TWI726680B - 記憶體系統及其操作方法 - Google Patents

記憶體系統及其操作方法 Download PDF

Info

Publication number
TWI726680B
TWI726680B TW109112376A TW109112376A TWI726680B TW I726680 B TWI726680 B TW I726680B TW 109112376 A TW109112376 A TW 109112376A TW 109112376 A TW109112376 A TW 109112376A TW I726680 B TWI726680 B TW I726680B
Authority
TW
Taiwan
Prior art keywords
voltage
selector
pulse
threshold voltage
threshold
Prior art date
Application number
TW109112376A
Other languages
English (en)
Other versions
TW202129649A (zh
Inventor
簡維志
龔南博
龍翔瀾
馬修喬瑟夫 布萊特史凱
克里斯多福 米勒
Original Assignee
旺宏電子股份有限公司
美商國際商業機器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司, 美商國際商業機器股份有限公司 filed Critical 旺宏電子股份有限公司
Application granted granted Critical
Publication of TWI726680B publication Critical patent/TWI726680B/zh
Publication of TW202129649A publication Critical patent/TW202129649A/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5678Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using amorphous/crystalline phase transition storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0097Erasing, e.g. resetting, circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/24Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the Ovonic threshold switching type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0052Read process characterized by the shape, e.g. form, length, amplitude of the read pulse
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0092Write characterized by the shape, e.g. form, length, amplitude of the write pulse
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/76Array using an access device for each cell which being not a transistor and not a diode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

一種多層單元的一選擇器一控制器三維交叉點記憶體系統,包括至少一個多層單元的一選擇器一電阻器結構,此結構包括相變化記憶體(PCM)單元以及閥值開關選擇器的堆疊配置。導電位元線與雙向閥值開關選擇器電性連通,而導電字元線則與相變化記憶體單元信號連通。控制器與位元線以及字元線電性連通。控制器是設置以從不同電壓脈衝的族群中選擇至少一個電壓脈衝,此族群包括讀取脈衝、部分設定脈衝、設定脈衝、部分重置脈衝以及重置脈衝,且控制器還設置以將已選擇的至少一電壓脈衝傳送到至少一個多層單元的一選擇器一電阻器結構。

