化物中的氧空位。
藉由包括障壁層281,可以防止導電體124、導電體246及導電體244因熱處理時的氣體氛圍被氧化。此外,在使用耐氧化性高的導電體形成導電體124時,由於導電體124被用作障壁層,所以並不一定需要障壁層281。
接著,在絕緣體280及障壁層281上形成絕緣體282(圖22)。此外,作為氧引入處理的一個例子,有利用濺射裝置在絕緣體280上層疊氧化物的方法。例如,作為形成絕緣體282的方法利用濺射裝置在氧氣體氛圍下進行成膜,從而可以一邊形成絕緣體282,一邊對絕緣體280引入氧。
藉由濺射法進行成膜時,在靶材與基板之間存在離子和被濺射的粒子。例如,靶材與電源連接,並被施加電位E0。另外,基板被施加接地電位等電位E1。但是,基板也可以處於電浮動狀態。另外,在靶材與基板之間存在成為電位E2的區域。各電位的大小關係滿足E2>E1>E0。
藉由使電漿中的離子由於電位差E2-E0加速而該離子碰撞到靶材,被濺射的粒子從靶材被彈出。並且,藉由該被濺射的粒子附著於被成膜表面上而沉積,來形成膜。另外,有時離子的一部分由靶材反沖,並且作為反沖離子經過所形成的膜被吸收到位於所形成的膜的下方 的絕緣體280。此外,有時電漿中的離子由於電位差E2-E1而加速,衝擊到成膜表面。此時,離子的一部分到達絕緣體280的內部。藉由離子被吸收到絕緣體280,在絕緣體280中形成離子被吸收的區域。換言之,在離子是包含氧的離子的情況下,在絕緣體280中形成過量氧區域。
此外,也可以藉由絕緣體282對絕緣體280引入氧(至少包含氧自由基、氧原子、氧離子中的任一個),來形成包含過剩的氧的區域。作為氧的引入方法,可以使用離子植入法、離子摻雜法、離子體浸沒離子植入法、電漿處理等。藉由經過絕緣體282進行氧引入處理,可以在保護絕緣體280的狀態下形成過量氧區域。
接著,也可以進行加熱處理。加熱處理以250℃以上且650℃以下的溫度,較佳為以300℃以上且500℃以下的溫度,更佳為以350℃以上且400℃以下的溫度在惰性氣體氛圍、包含10ppm以上的氧化氣體的氛圍或減壓狀態下進行即可。此外,作為加熱處理的氛圍,在惰性氣體氛圍下進行加熱處理之後,還可以在包含10ppm以上的氧化氣體的氛圍下進行以填補脫離的氧。加熱處理也可以使用利用燈加熱的RTA裝置。
藉由加熱處理被引入到絕緣體280的過量氧擴散到絕緣體280中。在此,絕緣體280被對氧具有阻擋性的絕緣體282包圍。因此,防止引入到絕緣體280的過量氧釋放到外部,且該過量氧高效地被供應到氧化物230。
此外,因加熱處理而絕緣體280中的氫移動並被引入到絕緣體282中。因被引入到絕緣體282中的氫與絕緣體282中的氧起反應,而可能生成水。所生成的水從絕緣體282上釋放。由此,可以減少絕緣體280中的作為雜質的氫及水。另外,在絕緣體282使用氧化鋁時,可以認為絕緣體282被用作催化劑。
供應到電晶體200所包括的氧化物230的氧填補電晶體200中的形成通道的氧化物中的氧空位。因此,可以將電晶體200中的形成通道的氧化物形成為缺陷態密度低且具有穩定的特性的氧化物半導體。也就是說,可以抑制電晶體200的電特性變動且提高可靠性。
以上,為了將氧引入到成膜之後的絕緣體280來形成包含過剩的氧的區域,可以組合氧電漿處理、離子植入法和加熱處理中的任一個或所有方法。
接著,在絕緣體282上形成覆蓋導電體112的側面及頂面的絕緣體130。作為絕緣體130例如可以使用氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋁、氧氮化鋁、氮氧化鋁、氮化鋁、氧化鉿、氧氮化鉿、氮氧化鉿、氮化鉿等。
接著,在絕緣體130上形成導電體116。另外,導電體116可以藉由採用與導電體112同樣的材料及方法形成。
接著,形成覆蓋電容器100的絕緣體150。成為絕緣體150的絕緣體可以藉由採用與絕緣體320等同樣 的材料及方法形成。
藉由上述製程,可以製造本發明的一個實施方式的半導體裝置(圖23)。
在藉由上述製程製造的使用具有氧化物半導體的電晶體的半導體裝置中,可以抑制電特性變動且提高可靠性。本發明的一個實施方式可以提供一種通態電流大的具有氧化物半導體的電晶體。本發明的一個實施方式可以提供一種關態電流小的具有氧化物半導體的電晶體。或者,本發明的一個實施方式可以提供一種低功耗的半導體裝置。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施方式3
在本實施方式中,參照圖24A至圖35C對半導體裝置的一個實施方式進行說明。
〈電晶體結構1〉
下面,對根據本發明的一個實施方式的電晶體的一個例子進行說明。圖24A至圖24C是根據本發明的一個實施方式的電晶體的俯視圖及剖面圖。圖24A是俯視圖,圖24B是對應於圖24A所示的點劃線X1-X2的剖面圖,圖24C是對應於圖24A所示的點劃線Y1-Y2的剖面圖。注意,在圖24A的俯視圖中,為了明確起見,省略圖式中的 部分組件。
電晶體200包括:被用作閘極電極的導電體205(導電體205a及導電體205b)及導電體260;被用作閘極絕緣層的絕緣體220、絕緣體222、絕緣體224及絕緣體250;具有其中形成通道的區域的氧化物230(氧化物230a、氧化物230b及氧化物230c);被用作源極電極和汲極電極中的一個的導電體240a;被用作源極電極和汲極電極中的另一個的導電體240b;包含過量氧的絕緣體280;以及具有阻擋性的絕緣體282。
氧化物230包括氧化物230a、氧化物230a上的氧化物230b、以及氧化物230b上的氧化物230c。當使電晶體200導通時,電流主要流過氧化物230b(形成通道)。另一方面,在氧化物230a及氧化物230c中,有時在與氧化物230b的介面附近(有時成為混合區域)電流流過,但是其他區域有時被用作絕緣體。
此外,如圖24A至圖24C所示,較佳為以覆蓋氧化物230a及氧化物230b的側面的方式設置氧化物230c。藉由在絕緣體280與包括形成有通道的區域的氧化物230b之間設置氧化物230c,可以抑制氫、水及鹵素等雜質從絕緣體280擴散到氧化物230b。
導電體205可以使用包含選自鉬、鈦、鉭、鎢、鋁、銅、鉻、釹、鈧中的元素的金屬膜或以上述元素為成分的金屬氮化物膜(氮化鉭膜、氮化鈦膜、氮化鉬膜、氮化鎢膜)等。尤其是,氮化鉭膜等金屬氮化物膜具 有對氫或氧的阻擋性,並且不容易氧化(耐氧化性高),所以是較佳的。或者,作為導電體205,也可以使用銦錫氧化物、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦鋅氧化物、添加有氧化矽的銦錫氧化物等導電材料。
例如,作為導電體205a可以使用作為具有對氫的阻擋性的導電體的氮化鉭等,作為導電體205b可以層疊導電性高的鎢。藉由使用該組合,可以在保持作為佈線的導電性的同時抑制氫擴散到氧化物230。在圖24A至圖24C中,示出導電體205a和導電體205b的兩層結構,但是也可以不侷限於此,既可以是單層又可以是三層以上的疊層結構。例如,也可以在具有阻擋性的導電體與導電性高的導電體之間形成具有阻擋性的導電體以及與導電性高的導電體之間的緊密性高的導電體。
絕緣體224較佳為氧化矽膜或氧氮化矽膜等包含氧的絕緣體。尤其是,作為絕緣體224較佳為使用包含過量氧(含有超過化學計量組成的氧)的絕緣體。藉由以與構成電晶體200的氧化物接觸的方式設置上述包含過量氧的絕緣體,可以填補氧化物230中的氧空位。
當絕緣體224包括過量氧區域時,絕緣體222較佳為對氧、氫及水具有阻擋性。藉由絕緣體222對氧具有阻擋性,過量氧區域的氧可以高效地供應給氧化物230而不擴散到電晶體300一側。此外,可以抑制導電體205與絕緣體224所包括的過量氧區域的氧起反應。
作為絕緣體222,例如較佳為使用包含氧化矽、氧氮化矽、氮氧化矽、氧化鋁、氧化鉿、氧化鉭、氧化鋯、鋯鈦酸鉛(PZT)、鈦酸鍶(SrTiO3)或(Ba,Sr)TiO3(BST)等的絕緣體的單層或疊層。尤其是,作為絕緣體222,較佳為使用氧化鋁膜及氧化鉿膜等具有對氧或氫的阻擋性的絕緣膜。當使用這種材料形成絕緣體222時,絕緣體222被用作防止從氧化物230釋放氧或從外部混入氫等雜質的層。
或者,例如也可以對這些絕緣體添加氧化鋁、氧化鉍、氧化鍺、氧化鈮、氧化矽、氧化鈦、氧化鎢、氧化釔、氧化鋯。此外,也可以對這些絕緣體進行氮化處理。還可以在上述絕緣體上層疊氧化矽、氧氮化矽或氮化矽。
絕緣體220、絕緣體222及絕緣體224也可以具有兩層以上的疊層結構。此時,不侷限於使用相同材料構成的疊層結構,也可以是使用不同材料形成的疊層結構。
當在絕緣體220和絕緣體224之間包括包含high-k材料的絕緣體222時,在特定條件下,絕緣體222俘獲電子,可以增大臨界電壓。就是說,絕緣體222有時帶負電。
例如,當將氧化矽用於絕緣體220及絕緣體224,將氧化鉿、氧化鋁、氧化鉭等電子俘獲能階多的材料用於絕緣體222時,在比半導體裝置的使用溫度或保存 溫度高的溫度(例如,125℃以上且450℃以下,典型的是150℃以上且300℃以下)下保持導電體205的電位高於源極電極或汲極電極的電位的狀態10毫秒以上,典型是1分鐘以上,由此電子從構成電晶體200的氧化物向導電體205移動。此時,移動的電子的一部分被絕緣體222的電子俘獲能階俘獲。
在絕緣體222的電子俘獲能階俘獲所需要的電子的電晶體的臨界電壓向正一側漂移。藉由控制導電體205的電壓可以控制電子的俘獲量,由此可以控制臨界電壓。藉由採用該結構,電晶體200成為在閘極電壓為0V的情況下也處於非導通狀態(也稱為關閉狀態)的常關閉型電晶體。
另外,俘獲電子的處理在電晶體的製造過程中進行即可。例如,在形成與電晶體的源極導電體或汲極導電體連接的導電體之後、前製程(晶圓處理)結束之後、晶圓切割(wafer dicing)製程之後或者封裝之後等發貨之前的任一個步驟進行俘獲電子的處理即可。
此外,藉由適當地調整絕緣體220、絕緣體222及絕緣體224的厚度,能夠控制臨界電壓。例如,藉由減少絕緣體220、絕緣體222及絕緣體224的厚度總和,高效率地施加有來自導電體205的電壓,由此可以提供一種功耗低的電晶體。絕緣體220、絕緣體222及絕緣體224的厚度總和較佳為65nm以下,更佳為20nm以下。
因此,本發明的一個實施方式可以提供一種關閉狀態時的洩漏電流小的電晶體。本發明的一個實施方式可以提供一種具有穩定的電特性的電晶體。另外,本發明的一個實施方式可以提供一種通態電流大的電晶體。另外,本發明的一個實施方式可以提供一種次臨界擺幅值小的電晶體。另外,本發明的一個實施方式可以提供一種可靠性高的電晶體。
氧化物230a、氧化物230b及氧化物230c使用In-M-Zn氧化物(M為Al、Ga、Y或Sn)等金屬氧化物形成。作為氧化物230,也可以使用In-Ga氧化物、In-Zn氧化物。
下面說明根據本發明的氧化物230。
用作氧化物230的氧化物較佳為至少包含銦或鋅。特別較佳為包含銦及鋅。另外,較佳的是,除此之外,還包含鋁、鎵、釔或錫等。另外,也可以包含硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢或鎂等中的一種或多種。
在此考慮氧化物包含銦、元素M及鋅的情況。注意,元素M為鋁、鎵、釔或錫等。作為其他的可用於元素M的元素,除了上述元素以外,還有硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢、鎂等。注意,作為元素M有時可以組合多個上述元素。
首先,參照圖36A至圖36C說明根據本發明的氧化物所包含的銦、元素M及鋅的較佳的原子個數比 範圍。注意,在圖36A至圖36C中,沒有記載氧的原子個數比。將氧化物所包含的銦、元素M及鋅的原子個數比的各項分別稱為[In]、[M]及[Zn]。
在圖36A至圖36C中,虛線表示[In]:[M]:[Zn]=(1+α):(1-α):1的原子個數比(-1
Figure 106103844-A0202-12-0073-152
α
Figure 106103844-A0202-12-0073-153
1)的線、[In]:[M]:[Zn]=(1+α):(1-α):2的原子個數比的線、[In]:[M]:[Zn]=(1+α):(1-α):3的原子個數比的線、[In]:[M]:[Zn]=(1+α):(1-α):4的原子個數比的線及[In]:[M]:[Zn]=(1+α):(1-α):5的原子個數比的線。
點劃線表示[In]:[M]:[Zn]=1:1:β的原子個數比的(β
Figure 106103844-A0202-12-0073-154
0)的線、[In]:[M]:[Zn]=1:2:β的原子個數比的線、[In]:[M]:[Zn]=1:3:β的原子個數比的線、[In]:[M]:[Zn]=1:4:β的原子個數比的線、[In]:[M]:[Zn]=2:1:β的原子個數比的線及[In]:[M]:[Zn]=5:1:β的原子個數比的線。
此外,雙點劃線示出原子個數比為[In]:[M]:[Zn]=(1+γ):2:(1-γ)(-1
Figure 106103844-A0202-12-0073-155
γ
Figure 106103844-A0202-12-0073-156
1)的線。此外,圖36A至圖36C所示的具有[In]:[M]:[Zn]=0:2:1的原子個數比或其近似值的氧化物容易具有尖晶石型結晶結構。
圖36A和圖36B示出本發明的一個實施方式的氧化物所包含的銦、元素M及鋅的較佳的原子個數比範圍的例子。
作為一個例子,圖37示出[In]:[M]:[Zn]=1:1:1的InMZnO4的結晶結構。圖37是在從平行於b軸的方向上觀察時的InMZnO4的結晶結構。圖37所示的包含M、 Zn、氧的層(以下、(M,Zn)層)中的金屬元素表示元素M或鋅。此時,元素M和鋅的比例相同。元素M和鋅可以相互置換,其排列不規則。
InMZnO4具有層狀結晶結構(也稱為層狀結構),如圖37所示,包含銦及氧的層(下面稱為In層):包含元素M、鋅及氧的(M,Zn)層=1:2。
銦和元素M可以相互置換。因此,可以用銦取代(M,Zn)層中的元素M,將該層表示為(In,M,Zn)層。在此情況下,具有In層:(In,M,Zn)層=1:2的層狀結構。
具有[In]:[M]:[Zn]=1:1:2的原子個數比的氧化物具有In層:(M,Zn)層=1:3的層狀結構。就是說,當[Zn]相對於[In]及[M]增大時,在氧化物晶化的情況下,相對於In層的(M,Zn)層的比例增加。
注意,在氧化物中,在In層:(M,Zn)層=1:非整數時,有時具有多種In層:(M,Zn)層=1:整數的層狀結構。例如,在[In]:[M]:[Zn]=1:1:1.5的情況下,有時具有In層:(M,Zn)層=1:2的層狀結構和In層:(M,Zn)層=1:3的層狀結構混在一起的結構。
例如,當使用濺射裝置形成氧化物時,形成其原子個數比與靶材的原子個數比錯開的膜。尤其是,根據成膜時的基板溫度,有時膜的[Zn]小於靶材的[Zn]。
有時在氧化物中,多個相共存(例如,二相共存、三相共存等)。例如,在是[In]:[M]:[Zn]=0:2:1的 原子個數比的附近值的原子個數比的情況下,尖晶石型結晶結構和層狀結晶結構的二相容易共存。在是[In]:[M]:[Zn]=1:0:0的原子個數比的附近值的原子個數比的情況下,方鐵錳礦型結晶結構和層狀結晶結構的二相容易共存。當在氧化物中多個相共存時,在不同的結晶結構之間有時形成晶界。
藉由增高銦含量,可以提高氧化物的載子移動率(電子移動率)。這是因為:在包含銦、元素M及鋅的氧化物中,重金屬的s軌域主要有助於載子傳導,藉由增高銦含量,s軌域重疊的區域變大,由此銦含量高的氧化物的載子移動率比銦含量低的氧化物高。
另一方面,氧化物的銦含量及鋅含量變低時,載子移動率變低。因此,在是[In]:[M]:[Zn]=0:1:0的原子個數比及其附近值的原子個數比(例如,圖36C中的區域C)的情況下,絕緣性變高。
因此,本發明的一個實施方式的氧化物較佳為具有圖36A的以區域A表示的原子個數比,此時該氧化物容易具有載子移動率高且晶界少的層狀結構。
圖36B中的區域B示出[In]:[M]:[Zn]=4:2:3至4.1的原子個數比及其附近值。附近值例如包含[In]:[M]:[Zn]=5:3:4的原子個數比。具有以區域B表示的原子個數比的氧化物尤其是具有高的結晶性及優異的載子移動率的氧化物。
注意,氧化物形成層狀結構的條件不是根據 原子個數比唯一決定的。根據原子個數比,形成層狀結構的難以有差異。另一方面,即使在原子個數比相同的情況下,也根據形成條件,有時具有層狀結構,有時不具有層狀結構。因此,圖示的區域是表示氧化物具有層狀結構時的原子個數比的區域,區域A至區域C的境界不嚴格。
接著,說明將上述氧化物用於電晶體的情況。
藉由將氧化物用於電晶體,可以減少晶界中的載子散亂等,因此可以實現場效移動率高的電晶體。另外,可以實現可靠性高的電晶體。
此外,作為電晶體較佳為使用載子密度低的氧化物。例如,將氧化物的載子密度設定為低於8×1011cm-3,較佳為低於1×1011cm-3,更佳為低於1×1010cm-3且1×10-9cm-3以上。
另外,因為在高純度本質或實質上高純度本質的氧化物中,載子發生源少,所以可以降低載子密度。此外,高純度本質或實質上高純度本質的氧化物的缺陷態密度低,所以有時其陷阱態密度也降低。
此外,被氧化物的缺阱態俘獲的電荷到消失需要較長的時間,有時像固定電荷那樣動作。因此,有時在陷阱態密度高的氧化物中形成有通道區域的電晶體的電特性不穩定。
因此,為了使電晶體的電特性穩定,降低氧化物中的雜質濃度是有效的。為了降低氧化物中的雜質濃 度,較佳為還降低靠近的膜中的雜質濃度。作為雜質有氫、氮、鹼金屬、鹼土金屬、鐵、鎳、矽等。
在此,說明氧化物中的各雜質的影響。
在氧化物包含第14族元素之一的矽或碳時,在氧化物中形成缺陷態。因此,將氧化物中的矽或碳的濃度、與氧化物的介面附近的矽或碳的濃度(藉由二次離子質譜分析法(SIMS:Secondary Ion Mass Spectrometry)測得的濃度)設定為2×1018atoms/cm3以下,較佳為2×1017atoms/cm3以下。
另外,當氧化物包含鹼金屬或鹼土金屬時,有時形成缺陷態而形成載子。因此,使用包含鹼金屬或鹼土金屬的氧化物的電晶體容易具有常開啟特性。由此,較佳為降低氧化物中的鹼金屬或鹼土金屬的濃度。明確而言,使藉由SIMS測得的氧化物中的鹼金屬或鹼土金屬的濃度為1×1018atoms/cm3以下,較佳為2×1016atoms/cm3以下。
當氧化物包含氮時,產生作為載子的電子,並載子密度增加,而氧化物容易被n型化。其結果是,將含有氮的氧化物用於半導體的電晶體容易具有常開啟特性。因此,較佳為儘可能地減少氧化物中的氮,例如,利用SIMS測得的氧化物中的氮濃度較佳為小於5×1019atoms/cm3、更佳為5×1018atoms/cm3以下,進一步較佳為1×1018atoms/cm3以下,還較佳為5×1017atoms/cm3以下。
包含在氧化物中的氫與鍵合於金屬原子的氧起反應生成水,因此有時形成氧空位。當氫進入該氧空位時,有時產生作為載子的電子。另外,有時由於氫的一部分與鍵合於金屬原子的氧鍵合,產生作為載子的電子。因此,使用包含氫的氧化物的電晶體容易具有常開啟特性。由此,較佳為儘可能減少氧化物中的氫。明確而言,在氧化物中,利用SIMS測得的氫濃度低於1×1020atoms/cm3,較佳為低於1×1019atoms/cm3,更佳為低於5×1018atoms/cm3,進一步較佳為低於1×1018atoms/cm3