Description

記憶體系統及其操作方法
一般而言,本發明是有關於三維交叉點記憶體。更具體地說,本發明是有關於實施於交叉點記憶體架構中的一選擇器一電阻器(1S1R)結構,以及控制此結構的方法。
三維(3D)交叉點記憶體是一種非揮發性記憶體(NVM)技術,其中位元儲存是根據與可堆疊交叉網格資料存取陣列(stackable cross-gridded data access array)結合的體電阻變化而定。一選擇器一電阻器(1S1R)結構常被應用於三維交叉點記憶體中,因為它們能夠促成高密度記憶體陣列與單晶三維積體(monolithic 3D integration)。一選擇器一電阻器結構通常包括一個電阻式記憶體單元,以及一個選擇器開關的堆疊配置(有時稱之為存取裝置)。
相變化記憶體(PCM)單元是常實施於一選擇器一電阻器結構中的一種電阻式記憶體單元種類。相變化記憶體為非揮發性記憶體技術,其中每個記憶體單元包括相變化材料。可以藉由改變相變化材料的溫度,而在結晶態與非結晶態之間選擇性地改變相變化記憶體的相態。選擇器開關則用於向相變化記憶體施加電流脈衝。流經相變化記憶體的電流使相變化材料的溫度上升,進而產生結晶態與非結晶態。
非結晶態的特徵在於,相較於結晶態而言非結晶態具有較高的電阻率。在相變化記憶體的操作期間,通過相變化記憶體的電流可以對相變化材料主動區中的固相進行設定與重置(即電流可用於在較高電阻率的非結晶態,與較低電阻率的結晶態之間改變相變化記憶體)。
從非結晶態到結晶態的變化,其於本文中稱為「設定」操作,可以藉由施加電性脈衝至相變化材料來執行。電性脈衝可包括初始峰值電流,隨後在電性脈衝的持續時間內減少電流,使相變化材料緩慢冷卻形成結晶態。從結晶態到非結晶態的變化,其於本文中稱為「重置」操作,可以藉由施加短且高電流的電性脈衝至相變化材料,進而融化或破壞相變化材料的結晶態結構來執行。隨後,將相變化材料快速冷卻(例如,將相變化材料淬火),相變化材料的淬火使至少部分的相變化材料能穩定在非結晶態中。
根據本發明的一個非限制性實施例,多層單元一選擇器一電阻器三維交叉點記憶體系統包括至少一個多層單元的一選擇器一電阻器結構,此結構包括相變化記憶體單元與閥值開關選擇器的堆疊配置。導電位元線與雙向閥值開關(Ovonic Threshold Switch, OTS)選擇器電性連通,而導電字元線則與相變化記憶體單元信號連通。控制器,與位元線以及字元線電性連通。控制器是設置以從不同電壓脈衝的族群中選擇至少一個電壓脈衝,此族群包括讀取脈衝、部分設定脈衝、設定脈衝、部分重置脈衝以及重置脈衝,且控制器還設置以將已選擇的至少一電壓脈衝傳送到至少一個多層單元的一選擇器一電阻器結構。
根據本發明的另一個非限制性實施例,提供用於對多層單元的一選擇器一電阻器結構進行編程的方法。此方法包括施加複數個具有電壓位準的部分重置電壓脈衝至多層單元的一選擇器一電阻器結構。每個電壓位準從第一閥值電壓(其對應多層單元的一選擇器一電阻器結構的完全設定狀態)增加至第二閥值電壓(其對應多層單元的一選擇器一電阻器結構的完全重置狀態)。每個部分重置電壓脈衝將至少一個資料數值重置,該資料數值對應大於第一閥值電壓且小於第二閥值電壓的中間閥值電壓。
根據本發明的再另一個非限制性實施例,提供用於對多層單元一選擇器一電阻器結構進行編程的方法。此方法包括施加部分設定電壓至多層單元的一選擇器一電阻器結構,並將部分設定電壓從完全重置閥值電壓(包括第一電壓位準)降低至完全設定閥值電壓(包括小於第一電壓位準的第二電壓位準)。部分設定電壓將對應部分設定閥值電壓的至少一個資料數值進行設定,部分設定閥值電壓包括小於第一電壓位準且大於第二電壓位準的中間電壓位準。
根據本發明的另一個非限制性實施例,提供用於從多層單元(MLC)一選擇器一電阻器(1S1R)結構讀取資料的方法。此方法包括施加至少一個電壓讀取脈衝至多層單元的一選擇器一電阻器結構,並響應施加的電壓讀取脈衝而感應流經多層單元的一選擇器一電阻器結構的電流。此方法更包括監控流過多層單元的一選擇器一電阻器結構的電流的電流位準,偵測電流位準從第一電流閥值至第二電流閥值的上升,其響應於電壓讀取脈衝到達閥值電壓時的電壓位準,而此閥值電壓對應於儲存在多層單元的一選擇器一電阻器結構中的中間資料數值;以及從多層單元的一選擇器一電阻器結構中讀取中間資料數值。