藉由將雜質充分得到降低的氧化物用於電晶體的通道區域,可以賦予穩定的電特性。
接著,對該氧化物具有兩層結構或三層結構的情況進行說明。參照圖38A至圖38C說明氧化物S1、氧化物S2和氧化物S3的疊層結構及與疊層結構接觸的絕緣體的帶圖、氧化物S2和氧化物S3的疊層結構及與疊層結構接觸的絕緣體的帶圖以及氧化物S1和氧化物S2的疊層結構及與疊層結構接觸的絕緣體的帶圖。
圖38A是包括絕緣體I1、氧化物S1、氧化物S2、氧化物S3和絕緣體I2的疊層結構的厚度方向上的帶圖的一個例子。另外,圖38B是包括絕緣體I1、氧化物S2、氧化物S3和絕緣體I2的疊層結構的厚度方向上的帶圖的一個例子。另外,圖38C是包括絕緣體I1、氧化物S1、氧化物S2和絕緣體I2的疊層結構的厚度方向上的帶圖的一個例子。注意,為了便於理解,帶圖示出絕緣體 I1、氧化物S1、氧化物S2、氧化物S3及絕緣體I2的導帶底的能階(Ec)。
較佳的是,氧化物S1、氧化物S3的導帶底的能階比氧化物S2更靠近真空能階,典型的是,氧化物S2的導帶底的能階與氧化物S1、氧化物S3的導帶底的能階之差為0.15eV以上、0.5eV以上且2eV以下、或者1eV以下。就是說,較佳的是,氧化物S2的電子親和力大於氧化物S1及氧化物S3的電子親和力,且氧化物S1及氧化物S3的電子親和力與氧化物S2的電子親和力之差為0.15eV以上、0.5eV以上且2eV以下、或者1eV以下。
如圖38A至圖38C所示,在氧化物S1、氧化物S2、氧化物S3中,導帶底的能階平滑地變化。換言之,也可以將上述情況表達為導帶底的能階連續地變化或者連續地接合。為了實現這種能帶圖,較佳為降低形成在氧化物S1與氧化物S2的介面或者氧化物S2與氧化物S3的介面的混合層的缺陷態密度。
明確而言,藉由使氧化物S1和氧化物S2、氧化物S2和氧化物S3包含氧之外的共同元素(主要成分),可以形成缺陷態密度低的混合層。例如,在氧化物S2為In-Ga-Zn氧化物的情況下,作為氧化物S1、氧化物S3較佳為使用In-Ga-Zn氧化物、Ga-Zn氧化物、氧化鎵等。
此時,載子的主要路徑成為氧化物S2。因為可以降低氧化物S1與氧化物S2的介面以及氧化物S2與 氧化物S3的介面的缺陷態密度,所以介面散射給載子傳導帶來的影響小,從而可以得到大通態電流。
在電子被陷阱態俘獲時,被俘獲的電子像固定電荷那樣動作,導致電晶體的臨界電壓向正方向漂移。藉由設置氧化物S1、氧化物S3,可以使陷阱態遠離氧化物S2。藉由採用該結構,可以防止電晶體的臨界電壓向正方向漂移。
作為氧化物S1、氧化物S3,使用其導電率比氧化物S2充分低的材料。此時,氧化物S2、氧化物S2與氧化物S1的介面以及氧化物S2與氧化物S3的介面主要被用作通道區域。例如,作為氧化物S1、氧化物S3,使用具有在圖36C中以絕緣性高的區域C表示的原子個數比的氧化物即可。注意,圖36C所示的區域C表示[In]:[M]:[Zn]=0:1:0或其附近值的原子個數比。
尤其是,當作為氧化物S2使用具有以區域A表示的原子個數比的氧化物時,作為氧化物S1及氧化物S3較佳為使用[M]/[In]為1以上,較佳為2以上的氧化物。另外,作為氧化物S3,較佳為使用能夠得到充分高的絕緣性的[M]/([Zn]+[In])為1以上的氧化物。
作為絕緣體250,例如可以使用包含氧化矽、氧氮化矽、氮氧化矽、氧化鋁、氧化鉿、氧化鉭、氧化鋯、鋯鈦酸鉛(PZT)、鈦酸鍶(SrTiO3)或(Ba,Sr)TiO3(BST)等的絕緣體的單層或疊層。或者,例如也可以對這些絕緣體添加氧化鋁、氧化鉍、氧化鍺、氧化鈮、氧化 矽、氧化鈦、氧化鎢、氧化釔、氧化鋯。此外,也可以對這些絕緣體進行氮化處理。還可以在上述絕緣體上層疊氧化矽、氧氮化矽或氮化矽而使用。
另外,與絕緣體224同樣,作為絕緣體250較佳為使用其氧含量超過滿足化學計量組成的氧化物絕緣體。藉由以與氧化物230接觸的方式設置上述包含過量氧的絕緣體,可以減少氧化物230中的氧空位。
絕緣體250可以使用氧化鋁、氧氮化鋁、氧化鎵、氧氮化鎵、氧化釔、氧氮化釔、氧化鉿、氧氮化鉿、氮化矽等具有對氧或氫的阻擋性的絕緣膜。當使用這種材料形成絕緣體250時,絕緣體250被用作防止從氧化物230釋放氧或從外部混入氫等雜質的層。
絕緣體250也可以具有與絕緣體220、絕緣體222及絕緣體224同樣的疊層結構。當絕緣體250具有在電子俘獲態俘獲所需要的電子的絕緣體時,電晶體200的臨界電壓可以向正一側漂移。藉由採用該結構,電晶體200成為在閘極電壓為0V的情況下也處於非導通狀態(也稱為關閉狀態)的常關閉型電晶體。
另外,在圖24A至圖24C所示的半導體裝置中,可以在氧化物230和導電體260之間除了絕緣體250以外還可以設置障壁膜。或者,作為氧化物230c,也可以使用具有阻擋性的材料。
例如,藉由以與氧化物230接觸的方式設置包含過量氧的絕緣膜,且由障壁膜包圍這些膜,可以使氧 化物為與化學計量組成大致一致的狀態或者超過化學計量組成的氧的過飽和狀態。此外,可以防止對氧化物230侵入氫等雜質。
導電體240a和導電體240b中的一個被用作源極電極,而導電體240a和導電體240b中的另一個被用作汲極電極。
導電體240a、導電體240b可以使用鋁、鈦、鉻、鎳、銅、釔、鋯、鉬、銀、鉭或鎢等金屬或者以這些元素為主要成分的合金。尤其是,氮化鉭膜等金屬氮化物膜對氫或氧具有阻擋性,且耐氧化性較高,所以是較佳的。
此外,雖然圖式中示出單層結構,但是也可以採用兩層以上的疊層結構。例如,較佳為層疊氮化鉭膜及鎢膜。另外,較佳為層疊鈦膜及鋁膜。另外,也可以採用在鎢膜上層疊鋁膜的兩層結構、在銅-鎂-鋁合金膜上層疊銅膜的兩層結構、在鈦膜上層疊銅膜的兩層結構、在鎢膜上層疊銅膜的兩層結構。
另外,也可以使用:在鈦膜或氮化鈦膜上層疊鋁膜或銅膜並在其上形成鈦膜或氮化鈦膜的三層結構、在鉬膜或氮化鉬膜上層疊鋁膜或銅膜而並在其上形成鉬膜或氮化鉬膜的三層結構等。另外,也可以使用包含氧化銦、氧化錫或氧化鋅的透明導電材料。
被用作閘極電極的導電體260例如可以使用選自鋁、鉻、銅、鉭、鈦、鉬、鎢中的金屬、以上述金屬 為成分的合金或組合上述金屬的合金等而形成。尤其是,氮化鉭膜等金屬氮化物膜對氫或氧具有阻擋性,且耐氧化性較高,所以是較佳的。另外,也可以使用選自錳、鋯中的一個或多個的金屬。此外,也可以使用以摻雜有磷等雜質元素的多晶矽為代表的半導體、鎳矽化物等矽化物。此外,在圖式中示出單層結構,但是也可以採用兩層以上的疊層結構。
例如,較佳為採用在鋁膜上層疊鈦膜的兩層結構。另外,也可以採用在氮化鈦膜上層疊鈦膜的兩層結構、在氮化鈦膜上層疊鎢膜的兩層結構、在氮化鉭膜或氮化鎢膜上層疊鎢膜的兩層結構。
還有在鈦膜上層疊鋁膜,在其上層疊鈦膜的三層結構等。此外,也可以使用組合鋁與選自鈦、鉭、鎢、鉬、鉻、釹、鈧中的一種或多種的合金膜或氮化膜。
此外,作為導電體260,也可以使用銦錫氧化物、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦鋅氧化物、添加有氧化矽的銦錫氧化物等具有透光性的導電材料。另外,也可以採用上述具有透光性的導電材料和上述金屬的疊層結構。
接著,在電晶體200的上方設置絕緣體280及絕緣體282。
作為絕緣體280較佳為使用含有超過化學計量組成的氧的氧化物。就是說,在絕緣體280中,較佳為 形成有比滿足化學計量組成的氧多的氧存在的區域(以下,也稱為過量氧區域)。尤其是,在將氧化物半導體用於電晶體200時,作為電晶體200附近的層間膜等形成具有過量氧區域的絕緣體,降低電晶體200的氧空位,而可以提高電晶體200的可靠性。
作為具有過剰氧區域的絕緣體,明確而言,較佳為使用由於加熱而一部分的氧脫離的氧化物材料。作為由於加熱而氧脫離的氧化物是指:在TDS分析中,換成為氧原子的氧的脫離量為1.0×1018atoms/cm3以上,較佳為3.0×1020atoms/cm3以上的氧化物膜。注意,上述TDS分析時的膜的表面溫度較佳為100℃以上且700℃以下或100℃以上且500℃以下。
例如,作為這種材料,較佳為使用包含氧化矽或氧氮化矽的材料。另外,也可以使用金屬氧化物。注意,在本說明書中,“氧氮化矽”是指在其組成中氧含量多於氮含量的材料,而“氮氧化矽”是指在其組成中氮含量多於氧含量的材料。
覆蓋電晶體200的絕緣體280也可以被用作覆蓋其下方的凹凸形狀的平坦化膜。
作為絕緣體282,例如較佳為使用氧化鋁及氧化鉿等具有對氧或氫的阻擋性的絕緣膜。當使用這種材料形成絕緣體282時,絕緣體282被用作防止從氧化物230釋放氧或從外部混入氫等雜質的層。
藉由具有上述結構,可以提供一種包含氧化 物半導體的通態電流大的電晶體。另外,可以提供一種包含氧化物半導體的關態電流小的電晶體。另外,藉由將具有上述結構的電晶體用於半導體裝置,可以在抑制半導體裝置的電特性變動的同時提高可靠性。另外,可以提供一種功耗得到降低的半導體裝置。
〈電晶體結構2〉
圖25A至圖25C示出可以應用於電晶體200的結構的一個例子。圖25A示出電晶體200的頂面。注意,為了明確起見,在圖25A中省略一部分的膜。另外,圖25B是沿圖25A中的點劃線X1-X2的剖面圖,圖25C是沿點劃線Y1-Y2的剖面圖。
注意,在圖25A至圖25C所示的電晶體200中,對具有與圖24A至圖24C所示的電晶體200的結構相同的功能的結構附加相同元件符號。
在圖25A至圖25C所示的結構中導電體260具有兩層結構。例如,作為導電體260a可以使用以In-Ga-Zn氧化物為代表的氧化物。以In-Ga-Zn氧化物為代表的氧化物半導體被供應氮或氫,載子密度變高。換言之,被用作氧化物導電體(OC:Oxide Conductor)。藉由作為導電體260b設置金屬氮化物,氧化物半導體的載子密度變高,所以導電體260a被用作閘極電極。
作為導電體260a,可以使用以In-Ga-Zn氧化物為代表的氧化物半導體。此外,作為導電體260a可以 使用具有透光性的導電材料諸如銦錫氧化物(Indium Tin Oxide:ITO)、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦鋅氧化物、包含矽的銦錫氧化物(In-Sn-Si氧化物,也被稱為ITSO)等。
藉由作為導電體260b使用金屬氮化物,金屬氮化物中的構成元素(尤其是氮)擴散到導電體260a而電阻得到降低,此外,由於形成導電體260b時的損傷(例如,濺射損傷等)電阻得到降低。此外,導電體260b也可以具有兩層以上的疊層結構。例如,藉由在金屬氮化物上層疊低電阻的金屬膜,可以提供驅動電壓小的電晶體。
作為導電體260a的形成方法,較佳為利用濺射法在包含氧氣體的氛圍下形成導電體260a。藉由在包含氧氣體的氛圍下形成導電體260a,可以在絕緣體250中形成過量氧區域。另外,作為導電體260a的形成方法,不侷限於濺射法,也可以利用其他方法,例如ALD法。
再者,在圖25A至圖25C所示的結構中,以覆蓋導電體260的方式形成絕緣體270。當將氧脫離的氧化物材料用於絕緣體280時,作為絕緣體270使用對氧具有阻擋性的物質。藉由採用該結構,可以抑制填補導電體260a的氧空位而使載子密度降低,且可以防止導電體260b因擴散的氧被氧化。
例如,作為絕緣體270可以使用氧化鋁等金屬氧化物。以防止導電體260的氧化的程度的厚度形成絕緣體270即可。
如圖式所示,也可以使用具有阻擋性的導電體設置導電體205c而不設置絕緣體220及絕緣體222。藉由採用本結構,即使絕緣體224包括過量氧區域,也可以抑制導電體205b與過量氧區域的氧起反應而生成氧化物。
此外,也可以在導電體240a及導電體240b上設置絕緣體243a及絕緣體243b。作為絕緣體243a及絕緣體243b使用對氧具有阻擋性的物質。藉由採用該結構,可以抑制導電體240a及導電體240b在形成氧化物230c時被氧化。此外,可以防止絕緣體280所包括的過量氧區域的氧與導電體240a及導電體240b起反應而被氧化。
絕緣體243a及絕緣體243b例如可以使用金屬氧化物。尤其是,較佳為使用氧化鋁、氧化鉿、氧化鎵等對氧或氫具有阻擋性的絕緣膜。此外,也可以使用利用CVD法形成的氮化矽。
因此,藉由採用該結構,可以擴大導電體240a、導電體240b、導電體205及導電體260的材料的選擇範圍。例如,導電體205b及導電體260b可以使用鋁等耐氧化性低且導電性高的材料。另外,例如可以使用容易進行成膜或加工的導電體。
此外,可以抑制導電體205及導電體260的氧化,並且可以將從絕緣體224及絕緣體280脫離的氧高效率地供應到氧化物230。此外,藉由作為導電體205及導電體260使用導電性高的導電體,可以提供一種功耗小的電晶體200。
〈電晶體結構3〉
圖26A至圖26C示出可以應用於電晶體200的結構的一個例子。圖26A示出電晶體200的頂面。注意,為了明確起見,在圖26A中省略一部分的膜。另外,圖26B是沿圖26A的點劃線X1-X2的剖面圖,圖26C是沿點劃線Y1-Y2的剖面圖。
注意,在圖26A至圖26C所示的電晶體200中,對具有與圖24A至圖24C所示的電晶體200的結構相同的功能的結構附加相同元件符號。
在圖26A至圖26C所示的結構中,導電體260具有兩層結構。作為兩層結構,也可以設置相同材料的疊層。例如,導電體260a利用熱CVD法、MOCVD法或ALD法形成。尤其是,較佳為利用ALD法形成。藉由利用ALD法等形成,可以降低進行成膜時對絕緣體250造成的損傷。此外,因為可以提高覆蓋性,所以較佳為利用ALD法等形成導電體260a。因此,可以提供一種可靠性高的電晶體200。
接著,利用濺射法形成導電體260b。此時, 藉由在絕緣體250上具有導電體260a,可以抑制形成導電體260b時的損傷影響到絕緣體250。另外,濺射法的沉積速度比ALD法快,所以良率高,從而可以提高生產率。
再者,在圖26A至圖26C所示的結構中,以覆蓋導電體260的方式形成絕緣體270。當將氧脫離的氧化物材料用於絕緣體280時,作為絕緣體270使用對氧具有阻擋性的物質。藉由採用該結構,可以抑制填補導電體260a的氧空位而使載子密度降低,且可以防止導電體260b因擴散的氧被氧化。
例如,作為絕緣體270可以使用氧化鋁等金屬氧化物。以防止導電體260的氧化的程度的厚度形成絕緣體270即可。
〈電晶體結構4〉
圖27A至圖27C示出可以應用於電晶體200的結構的一個例子。圖27A示出電晶體200的頂面。注意,為了明確起見,在圖27A中省略一部分的膜。另外,圖27B是沿圖27A中的點劃線X1-X2的剖面圖,圖27C是沿點劃線Y1-Y2的剖面圖。
注意,在圖27A至圖27C所示的電晶體200中,對具有與圖24A至圖24C所示的電晶體200的結構相同的功能的結構附加相同元件符號。
在圖27A至圖27C所示的結構中,被用作閘 極電極的導電體260包括導電體260a、導電體260b及導電體260c。另外,氧化物230c只要覆蓋氧化物230b的側面即可,也可以在絕緣體224上被切斷。
在圖27A至圖27C所示的結構中,導電體260具有三層結構。作為兩層結構,也可以設置相同材料的疊層。例如,導電體260a利用熱CVD法、MOCVD法或ALD法形成。尤其是,較佳為利用ALD法形成。藉由利用ALD法等形成,可以降低進行成膜時對絕緣體250造成的損傷。此外,因為可以提高覆蓋性,所以較佳為利用ALD法等形成導電體260a。因此,可以提供一種可靠性高的電晶體200。
接著,利用濺射法形成導電體260b。此時,藉由在絕緣體250上具有導電體260a,可以抑制形成導電體260b時的損傷影響到絕緣體250。另外,濺射法的沉積速度比ALD法快,所以良率高,從而可以提高生產率。
另外,導電體260b使用鉭、鎢、銅、鋁等導電性高的材料形成。再者,形成在導電體260b上的導電體260c較佳為使用氮化鎢等耐氧化性高的導電體形成。
例如,在作為絕緣體280使用使氧脫離的氧化物材料的情況下,藉由作為與具有過量氧區域的絕緣體280接觸的面積大的導電體260c使用耐氧化性高的導電體,可以抑制從過量氧區域脫離的氧被導電體260吸收。此外,可以抑制導電體260的氧化,並且可以將從絕緣體 280脫離的氧高效率地供應到氧化物230。此外,藉由作為導電體260b使用導電性高的導電體,可以提供一種功耗小的電晶體200。
另外,如圖27C所示,在電晶體200的通道寬度方向上,氧化物230b被導電體260覆蓋。此外,藉由使絕緣體224具有凸部,氧化物230b的側面也可以被導電體260覆蓋。例如,較佳的是,藉由調整絕緣體224的凸部的形狀,在絕緣體224與氧化物230c接觸的區域,導電體260的底面比氧化物230b的底面更接近於基板一側。也就是說,電晶體200具有可以由導電體260的電場電圍繞氧化物230b的結構。如此,將由導電體的電場電圍繞氧化物230b的電晶體結構稱為surrounded channel(s-channel)結構。在s-channel結構的電晶體200中,也可以在氧化物230b整體(塊體)形成通道。在s-channel結構中可以使電晶體的汲極電流增大,來可以得到更大的通態電流(在電晶體處於開啟狀態時流在源極與汲極之間的電流)。此外,也可以由導電體260的電場使形成在氧化物230b中的通道形成區域的整個區域空乏化。因此,s-channel結構可以進一步減少電晶體的關態電流。另外,藉由縮短通道寬度,可以提高增大通態電流且減少關態電流的s-channel結構的效果等。
〈電晶體結構5〉
圖28A至圖28C示出可以應用於電晶體200的結構 的一個例子。圖28A示出電晶體200的頂面。注意,為了明確起見,在圖28A中省略一部分的膜。另外,圖28B是沿圖28A中的點劃線X1-X2的剖面圖,圖28C是沿點劃線Y1-Y2的剖面圖。
注意,在圖28A至圖28C所示的電晶體200中,對具有與圖24A至圖24C所示的電晶體200的結構相同的功能的結構附加相同元件符號。
在圖28A至圖28C所示的結構中,被用作源極或汲極的導電體具有疊層結構。作為導電體240a及導電體240b較佳為使用與氧化物230b的緊密性高的導電體,作為導電體241a及導電體241b較佳為使用導電性高的材料。此外,較佳為利用ALD法形成導電體240a及導電體240b。藉由利用ALD法等形成導電體240a及導電體240b,可以提高覆蓋性。
例如,在作為氧化物230b使用包含銦的金屬氧化物的情況下,作為導電體240a及導電體240b可以使用氮化鈦等。此外,藉由作為導電體241a及導電體241b使用鉭、鎢、銅、鋁等導電性高的材料,可以提供一種可靠性高且功耗小的電晶體200。
另外,如圖28B及圖28C所示,在電晶體200的通道寬度方向上,氧化物230b被導電體260覆蓋。此外,藉由使絕緣體222具有凸部,氧化物230b的側面也可以被導電體260覆蓋。
在此,在作為絕緣體222使用氧化鉿等high- k材料的情況下,因為絕緣體222的相對介電常數較大,所以可以減小等效氧化物厚度(EOT:Equivalent Oxide Thickness)。因此,由於絕緣體222的物理上的厚度而可以擴大導電體205與氧化物230之間的距離,而不使施加到氧化物230的來自導電體205的電場的影響減弱。因此,藉由調整絕緣體222的厚度,可以調整導電體205與氧化物230之間的距離。