根據本發明的又一個非限制性實施例,提供對多層單元一選擇器一電阻器結構的已編程閥值電壓分佈的至少一個中間閥值電壓進行調整的方法。此方法包括確定多層單元的一選擇器一電阻器結構的實際閥值電壓,並施加複數個電壓編程脈衝,用以將包含於多層單元的一選擇器一電阻器結構中的相變化記憶體單元編程至具有標的數值的單元狀態。此方法更包括根據複數個電壓編程脈衝以確定相變化記憶體單元的中間閥值電壓的分佈,並從中間閥值電壓的分佈中選擇待驗證的標的中間閥值電壓。此方法更包括施加電壓讀取脈衝以符合標的中間閥值電壓,並且當電壓讀取脈衝的電壓位準尚未超出多層單元的一選擇器一電阻器結構的實際閥值電壓時,確定標的中間閥值電壓已編程至正確的電壓位準。
透過本發明的技術實現了附加的技術特徵和益處。 在本文中詳細描述本發明的實施例和各方面,並且將其視為所要求保護主體的一部分。為了更佳的理解,請參照細節說明與圖式。
為了簡潔起見,關於半導體裝置與積體電路製造的傳統技術可能會、或可能不會在本文中詳細描述。此外,本文所述的各種作業與製程步驟可以被合併到更全面性的流程或製程中,其具有本文中未詳細描述的額外步驟或功能性。尤其,在半導體裝置和基於半導體積體電路的製造中各個步驟是眾所皆知的,因此,為了簡潔起見,本文中許多傳統步驟將僅簡要提及,或者在不提供眾所皆知的製程細節的情況下將其完全省略。
現在將談及對本發明的方面更具體相關的技術概觀。第1圖示出對於傳統相變化記憶體單元的重置與設定狀態而言,溫度與時間之間的關係。為了將相變化記憶體單元置於重置相態中,溫度必須在特定的時間量內(通常測量在奈秒nanoseconds內)超過特定的閥值T melt。為了將相變化記憶體單元置於重置相態中,溫度必須足夠高以將相變化記憶體單元置於非結晶相中,例如藉由將相變化記憶體單元從結晶相改變至非結晶相。可透過施加短且高電流的脈衝流經相變化材料,以融化或破壞相變化材料中的結晶相結構。接著,相變化材料迅速冷卻而終止相變化過程,並使至少一部分的相變化材料穩定在非結晶相中。
為了將相變化記憶體單元置於設定相態中,相變化記憶體單元的溫度必須在特定的時間量中超過特定的閥值T crystal,而仍保持在溫度閥值T melt之下。這種溫度的變化可以藉由施加流經相變化材料的電性脈衝來執行。在一個用於設定操作的電性脈衝示例中,於初始峰值電流之後,緊接著在脈衝的持續時間中持續降低電流,使得相變化材料能夠緩慢冷卻至結晶相。
傳統的相變化記憶體陣列使用電晶體作為存取裝置,而一電晶體一電阻器(一電晶體一相變化記憶體,1T1R)的結構使得電晶體能夠控制編程電流,以相應地重置或設定相變化記憶體。
然而,電晶體開關具有的缺點在於,其限制了相變化記憶體陣列的可擴充性(scalability)。為了成功地編程相變化記憶體,由存取裝置提供的編程電流需要足夠高,提供足夠的焦耳熱(joule heating)以融化(重置)或結晶(設定)相變化記憶體。因此,電晶體的尺寸需要能夠提供這些足夠的編程電流,進而限制了相變化記憶體陣列的密度。於是,一選擇器一電阻器結構提供高密度、高編程電流以及低成本的優點,而這對於交叉點陣列而言是相當理想的。
現在談及本發明方面的概觀,本發明的一或多個實施例藉由將相變化記憶體單元與基於硫屬化物(chalcogenide- based)的雙向閥值開關(OTS)共同堆疊,以形成多層單元的一選擇器一電阻器結構,進而解決了上述先前文獻中的缺點。雙向閥值開關可在最小(基準)電壓位準與最大(峰值)電壓位準之間切換。然而,與電晶體開關不同的是,一旦雙向閥值開關被開啟後(施加的電壓大於閥值電壓,且發生閥值切換)即可提供足夠的電流。基於這點,相變化記憶體能夠被調整至完全設定狀態、完全重置狀態、或是介於其中的單元狀態。透過這種方式,相變化記憶體單元可應用於儲存額外的資料以提供多層單元的功能,其中額外資料對應於可被雙向閥值開關所選擇的一或多個中間電壓位準。舉例來說,根據本發明各種非限制性實施例,多層單元的一選擇器一電阻器結構能夠代表n位元/單元。術語「n」可以為2、3、4等等,並表示2 n個單元狀態。例如,當n=2時表示00、01、10、11總共4個單元狀態。類似地,n=3表示8個單元狀態,而n=4表示16個單元狀態。舉例來說,當「n」為「2」時,多層單元的一選擇器一電阻器結構可提供4個可分辨地單元狀態「00」、「01」、「10」與「11」。雖然提及4個單元狀態,但應當理解的是本文所述多層單元的一選擇器一電阻器結構並不限制於此,且可提供更多的單元狀態。雖然描述2 n個單元狀態,但應當理解的是相變化記憶體並不限制於此,並可採用另外的單元狀態(例如2 n-1、2 n+1等等)。