例如,較佳的是,藉由調整絕緣體224的凸部的形狀,在絕緣體222與氧化物230c接觸的區域,導電體260的底面比氧化物230b的底面更接近於基板一側。也就是說,電晶體200具有可以由導電體260的電場電圍繞氧化物230b的結構。如此,將由導電體的電場電圍繞氧化物230b的電晶體結構稱為surrounded channel(s-channel)結構。在s-channel結構的電晶體200中,也可以在氧化物230b整體(塊體)形成通道。在s-channel結構中可以使電晶體的汲極電流增大,來可以得到更大的通態電流(在電晶體處於開啟狀態時流在源極與汲極之間的電流)。此外,也可以由導電體260的電場使形成在氧化物230b中的通道形成區域的整個區域空乏化。因此,s-channel結構可以進一步減少電晶體的關態電流。另外,藉由縮短通道寬度,可以提高增大通態電流且減少關態電流的s-channel結構的效果等。
〈電晶體結構6〉
圖29A至圖29C示出可以應用於電晶體200的結構的一個例子。圖29A示出電晶體200的頂面。注意,為了明確起見,在圖29A中省略一部分的膜。另外,圖29B是沿圖29A中的點劃線X1-X2的剖面圖,圖29C是沿點劃線Y1-Y2的剖面圖。
注意,在圖29A至圖29C所示的電晶體200中,對具有與圖24A至圖24C所示的電晶體200的結構相同的功能的結構附加相同元件符號。
圖29A至圖29C所示的電晶體200在形成於絕緣體280的開口中形成有氧化物230c、絕緣體250及導電體260。另外,導電體240a和導電體240b中的一個端部與形成在絕緣體280中的開口的端部一致。再者,導電體240a及導電體240b的三個方向的端部與氧化物230a及氧化物230b的端部的一部分一致。由此,可以在與氧化物230或絕緣體280的開口同時形成導電體240a、導電體240b。由此,可以減少遮罩及製程的數量。此外,可以提高良率及生產率。
另外,導電體240a、導電體240b及氧化物230b隔著氧化物230d接觸於具有過量氧區域的絕緣體280。由此,藉由在絕緣體280與包括形成有通道的區域的氧化物230b之間設置氧化物230d,可以抑制氫、水及鹵素等雜質從絕緣體280擴散到氧化物230b。
再者,由於圖29A至圖29C所示的電晶體200具有導電體240a、導電體240b與導電體260幾乎不 重疊的結構,所以可以減小導電體260的寄生電容。也就是說,可以提供一種工作頻率高的電晶體200。
〈電晶體結構7〉
圖30A至圖30C示出可以應用於電晶體200的結構的一個例子。圖30A示出電晶體200的頂面。注意,為了明確起見,在圖30A中省略一部分的膜。另外,圖30B是沿圖30A中的點劃線X1-X2的剖面圖,圖30C是沿點劃線Y1-Y2的剖面圖。
注意,在圖30A至圖30C所示的電晶體200中,對具有與圖29A至圖29C所示的電晶體200的結構相同的功能的結構附加相同元件符號。
在絕緣體282上形成絕緣體285及絕緣體286。
在形成於絕緣體280、絕緣體282及絕緣體285的開口中形成有氧化物230c、絕緣體250及導電體260。另外,導電體240a和導電體240b中的一個端部與形成在絕緣體280中的開口的端部一致。再者,導電體240a及導電體240b的三個方向的端部與氧化物230a及氧化物230b的端部的一部分一致。由此,可以在與氧化物230a及氧化物230b或絕緣體280的開口同時形成導電體240a、導電體240b。由此,可以減少遮罩及製程的數量。此外,可以提高良率及生產率。
另外,導電體240a、導電體240b及氧化物 230b隔著氧化物230d接觸於具有過量氧區域的絕緣體280。由此,藉由在絕緣體280與包括形成有通道的區域的氧化物230b之間設置氧化物230d,可以抑制氫、水及鹵素等雜質從絕緣體280擴散到氧化物230b。
另外,在圖30A至圖30C所示的電晶體200中不形成高電阻的偏置(offset)區域,因此可以增大電晶體200的通態電流。
〈電晶體結構8〉
圖31A至圖31C示出可以應用於電晶體200的結構的一個例子。圖31A示出電晶體200的頂面。注意,為了明確起見,在圖31A中省略一部分的膜。另外,圖31B是沿圖31A中的點劃線X1-X2的剖面圖,圖31C是沿點劃線Y1-Y2的剖面圖。
注意,在圖31A至圖31C所示的電晶體200中,對具有與圖30A至圖30C所示的電晶體200的結構相同的功能的結構附加相同元件符號。
圖31A至圖31C所示的電晶體200不包括氧化物230d。例如,在作為導電體240a及導電體240b使用耐氧化性高的導電體的情況下,並不需要設置氧化物230d。由此,可以減少遮罩及製程的數量。此外,可以提高良率及生產率。
另外,絕緣體224也可以僅設置在與氧化物230a及氧化物230b重疊的區域中。此時,可以以絕緣體 222為蝕刻停止層對氧化物230a、氧化物230b及絕緣體224進行加工。因此,可以提高良率或生產率。
再者,由於圖31A至圖31C所示的電晶體200具有導電體240a、導電體240b與導電體260幾乎不重疊的結構,所以可以減小導電體260的寄生電容。也就是說,可以提供一種工作頻率高的電晶體200。
〈電晶體的製造方法〉
以下,參照圖32A至圖35C對圖24A至圖24C所示的電晶體的製造方法的一個例子進行說明。
首先,準備基板(未圖示)。對基板沒有特別的限制,但是基板較佳為至少具有能夠承受在後面進行的加熱處理的程度的耐熱性。例如,可以使用玻璃基板如硼矽酸鋇玻璃基板和硼矽酸鋁玻璃基板等、陶瓷基板、石英基板、藍寶石基板等。此外,也可以利用:使用矽或碳化矽等的單晶半導體基板或多晶半導體基板;使用矽鍺、砷化鎵、砷化銦、砷化銦鎵的化合物半導體基板;SOI(Silicon On Insulator)基板;或GOI(Germanium on Insulator)基板等,並且也可以使用在這些基板上設置有半導體元件的基板。
另外,作為基板也可以使用撓性基板來製造半導體裝置。在製造具有撓性的半導體裝置時,既可以在撓性基板上直接製造電晶體,也可以在其他製造基板上製造電晶體,然後從製造基板剝離電晶體並將其轉置到撓性 基板上。另外,為了從製造基板剝離電晶體並將其轉置到撓性基板上,較佳為在製造基板與包括氧化物半導體的電晶體之間設置剝離層。
接著,形成絕緣體214、絕緣體216。接著,藉由光微影法等在絕緣體216上形成光阻遮罩290,去除絕緣體214及絕緣體216的不需要的部分(圖32A)。然後,去除光阻遮罩290,由此可以形成開口。
在此,對被加工膜的加工方法進行說明。當對被加工膜進行微細加工時,可以使用各種微細加工技術。例如,也可以採用對藉由光微影法等形成的光阻遮罩進行縮小處理的方法。另外,也可以藉由光微影法等形成假圖案,在該假圖案處形成側壁之後去除假圖案,將殘留的側壁用作光阻遮罩,對被加工膜進行蝕刻。此外,為了實現高縱橫比,作為被加工膜的蝕刻較佳為利用各向異性乾蝕刻。另外,也可以使用由無機膜或金屬膜構成的硬遮罩。
作為用來形成光阻遮罩的光,例如可以使用i線(波長365nm)、g線(波長436nm)、h線(波長405nm)或將這些光混合的光。此外,還可以使用紫外線、KrF雷射或ArF雷射等。此外,也可以利用液浸曝光技術進行曝光。作為用於曝光的光,也可以使用極紫外光(EUV:Extreme Ultra-Violet)或X射線。另外,也可以使用電子束代替用於曝光的光。當使用極紫外光、X射線或電子束時,可以進行極其微細的加工,所以是較佳的。 注意,在藉由利用電子束等光束進行掃描而進行曝光時,不需要光罩。
另外,也可以在形成將成為光阻遮罩的光阻膜之前,形成具有提高被加工膜與光阻膜的緊密性的功能的有機樹脂膜。可以利用旋塗法等以覆蓋其下方的步階而使其表面平坦化的方式形成該有機樹脂膜,而可以降低形成在該有機樹脂膜上方的光阻遮罩的厚度的偏差。尤其是,在進行微細的加工時,作為該有機樹脂膜較佳為使用具有對用於曝光的光的反射防止膜的功能的材料。作為具有這種功能的有機樹脂膜,例如有BARC(Bottom Anti-Reflection Coating:底部抗反射)膜等。該有機樹脂膜可以在去除光阻遮罩的同時被去除或者在去除光阻遮罩之後被去除。
接著,在絕緣體214及絕緣體216上形成導電體205A及導電體205B。導電體205A及導電體205B可以藉由濺射法、蒸鍍法、CVD法(包括熱CVD法、MOCVD法、PECVD法等)等形成。另外,為了減少電漿所導致的損傷,較佳為利用熱CVD法、MOCVD法或ALD法(圖32B)。
接著,去除導電體205A及導電體205B的不需要的部分。例如,直到使絕緣體216露出為止藉由回蝕處理或化學機械拋光(CMP:Chemical Mechanical Polishing)處理等去除導電體205A及導電體205B的一部分,由此形成導電體205(圖32C)。此時,絕緣體 216也可以被用作停止層,有時絕緣體216的厚度變薄。
在此,CMP處理是一種對被加工物的表面藉由化學、機械的複合作用進行平坦化的方法。更明確而言,CMP處理是一種方法,其中在拋光台上貼附砂布,且一邊在被加工物與砂布之間供應漿料(拋光劑),一邊將拋光台和被加工物分別旋轉或搖動,來由漿料與被加工物表面之間的化學反應以及砂布和被加工物的機械拋光的作用對被加工物的表面進行拋光。
CMP處理既可只進行一次,又可進行多次。當進行CMP處理多次時,較佳為在進行高拋光率的初期拋光之後,進行低拋光率的精拋光。如此,也可以組合拋光率不同的拋光。
接著,形成絕緣體220、絕緣體222及絕緣體224(圖32D)。注意,並不一定需要設置絕緣體220及絕緣體222。例如,當絕緣體224包括過量氧區域時,也可以在導電體205上形成具有阻擋性的導電體。藉由形成具有阻擋性的導電體,可以抑制導電體205與過量氧區域的氧起反應而生成氧化物。
絕緣體220、絕緣體222及絕緣體224可以藉由採用與絕緣體320同樣的材料及方法形成。尤其是,作為絕緣體222,較佳為使用氧化鉿等high-k材料。
絕緣體220、絕緣體222及絕緣體224例如可以利用濺射法、化學氣相沉積(CVD:Chemical Vapor Deposition)法(包括熱CVD法、有機金屬CVD (MOCVD:Metal Organic Chemical Vapor Deposition)法、電漿增強CVD(PECVD:Plasma Enhanced Chemical Vapor Deposition)法等)、分子束磊晶(MBE:Molecular Beam Epitaxy)法、原子層沉積(ALD:Atomic Layer Deposition)法或脈衝雷射沉積(PLD:Pulsed Laser Deposition)法等形成。尤其是,當藉由CVD法,較佳為藉由ALD法等形成該絕緣體時,可以提高覆蓋性,所以是較佳的。另外,為了減少電漿所導致的損傷,較佳為利用熱CVD法、MOCVD法或ALD法。此外,也可以使用使TEOS(Tetra-Ethyl-Ortho-Silicate:四乙氧基矽烷)或矽烷等與氧或一氧化二氮等起反應而形成的步階覆蓋性良好的氧化矽膜。
另外,較佳為連續地形成絕緣體220、絕緣體222及絕緣體224。藉由連續地形成它們,可以形成可靠性高的絕緣體,而不使雜質附著於絕緣體220與絕緣體222的介面及絕緣體222與絕緣體224的介面。
接著,依次形成成為氧化物230a的氧化物230A及成為氧化物230b的氧化物230B。該氧化物較佳為以不接觸於大氣的方式連續地形成。
然後,在氧化物230A上形成成為導電體240a及導電體240b的導電膜240A。作為導電膜240A,較佳為使用具有對氫或氧的阻擋性且耐氧化性高的材料。另外,雖然在圖式中採用單層,但是也可以採用兩層以上的疊層結構。接著,藉由與上述方法同樣的方法形成光阻 遮罩292(圖32E)。
使用光阻遮罩292,藉由蝕刻去除導電膜240A的不需要的部分,形成島狀導電層240B(圖33A)。然後,以導電層240B為遮罩藉由蝕刻去除氧化物230A及氧化物230B的不需要的部分。
此時,也可以同時將絕緣體224加工為島狀。例如,藉由將具有阻擋性的絕緣體222用作蝕刻停止膜,即使在絕緣體220、絕緣體222及絕緣體224的總厚度薄的結構中,也可以防止絕緣體222的下方的佈線層也被過蝕刻。另外,藉由減少絕緣體220、絕緣體222及絕緣體224的總厚度,來自導電體205的電壓高效地施加到它們,所以可以提供一種功耗低的電晶體。
然後,去除光阻遮罩,由此可以形成島狀氧化物230a、島狀氧化物230b及島狀導電層240B的疊層結構(圖33B)。
接著,較佳為進行加熱處理(圖33C,其中箭頭表示加熱處理)。加熱處理在250℃以上且400℃以下,較佳為320℃以上且380℃以下的溫度下且在惰性氣體氛圍、包含10ppm以上的氧化氣體的氛圍或減壓狀態下進行即可。此外,作為加熱處理的氛圍,在惰性氣體氛圍下進行加熱處理之後,還可以在包含10ppm以上的氧化氣體的氛圍下進行以填補脫離的氧。藉由加熱處理,可以去除作為氧化物230a及氧化物230b的雜質的氫。另外,氧從形成在氧化物230a的下方的絕緣體供應到氧化 物230a及氧化物230b中,由此可以降低氧化物中的氧空位。
接著,藉由與上述方法同樣的方法在島狀導電層240B上形成光阻遮罩294(圖33D)。接著,藉由蝕刻去除導電層240B的不需要的部分,然後去除光阻遮罩294,由此形成導電體240a及導電體240b(圖34A)。此時,藉由對絕緣體222或絕緣體224的一部分進行蝕刻來減薄也可以實現s-channel結構。
這裡,也可以進行加熱處理。加熱處理的條件與在圖33C中說明的加熱處理相同即可。藉由加熱處理,可以去除作為氧化物230a及氧化物230b的雜質的氫。另外,氧從形成在氧化物230a的下方的絕緣體供應到氧化物230a及氧化物230b中,由此可以降低氧化物中的氧空位。再者,在使用氧化氣體進行加熱處理的情況下,藉由使氧化氣體直接接觸於形成通道的區域,可以高效地減少形成通道的區域中的氧空位。
接著,形成氧化物230c。此外,這裡也可以進行加熱處理(圖34B,其中箭頭表示加熱處理)。加熱處理的條件與在圖34C中說明的加熱處理相同即可。藉由加熱處理,可以去除作為氧化物230a及氧化物230b的雜質的氫。另外,氧從形成在氧化物230a的下方的絕緣體供應到氧化物230a及氧化物230b中,由此可以降低氧化物中的氧空位。再者,在使用氧化氣體進行加熱處理的情況下,藉由使氧化氣體直接接觸於形成通道的區域,可以 高效地減少形成通道的區域中的氧空位。
接著,依次形成絕緣體250及將成為導電體260的導電膜260A。另外,作為導電膜260A,較佳為使用具有對氫或氧的阻擋性且耐氧化性高的材料。另外,雖然在圖式中採用單層,但是也可以採用兩層以上的疊層結構。
例如,作為兩層結構,可以採用相同材料的疊層。第一導電膜利用熱CVD法、MOCVD法或ALD法形成。尤其是,較佳為利用ALD法形成。藉由利用ALD法等形成,可以降低進行成膜時對絕緣體250造成的損傷。此外,因為可以提高覆蓋性,所以較佳為利用ALD法等形成第一導電膜。因此,可以提供一種可靠性高的電晶體200。
接著,利用濺射法形成第二導電膜。此時,藉由在絕緣體250上具有第一導電膜,可以抑制形成第二導電膜時造成的損傷給絕緣體250帶來的影響。此外,濺射法的沉積速度比ALD法快,由此可以提高良率及生產率。注意,較佳為使用不包含氯的沉積氣體形成導電膜260A。
接著,藉由與上述方法同樣的方法在導電膜260A上形成光阻遮罩296(圖34C)。接著,藉由蝕刻去除導電膜260A的不需要的部分來形成導電體260,然後去除光阻遮罩296(圖35A)。
接著,在導電體260上形成絕緣體280。絕緣 體280是包含氧的絕緣體,諸如氧化矽膜、氧氮化矽膜等。作為形成包含過量氧的絕緣體的方法,可以適當地設定CVD法或濺射法中的成膜條件,形成使其膜中包含多量氧的氧化矽膜或氧氮化矽膜。另外,也可以在形成氧化矽膜及氧氮化矽膜之後,藉由離子植入法、離子摻雜法或電漿處理添加氧。
尤其是,較佳為進行氧電漿處理(圖35B,其中箭頭表示電漿處理)。典型的氧電漿處理是指:利用藉由氧氣體的輝光放電電漿產生的自由基對氧化物半導體表面進行處理。但是產生電漿的氣體不侷限於氧,也可以是氧氣體和稀有氣體的混合氣體。例如,以250℃以上且400℃以下,較佳為300℃以上且400℃以下的溫度,在包含氧化氣體的氛圍或減壓狀態下進行氧電漿處理即可。
藉由氧電漿處理,在對絕緣體280及氧化物230進行脫水化或脫氫化處理的同時對絕緣體280引入過量氧,由此可以形成過量氧區域。另外,在被脫水化或脫氫化的氧化物230中產生氧空位,而低電阻化。另一方面,絕緣體280中的過量氧填補氧化物230中的氧空位。因此,藉由氧電漿處理,絕緣體280可以其中形成過量氧區域的同時去除雜質的氫及水。此外,氧化物230邊填補氧空位邊去除雜質的氫或水。因此,可以提高電晶體200的電特性,並且可以減少電特性的不均勻。
接著,在絕緣體280上形成絕緣體282(圖35C)。較佳為使用濺射裝置形成絕緣體282。藉由利用 濺射法,可以更容易地在絕緣體282的下方的絕緣體280中形成過量氧區域。
在藉由濺射法進行成膜時,在靶材與基板之間存在離子和被濺射的粒子。例如,靶材與電源連接,並被施加電位E0。另外,基板被施加接地電位等電位E1。但是,基板也可以處於電浮動狀態。另外,在靶材與基板之間存在成為電位E2的區域。各電位的大小關係滿足E2>E1>E0。
藉由使電漿中的離子由於電位差E2-E0加速而該離子碰撞到靶材,被濺射的粒子從靶材被彈出。並且,藉由該被濺射的粒子附著於成膜表面上而沉積,來形成膜。另外,有時離子的一部分由靶材反沖,並且作為反沖離子經過所形成的膜被吸收到位於所形成的膜的下方的絕緣體280。此外,有時電漿中的離子由於電位差E2-E1而加速,衝擊到成膜表面。此時,離子的一部分到達絕緣體280的內部。藉由離子被吸收到絕緣體280,在絕緣體280中形成離子被吸收的區域。換言之,在離子是包含氧的離子的情況下,在絕緣體280中形成過量氧區域。
藉由對絕緣體280引入過量氧,可以形成過量氧區域。絕緣體280中的過量氧被供應到氧化物230中,可以填補氧化物230中的氧空位。在此,在作為與絕緣體280接觸的導電體260、導電體240a及導電體240b使用耐氧化性高的導電體的情況下,絕緣體280中的過量氧不被導電體260、導電體240a及導電體240b吸收,可 以被高效地供應到氧化物230中。因此,可以提高電晶體200的電特性,並且可以減少電特性的不均勻。
藉由上述製程,可以製造本發明的一個實施方式的電晶體200。
以上,本實施方式所示的結構、方法等可以與其他實施方式所示的結構、方法等適當地組合而使用。
實施方式4
在本實施方式中,下面參照圖39A至圖44說明包括在上述實施方式所例示的電晶體中的氧化物半導體。
〈氧化物半導體的結構〉
下面,說明氧化物半導體的結構。