現在談及對本發明的方面而言更詳細的描述。第2圖是根據本發明的非限制性實施例,繪示出多層單元的一選擇器一電阻器三維交叉點記憶體結構(之後稱為一選擇器一電阻器結構)。多層單元的一選擇器一電阻器結構100包括底電極102、第一介面層104、雙向閥值開關選擇器106、第二介面層108、相變化記憶體單元110、第三介面層112、以及頂電極114的堆疊配置。在本發明的一或多個非限制性實施例中,可以將多層單元的一選擇器一電阻器結構100進行堆疊而界定出高度範圍,例如從大約5奈米至大約200奈米。
底電極102與頂電極114各自由導電性材料所構成,導電性材料包括但不限於氮化鈦(TiN)、鎢(W)以及多晶矽。底電極102與頂電極114可各自形成獨立的導線(例如導電字元線與導電位元線),或是可連接至分離的導線。
第一介面層104介於底電極102與雙向閥值開關選擇器106之間。第二介面層108介於雙向閥值開關選擇器106與相變化記憶體單元110之間。第三介面層112介於相變化記憶體單元110與頂電極114之間。第一介面層104、第二介面層108以及第三介面層112可各自由例如是鈷(Co)與鎢(W)所構成,且可在其中起到緩衝熱傳遞的效果。
雙向閥值開關選擇器106具有例如從大約5奈米至大約25奈米的厚度範圍,並包含基於硫屬化物的材料,一旦施加的電壓大於閥值電壓,基於硫屬化物的材料能夠具有閥值切換,而這類似於相變化記憶體單元110中的相變化材料。在本發明的一或多個非限制性實施例中,雙向閥值開關選擇器106包括硫屬化物組合,其包括一或多個選自下列群組的元素,此群組包括碲(Te)、硒(Se)、鍺(Ge)、矽(Si)、砷(As)、鈦(Ti)、硫(S)和銻(Sb)。舉例來說,雙向閥值開關選擇器可包括硫屬化物,其包括但不限於碲化鍺(GeTe)、硒化鍺(GeSe)、鍺砷硒(GeAsSe)和矽鍺砷碲(SiGeAsTe)。
雙向閥值開關選擇器106與相變化記憶體單元110之間的黏附性是透過第二介面層108而影響。相變化記憶體單元110包括厚度範圍例如從大約10奈米至大約50奈米的相變化材料。相變化記憶體的相變化材料可包括兩個元素的組合,例如銻化鎵(GaSb)、銻化銦(InSb)、硒化銦(InSe)、碲化銻(Sb 2Te 3)或碲化鍺(GeTe);三個元素的組合,例如鍺銻碲(GeSbTe)、鎵硒碲(GaSeTe)、銦銻碲(InSbTe)、錫二銻四碲(SnSb 2Te 4)或銦銻鍺(InSbGe);或四個元素的組合,例如銀銦銻碲(AgInSbTe)、(鍺錫)銻碲((GeSn)SbTe)、鍺銻(硒碲)(GeSb(SeTe))或碲鍺銻硫(TeGeSbS)。鍺銻碲(GeSbTe)是鍺(Ge)、銻(Sb)和碲(Te)的組合物,在特定實施例中可作為相變化記憶體單元110使用。因此,響應於能量的施加(例如,熱或電流),相變化材料能夠在具有相對高電阻的非結晶相與具有相對低電阻(即,低於非結晶相)的結晶相之間轉變或「切換」。
在本發明的一或多個非限制性實施例中,相變化材料可形成於建立多重不同的電阻位準。相變化記憶體的閥值電壓與相變化記憶體單元110內非結晶區域的數量有關。雙向閥值開關-相變化記憶體(OTS-PCM)的閥值電壓,為雙向閥值開關選擇器106閥值電壓與相變化記憶體單元110閥值電壓的組合。因此,藉由改變相變化記憶體單元110區域內非結晶相相對於結晶相的數量,能夠調整雙向閥值開關-相變化記憶體的多重閥值電壓位準。因此,由雙向閥值開關選擇器106所選擇具有不同電壓位準的電壓脈衝,可以使用於改變已給定位準相變化記憶體單元110的相態(例如,非結晶相與結晶相)。意即,可將相變化記憶體單元110中第一部分的相態,相對於相變化記憶體單元110中相異的第二部分進行改變,藉此能施加部分的電壓脈衝以對儲存在相變化記憶體單元110第一部分中的第一資料數值進行設定或重置,同時維持儲存在相變化記憶體單元第二部分中的第二資料數值。透過這種方式,相變化記憶體單元110能用於提供能夠儲存至少2或更多位元資料的多層單元的一選擇器一電阻器結構100,如下方更詳細的描述。
現在談及第3圖,其根據本發明的非限制性實施例示出記憶體系統140,包括相互連接的複數個多層單元的一選擇器一電阻器結構100以形成縱橫式陣列146。儘管縱橫式陣列150中示出包括排列成4行4列(即M=4且N=4)的總共16個一選擇器一電阻器結構,然而應當理解的是,在不背離本發明範疇的前提下,可以包括更多或更少的一選擇器一電阻器結構以界定出不同尺寸的縱橫式陣列150。