氧化物半導體被分為單晶氧化物半導體和非單晶氧化物半導體。作為非單晶氧化物半導體有CAAC-OS(c-axis-aligned crystalline oxide semiconductor)、多晶氧化物半導體、nc-OS(nanocrystalline oxide semiconductor)、a-like OS(amorphous-like oxide semiconductor)及非晶氧化物半導體等。
從其他觀點看來,氧化物半導體被分為非晶氧化物半導體和結晶氧化物半導體。作為結晶氧化物半導體,有單晶氧化物半導體、CAAC-OS、多晶氧化物半導體以及nc-OS等。
一般而言,非晶結構具有如下特徵:具有各 向同性而不具有不均勻結構;處於準穩態且原子的配置沒有被固定化;鍵角不固定;具有短程有序而不具有長程有序;等。
亦即,不能將穩定的氧化物半導體稱為完全非晶(completely amorphous)氧化物半導體。另外,不能將不具有各向同性(例如,在微小區域中具有週期結構)的氧化物半導體稱為完全非晶氧化物半導體。另一方面,a-like OS不具有各向同性但卻是具有空洞(void)的不穩定結構。在不穩定這一點上,a-like OS在物性上接近於非晶氧化物半導體。
〈CAAC-OS〉
首先,說明CAAC-OS。
CAAC-OS是包含多個c軸配向的結晶部(也稱為顆粒)的氧化物半導體之一。
說明使用X射線繞射(XRD:X-Ray Diffraction)裝置對CAAC-OS進行分析時的情況。例如,當利用out-of-plane法分析包含分類為空間群R-3m的InGaZnO4結晶的CAAC-OS的結構時,如圖39A所示,在繞射角(2θ)為31°附近出現峰值。由於該峰值來源於InGaZnO4結晶的(009)面,由此可確認到在CAAC-OS中結晶具有c軸配向性,並且c軸朝向大致垂直於形成CAAC-OS的膜的面(也稱為被形成面)或頂面的方向。注意,除了2θ為31°附近的峰值以外,有時在 2θ為36°附近時也出現峰值。2θ為36°附近的峰值起因於分類為空間群Fd-3m的結晶結構。因此,較佳的是,在CAAC-OS中不出現該峰值。
另一方面,當利用從平行於被形成面的方向使X射線入射到樣本的in-plane法分析CAAC-OS的結構時,在2θ為56°附近出現峰值。該峰值來源於InGaZnO4結晶的(110)面。並且,即使將2θ固定為56°附近並在以樣本面的法線向量為軸(Φ軸)旋轉樣本的條件下進行分析(Φ掃描),也如圖39B所示的那樣觀察不到明確的峰值。另一方面,當對單晶InGaZnO4將2θ固定為56°附近來進行Φ掃描時,如圖39C所示,觀察到來源於相等於(110)面的結晶面的六個峰值。因此,由使用XRD的結構分析可以確認到CAAC-OS中的a軸和b軸的配向沒有規律性。
接著,說明利用電子繞射分析的CAAC-OS。例如,當對包含InGaZnO4結晶的CAAC-OS在平行於CAAC-OS的被形成面的方向上入射束徑為300nm的電子束時,有可能出現圖39D所示的繞射圖案(也稱為選區電子繞射圖案)。在該繞射圖案中包含起因於InGaZnO4結晶的(009)面的斑點。因此,電子繞射也示出CAAC-OS所包含的顆粒具有c軸配向性,並且c軸朝向大致垂直於被形成面或頂面的方向。另一方面,圖39E示出對相同的樣本在垂直於樣本面的方向上入射束徑為300nm的電子束時的繞射圖案。從圖39E觀察到環狀的繞射圖案。因 此,使用束徑為300nm的電子束的電子繞射也示出CAAC-OS所包含的顆粒的a軸和b軸不具有配向性。可以認為圖39E中的第一環起因於InGaZnO4結晶的(010)面和(100)面等。另外,可以認為圖39E中的第二環起因於(110)面等。
另外,在利用穿透式電子顯微鏡(TEM:Transmission Electron Microscope)觀察所獲取的CAAC-OS的明視野影像與繞射圖案的複合分析影像(也稱為高解析度TEM影像)中,可以觀察到多個顆粒。然而,即使在高解析度TEM影像中,有時也觀察不到顆粒與顆粒之間的明確的邊界,亦即晶界(grain boundary)。因此,可以說在CAAC-OS中,不容易發生起因於晶界的電子移動率的降低。
圖40A示出從大致平行於樣本面的方向觀察所獲取的CAAC-OS的剖面的高解析度TEM影像。利用球面像差校正(Spherical Aberration Corrector)功能得到高解析度TEM影像。尤其將利用球面像差校正功能獲取的高解析度TEM影像稱為Cs校正高解析度TEM影像。例如可以使用日本電子株式會社製造的原子解析度分析型電子顯微鏡JEM-ARM200F等觀察Cs校正高解析度TEM影像。
從圖40A可確認到其中金屬原子排列為層狀的顆粒。並且可知一個顆粒的尺寸為1nm以上或者3nm以上。因此,也可以將顆粒稱為奈米晶(nc: nanocrystal)。另外,也可以將CAAC-OS稱為具有CANC(C-Axis Aligned nanocrystals:c軸配向奈米晶)的氧化物半導體。顆粒反映CAAC-OS的被形成面或頂面的凸凹並平行於CAAC-OS的被形成面或頂面。
另外,圖40B及圖40C示出從大致垂直於樣本面的方向觀察所獲取的CAAC-OS的平面的Cs校正高解析度TEM影像。圖40D及圖40E是藉由對圖40B及圖40C進行影像處理得到的影像。下面說明影像處理的方法。首先,藉由對圖40B進行快速傳立葉變換(FFT:Fast Fourier Transform)處理,獲取FFT影像。接著,以保留所獲取的FFT影像中的離原點2.8nm-1至5.0nm-1的範圍的方式進行遮罩處理。接著,對經過遮罩處理的FFT影像進行快速傅立葉逆變換(IFFT:Inverse Fast Fourier Transform)處理而獲取經過處理的影像。將所獲取的影像稱為FFT濾波影像。FFT濾波影像是從Cs校正高解析度TEM影像中提取出週期分量的影像,其示出晶格排列。
在圖40D中,以虛線示出晶格排列被打亂的部分。由虛線圍繞的區域是一個顆粒。並且,以虛線示出的部分是顆粒與顆粒的聯結部。虛線呈現六角形,由此可知顆粒為六角形。注意,顆粒的形狀並不侷限於正六角形,不是正六角形的情況較多。
在圖40E中,以點線示出晶格排列一致的區域與其他晶格排列一致的區域之間的晶格排列的方向變化 的部分,以虛線示出晶格排列的方向變化。在點線附近也無法確認到明確的晶界。當以點線附近的晶格點為中心周圍的晶格點相接時,可以形成畸變的六角形、五角形及/或七角形等。亦即,可知藉由使晶格排列畸變,可抑制晶界的形成。這可能是由於CAAC-OS可容許因如下原因而發生的畸變:在a-b面方向上的氧的原子排列的低密度或因金屬元素被取代而使原子間的鍵合距離產生變化等。
如上所示,CAAC-OS具有c軸配向性,其多個顆粒(奈米晶)在a-b面方向上連結而結晶結構具有畸變。因此,也可以將CAAC-OS稱為具有CAA crystal(c-axis-aligned a-b-plane-anchored crystal)的氧化物半導體。
CAAC-OS是結晶性高的氧化物半導體。氧化物半導體的結晶性有時因雜質的混入或缺陷的生成等而降低,因此可以說CAAC-OS是雜質或缺陷(氧空位等)少的氧化物半導體。
此外,雜質是指氧化物半導體的主要成分以外的元素,諸如氫、碳、矽和過渡金屬元素等。例如,與氧的鍵合力比構成氧化物半導體的金屬元素強的矽等元素會奪取氧化物半導體中的氧,由此打亂氧化物半導體的原子排列,導致結晶性下降。另外,由於鐵或鎳等重金屬、氬、二氧化碳等的原子半徑(或分子半徑)大,所以會打亂氧化物半導體的原子排列,導致結晶性下降。
〈nc-OS〉
接著,對nc-OS進行說明。
說明使用XRD裝置對nc-OS進行分析的情況。例如,當利用out-of-plane法分析nc-OS的結構時,不出現表示配向性的峰值。換言之,nc-OS的結晶不具有配向性。
另外,例如,當使包含InGaZnO4結晶的nc-OS薄片化,並在平行於被形成面的方向上使束徑為50nm的電子束入射到厚度為34nm的區域時,觀察到如圖41A所示的環狀繞射圖案(奈米束電子繞射圖案)。另外,圖41B示出將束徑為1nm的電子束入射到相同的樣本時的繞射圖案(奈米束電子繞射圖案)。從圖41B觀察到環狀區域內的多個斑點。因此,nc-OS在入射束徑為50nm的電子束時觀察不到秩序性,但是在入射束徑為1nm的電子束時確認到秩序性。
另外,當使束徑為1nm的電子束入射到厚度小於10nm的區域時,如圖41C所示,有時觀察到斑點被配置為準正六角形的電子繞射圖案。由此可知,nc-OS在厚度小於10nm的範圍內包含秩序性高的區域,亦即結晶。注意,因為結晶朝向各種各樣的方向,所以也有觀察不到有規律性的電子繞射圖案的區域。
圖41D示出從大致平行於被形成面的方向觀察到的nc-OS的剖面的Cs校正高解析度TEM影像。在nc-OS的高解析度TEM影像中有如由輔助線所示的部分 那樣能夠觀察到結晶部的區域和觀察不到明確的結晶部的區域。nc-OS所包含的結晶部的尺寸為1nm以上且10nm以下,尤其大多為1nm以上且3nm以下。注意,有時將其結晶部的尺寸大於10nm且是100nm以下的氧化物半導體稱為微晶氧化物半導體(microcrystalline oxide semiconductor)。例如,在nc-OS的高解析度TEM影像中,有時無法明確地觀察到晶界。注意,奈米晶的來源有可能與CAAC-OS中的顆粒相同。因此,下面有時將nc-OS的結晶部稱為顆粒。
如此,在nc-OS中,微小的區域(例如1nm以上且10nm以下的區域,特別是1nm以上且3nm以下的區域)中的原子排列具有週期性。另外,nc-OS在不同的顆粒之間觀察不到結晶定向的規律性。因此,在膜整體中觀察不到配向性。所以,有時nc-OS在某些分析方法中與a-like OS或非晶氧化物半導體沒有差別。
另外,由於在顆粒(奈米晶)之間結晶定向沒有規律性,所以也可以將nc-OS稱為包含RANC(Random Aligned nanocrystals:無規配向奈米晶)的氧化物半導體或包含NANC(Non-Aligned nanocrystals:無配向奈米晶)的氧化物半導體。
nc-OS是規律性比非晶氧化物半導體高的氧化物半導體。因此,nc-OS的缺陷態密度比a-like OS或非晶氧化物半導體低。但是,在nc-OS中的不同的顆粒之間觀察不到晶體配向的規律性。所以,nc-OS的缺陷態密度 比CAAC-OS高。
〈a-like OS〉
a-like OS是具有介於nc-OS與非晶氧化物半導體之間的結構的氧化物半導體。
圖42A和圖42B示出a-like OS的高解析度剖面TEM影像。圖42A示出電子照射開始時的a-like OS的高解析度剖面TEM影像。圖42B示出照射4.3×108e-/nm2的電子(e-)之後的a-like OS的高解析度剖面TEM影像。由圖42A和圖42B可知,a-like OS從電子照射開始時被觀察到在縱向方向上延伸的條狀明亮區域。另外,可知明亮區域的形狀在照射電子之後變化。明亮區域被估計為空洞或低密度區域。
由於a-like OS包含空洞,所以其結構不穩定。為了證明與CAAC-OS及nc-OS相比a-like OS具有不穩定的結構,下面示出電子照射所導致的結構變化。
作為樣本,準備a-like OS、nc-OS和CAAC-OS。每個樣本都是In-Ga-Zn氧化物。
首先,取得各樣本的高解析度剖面TEM影像。由高解析度剖面TEM影像可知,每個樣本都具有結晶部。
已知InGaZnO4結晶的單位晶格具有所包括的三個In-O層和六個Ga-Zn-O層共計九個層在c軸方向上以層狀層疊的結構。這些彼此靠近的層之間的間隔與 (009)面的晶格表面間隔(也稱為d值)幾乎相等,由結晶結構分析求出其值為0.29nm。由此,以下可以將晶格條紋的間隔為0.28nm以上且0.30nm以下的部分看作InGaZnO4結晶部。晶格條紋對應於InGaZnO4結晶的a-b面。
圖43示出調查了各樣本的結晶部(22至30處)的平均尺寸的例子。注意,結晶部尺寸對應於上述晶格條紋的長度。由圖43可知,在a-like OS中,結晶部根據有關取得TEM影像等的電子的累積照射量逐漸變大。由圖43可知,在利用TEM的觀察初期尺寸為1.2nm左右的結晶部(也稱為初始晶核)在電子(e-)的累積照射量為4.2×108e-/nm2時生長到1.9nm左右。另一方面,可知nc-OS和CAAC-OS在開始電子照射時到電子的累積照射量為4.2×108e-/nm2的範圍內,結晶部的尺寸都沒有變化。由圖43可知,無論電子的累積照射量如何,nc-OS及CAAC-OS的結晶部尺寸分別為1.3nm左右及1.8nm左右。此外,使用日立穿透式電子顯微鏡H-9000NAR進行電子束照射及TEM的觀察。作為電子束照射條件,加速電壓為300kV;電流密度為6.7×105e-/(nm2.s);照射區域的直徑為230nm。
如此,有時電子照射引起a-like OS中的結晶部的生長。另一方面,在nc-OS和CAAC-OS中,幾乎沒有電子照射所引起的結晶部的生長。也就是說,a-like OS與CAAC-OS及nc-OS相比具有不穩定的結構。
此外,由於a-like OS包含空洞,所以其密度比nc-OS及CAAC-OS低。具體地,a-like OS的密度為具有相同組成的單晶氧化物半導體的78.6%以上且小於92.3%。nc-OS的密度及CAAC-OS的密度為具有相同組成的單晶氧化物半導體的92.3%以上且小於100%。注意,難以形成其密度小於單晶氧化物半導體的密度的78%的氧化物半導體。
例如,在原子個數比滿足In:Ga:Zn=1:1:1的氧化物半導體中,具有菱方晶系結構的單晶InGaZnO4的密度為6.357g/cm3。因此,例如,在原子個數比滿足In:Ga:Zn=1:1:1的氧化物半導體中,a-like OS的密度為5.0g/cm3以上且小於5.9g/cm3。另外,例如,在原子個數比滿足In:Ga:Zn=1:1:1的氧化物半導體中,nc-OS的密度和CAAC-OS的密度為5.9g/cm3以上且小於6.3g/cm3
注意,當不存在相同組成的單晶氧化物半導體時,藉由以任意比例組合組成不同的單晶氧化物半導體,可以估計出相當於所希望的組成的單晶氧化物半導體的密度。根據組成不同的單晶氧化物半導體的組合比例使用加權平均估計出相當於所希望的組成的單晶氧化物半導體的密度即可。注意,較佳為儘可能減少所組合的單晶氧化物半導體的種類來估計密度。
如上所述,氧化物半導體具有各種結構及各種特性。注意,氧化物半導體例如可以是包括非晶氧化物半導體、a-like OS、nc-OS和CAAC-OS中的兩種以上的 疊層膜。
〈氧化物半導體的載子密度〉
以下,對氧化物半導體的載子密度進行說明。
作為給氧化物半導體的載子密度帶來影響的因數,可以舉出氧化物半導體中的氧空位(Vo)或氧化物半導體中的雜質等。
當氧化物半導體中的氧空位增多時,氫與該氧空位鍵合(也可以將該狀態稱為VoH),而缺陷態密度增高。或者,當氧化物半導體中的雜質增多時,起因於該雜質的增多,缺陷態密度也增高。由此,可以藉由控制氧化物半導體中的缺陷態密度,控制氧化物半導體的載子密度。
下面,對將氧化物半導體用於通道區域的電晶體進行說明。
在以抑制電晶體的臨界電壓的負向漂移或降低電晶體的關態電流為目的的情況下,較佳為減少氧化物半導體的載子密度。在以降低氧化物半導體的載子密度為目的的情況下,可以降低氧化物半導體中的雜質濃度以降低缺陷態密度。在本說明書等中,將雜質濃度低且缺陷態密度低的狀態稱為“高純度本質”或“實質上高純度本質”。高純度本質的氧化物半導體的載子密度低於8×1015cm-3,較佳為低於1×1011cm-3,更佳為低於1×1010cm-3,且為1×10-9cm-3以上,即可。
另一方面,在以增加電晶體的通態電流或提高電晶體的場效移動率為目的的情況下,較佳為增加氧化物半導體的載子密度。在以增加氧化物半導體的載子密度為目的的情況下,稍微增加氧化物半導體的雜質濃度,或者稍微增高氧化物半導體的缺陷態密度即可。或者,較佳為縮小氧化物半導體的能帶間隙即可。例如,在得到電晶體的Id-Vg特性的導通/截止比的範圍中,雜質濃度稍高或缺陷態密度稍高的氧化物半導體可以被看作實質上本質。此外,因電子親和力大而能帶間隙小的熱激發電子(載子)密度增高的氧化物半導體可以被看作實質上本質。另外,在使用電子親和力較大的氧化物半導體的情況下,電晶體的臨界電壓更低。
上述載子密度增高的氧化物半導體稍微被n型化。因此,也可以將載子密度增高的氧化物半導體稱為“Slightly-n”。
實質上本質的氧化物半導體的載子密度較佳為1×105cm-3以上且低於1×1018cm-3,進一步較佳為1×107cm-3以上且1×1017cm-3以下,進一步較佳為1×109cm-3以上且5×1016cm-3以下,進一步較佳為1×1010cm-3以上且1×1016cm-3以下,進一步較佳為1×1011cm-3以上且1×1015cm-3以下。
另外,藉由使用上述實質上本質的氧化物半導體膜,有時電晶體的可靠性得到提高。在此,使用圖44說明將氧化物半導體膜用於通道區域的電晶體的可靠 性得到提高的理由。圖44是說明將氧化物半導體膜用於通道區域的電晶體中的能帶的圖。
在圖44中,GE表示閘極電極,GI表示閘極絕緣膜,OS表示氧化物半導體膜,SD表示源極電極或汲極電極。就是說,圖44是閘極電極、閘極絕緣膜、氧化物半導體膜、與氧化物半導體膜接觸的源極電極或汲極電極的能帶的一個例子。
在圖44中,作為閘極絕緣膜使用氧化矽膜,將In-Ga-Zn氧化物用於氧化物半導體膜的結構。有可能形成在氧化矽膜中的缺陷的遷移能階(εf)會形成在離閘極絕緣膜的導帶底有3.1eV左右的位置,閘極電壓(Vg)為30V時的氧化物半導體膜與氧化矽膜的介面處的氧化矽膜的費米能階(Ef)會形成在離閘極絕緣膜的導帶底有3.6eV左右的位置。氧化矽膜的費米能階依賴於閘極電壓而變動。例如,藉由增大閘極電壓,氧化物半導體膜與氧化矽膜的介面處的氧化矽膜的費米能階(Ef)變低。圖44中的白色圓圈表示電子(載子),圖44中的X表示氧化矽膜中的缺陷能階。
如圖44所示,在被施加閘極電壓的狀態下,例如,在載子被熱激發時,載子被缺陷能階(圖式中的X)俘獲,缺陷能階的充電狀態從正(“+”)變為中性(“0”)。就是說,當氧化矽膜的費米能階(Ef)加上述熱激發的能階的值比缺陷的遷移能階(εf)高時,氧化矽膜中的缺陷能階的充電狀態從正變為中性,電晶體的臨 界電壓向正方向變動。
當使用電子親和力不同的氧化物半導體膜時,有時閘極絕緣膜與氧化物半導體膜的介面的費米能階的形成深度不同。當使用電子親和力較大的氧化物半導體膜時,在閘極絕緣膜與氧化物半導體膜的介面附近閘極絕緣膜的導帶底相對提高。此時,有可能形成在閘極絕緣膜中的缺陷能階(圖44中的X)相對提高,因此閘極絕緣膜的費米能階與氧化物半導體膜的費米能階的能量差變大。當該能量差變大時,被閘極絕緣膜俘獲的電荷變少,例如,有可能形成在上述氧化矽膜中的缺陷能階的充電狀態變化變少,而可以減少閘極偏壓熱(Gate Bias Temperature:也稱為GBT)壓力中的電晶體的臨界電壓的變動。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式5
在本實施方式中,對使用根據本發明的一個實施方式的電晶體等的半導體裝置的電路的例子進行說明。
〈電路〉
以下,參照圖45及圖46對使用根據本發明的一個實施方式的電晶體等的半導體裝置的電路的例子進行說明。
〈記憶體裝置1〉
圖45所示的半導體裝置與上述實施方式所說明的半導體裝置之間的不同之處在於包括電晶體3500及佈線3006。在此情況下也可以藉由與上述實施方式所示的半導體裝置相同的工作進行資料的寫入及保持工作。另外,作為電晶體3500,可以使用與上述電晶體200同樣的電晶體。
佈線3006與電晶體3500的閘極電連接,電晶體3500的源極和汲極中的一個與電晶體3200的汲極電連接,電晶體3500的源極和汲極中的另一個與佈線3003電連接。
〈記憶體裝置2〉
參照圖46所示的電路圖對半導體裝置(記憶體裝置)的變形例子進行說明。
圖46所示的半導體裝置包括電晶體4100至電晶體4400、電容器4500及電容器4600。在此,作為電晶體4100可以使用與上述電晶體300同樣的電晶體,作為電晶體4200至4400可以使用與上述電晶體200同樣的電晶體。在此,作為電容器4500及電容器4600,可以使用與上述電容器100同樣的電容器。注意,雖然在圖46中省略示出,但是多個該圖46所示的半導體裝置被設置為矩陣狀。圖46所示的半導體裝置可以根據供應到佈線4001、佈線4003、佈線4005至4009的信號或電位而控 制資料電壓的寫入及讀出。
電晶體4100的源極和汲極中的一個連接於佈線4003。電晶體4100的源極和汲極中的另一個連接於佈線4001。注意,雖然在圖46中示出電晶體4100為p通道電晶體的情況,但是該電晶體4100也可以為n通道電晶體。
圖46所示的半導體裝置包括兩個資料保持部。例如,第一資料保持部在連接於節點FG1的電晶體4400的源極和汲極中的一個、電容器4600的一個電極以及電晶體4200的源極和汲極中的一個之間保持電荷。另外,第二資料保持部在連接於節點FG2的電晶體4100的閘極、電晶體4200的源極和汲極中的另一個、電晶體4300的源極和汲極中的一個以及電容器4500的一個電極之間保持電荷。
電晶體4300的源極和汲極中的另一個連接於佈線4003。電晶體4400的源極和汲極中的另一個連接於佈線4001。電晶體4400的閘極連接於佈線4005。電晶體4200的閘極連接於佈線4006。電晶體4300的閘極連接於佈線4007。電容器4600的另一個電極連接於佈線4008。電容器4500的另一個電極連接於佈線4009。
電晶體4200至4400具有控制資料電壓的寫入及電荷的保持的開關的功能。注意,作為電晶體4200至4400較佳為使用在非導通狀態下流過源極與汲極之間的電流(關態電流)較小的電晶體。作為關態電流較小的 電晶體,較佳為使用在其通道形成區域中包括氧化物半導體的電晶體(OS電晶體)。OS電晶體具有如下優點:關態電流較小、可以以與包含矽的電晶體重疊的方式製造等。注意,雖然在圖46中示出電晶體4200至4400為n通道電晶體的情況,但是該電晶體4200至4400也可以為p通道電晶體。
即便電晶體4200、電晶體4300及電晶體4400是使用氧化物半導體的電晶體,也較佳為將該電晶體4200、電晶體4300及電晶體4400設置在不同的層中。也就是說,在圖46所示的半導體裝置中,較佳為層疊電晶體4100、電晶體4200、電晶體4300以及電晶體4400。換言之,藉由實現電晶體的集成化,能夠縮小電路面積,而能夠實現半導體裝置的小型化。
接著,說明對圖46所示的半導體裝置進行的資料寫入工作。
首先,說明對連接於節點FG1的資料保持部進行的資料電壓的寫入工作(以下稱為寫入工作1)。注意,以下,寫入到連接於節點FG1的資料保持部的資料電壓為VD1,而電晶體4100的臨界電壓為Vth
在寫入工作1中,在將佈線4003的電位設定為VD1並將佈線4001的電位設定為接地電位之後,使佈線4001處於電浮動狀態。此外,將佈線4005及4006的電位設定為高位準。另外,將佈線4007至4009的電位設定為低位準。由此,處於電浮動狀態的節點FG2的電位 上升,電流流過電晶體4100。當電流流過時,佈線4001的電位上升。此外,電晶體4400及電晶體4200成為導通狀態。因此,隨著佈線4001的電位上升,節點FG1及FG2的電位就上升。當節點FG2的電位上升而電晶體4100的閘極與源極之間的電壓(Vgs)成為電晶體4100的臨界電壓Vth時,流過電晶體4100中的電流變小。因此,佈線4001、節點FG1及FG2的電位上升停止,而被固定為比VD1低出Vth的“VD1-Vth”。
也就是說,當電流流過電晶體4100時,施加到佈線4003的VD1被施加到佈線4001,而節點FG1及FG2的電位上升。當由於電位的上升而節點FG2的電位成為“VD1-Vth”時,電晶體4100的Vgs成為Vth,所以電流停止。
接著,說明對連接於節點FG2的資料保持部進行的資料電壓的寫入工作(以下稱為寫入工作2)。注意,在該說明中,寫入到連接於節點FG2的資料保持部的資料電壓為VD2
在寫入工作2中,在將佈線4001的電位設定為VD2並將佈線4003的電位設定為接地電位之後,使佈線4003處於電浮動狀態。此外,將佈線4007的電位設定為高位準。另外,將佈線4005、4006、4008及4009的電位設定為低位準。將電晶體4300處於導通狀態,而將佈線4003的電位設定為低位準。因此,節點FG2的電位也降低到低位準,而電流流過電晶體4100。當電流流過 時,佈線4003的電位上升。此外,電晶體4300成為導通狀態。因此,隨著佈線4003的電位上升,節點FG2的電位就上升。當節點FG2的電位上升而電晶體4100的Vgs成為電晶體4100的Vth時,流過電晶體4100中的電流變小。因此,佈線4003及FG2的電位的上升停止,而被固定為比VD2低出Vth的“VD2-Vth”。
也就是說,當電流流過電晶體4100時,施加到佈線4001的VD2被施加到佈線4003,而節點FG2的電位上升。當由於電位的上升而節點FG2的電位成為“VD2-Vth”時,電晶體4100的Vgs成為Vth,所以電流停止。此時,電晶體4200和4400都處於非導通狀態,而節點FG1的電位保持在寫入工作1中寫入的“VD1-Vth”。
在圖46所示的半導體裝置中,在將資料電壓寫入到多個資料保持部之後,將佈線4009的電位設定為高位準,而使節點FG1及FG2的電位上升。然後,使各電晶體處於非導通狀態以停止電荷移動,來保持所寫入的資料電壓。
藉由如上所述的對節點FG1及FG2進行資料電壓的寫入工作,可以將資料電壓保持在多個資料保持部。注意,雖然作為所寫入的電位的例子舉出了“VD1-Vth”及“VD2-Vth”,但是這些電位是對應於多值的資料的資料電壓。因此,當在各資料保持部中保持4位元的資料時,可能會得到16個值的“VD1-Vth”及16個值的“VD2-Vth”。
接著,說明對圖46所示的半導體裝置進行的資料讀出工作。
首先,說明對連接於節點FG2的資料保持部進行的資料電壓的讀出工作(以下稱為讀出工作1)。
在讀出工作1中,對預充電後處於電浮動狀態的佈線4003進行放電。將佈線4005至4008的電位設定為低位準。另外,將佈線4009的電位設定為低位準,而使處於電浮動狀態的節點FG2的電位為“VD2-Vth”。當節點FG2的電位降低時,電流流過電晶體4100。當電流流過時,電浮動狀態的佈線4003的電位降低。隨著佈線4003的電位的降低,電晶體4100的Vgs就變小。當電晶體4100的Vgs成為電晶體4100的Vth時,流過電晶體4100的電流變小。也就是說,佈線4003的電位成為比節點FG2的電位“VD2-Vth”高出Vth的值的“VD2”。該佈線4003的電位對應於連接到節點FG2的資料保持部的資料電壓。對所讀出的類比值的資料電壓進行A/D轉換,以取得連接於節點FG2的資料保持部的資料。
也就是說,使經預充電後的佈線4003成為浮動狀態,而將佈線4009的電位從高位準換到低位準,由此電流流過電晶體4100。當電流流過時,處於浮動狀態的佈線4003的電位降低而成為“VD2”。在電晶體4100中,由於節點FG2的“VD2-Vth”與佈線4003的“VD2”之間的Vgs成為Vth,因此電流停止。然後,在寫入工作2中寫入的VD2被讀出到佈線4003。
在取得連接於節點FG2的資料保持部的資料之後,使電晶體4300處於導通狀態,而使節點FG2的“VD2-Vth”放電。
接著,將保持在節點FG1的電荷分配在節點FG1及節點FG2,而將連接於節點FG1的資料保持部的資料電壓移動到連接於節點FG2的資料保持部。在此,將佈線4001及4003的電位設定為低位準。將佈線4006的電位設定為高位準。將佈線4005、佈線4007至4009的電位設定為低位準。藉由使電晶體4200處於導通狀態,節點FG1的電荷被分配在節點FG1與節點FG2之間。
在此,電荷分配後的電位從所寫入的電位“VD1-Vth”降低。因此,電容器4600的電容值較佳為大於電容器4500的電容值。或者,寫入到節點FG1的電位“VD1-Vth”較佳為大於表示相同的資料的電位“VD2-Vth”。如此,藉由改變電容值的比例而使預先寫入的電位變大,可以抑制電荷分配後的電位下降。關於電荷分配所引起的電位變動,將在後面進行說明。
接著,說明對連接於節點FG1的資料保持部進行的資料電壓的讀出工作(以下稱為讀出工作2)。
在讀出工作2中,對預充電後處於電浮動狀態的佈線4003進行放電。將佈線4005至4008的電位設定為低位準。另外,佈線4009的電位在預充電時被設定為高位準,之後被設定為低位準。藉由將佈線4009的電位設定為低位準,使處於電浮動狀態的節點FG2的電位 成為電位“VD1-Vth”。當節點FG2的電位降低時,電流流過電晶體4100。當電流流過時,電浮動狀態的佈線4003的電位降低。隨著佈線4003的電位的降低,電晶體4100的Vgs就變小。當電晶體4100的Vgs成為電晶體4100的Vth時,流過電晶體4100的電流變小。也就是說,佈線4003的電位成為比節點FG2的電位“VD1-Vth”高出Vth的值的“VD1”。該佈線4003的電位對應於連接到節點FG1的資料保持部的資料電壓。對所讀出的類比值的資料電壓進行A/D轉換,以取得連接於節點FG1的資料保持部的資料。以上是對連接於節點FG1的資料保持部進行的資料電壓的讀出工作。
也就是說,使經預充電後的佈線4003成為浮動狀態,而將佈線4009的電位從高位準換到低位準,由此電流流過電晶體4100。當電流流過時,處於浮動狀態的佈線4003的電位降低而成為“VD1”。在電晶體4100中,由於節點FG2的“VD1-Vth”與佈線4003的“VD1”之間的Vgs成為Vth,因此電流停止。然後,在寫入工作1中寫入的“VD1”被讀出到佈線4003。
藉由如上所述的對節點FG1及FG2進行資料電壓的讀出工作,可以從多個資料保持部讀出資料電壓。例如,藉由在節點FG1及節點FG2的每一個中保持4位元(16個值)的資料,總共可以保持8位元(256個值)的資料。另外,雖然在圖46中採用了由第一層4021至第三層4023構成的結構,但是藉由形成更多的層,能夠實 現記憶容量的增大而無需增加半導體裝置的面積。
注意,所讀出的電位可以作為比所寫入的資料電壓高出Vth的電壓被讀出。因此,可以藉由抵消在寫入工作中寫入的“VD1-Vth”或“VD2-Vth”的Vth而讀出。其結果是,在可以提供每記憶單元的記憶容量的同時,還可以將所讀出的資料接近於正確的資料,所以可以實現較高的資料可靠性。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式6
在本實施方式中,參照圖47A至圖50B對能夠應用上述實施方式所說明的OS電晶體的電路結構的一個例子進行說明。
圖47A示出反相器的電路圖。反相器800將供應到輸入端子IN的信號的邏輯被反轉的信號從輸出端子OUT輸出。反相器800包括多個OS電晶體。信號SBG是能夠切換OS電晶體的電特性的信號。
圖47B示出反相器800的一個例子。反相器800包括OS電晶體810及OS電晶體820。反相器800可以使用n通道型電晶體,所以與使用CMOS(Complementary Metal Oxide Semiconductor:互補金屬氧化物半導體)制造反相器(CMOS反相器)的情況相比,可以以低成本制造反相器800。
另外,包括OS電晶體的反相器800也可以設置在由Si電晶體構成的CMOS上。因為反相器800可以與CMOS電路重疊,所以可以抑制追加反相器800導致的電路面積的增大。
OS電晶體810、820包括被用作前閘極的第一閘極、被用作背閘極的第二閘極、被用作源極和汲極中的一個的第一端子以及被用作源極和汲極中的另一個的第二端子。
OS電晶體810的第一閘極與第二端子連接。OS電晶體810的第二閘極與供應信號SBG的佈線連接。OS電晶體810的第一端子與供應電壓VDD的佈線連接。OS電晶體810的第二端子與輸出端子OUT連接。
OS電晶體820的第一閘極與輸入端子IN連接。OS電晶體820的第二閘極與輸入端子IN連接。OS電晶體820的第一端子與輸出端子OUT連接。OS電晶體820的第二端子與供應電壓VSS的佈線連接。
圖47C是用來說明反相器800的工作的時序圖。圖47C的時序圖示出輸入端子IN的信號波形、輸出端子OUT的信號波形、信號SBG的信號波形以及OS電晶體810(FET810)的臨界電壓的變化。
藉由將信號SBG施加到OS電晶體810的第二閘極,可以控制OS電晶體810的臨界電壓。
信號SBG具有用來使臨界電壓向負方向漂移的電壓VBG_A以及用來使臨界電壓向正方向漂移的電壓 VBG_B。藉由對第二閘極施加電壓VBG_A,可以使OS電晶體810的臨界電壓向負方向漂移而成為臨界電壓VTH_A。另外,藉由對第二閘極施加電壓VBG_B,可以使OS電晶體810的臨界電壓向正方向漂移而成為臨界電壓VTH_B
為了使上述說明視覺化,圖48A示出電晶體的電特性之一的Vg-Id曲線。
藉由將第二閘極的電壓提高到電壓VBG_A,可以將示出上述OS電晶體810的電特性的曲線向圖48A中的以虛線840表示的曲線漂移。另外,藉由將第二閘極的電壓降低到電壓VBG_B,可以將示出上述OS電晶體810的電特性的曲線向圖48A中的以實線841表示的曲線漂移。藉由將信號SBG切換為電壓VBG_A或電壓VBG_B,如圖48A所示,可以使OS電晶體810的臨界電壓向正方向漂移或向負方向漂移。
藉由使臨界電壓向正方向漂移而成為臨界電壓VTH_B,可以使OS電晶體810處於電流不容易流過的狀態。圖48B視覺性地示出此時的狀態。如圖48B所示,可以使流過OS電晶體810的電流IB極小。因此,在施加到輸入端子IN的信號為高位準而OS電晶體820成為開啟狀態(ON)時,可以急劇降低輸出端子OUT的電壓。
如圖48B所示,可以使OS電晶體810處於電流不容易流過的狀態,所以可以在圖47C所示的時序圖中使輸出端子的信號波形831產生急劇的變化。因為可以 減少流過供應電壓VDD的佈線與供應電壓VSS的佈線之間的貫通電流,所以可以以低功耗進行工作。
另外,藉由使臨界電壓向負方向漂移而成為臨界電壓VTH_A,可以使OS電晶體810處於電流容易流過的狀態。圖48C視覺性地示出此時的狀態。如圖48C所示,可以將此時流過的電流IA設定為至少大於電流IB的值。因此,在施加到輸入端子IN的信號為低位準而OS電晶體820成為關閉狀態(OFF)時,可以急劇提高輸出端子OUT的電壓。
如圖48C所示,可以使OS電晶體810處於電流容易流過的狀態,所以可以在圖47C所示的時序圖中使輸出端子的信號波形832產生急劇的變化。
注意,信號SBG對OS電晶體810的臨界電壓的控制較佳為在切換OS電晶體820的狀態之前,亦即在時刻T1和T2之前進行。例如,如圖47C所示,較佳為在將施加到輸入端子IN的信號切換為高位準的時刻T1之前將OS電晶體810的臨界電壓從臨界電壓VTH_A切換為臨界電壓VTH_B。另外,如圖47C所示,較佳為在將施加到輸入端子IN的信號切換為低位準的時刻T2之前將OS電晶體810的臨界電壓從臨界電壓VTH_B切換為臨界電壓VTH_A
注意,雖然圖47C的時序圖示出根據施加到輸入端子IN的信號切換信號SBG的結構,但是也可以採用別的結構。例如,可以採用使處於浮動狀態的OS電晶 體810的第二閘極保持用來控制臨界電壓的電壓的結構。圖49A示出能夠實現該結構的電路結構的一個例子。
在圖49A中,除了圖47B所示的電路結構之外還包括OS電晶體850。OS電晶體850的第一端子與OS電晶體810的第二閘極連接。OS電晶體850的第二端子與供應電壓VBG_B(或電壓VBG_A)的佈線連接。OS電晶體850的第一閘極與供應信號SF的佈線連接。OS電晶體850的第二閘極與供應電壓VBG_B(或電壓VBG_A)的佈線連接。
參照圖49B的時序圖對圖49A的工作進行說明。
在將施加到輸入端子IN的信號切換為高位準的時刻T3之前,將用來控制OS電晶體810的臨界電壓的電壓施加到OS電晶體810的第二閘極。將信號SF設定為高位準而OS電晶體850成為開啟狀態,對節點NBG施加用來控制臨界電壓的電壓VBG_B
在節點NBG成為電壓VBG_B之後,使OS電晶體850處於關閉狀態。因為OS電晶體850的關態電流極小,所以藉由使其維持關閉狀態,可以使節點NBG成為非常近於浮動狀態的狀態,而保持節點NBG所保持的電壓VBG_B。因此,對OS電晶體850的第二閘極施加電壓VBG_B的工作的次數減少,所以可以減少改寫電壓VBG_B所需要的功耗。
注意,雖然在圖47B及圖49A的電路結構中 示出藉由外部控制對OS電晶體810的第二閘極施加電壓的結構,但是也可以採用別的結構。例如,也可以採用基於施加到輸入端子IN的信號生成用來控制臨界電壓的電壓而將其施加到OS電晶體810的第二閘極的結構。圖50A示出能夠實現該結構的電路結構的一個例子。
圖50A示出在圖47B所示的電路結構中的輸入端子IN與OS電晶體810的第二閘極之間追加CMOS反相器860的結構。CMOS反相器860的輸入端子與輸入端子IN連接。CMOS反相器860的輸出端子與OS電晶體810的第二閘極連接。
參照圖50B的時序圖對圖50A的工作進行說明。圖50B的時序圖示出輸入端子IN的信號波形、輸出端子OUT的信號波形、CMOS反相器860的輸出波形IN_B以及OS電晶體810(FET810)的臨界電壓的變化。
作為使施加到輸入端子IN的信號的邏輯反轉的信號的輸出波形IN_B可以被用作用來控制OS電晶體810的臨界電壓的信號。因此,如圖47A至圖47C所說明,可以控制OS電晶體810的臨界電壓。例如,在圖50B所示的時刻T4,施加到輸入端子IN的信號為高位準而OS電晶體820成為開啟狀態。此時,輸出波形IN_B為低位準。因此,可以使OS電晶體810處於電流不容易流過的狀態,所以可以急劇降低輸出端子OUT的電壓。
另外,在圖50B所示的時刻T5,施加到輸入端子IN的信號為低位準而OS電晶體820成為關閉狀 態。此時,輸出波形IN_B為高位準。因此,可以使OS電晶體810處於電流容易流過的狀態,所以可以急劇提高輸出端子OUT的電壓。
如上所述,在本實施方式的結構中,根據輸入端子IN的信號的邏輯而切換包括OS電晶體的反相器的背閘極的電壓。藉由採用該結構,可以控制OS電晶體的臨界電壓。藉由根據施加到輸入端子IN的信號控制OS電晶體的臨界電壓,可以使輸出端子OUT的電壓產生急劇的變化。另外,可以減少供應電源電壓的佈線之間的貫通電流。因此,可以實現低功耗化。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式7