每個多層單元的一選擇器一電阻器結構100包括相變化記憶體單元110與雙向閥值開關選擇器106。相變化記憶體單元110透過4條字元線WL1-WL4與列解碼器145進而電性連接至電源144。列解碼器145將電源144所產生的電壓發送至4條字元線WL1-WL4中的任何一條。雙向閥值開關選擇器106透過4條位元線BL1-BL4與行解碼器143進而電性連接至讀取電路142。行解碼器143將存在於4條位元線BL1-BL4中任何一條的電壓傳送至讀取電路142。於是,讀取電路142可確定給定位元線BL1-BL4的電壓位準。
記憶體系統140更包括與電源144和讀取電路142電性連通的控制器141。控制器141可包括偏壓配置狀態器(bias arrangement state machine),可對施加到一或多個多層單元的一選擇器一電阻器結構100的偏壓配置供應電壓進行控制。供應電壓包括但不限於讀取電壓、設定電壓、部分重置電壓、以及重置電壓。控制器141可以用本領域中已知的專用邏輯電路(special-purpose logic circuitry)而實現。控制器141亦可建構成微控制器,其執行電腦程式以進行各種控制操作。專用邏輯電路與電腦處理器的組合亦可用於實現控制器141。
在本發明的一或多個非限制性實施例中,控制器141亦可對形狀特徵,例如是波形或脈衝(例如,讀取脈衝、部分設定脈衝、設定脈衝、部分重置脈衝與重置脈衝)的一或多個前緣、後緣與中間區段中的振幅、間期(duration)和斜率的至少其中一者,使用儲存在記憶體中的參數進行控制。波形或脈衝可更包括一或多個可調整部分。波形或脈衝的一或多個可調整部分包括例如是前緣中的可調整尖峰(例如,上升時間)、中間區段中的可調整平坦頂部(例如,振幅)、以及後緣中的向下傾斜部分(例如,下降時間)。控制器141具有選擇不同電壓脈衝並調整被選擇電壓脈衝的形狀特徵的能力,以將資料儲存在相變化記憶體單元110的中間閥值電壓中。
如上所述,除了選擇設定與重置脈衝,控制器141亦可選擇與中間閥值電壓(例如,部分設定閥值電壓與部分重置閥值電壓)相對應的中間電壓脈衝(例如,部分重置電壓脈衝與部分設定電壓脈衝),中間閥值電壓意即介於設定閥值電壓與重置閥值電壓之間。
請參照第4圖,圖中示出一系列的電壓脈衝(例如,部分重置脈衝400a、400b、400c),其具有依次上升的電壓位準以將相變化記憶體單元110部分重置。相變化記憶體單元110可形成為具有設定閥值電壓(Vts)、中間閥值電壓或部分重置閥值電壓(Vt)、以及完全重置閥值電壓(Vtr)。從多層單元的一選擇器一電阻器結構100中完全結晶的相變化記憶體單元110開始,施加第一部分重置脈衝400a。完全結晶的相變化記憶體單元110對應包含在設定閥值電壓(Vts)中的第一電壓位準,其中發生多層單元的一選擇器一電阻器結構100的閥值切換(即,多層單元的一選擇器一電阻器結構100從關閉狀態切換至開啟狀態)。部分重置脈衝400a、400b、400c的中間電壓振幅接著被控制以將至少一資料數值進行重置,其對應於部分重置閥值電壓(Vt)。
中間電壓振幅的控制包括,例如將一系列具有逐次增加電壓振幅的電壓讀取脈衝施加到相變化記憶體單元。於是,部分重置脈衝400的中間電壓振幅,透過部分融化相變化材料以部分重置相變化記憶體單元110的方式,來控制流經相變化記憶體單元110的編程電流,而不是如傳統一選擇器一電阻器結構中將相變化材料完全融化以完全重置相變化記憶體單元110。
請參照第5圖,圖中示出已選擇的電壓脈衝(例如,部分設定脈衝500)以將相變化記憶體單元110進行部分設定。部分設定脈衝500包括良好控制的後緣(即,後緣的下降時間是可控的),以根據結晶轉變速度(即,結晶固化時間)將相變化記憶體單元110進行部分設定或完全設定,而結晶轉變速度是依據相變化記憶體的相變化材料而定。下降時間可以藉由選擇降低部分設定脈衝500後緣的斜率來進行控制,透過這種方法來設定至少一個與部分重置閥值電壓相對應的中間資料數值,同時維持與完全重置閥值電壓相對應的資料數值。由於部分設定脈衝500的峰值振幅,部分設定脈衝500具有能夠融化相變化記憶體單元110中相變化材料的振幅,且後緣的下降時間(例如,斜率)將會決定結晶固化時間。
對於下降時間短於典型相變化記憶體單元110結晶時間的情況而言,相變化記憶體單元110將會維持在非結晶態,而在編程後會偵測到多層單元的一選擇器一電阻器結構100的完全重置閥值電壓Vtr。對於下降時間足夠長,以將整個相變化記憶體非結晶區域中的結晶相變化材料進行固化的情況而言,相變化記憶體單元110將會轉變成完全結晶態。舉例來說,在施加前述部分設定脈衝500且伴隨長的或延長的下降時間後,可構成多層單元的一選擇器一電阻器結構100的完整設定閥值電壓Vts。