在本實施方式中,參照圖51A至圖57B對具有多個上述實施方式所說明的包括OS電晶體的電路的半導體裝置的例子進行說明。
圖51A是半導體裝置900的方塊圖。半導體裝置900包括電源電路901、電路902、電壓生成電路903、電路904、電壓生成電路905及電路906。
電源電路901是生成參考電位VORG的電路。電壓VORG不侷限於一個電壓,也可以為多個電壓。電壓VORG是可以基於從半導體裝置900的外部被施加的電壓V0而生成的。半導體裝置900可以基於從外部被施加的 一個電源電壓而生成電壓VORG。因此,即使不從外部輸入多個電源電壓,半導體裝置900也可以工作。
電路902、904及906是基於不同的電源電壓而工作的電路。例如,電路902的電源電壓是基於電壓VORG和電壓VSS(VORG>VSS)而被施加的電壓。例如,電路904的電源電壓是基於電壓VPOG和電壓VSS(VPOG>VORG)而被施加的電壓。例如,電路906的電源電壓是基於電壓VORG、電壓VSS和電壓VNEG(VORG>VSS>VNEG)而被施加的電壓。另外,如果將電壓VSS設定為與接地電位(GND)同等的電位,可以減少電源電路901生成的電壓的種類。
電壓生成電路903是生成電壓VPOG的電路。電壓生成電路903可以基於從電源電路901被施加的電壓VORG而生成電壓VPOG。因此,包括電路904的半導體裝置900可以基於從外部被施加的一個電源電壓而工作。
電壓生成電路905是生成電壓VNEG的電路。電壓生成電路905可以基於從電源電路901被施加的電壓VORG而生成電壓VNEG。因此,包括電路906的半導體裝置900可以基於從外部被施加的一個電源電壓而工作。
圖51B是基於電壓VPOG而工作的電路904的一個例子,圖51C是用來使電路904工作的信號波形的一個例子。
圖51B示出電晶體911。施加到電晶體911的閘極的信號例如基於電壓VPOG和電壓VSS而生成。該 信號在進行使電晶體911成為導通狀態的工作時為電壓VPOG,在進行使其成為非導通狀態的工作時為電壓VSS。如圖51C所示,電壓VPOG高於電壓VORG。因此,電晶體911可以更確實地使源極(S)與汲極(D)之間成為導通狀態。其結果,可以實現誤動作得到減少的電路904。
圖51D是基於電壓VNEG而工作的電路906的一個例子,圖51E是用來使電路906工作的信號波形的一個例子。
圖51D示出具有背閘極的電晶體912。施加到電晶體912的閘極的信號例如基於電壓VORG和電壓VSS而生成。該信號在進行使電晶體911成為導通狀態的工作時基於電壓VORG而生成,且在進行使其成為非導通狀態的工作時基於電壓VSS而生成。另外,施加到電晶體912的背閘極的信號基於電壓VNEG而生成。如圖51E所示,電壓VNEG低於電壓VSS(GND)。因此,可以使電晶體912的臨界電壓向正方向漂移。所以,可以更確實地使電晶體912成為非導通狀態,由此可以減少流過源極(S)與汲極(D)之間的電流。其結果,可以實現誤動作得到減少且功耗低的電路906。
另外,電壓VNEG也可以直接被施加到電晶體912的背閘極。或者,可以基於電壓VORG和電壓VNEG生成施加到電晶體912的閘極的信號,而將該信號施加到電晶體912的背閘極。
另外,圖52A和圖52B示出圖51D和圖51E 的變形例子。
在圖52A所示的電路圖中,在電壓生成電路905與電路906之間包括能夠藉由控制電路921控制其導通狀態的電晶體922。電晶體922是n通道型OS電晶體。控制電路921所輸出的控制信號SBG是控制電晶體922的導通狀態的信號。另外,電路906所包括的電晶體912A、912B是與電晶體922相同的OS電晶體。
圖52B的時序圖示出控制信號SBG的電位變化,並且以節點NBG的電位變化示出電晶體912A、912B的背閘極的電位的狀態。在控制信號SBG為高位準時,電晶體922成為導通狀態,節點NBG成為電壓VNEG。然後,在控制信號SBG為低位準時,節點NBG處於電浮動狀態。因為電晶體922是OS電晶體,所以關態電流小。因此,即使節點NBG處於電浮動狀態,也可以保持被施加的電壓VNEG
另外,圖53A示出能夠應用於上述電壓生成電路903的電路結構的一個例子。圖53A所示的電壓生成電路903是包括二極體D1至D5、電容器C1至C5及反相器INV的5級電荷泵。時脈信號CLK直接或者藉由反相器INV被施加到電容器C1至C5。當反相器INV的電源電壓基於電壓VORG和電壓VSS而被施加的電壓時,可以得到藉由供應時脈信號CLK升壓到電壓VORG的5倍的正電壓的電壓VPOG。注意,二極體D1至D5的正向電壓為0V。另外,藉由改變電荷泵的級數,可以得到所希望 的電壓VPOG
另外,圖53B示出能夠應用於上述電壓生成電路905的電路結構的一個例子。圖53B所示的電壓生成電路905是包括二極體D1至D5、電容器C1至C5及反相器INV的4級電荷泵。時脈信號CLK直接或者藉由反相器INV被施加到電容器C1至C5。當反相器INV的電源電壓基於電壓VORG和電壓VSS而被施加的電壓時,可以得到藉由供應時脈信號CLK從接地電位亦即電壓VSS降壓到電壓VORG的4倍的負電壓的電壓VNEG。注意,二極體D1至D5的正向電壓為0V。另外,藉由改變電荷泵的級數,可以得到所希望的電壓VNEG
注意,上述電壓生成電路903的電路結構不侷限於圖53A所示的電路圖的結構。圖54A至圖54C、圖55A和圖55B示出電壓生成電路903的變形例子。
圖54A所示的電壓生成電路903A包括電晶體M1至M10、電容器C11至C14以及反相器INV1。時脈信號CLK直接或藉由反相器INV1被供應到電晶體M1至M10的閘極。可以得到藉由供應時脈信號CLK升壓到電壓VORG的4倍的正電壓的電壓VPOG。另外,藉由改變電荷泵的級數,可以得到所希望的電壓VPOG。在圖54A所示的電壓生成電路903A中,藉由作為電晶體M1至M10採用OS電晶體可以減少關態電流,而可以抑制保持在電容器C11至C14中的電荷的洩漏。因此,可以將電壓VORG高效地升壓到電壓VPOG
另外,圖54B所示的電壓生成電路903B包括電晶體M11至M14、電容器C15、C16以及反相器INV2。時脈信號CLK直接或藉由反相器INV2被供應到電晶體M11至M14的閘極。可以得到藉由供應時脈信號CLK升壓到電壓VORG的2倍的正電壓的電壓VPOG。在圖54B所示的電壓生成電路903B中,藉由作為電晶體M11至M14採用OS電晶體可以減少關態電流,而可以抑制保持在電容器C15、C16中的電荷的洩漏。因此,可以將電壓VORG高效地升壓到電壓VPOG
另外,圖54C所示的電壓生成電路903C包括電感器I11、電晶體M15、二極體D6及電容器C17。電晶體M15的導通狀態被控制信號EN控制。可以得到藉由控制信號EN使電壓VORG升壓的電壓VPOG。因為在圖54C所示的電壓生成電路903C中使用電感器I11進行升壓,所以可以以高轉換效率進行升壓。
另外,圖55A所示的電壓生成電路903D的結構相當於在圖53A所示的電壓生成電路903中設置二極體連接的電晶體M16至M20代替二極體D1至D5的結構。在圖55A所示的電壓生成電路903D中,藉由作為電晶體M16至M20採用OS電晶體可以減少關態電流,而可以抑制保持在電容器C1至C5中的電荷的洩漏。因此,可以將電壓VORG高效地升壓到電壓VPOG
另外,圖55B所示的電壓生成電路903E的結構相當於在圖55A所示的電壓生成電路903D中設置包括 背閘極的電晶體M21至M25代替電晶體M16至M20的結構。因為在圖55B所示的電壓生成電路903E中,可以對背閘極施加與閘極相同的電壓,所以可以增大流過電晶體的電流的量。因此,可以將電壓VORG高效地升壓到電壓VPOG
注意,電壓生成電路903的變形例子也可以應用於圖53B所示的電壓生成電路905。圖56A至圖56C、圖57A和圖57B示出此時的電路圖的結構。在圖56A所示的電壓生成電路905A中,可以得到藉由供應時脈信號CLK從電壓VSS降壓到電壓VORG的3倍的負電壓的電壓VNEG。另外,在圖56B所示的電壓生成電路905B中,可以得到藉由供應時脈信號CLK從電壓VSS降壓到電壓VORG的2倍的負電壓的電壓VNEG
圖56A至圖56C、圖57A和圖57B所示的電壓生成電路905A至905E的結構相當於在圖54A至圖54C、圖55A和圖55B所示的電壓生成電路903A至903E中改變施加到各佈線的電壓或者改變元件的配置的結構。與電壓生成電路903A至903E同樣,在圖56A至圖56C、圖57A和圖57B所示的電壓生成電路905A至905E中可以將電壓VSS高效地降壓到電壓VNEG
如上所述,在本實施方式的結構中,可以在半導體裝置內部生成包括在該半導體裝置中的電路所需要的電壓。因此,可以減少從半導體裝置的外部被施加的電源電壓的種類。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式8
在本實施方式中,對包括根據本發明的一個實施方式的電晶體和上述記憶體裝置等半導體裝置的CPU的一個例子進行說明。
〈CPU的結構〉
圖58所示的半導體裝置400包括CPU核401、電源管理單元421及週邊電路422。電源管理單元421包括功率控制器402及功率開關403。週邊電路422包括具有快取記憶體的快取記憶體404、匯流排介面405(BUS I/F)及除錯介面406(Debug I/F)。CPU核401包括資料匯流排423、控制裝置407、PC408(程式計數器)、管線暫存器409、管線暫存器410、ALU411(Arithmetic logic unit:算術邏輯單元)及暫存器檔案412。經過資料匯流排423進行CPU核401與快取記憶體404等週邊電路422之間的資料的發送和接收。
半導體裝置(單元)可以被用於功率控制器402、控制裝置407等的很多邏輯電路。尤其是,該半導體裝置(單元)可以被用於能夠使用標準單元構成的所有邏輯電路。其結果,可以提供一種小型半導體裝置400。另外,可以提供一種能夠減少功耗的半導體裝置400。此 外,可以提供一種能夠提高工作速度的半導體裝置400。另外,可以提供一種能夠減少電源電壓的變動的半導體裝置400。
藉由作為半導體裝置(單元)使用p通道型Si電晶體、上述實施方式所記載的在通道形成區域中包含氧化物半導體(較佳為包含In、Ga及Zn的氧化物)的電晶體,並且將該半導體裝置(單元)用作半導體裝置400,可以提供一種小型的半導體裝置400。另外,可以提供一種能夠減少功耗的半導體裝置400。此外,可以提供一種能夠提高工作速度的半導體裝置400。尤其是,藉由作為Si電晶體只採用p通道型電晶體,可以降低製造成本。
控制裝置407藉由對PC408、管線暫存器409、管線暫存器410、ALU411、暫存器檔案412、快取記憶體404、匯流排介面405、除錯介面406及功率控制器402的工作進行整體控制,能夠將被輸入的應用軟體等程式所包含的指令解碼並執行。
ALU411能夠進行四則運算及邏輯運算等各種運算處理。
快取記憶體404能夠暫時儲存使用次數多的資料。PC408是能夠儲存接下來執行的指令的位址的暫存器。另外,雖然在圖58中沒有進行圖示,但是快取記憶體404還設置有控制快取記憶體的工作的快取記憶體控制器。
管線暫存器409是能夠暫時儲存指令的暫存器。
暫存器檔案412具有包括常用暫存器的多個暫存器,而可以儲存從主記憶體讀出的資料或者由ALU411的運算處理的結果得出的資料等。
管線暫存器410是能夠暫時儲存用於ALU411的運算處理的資料或者由ALU411的運算處理結果得出的資料等的暫存器。
匯流排介面405被用作半導體裝置400與位於半導體裝置400外部的各種裝置之間的資料的路徑。除錯介面406被用作用來將控制調試的指令輸入到半導體裝置400的信號的路徑。
功率開關403能夠控制對半導體裝置400所包括的功率控制器402以外的各種電路供應電源電壓。上述各種電路分別屬於幾個電源定域,屬於同一電源定域的各種電路被功率開關403控制是否供應電源電壓。另外,功率控制器402能夠控制功率開關403的工作。
藉由具有上述結構,半導體裝置400能夠進行電源閘控。對電源閘控的工作流程的一個例子進行說明。
首先,CPU核401將停止供應電源電壓的時機設定在功率控制器402的暫存器中。接著,從CPU核401對功率控制器402發送開始進行電源閘控的指令。接著,半導體裝置400內的各種暫存器及快取記憶體404開 始進行資料的備份。接著,利用功率開關403停止對半導體裝置400所包括的功率控制器402以外的各種電路的電源電壓供應。接著,藉由對功率控制器402輸入中斷信號,開始對半導體裝置400所包括的各種電路的電源電壓供應。此外,也可以對功率控制器402設置計數器,不依靠輸入中斷信號而利用該計數器來決定開始供應電源電壓的時機。接著,各種暫存器及快取記憶體404開始進行資料的恢復。接著,再次開始執行控制裝置407中的指令。
在處理器整體或者構成處理器的一個或多個邏輯電路中能夠進行這種電源閘控。另外,即使在較短的時間內也可以停止供應電力。因此,可以以空間上或時間上微細的細微性減少功耗。
在進行電源閘控時,較佳為在較短的期間中將CPU核401或週邊電路422所保持的資料備份。由此,可以在較短的期間中進行電源的開啟或關閉,從而可以實現低功耗化。
為了在較短的期間中將CPU核401或週邊電路422所保持的資料備份,正反器電路較佳為在其電路內進行資料備份(將其稱為能夠備份的正反器電路)。另外,SRAM單元較佳為在單元內進行資料備份(將其稱為能夠備份的SRAM單元)。能夠備份的正反器電路和SRAM單元較佳為包括在通道形成區域中包含氧化物半導體(較佳為包含In、Ga及Zn的氧化物)的電晶體。其結果,電晶體具有小關態電流,由此能夠備份的正反器電路 或SRAM單元可以長期間保持資料而不需要電力供應。另外,當電晶體的切換速度快時,能夠備份的正反器電路和SRAM單元有時可以在較短的期間中進行資料備份及恢復。
參照圖59對能夠備份的正反器電路的例子進行說明。
圖59所示的半導體裝置500是能夠備份的正反器電路的一個例子。半導體裝置500包括第一記憶體電路501、第二記憶體電路502、第三記憶體電路503以及讀出電路504。電位V1與電位V2的電位差作為電源電壓被供應到半導體裝置500。電位V1和電位V2中的一個為高位準,另一個為低位準。下面,以電位V1為低位準而電位V2為高位準的情況為例,對半導體裝置500的結構實例進行說明。
第一記憶體電路501具有在半導體裝置500被供應電源電壓的期間中被輸入包括資料的信號D時保持該資料的功能。而且,在半導體裝置500被供應電源電壓的期間,從第一記憶體電路501輸出包括所保持的資料的信號Q。另一方面,在半導體裝置500沒有被供應電源電壓的期間中,第一記憶體電路501不能保持資料。就是說,可以將第一記憶體電路501稱為揮發性記憶體電路。
第二記憶體電路502具有讀取並儲存(或備份)保持在第一記憶體電路501中的資料的功能。第三記憶體電路503具有讀取並儲存(或備份)保持在第二記憶 體電路502中的資料的功能。讀出電路504具有讀取保持在第二記憶體電路502或第三記憶體電路503中的資料並將其儲存(或恢復)在第一記憶體電路501中的功能。
尤其是,第三記憶體電路503具有即使在半導體裝置500沒有被供應電源電壓的期間中也讀取並儲存(或備份)保持在第二記憶體電路502中的資料的功能。
如圖59所示,第二記憶體電路502包括電晶體512及電容器519。第三記憶體電路503包括電晶體513、電晶體515以及電容器520。讀出電路504包括電晶體510、電晶體518、電晶體509以及電晶體517。
電晶體512具有將根據保持在第一記憶體電路501中的資料的電荷充電到電容器519並將該電荷從電容器519放電的功能。電晶體512較佳為將根據保持在第一記憶體電路501中的資料的電荷高速地充電到電容器519並將該電荷從電容器519高速地放電。明確而言,電晶體512較佳為在通道形成區域中包含具有結晶性的矽(較佳為多晶矽,更佳為單晶矽)。
電晶體513的導通狀態或非導通狀態根據保持在電容器519中的電荷被選擇。電晶體515具有在電晶體513處於導通狀態時將根據佈線544的電位的電荷充電到電容器520並將該電荷從電容器520放電的功能。較佳為電晶體515的關態電流極小。明確而言,電晶體515在通道形成區域中包含氧化物半導體(較佳為包含In、Ga及Zn的氧化物)。
以下,明確地說明各元件之間的連接關係。電晶體512的源極和汲極中的一個與第一記憶體電路501連接。電晶體512的源極和汲極中的另一個與電容器519的一個電極、電晶體513的閘極及電晶體518的閘極連接。電容器519的另一個電極與佈線542連接。電晶體513的源極和汲極中的一個與佈線544連接。電晶體513的源極和汲極中的另一個與電晶體515的源極和汲極中的一個連接。電晶體515的源極和汲極中的另一個與電容器520的一個電極及電晶體510的閘極連接。電容器520的另一個電極與佈線543連接。電晶體510的源極和汲極中的一個與佈線541連接。電晶體510的源極和汲極中的另一個與電晶體518的源極和汲極中的一個連接。電晶體518的源極和汲極中的另一個與電晶體509的源極和汲極中的一個連接。電晶體509的源極和汲極中的另一個與電晶體517的源極和汲極中的一個及第一記憶體電路501連接。電晶體517的源極和汲極中的另一個與佈線540連接。在圖59中,電晶體509的閘極與電晶體517的閘極連接,但是電晶體509的閘極不一定必須與電晶體517的閘極連接。
作為電晶體515,可以使用上述實施方式所例示的電晶體。因為電晶體515的關態電流小,所以半導體裝置500可以長期間保持資料而不需要電力供應。因為電晶體515的開關特性良好,所以半導體裝置500可以高速地進行備份和恢復。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式9
在本實施方式中,對利用本發明的一個實施方式的電晶體等的攝像裝置的一個例子進行說明。
〈攝像裝置〉
以下,對根據本發明的一個實施方式的攝像裝置進行說明。
圖60A是示出本發明的一個實施方式的攝像裝置2200的例子的平面圖。攝像裝置2200包括像素部2210、用來驅動像素部2210的週邊電路2260、週邊電路2270、週邊電路2280及週邊電路2290。像素部2210包括配置為p行q列(p及q為2以上的整數)的矩陣狀的多個像素2211。週邊電路2260、週邊電路2270、週邊電路2280及週邊電路2290分別與多個像素2211連接,並具有供應用來驅動多個像素2211的信號的功能。另外,在本說明書等中,有時將週邊電路2260、週邊電路2270、週邊電路2280及週邊電路2290等總稱為“週邊電路”或“驅動電路”。例如,週邊電路2260也可以說是週邊電路的一部分。
攝像裝置2200較佳為包括光源2291。光源2291能夠發射檢測光P1。
週邊電路至少包括邏輯電路、開關、緩衝器、放大電路和轉換電路中的一個。另外,也可以在形成像素部2210的基板上形成週邊電路。另外,也可以將IC晶片等半導體裝置用於週邊電路的一部分或全部。注意,也可以省略週邊電路2260、週邊電路2270、週邊電路2280和週邊電路2290中的一個以上。