如第5圖中所示,部分設定狀態對應於具有下降時間的後緣,而下降時間發生在完全重置閥值電壓Vtr與完全設定閥值電壓Vts之間。於是,基於相變化記憶體的設定速度,透過部分設定脈衝500中後緣的下降時間(例如,斜率)可對設定操作進行控制。舉例來說,一個更長或更延長的下降時間構成相變化材料中更大的結晶態。
現在談及第6圖,根據本發明的非限制性實施例示出從包含在多層單元的一選擇器一電阻器結構100中的相變化記憶體單元110讀取資料的方法。繪示於第6圖中的方法,示出了執行多個讀取操作以從多層單元的一選擇器一電阻器結構100中讀取2位元資料的能力。於是,讀取操作可執行讀取操作以確定包含00、01、10和11的資料位元,其對應於多層單元的一選擇器一電阻器結構100中的4個電壓位準閥值(例如,2 2個電壓位準閥值)。然而,應當理解的是,繪示於第6圖中的方法可延伸至更多或更少的電壓位準閥值(即,2 n個位準),以從多層單元的一選擇器一電阻器結構100中讀取多個n位元資料。
如上所述,相變化記憶體單元110可形成為具有不同的預定閥值電壓Vt,其與對應於位準0、1、2…n的不同位準(i)相對應。在本示例中,相變化記憶體單元110具有標示為Vt0、Vt1、Vt2和Vt3的4個電壓位準閥值(例如,2 2個電壓位準閥值)。Vt0是設定至相變化記憶體單元110的設定閥值電壓Vts,其對應於最低的資料位元(例如,00);而Vt3是設定至相變化記憶體單元110的重置閥值電壓Vtr,其對應於對高的資料位元(例如,11)。剩下的第一與第二中間閥值電壓Vt1、Vt2則位於設定閥值電壓Vts與重置閥值電壓Vtr之間,且可稱為第一與第二部分設定閥值電壓。於是,第一中間閥值電壓Vt1可對應於第一中間資料位元(例如,01),而第二中間閥值電壓Vt2可對應於第二中間資料位元(例如,10)。
現在談及操作600,此方法起始於相變化記憶體單元110具有最低閥值電壓(例如Vt0位於最低位準i=”0”)的位準,其如上述對應於完全設定電壓位準閥值(即,相變化記憶體單元110是位於完全設定狀態中)。在操作602時,此方法確定施加至相變化記憶體單元110的實際電壓V是否小於電流位準處的閥值電壓位準Vti。當實際電壓V大於閥值電壓位準Vti時,此方法回到操作600且預設的閥值電壓位準(例如i)上升至下個更高的閥值電壓位準(例如i+1),即包含在多層單元的一選擇器一電阻器結構100中的相變化記憶體單元110具有某些部分的非結晶相變化材料。於是,當實際電壓V是在電流的預設閥值電壓位準Vti之上時,多層單元的一選擇器一電阻器結構100將不會實現閥值切換,且因此無法偵測到大的導通電流(on current)。
然而,當實際電壓V小於閥值電壓位準Vti時,此方法進入操作604並確認相變化記憶體單元110已完全重置。在此階段中,多層單元的一選擇器一電阻器結構100以未知的實際電壓V進行操作。藉由施加振幅為Vti的脈衝,若實際電壓V小於施加的閥值電壓位準Vti,則多層單元的一選擇器一電阻器結構100將會與施加的閥值電壓位準Vti脈衝產生閥值切換,並可偵測到大的導通電流。一旦因為多層單元的一選擇器一電阻器結構100的實際電壓V小於施加的閥值電壓位準Vti而產生閥值切換,使得多層單元的一選擇器一電阻器結構100被開啟後,則確定以多層儲存單元位準的閥值電壓位準Vti來代表多層單元的一選擇器一電阻器結構100的實際電壓V位準(狀態00、01、10、11)。於是,實際電壓V位準被偵測,且在操作結束於操作606之前,可在操作604時成功確定多層單元的一選擇器一電阻器結構100的多層單元實際電壓V位準。
現在談及第7圖,根據本發明的另一非限制性實施例,其示出從包含在多層單元的一選擇器一電阻器結構100中的相變化記憶體單元110讀取資料的方法。在此方法中,產生三角形的電壓讀取脈衝700,其具有電壓位準V(v)並能夠偵測多層單元的一選擇器一電阻器結構100的閥值電壓Vt。一旦施加的電壓讀取脈衝700超出多層單元的一選擇器一電阻器結構100的閥值電壓Vt,則發生閥值切換並感應出相當大的「接通(switch-on)」電流I(A),稱之為電流信號702。
「接通」電流I(A)與多層單元的一選擇器一電阻器結構100的閥值電壓Vt的關連性示於第7圖中。在此示例中,Vt是位於閥值切換發生時的電壓位準,即多層單元的一選擇器一電阻器結構100的「接通」電流閥值。一旦電壓讀取脈衝700超出閥值電壓Vt,在時間T1處發生電流信號702的急遽上升。舉例來說,在時間T1處電流信號702從第一電流閥值It1上升至較大的第二電流閥值It2。此電流位準的上升可由控制器(例如控制器141)或其他周邊電路進行偵測。於是,第7圖中示出的讀取方法,不需使用多個振幅位準的多個讀取脈衝就能偵測多層單元的一選擇器一電阻器結構100的閥值電壓Vt,從而提供更多的靈活性。應當注意的是,本文中所述根據本發明中非限制性實施例的兩個讀取方法(第6圖與第7圖),其與示於第8圖中的驗證方法(將詳細描述如下)是一致的。
在一些情況下,一旦多層單元的一選擇器一電阻器結構100接通而電流位準急遽上升後,讀取操作便會中斷電壓讀取脈衝的電壓位準。於是,本發明的一或多個實施例可偵測被中斷的讀取,從多層單元的一選擇器一電阻器結構100讀取中間資料數值,並接著將相變化記憶體單元110重新編程至原始單元狀態。相變化記憶體單元110可以根據詳述於上的第4圖和/或第5圖中的方法來進行編程。
現在請參照第8圖,根據本發明的非限制性實施例示出讀取電壓(Vread_target)與標的電壓(Vtarget)之間關係的圖表,用以對包含在多層單元的一選擇器一電阻器結構100中的相變化記憶體單元110進行調整。在製作多層單元的一選擇器一電阻器結構100時,對應的相變化記憶體單元110則以一或多個標的閥值電壓進行編程。以數次疊代法(iteration)對相變化記憶體單元110進行編程的步驟,產生出編程後閥值電壓的分佈800。這個分佈800可藉由進行閥值驗證步驟來調整(即,緊縮與微調),其將詳述如下。
在第8圖示出的示例中,多層單元的一選擇器一電阻器結構100的閥值電壓,是以對應於給定中間閥值電壓的預定標的,經過數次疊代法進行編程後產生中間閥值電壓的分佈800。本文所述的驗證方法可以執行以將包含於分佈800中的給定中間閥值電壓進行調整或微調。透過閥值電壓分佈的緊縮或微調,可以增加多層單元的一選擇器一電阻器結構100中中間閥值電壓位準的編程數量。
仍然參照第8圖,電壓讀取脈衝的電壓位準Vread_target是選擇自一個範圍Vrange,其接近所選擇的標的電壓Vtarget但不超出標的電壓。意即,電壓讀取脈衝的電壓位準預期落在標的電壓之內而不超出標的電壓。在本發明的一或多個實施例中,可確定包含在多層單元的一選擇器一電阻器結構中,相變化記憶體單元的中間閥值電壓分佈的機率分佈(本文中稱為SIMGA、σ)。於是,電壓讀取脈衝的電壓位準可以施加在範圍Vrange(即Vtarget – Vread_target)內。在本發明的一或多個非限制性實施例中,範圍Vrange代表標的電壓與電壓讀取脈衝的電壓位準之間的差值(Vtarget – Vread_target),其大於零但小於機率分佈σ的一半。透過這種方式,可執行部分的讀取而不導致中斷性的讀取,以驗證標的電壓是否正確地編成至預期的閥值位準。
當電壓讀取脈衝的電壓位準超過標的電壓時,可將相變化記憶體單元110重新編程,並再次驗證中間閥值電壓是否移動至大於電壓讀取脈衝的電壓位準的數值。意即,可以使用修正後電壓讀取脈衝的電壓位準來執行至少一個後續的編程操作,以對標的中間閥值電壓進行重新編程,直到電壓讀取脈衝的電壓位準不再超出標的中間閥值電壓。透過重複施加上述的讀取-驗證與重新編程操作,最終電壓的分佈800可以調整至大於用於緊縮此分佈的電壓讀取脈衝的電壓位準。因此,由於每個閥值位準處的更緊縮分佈,此方法可用於設定更多在給定多層單元的一選擇器一電阻器結構100中的多層單元位準。
透過參照相關圖式,本文描述了本發明的各種實施例。在不脫離本發明範疇的情況下,可以設計出替代的實施例。儘管在以下描述與圖式中闡述了元件之間的各種連接和位置關係(例如,在上方、下方、相鄰等),但是本領域中具有通常知識者將可理解,本文所述的許多位置關係是位向獨立的,即使位向改變仍可以維持所描述的功能性。除非有特別聲明,否則這些連接和/或位置關係可以是直接的或間接的,且本發明並不意圖在此方面進行限制。因此,個體的耦合可以指直接或間接耦合,並且個體之間的位置關係可以是直接或間接的位置關係。作為間接位置關係的示例,在本說明書中提及在層B上形成層A,其包括其中一個或多個中間層(例如,層C)介於層A和層B之間的情況,只要中間層不實質上改變層A和層B的相關特徵和功能性即可。
以下定義和縮寫用於解釋申請專利範圍和說明書的。 如本文所使用的,術語「包括(comprises / comprising)」、「包含(includes / including)」、「具有(has / having)」「包含(contains / containing)」、或其任何其他變化形式都旨在涵蓋非排他性的包括。舉例來說,包括一份元件清單的組成物、混合物、步驟、方法、物件或設備不一定僅限於那些元件,而是可以包括未明確列出或是固有於這些組成物、混合物、步驟、方法、物件或設備的其他元件。