如圖60B所示,在攝像裝置2200所包括的像素部2210中,也可以以像素2211傾斜的方式配置。藉由以像素2211傾斜的方式配置,可以縮短在行方向上及列方向上的像素間隔(間距)。由此,可以進一步提高攝像裝置2200的攝像品質。
〈像素的結構實例1〉
藉由使攝像裝置2200所包括的一個像素2211由多個子像素2212構成,且使每個子像素2212與使特定的波長範圍的光透過的濾光片(濾色片)組合,可以獲得用來實現彩色影像顯示的資料。
圖61A是示出用來取得彩色影像的像素2211的一個例子的平面圖。圖61A所示的像素2211包括設置有使紅色(R)的波長範圍的光透過的濾色片的子像素2212(以下也稱為“子像素2212R”)、設置有使綠色(G)的波長範圍的光透過的濾色片的子像素2212(以下也稱為“子像素2212G”)及設置有使藍色(B)的波長範圍的光透過的濾色片的子像素2212(以下也稱為“子像素 2212B”)。子像素2212可以被用作光感測器。
子像素2212(子像素2212R、子像素2212G及子像素2212B)與佈線2231、佈線2247、佈線2248、佈線2249、佈線2250電連接。另外,子像素2212R、子像素2212G及子像素2212B分別獨立地連接於佈線2253。在本說明書等中,例如將與第n行的像素2211連接的佈線2248及佈線2249分別稱為佈線2248[n]及佈線2249[n]。另外,例如,將與第m列的像素2211連接的佈線2253稱為佈線2253[m]。另外,在圖61A中,與第m列的像素2211所包括的子像素2212R連接的佈線2253稱為佈線2253[m]R,將與子像素2212G連接的佈線2253稱為佈線2253[m]G,將與子像素2212B連接的佈線2253稱為佈線2253[m]B。子像素2212藉由上述佈線與週邊電路電連接。
攝像裝置2200具有相鄰的像素2211中的設置有使相同的波長範圍的光透過的濾色片的子像素2212藉由開關彼此電連接的結構。圖61B示出配置在第n行(n為1以上且p以下的整數)第m列(m為1以上且q以下的整數)的像素2211所包括的子像素2212與相鄰於該像素2211的配置在第n+1行第m列的像素2211所包括的子像素2212的連接例子。在圖61B中,配置在第n行第m列的子像素2212R與配置在第n+1行第m列的子像素2212R藉由開關2201連接。另外,配置在第n行第m列的子像素2212G與配置在第n+1行第m列的子像素 2212G藉由開關2202連接。另外,配置在第n行第m列的子像素2212B與配置在第n+1行第m列的子像素2212B藉由開關2203連接。
用於子像素2212的濾色片的顏色不侷限於紅色(R)、綠色(G)、藍色(B),也可以使用使青色(C)、黃色(Y)及洋紅色(M)的光透過的濾色片。藉由在一個像素2211中設置檢測三種不同波長範圍的光的子像素2212,可以獲得全彩色影像。
或者,可以使用除了包括分別設置有使紅色(R)、綠色(G)及藍色(B)的光透過的濾色片的子像素2212以外,還包括設置有使黃色(Y)的光透過的濾色片的子像素2212的像素2211。或者,可以使用除了包括分別設置有使青色(C)、黃色(Y)及洋紅色(M)的光透過的濾色片的子像素2212以外,還包括設置有使藍色(B)的光透過的濾色片的子像素2212的像素2211。藉由在一個像素2211中設置檢測四種不同波長範圍的光的子像素2212,可以進一步提高所獲得的影像的顏色再現性。
例如,在圖61A中,檢測紅色的波長範圍的光的子像素2212、檢測綠色的波長範圍的光的子像素2212及檢測藍色的波長範圍的光的子像素2212的像素數比(或受光面積比)不侷限於1:1:1。例如,也可以採用像素數比(受光面積比)為紅色:綠色:藍色=1:2:1的Bayer排列。或者,像素數比(受光面積比)也可以為紅 色:綠色:藍色=1:6:1。
設置在像素2211中的子像素2212的數量可以為一個,但較佳為兩個以上。例如,藉由設置兩個以上的檢測相同的波長範圍的光的子像素2212,可以提高冗餘性,由此可以提高攝像裝置2200的可靠性。
另外,藉由使用反射或吸收可見光且使紅外光透過的IR(IR:Infrared)濾光片,可以實現檢測紅外光的攝像裝置2200。
藉由使用ND(ND:Neutral Density)濾光片(減光濾光片),可以防止大光量光入射光電轉換元件(受光元件)時產生的輸出飽和。藉由組合使用減光量不同的ND濾光片,可以增大攝像裝置的動態範圍。
除了上述濾光片以外,還可以在像素2211中設置透鏡。在此,參照圖62A及圖62B的剖面圖說明像素2211、濾光片2254、透鏡2255的配置例子。藉由設置透鏡2255,可以使光電轉換元件高效地受光。明確而言,如圖62A所示,可以使光2256穿過形成在像素2211中的透鏡2255、濾光片2254(濾光片2254R、濾光片2254G及濾光片2254B)及像素電路2230等而入射到光電轉換元件2220。
注意,如由點劃線圍繞的區域所示,有時箭頭所示的光2256的一部分被佈線2257的一部分遮蔽。因此,如圖62B所示,較佳為採用在光電轉換元件2220一側配置透鏡2255及濾光片2254,而使光電轉換元件2220 高效地接收光2256的結構。藉由從光電轉換元件2220一側將光2256入射到光電轉換元件2220,可以提供檢測靈敏度高的攝像裝置2200。
作為圖62A及圖62B所示的光電轉換元件2220,也可以使用形成有pn接面或pin接面的光電轉換元件。
光電轉換元件2220也可以使用具有吸收輻射產生電荷的功能的物質形成。作為具有吸收輻射產生電荷的功能的物質,可舉出硒、碘化鉛、碘化汞、砷化鎵、碲化鎘、鎘鋅合金等。
例如,在將硒用於光電轉換元件2220時,光電轉換元件2220可以在可見光、紫外光、紅外光、X射線、伽瑪射線等較寬的波長範圍中具有光吸收係數。
在此,攝像裝置2200所包括的一個像素2211除了圖61A及圖61B所示的子像素2212以外,還可以包括具有第一濾光片的子像素2212。
〈像素的結構實例2〉
下面,對包括使用矽的電晶體及使用氧化物半導體的電晶體的像素的一個例子進行說明。各電晶體可以使用與上述實施方式所示的電晶體同樣的電晶體。
圖63是構成攝像裝置的元件的剖面圖。圖63所示的攝像裝置包括設置在矽基板2300上的使用矽形成的電晶體2351、在電晶體2351上層疊配置的使用氧化物 半導體形成的電晶體2352及電晶體2353以及設置在矽基板2300中的光電二極體2360。各電晶體及光電二極體2360與各種插頭2370及佈線2371電連接。另外,光電二極體2360的陽極2361藉由低電阻區域2363與插頭2370電連接。
攝像裝置包括:包括設置在矽基板2300上的電晶體2351及光電二極體2360的層2310、以與層2310接觸的方式設置且包括佈線2371的層2320、以與層2320接觸的方式設置且包括電晶體2352及電晶體2353的層2330、以與層2330接觸的方式設置且包括佈線2372及佈線2373的層2340。
在圖63的剖面圖的一個例子中,在矽基板2300中,在與形成有電晶體2351的面相反一側設置有光電二極體2360的受光面。藉由採用該結構,可以確保光路而不受各種電晶體或佈線等的影響。因此,可以形成高開口率的像素。另外,光電二極體2360的受光面也可以是與形成有電晶體2351的面相同的面。
在只使用由氧化物半導體形成的電晶體構成像素時,層2310為包括由氧化物半導體形成的電晶體的層,即可。或者,像素也可以只使用由氧化物半導體形成的電晶體而省略層2310。
矽基板2300也可以是SOI基板。另外,也可以使用包含鍺、矽鍺、碳化矽、砷化鎵、砷化鋁鎵、磷化銦、氮化鎵、有機半導體的基板代替矽基板2300。
這裡,在包括電晶體2351及光電二極體2360的層2310與包括電晶體2352及電晶體2353的層2330之間設置有絕緣體2380。注意,絕緣體2380的位置不侷限於此。另外,在絕緣體2380下設置絕緣體2379,在絕緣體2380上設置絕緣體2381。
在形成於絕緣體2379至絕緣體2381中的開口中設置有導電體2390a至導電體2390e。導電體2390a、導電體2390b及導電體2390e被用作插頭及佈線。另外,導電體2390c被用作電晶體2353的背閘極。此外,導電體2390d被用作電晶體2352的背閘極。
設置在電晶體2351的通道形成區域附近的絕緣體中的氫使矽的懸空鍵終結,由此可以提高電晶體2351的可靠性。另一方面,設置在電晶體2352及電晶體2353等附近的絕緣體中的氫有可能成為在氧化物半導體中生成載子的原因之一。因此,有時引起電晶體2352及電晶體2353等的可靠性的下降。因此,當在使用矽類半導體的電晶體上層疊設置使用氧化物半導體的電晶體時,較佳為在它們之間設置具有阻擋氫的功能的絕緣體2380。藉由將氫封閉在絕緣體2380下,可以提高電晶體2351的可靠性。再者,由於可以抑制氫從絕緣體2380下擴散至絕緣體2380上,所以可以提高電晶體2352及電晶體2353等的可靠性。再者,藉由形成導電體2390a、導電體2390b及導電體2390e,也可以抑制氫經過形成於絕緣體2380中的導通孔(via hole)擴散到上層,所以可以 提高電晶體2352及電晶體2353等的可靠性。
在圖63的剖面圖中,可以以設置在層2310中的光電二極體2360與設置在層2330中的電晶體重疊的方式形成。因此,可以提高像素的集成度。就是說,可以提高攝像裝置的解析度。
可以使攝像裝置的一部分或全部彎曲。藉由使攝像裝置彎曲,可以降低像場彎曲或像散(astigmatism)。因此,可以促進與攝像裝置組合使用的透鏡等的光學設計。例如,由於可以減少用於像差校正的透鏡的數量,因此可以實現使用攝像裝置的電子裝置等的小型化或輕量化。另外,可以提高攝像的影像品質。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式10
在本實施方式中,對根據本發明的一個實施方式的半導體晶圓、晶片及電子構件進行說明。
〈半導體晶圓、晶片〉
圖64A示出進行切割處理之前的基板711的俯視圖。作為基板711,例如可以使用半導體基板(也稱為“半導體晶圓”)。在基板711上設置有多個電路區域712。在電路區域712中,也可以設置根據本發明的一個實施方式的半導體裝置、CPU、RF標籤或影像感測器等。
多個電路區域712的每一個都被分離區域713圍繞。分離線(也稱為“切割線”)714位於與分離區域713重疊的位置上。藉由沿著分離線714切割基板711,可以從基板711切割出包括電路區域712的晶片715。圖64B示出晶片715的放大圖。
另外,也可以在分離區域713上設置導電層和半導體層。藉由在分離區域713上設置導電層和半導體層,可以緩和可能在切割製程中產生的ESD,而防止在切割製程中良率下降。另外,一般來說,為了冷卻基板、去除刨花、防止帶電等,一邊使溶解有碳酸氣體等以降低了其電阻率的純水流過切削部一邊進行切割製程。藉由在分離區域713上設置導電層和半導體層,可以減少該純水的使用量。因此,可以降低半導體裝置的生產成本。另外,可以提高半導體裝置的生產率。
作為設置在分離區域713上的半導體層,較佳為使用能帶間隙為2.5eV以上且4.2eV以下,較佳為2.7eV以上且3.5eV以下的材料。藉由使用這種材料,可以使所積蓄的電荷緩慢釋放,所以可以抑制ESD導致的電荷的急劇的移動,而可以使靜電損壞不容易產生。
〈電子構件〉
參照圖65A及圖65B對將晶片715應用於電子構件的例子進行說明。注意,電子構件也被稱為半導體封裝或IC用封裝。電子構件根據端子取出方向和端子的形狀存 在多個規格和名稱。
在組裝製程(後面的製程)中組合上述實施方式所示的半導體裝置與該半導體裝置之外的構件,來完成電子構件。
參照圖65A所示的流程圖對後面的製程進行說明。在前面的製程中,包括上述實施方式所示的半導體裝置的元件基板完成之後,進行研磨該元件基板的背面(沒有形成半導體裝置等的面)的“背面研磨製程”(步驟S721)。藉由進行研磨來使元件基板變薄,可以減少元件基板的翹曲等,而可以實現電子構件的小型化。
接著,進行將元件基板分成多個晶片(晶片715)的“切割(dicing)製程”(步驟S722)。並且,進行如下晶片接合(die bonding)製程(步驟S723):拾取被切割的各晶片,並將其接合於引線框架上。晶片接合製程中的晶片與引線框架的接合可以適當地根據產品選擇合適的方法,如利用樹脂的接合或利用膠帶的接合等。另外,也可以在插入物(interposer)基板上安裝晶片代替引線框架。
接著,進行將引線框架的引線與晶片上的電極藉由金屬細線(wire)電連接的“打線接合(wire bonding)製程”(步驟S724)。作為金屬細線可以使用銀線或金線。此外,打線接合可以使用球焊(ball bonding)或楔焊(wedge bonding)。
進行由環氧樹脂等密封被打線接合的晶片的 “密封製程(模塑(molding)製程)”(步驟S725)。藉由進行密封製程,使電子構件的內部被樹脂填充,可以保護安裝於晶片內部的電路部及將晶片與引線連接的金屬細線免受機械外力的影響,還可以降低因水分或灰塵而導致的特性劣化(可靠性的降低)。
接著,進行對引線框架的引線進行電鍍處理的“引線電鍍製程”(步驟S726)。藉由該電鍍處理可以防止引線生銹,而在後面將引線安裝於印刷電路板時,可以更加確實地進行銲接。接著,進行引線的切斷及成型加工的“成型加工製程”(步驟S727)。
接著,進行對封裝表面進行印字處理(marking)的“印字製程”(步驟S728)。並且經過調查外觀形狀的優劣或工作故障的有無的“檢驗步驟”(步驟S729)完成電子構件。
圖65B示出完成的電子構件的透視示意圖。在圖65B中,作為電子構件的一個例子,示出QFP(Quad Flat Package:四面扁平封裝)的透視示意圖。圖65B所示的電子構件750包括引線755及半導體裝置753。作為半導體裝置753,可以使用上述實施方式所示的半導體裝置。
圖65B所示的電子構件750例如安裝於印刷電路板752。藉由組合多個這樣的電子構件750並使其在印刷電路板752上彼此電連接,來完成安裝有電子構件的基板(電路板754)。完成的電路板754用於電子裝置 等。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式11
在本實施方式中,對利用本發明的一個實施方式的電晶體等的電子裝置進行說明。
〈電子裝置〉
本發明的一個實施方式的半導體裝置可以用於顯示裝置、個人電腦或具備儲存媒體的影像再現裝置(典型的是,能夠再現如數位影音光碟(DVD:Digital Versatile Disc)等儲存媒體的內容並具有可以顯示該再現影像的顯示器的裝置)中。另外,作為可以使用本發明的一個實施方式的半導體裝置的電子裝置,可以舉出行動電話、包括可攜式的遊戲機、可攜式資料終端、電子書閱讀器終端、拍攝裝置諸如視頻攝影機或數位相機等、護目鏡型顯示器(頭戴式顯示器)、導航系統、音頻再生裝置(汽車音響系統、數位聲訊播放機等)、影印機、傳真機、印表機、多功能印表機、自動櫃員機(ATM)以及自動販賣機等。圖66A至圖66F示出這些電子裝置的具體例子。
圖66A是可攜式遊戲機,其包括外殼1901、外殼1902、顯示部1903、顯示部1904、麥克風1905、揚聲器1906、操作鍵1907以及觸控筆1908等。注意,雖 然圖66A所示的可攜式遊戲機包括兩個顯示部1903和顯示部1904,但是可攜式遊戲機所包括的顯示部的個數不限於此。
圖66B是可攜式資料終端,其包括第一外殼1911、第二外殼1912、第一顯示部1913、第二顯示部1914、連接部1915、操作鍵1916等。第一顯示部1913設置在第一外殼1911中,而第二顯示部1914設置在第二外殼1912中。而且,第一外殼1911和第二外殼1912由連接部1915連接,可以藉由連接部1915改變第一外殼1911和第二外殼1912之間的角度。第一顯示部1913的影像也可以根據連接部1915所形成的第一外殼1911和第二外殼1912之間的角度切換。另外,也可以對第一顯示部1913和第二顯示部1914中的至少一個使用附加有位置輸入功能的顯示裝置。另外,可以藉由在顯示裝置中設置觸控面板來附加位置輸入功能。或者,也可以藉由在顯示裝置的像素部中設置還稱為光感測器的光電轉換元件來附加位置輸入功能。
圖66C是膝上型個人電腦,其包括外殼1921、顯示部1922、鍵盤1923以及指向裝置1924等。
圖66D是電冷藏冷凍箱,其包括外殼1931、冷藏室門1932、冷凍室門1933等。
圖66E是視頻攝影機,其包括第一外殼1941、第二外殼1942、顯示部1943、操作鍵1944、鏡頭1945、連接部1946等。操作鍵1944及鏡頭1945設置在 第一外殼1941中,而顯示部1943設置在第二外殼1942中。並且,第一外殼1941和第二外殼1942由連接部1946連接,可以藉由連接部1946改變第一外殼1941和第二外殼1942之間的角度。顯示部1943的影像也可以根據連接部1946所形成的第一外殼1941和第二外殼1942之間的角度切換。
圖66F是汽車,其包括車體1951、車輪1952、儀表板1953及燈1954等。
注意,在本實施方式中,對本發明的一個實施方式進行說明。但是,本發明的一個實施方式不侷限於此。換而言之,在本實施方式等中,記載有各種各樣的發明的方式,因此本發明的一個實施方式不侷限於特定的方式。例如,作為本發明的一個實施方式,示出了在電晶體的通道形成區域、源極區域或汲極區域等中包括氧化物半導體的情況的例子,但是本發明的一個實施方式不侷限於此。根據情形或狀況,本發明的一個實施方式中的各種各樣的電晶體、電晶體的通道形成區域或者電晶體的源極區域或汲極區域等也可以包括各種各樣的半導體。根據情形或狀況,本發明的一個實施方式中的各種各樣的電晶體、電晶體的通道形成區域或者電晶體的源極區域或汲極區域等例如也可以包含矽、鍺、矽鍺、碳化矽、砷化鎵、鋁砷化鎵、磷化銦、氮化鎵和有機半導體等中的至少一個。或者,例如,根據情形或狀況,本發明的一個實施方式中的各種各樣的電晶體、電晶體的通道形成區域或者電晶體的 源極區域或汲極區域等也可以不包括氧化物半導體。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
100‧‧‧電容器
112‧‧‧導電體
112a‧‧‧導電體
112b‧‧‧導電體
116‧‧‧導電體
124‧‧‧導電體
130‧‧‧絕緣體
150‧‧‧絕緣體
200‧‧‧電晶體
210‧‧‧絕緣體
212‧‧‧絕緣體
213‧‧‧絕緣體
214‧‧‧絕緣體
216‧‧‧絕緣體
218‧‧‧導電體
219‧‧‧導電體
224‧‧‧絕緣體
244‧‧‧導電體
246‧‧‧導電體
280‧‧‧絕緣體
281‧‧‧障壁層
282‧‧‧絕緣體
300‧‧‧電晶體
311‧‧‧基板
312‧‧‧半導體區域
314‧‧‧絕緣體
316‧‧‧導電體
318a‧‧‧低電阻區域
318b‧‧‧低電阻區域
320‧‧‧絕緣體
322‧‧‧絕緣體
324‧‧‧絕緣體
326‧‧‧絕緣體
328‧‧‧導電體
330‧‧‧導電體
350‧‧‧絕緣體
352‧‧‧絕緣體
354‧‧‧絕緣體