另外,本文中使用的術語「示例性」用來表示「作為示例、實例或說明」。 本文中被描述為「示例性」的任何實施例或設計不必理解成比其他實施例或設計更佳或更有利。 術語「至少一個」和「一或多個」應理解為包括大於或等於一的任何整數,即一、二、三、四個等等。術語「多個」應理解為包括大於或等於2的任何整數,即二、三、四、五個等。術語「連接」可以包括間接「連接」和直接「連接」。
在本說明書中對於「一個實施例(one embodiment / an embodiment)」、「一個示例性實施例」等等的參考,其指的是所述的實施例可包括特定特徵、結構或特性,但每個實施例可能會或可能不會包括這些特定特徵、結構或特性。而且,這些片語不需要意指相同的實施例。此外,當描述特定特徵、結構或特性與一個實施例結合時,應當認定的是不管是否有明確敘述,將這些特徵、結構或特性與其他實施例結合是在本領域中具有通常知識者的知識範圍內。
為了下文的描述,術語「上部」、「下部」、「右側」、「左側」、「垂直」、「水平」、「頂部」、「底部」及其衍生詞應與所描述的結構和方法有關,如同圖式中的位向。術語「覆蓋」、「在…頂部(atop / on top)」、「位於…之上」、「位於…頂部」是指第一元件(例如第一結構)存在於第二元件(例如第二結構)之上,其中在第一元件與第二元件之間可以存在中間元件(例如介面結構)。術語「直接接觸」是指第一元件(例如第一結構)和第二元件(例如第二結構)在兩個元件的介面處沒有任何中間導電、絕緣或半導體層的情況下進行連接。
片語「對…有選擇性」,例如「對第二元件有選擇性的第一元件」,是指可以蝕刻第一元件而第二元件可以用作蝕刻停止層。
術語「大概」、「實質上」、「大約」、與其變化形式意指在提交申請的時間點時基於可使用的設備而言,包括量測特定數值相關的一定程度誤差。舉例來說,「大約」可包括一個給定數值正負8%、5%或2%的範圍。
如本文前述,為了簡潔起見,關於半導體裝置與積體電路製造的傳統技術可能會、或可能不會在本文中詳細描述。然而,透過背景技術,現在將提供對於半導體裝置製造過程更概括的描述,其可用於實現本發明的一或多個實施例。儘管用於實現本發明一或多個實施例的特定生產操作是已知的,然而本發明所述的操作組合和/或所得結構是獨特的。因此,根據本發明中與半導體裝置的製造結合的那些獨特操作組合,其運用執行在半導體(例如,矽)基板的多個已知的物理及化學製程,其中某些將在下文中隨即敘述。
通常,用於形成將被封裝至積體電路中的微晶片的各種製程分為四大種類,即膜層沉積、移除/蝕刻、半導體摻雜、與圖案化/光刻。沉積是將材料生長、塗佈或以其他方式轉移到晶圓上的製程。可使用的技術包括物理氣相沉積(PVD),化學氣相沉積(CVD),電化學沉積(ECD),分子束磊晶(MBE)以及更近期的原子層沉積(ALD)等等。移除/蝕刻是從晶圓移除材料的任何過程。示例包括蝕刻製程(濕法或乾法)、化學機械研磨(CMP)與其類似製程。半導體摻雜是藉由對例如電晶體的源極與汲極進行摻雜(通常藉由擴散和/或離子佈植)而改變電性特質。這些摻雜過程後緊接著是爐退火(Furnace Annealing)或快速熱退火(Rapid Thermal Annealing, RTA)。退火是用於活化植入的摻雜劑。導體(例如,多晶矽、鋁、銅等)和絕緣體(例如,各種形式的二氧化矽、氮化矽等)的膜層都可用於連接和隔離電晶體及其組件。半導體基板中各個區域的選擇性摻雜使得基板的導電性能夠隨著電壓的施加而改變。透過創造這些各種組件的結構,可建構數百萬個電晶體並將其導線連接在一起,以形成現今電子裝置的複雜電路。半導體光刻是在半導體基板上形成三維的浮雕影像或圖案,後續用以將圖案轉移至基板上。在半導體光刻中,圖案是由稱為光阻劑的光敏感聚合物而形成。為了建構組成電晶體的複雜結構,以及連接電路中數百萬個電晶體的許多導線,光刻和蝕刻圖案轉移步驟要重複多次。印在晶圓上的每個圖案皆對準於先前形成的圖案,接著逐漸地將導體、絕緣體與選擇性摻雜地區域建構起來以形成最終裝置。
本發明可以是在任何可能技術水平下的整合系統、方法、和/或電腦程式產品。電腦程式產品可包括電腦可讀儲存媒介,其上具有電腦可讀程式指令用以使處理器執行本發明的各方面。
電腦可讀儲存媒介可以是有形裝置,其可保持並儲存由指令執行裝置所使用的指令。電腦可讀儲存媒介可以是例如但不限於電子儲存設備、磁儲存設備、光儲存設備、電磁儲存設備、半導體儲存設備或前述的任何適當