356‧‧‧導電體
358‧‧‧絕緣體

Claims (15)

  1. 一種半導體裝置的製造方法,包括如下步驟:在第一電晶體上形成第一絕緣體,該第一電晶體的通道形成區域包括半導體基板的一部分;在該第一絕緣體上形成第二電晶體,該第二電晶體的通道形成區域包括氧化物半導體;在該第二電晶體上形成第二絕緣體;在該第二絕緣體中形成開口,該開口到達該第二電晶體;在該第二絕緣體上形成第一導電體,該第一導電體嵌入在該第二絕緣體的該開口中;去除該第一導電體的一部分,以使該第二絕緣體的頂面露出;在該第一導電體上形成障壁層;對該障壁層及該第二絕緣體進行氧電漿處理;在該障壁層及該第二絕緣體上形成第三絕緣體;以及在該第三絕緣體上形成第二導電體,其中,該障壁層、該第三絕緣體及該第二導電體互相重疊且被用作電容器,並且,該第一絕緣體、該障壁層及該第三絕緣體都對氧及氫具有阻擋性。
  2. 根據申請專利範圍第1項之半導體裝置的製造方法,其中該第二絕緣體包含藉由CVD法形成的氧氮化矽。
  3. 根據申請專利範圍第1項之半導體裝置的製造方法,其中該障壁層包含藉由ALD法形成的氮化鉭。
  4. 根據申請專利範圍第1項之半導體裝置的製造方法,其中該障壁層包含藉由ALD法形成的氧化鋁。
  5. 根據申請專利範圍第1項之半導體裝置的製造方法,其中該第三絕緣體包含藉由濺射法形成的氧化鋁。
  6. 根據申請專利範圍第1項之半導體裝置的製造方法,其中藉由該氧電漿處理去除包含在該第二絕緣體中的雜質。
  7. 一種半導體裝置,包括:第一電晶體上的第一絕緣體,該第一電晶體的通道形成區域包括半導體基板的一部分;該第一絕緣體上的第二電晶體,該第二電晶體的通道形成區域包括氧化物半導體;該第二電晶體上的第二絕緣體,該第二絕緣體包括到達該第二電晶體的開口;嵌入在該第二絕緣體的該開口中的第一導電體;該第一導電體上的障壁層;該障壁層及該第二絕緣體上的第三絕緣體;以及該第三絕緣體上的第二導電體,其中,該障壁層、該第三絕緣體及該第二導電體互相重疊且被用作電容器,並且,該第一絕緣體、該障壁層及該第三絕緣體都對氧及氫具有阻擋性。
  8. 根據申請專利範圍第7項之半導體裝置,其中該第一導電體、該障壁層、該第三絕緣體及該第二導電體互相重疊且被用作該電容器。
  9. 根據申請專利範圍第7項之半導體裝置,其中在設置有該第二電晶體的區域的邊緣,該第一絕緣體與該障壁層接觸,以包圍該第二電晶體及該第二絕緣體。
  10. 根據申請專利範圍第7項之半導體裝置,其中該第一導電體為電連接於該第二電晶體的佈線。
  11. 根據申請專利範圍第7項之半導體裝置,其中該第二絕緣體包含氧氮化矽。
  12. 根據申請專利範圍第7項之半導體裝置,其中該障壁層包含氮化鉭。
  13. 根據申請專利範圍第7項之半導體裝置,其中該障壁層包含氧化鋁。
  14. 根據申請專利範圍第7項之半導體裝置,其中該第三絕緣體包含氧化鋁。
  15. 一種包括申請專利範圍第7項之半導體裝置的半導體晶圓。
TW106103844A 2016-02-12 2017-02-06 半導體裝置及其製造方法 TWI730041B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-024794 2016-02-12
JP2016024794 2016-02-12

Publications (2)

Publication Number Publication Date
TW201735130A TW201735130A (zh) 2017-10-01
TWI730041B true TWI730041B (zh) 2021-06-11

Family

ID=59562256

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106103844A TWI730041B (zh) 2016-02-12 2017-02-06 半導體裝置及其製造方法

Country Status (6)

Country Link
US (2) US9978774B2 (zh)
JP (1) JP6807767B2 (zh)
KR (1) KR102628719B1 (zh)
CN (2) CN108886021B (zh)
TW (1) TWI730041B (zh)
WO (1) WO2017137864A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI802321B (zh) * 2022-03-17 2023-05-11 新唐科技股份有限公司 橫向雙擴散金氧半導體裝置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102613288B1 (ko) 2016-07-26 2023-12-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2019053573A1 (ja) * 2017-09-15 2019-03-21 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
US11222945B2 (en) 2017-12-29 2022-01-11 Texas Instruments Incorporated High voltage isolation structure and method
JP7240383B2 (ja) 2018-04-12 2023-03-15 株式会社半導体エネルギー研究所 半導体装置
US10727275B2 (en) * 2018-05-18 2020-07-28 Taiwan Semiconductor Manufacturing Co., Ltd. Memory layout for reduced line loading
US10304836B1 (en) * 2018-07-18 2019-05-28 Xerox Corporation Protective layers for high-yield printed electronic devices
US10741638B2 (en) * 2018-08-08 2020-08-11 Infineon Technologies Austria Ag Oxygen inserted Si-layers for reduced substrate dopant outdiffusion in power devices
WO2020070580A1 (ja) * 2018-10-05 2020-04-09 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
US10707296B2 (en) 2018-10-10 2020-07-07 Texas Instruments Incorporated LOCOS with sidewall spacer for different capacitance density capacitors
JP2020072191A (ja) * 2018-10-31 2020-05-07 キオクシア株式会社 半導体記憶装置
US11849572B2 (en) * 2019-01-14 2023-12-19 Intel Corporation 3D 1T1C stacked DRAM structure and method to fabricate
JP2022509235A (ja) 2019-02-11 2022-01-20 長江存儲科技有限責任公司 半導体デバイス、接合構造および半導体デバイスの形成方法
US11791221B2 (en) * 2019-02-22 2023-10-17 Intel Corporation Integration of III-N transistors and semiconductor layer transfer
US11437416B2 (en) * 2019-09-10 2022-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Pixel device layout to reduce pixel noise
US11107820B2 (en) * 2019-09-13 2021-08-31 Nanya Technology Corporation Semiconductor device and method for fabricating the same
CN110993607B (zh) * 2019-11-21 2022-12-16 长江存储科技有限责任公司 具有阻挡结构的存储器件及其制备方法
CN111128721A (zh) * 2019-12-04 2020-05-08 长江存储科技有限责任公司 存储器的制作方法及存储器
US11610999B2 (en) * 2020-06-10 2023-03-21 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Floating-gate devices in high voltage applications
CN116034488A (zh) * 2020-08-19 2023-04-28 株式会社半导体能源研究所 半导体装置的制造方法
JP2023067454A (ja) * 2021-11-01 2023-05-16 ソニーセミコンダクタソリューションズ株式会社 半導体装置、電子機器、及び半導体装置の製造方法
CN116209249B (zh) * 2022-08-08 2024-02-20 北京超弦存储器研究院 动态存储器、其制作方法、读取方法及存储装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097589A1 (en) * 2013-12-26 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TW201603286A (zh) * 2014-07-15 2016-01-16 半導體能源研究所股份有限公司 半導體裝置、該半導體裝置的製造方法以及包括該半導體裝置的顯示裝置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431155C (zh) * 2004-06-28 2008-11-05 富士通株式会社 半导体器件及其制造方法
JP2008010758A (ja) 2006-06-30 2008-01-17 Fujitsu Ltd 半導体装置及びその製造方法
KR101591613B1 (ko) 2009-10-21 2016-02-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
EP2494594B1 (en) 2009-10-29 2020-02-19 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device
KR20190006091A (ko) 2009-10-29 2019-01-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101945171B1 (ko) 2009-12-08 2019-02-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011070901A1 (en) * 2009-12-11 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
DE112011102644B4 (de) 2010-08-06 2019-12-05 Semiconductor Energy Laboratory Co., Ltd. Integrierte Halbleiterschaltung
KR102084274B1 (ko) * 2011-12-15 2020-03-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US9735280B2 (en) * 2012-03-02 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, and method for forming oxide film
US8981370B2 (en) * 2012-03-08 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9006024B2 (en) * 2012-04-25 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2015060318A1 (en) 2013-10-22 2015-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
WO2015060133A1 (en) 2013-10-22 2015-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102325158B1 (ko) * 2014-01-30 2021-11-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 전자 기기, 및 반도체 장치의 제작 방법
TWI663733B (zh) 2014-06-18 2019-06-21 日商半導體能源研究所股份有限公司 電晶體及半導體裝置
JP2016066788A (ja) 2014-09-19 2016-04-28 株式会社半導体エネルギー研究所 半導体膜の評価方法および半導体装置の作製方法
KR20160034200A (ko) 2014-09-19 2016-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
KR20160114511A (ko) * 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
US10460984B2 (en) 2015-04-15 2019-10-29 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating electrode and semiconductor device
WO2017081579A1 (en) * 2015-11-13 2017-05-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6917700B2 (ja) * 2015-12-02 2021-08-11 株式会社半導体エネルギー研究所 半導体装置
US9917207B2 (en) * 2015-12-25 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6851814B2 (ja) * 2015-12-29 2021-03-31 株式会社半導体エネルギー研究所 トランジスタ
US9923001B2 (en) 2016-01-15 2018-03-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10700212B2 (en) * 2016-01-28 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, semiconductor wafer, module, electronic device, and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097589A1 (en) * 2013-12-26 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TW201603286A (zh) * 2014-07-15 2016-01-16 半導體能源研究所股份有限公司 半導體裝置、該半導體裝置的製造方法以及包括該半導體裝置的顯示裝置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI802321B (zh) * 2022-03-17 2023-05-11 新唐科技股份有限公司 橫向雙擴散金氧半導體裝置

Also Published As

Publication number Publication date
US20180254291A1 (en) 2018-09-06
JP2017147443A (ja) 2017-08-24
US10367005B2 (en) 2019-07-30
US9978774B2 (en) 2018-05-22
CN116782639A (zh) 2023-09-19
KR20180124032A (ko) 2018-11-20
TW201735130A (zh) 2017-10-01
WO2017137864A1 (en) 2017-08-17
CN108886021B (zh) 2023-07-25
CN108886021A (zh) 2018-11-23
KR102628719B1 (ko) 2024-01-24
US20170236839A1 (en) 2017-08-17
JP6807767B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
TWI730041B (zh) 半導體裝置及其製造方法
JP6845692B2 (ja) 半導体装置
JP7204829B2 (ja) 半導体装置
JP6965000B2 (ja) 半導体装置
JP6884569B2 (ja) 半導体装置及びその作製方法
US10700212B2 (en) Semiconductor device, semiconductor wafer, module, electronic device, and manufacturing method thereof
TW201738978A (zh) 半導體裝置、半導體晶圓、模組、電子裝置以及其製造方法
KR20150091003A (ko) 반도체 장치, 전자 기기, 및 반도체 장치의 제작 방법
JP6942489B2 (ja) 半導体装置、電子機器、および半導体ウエハ
JP7399233B2 (ja) 半導体装置
TWI739743B (zh) 金屬氧化物膜、半導體裝置、及半導體裝置的製造方法
JP7300042B2 (ja) 半導体装置
WO2017144994A1 (ja) トランジスタおよびその作製方法、半導体ウエハならびに電子機器

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees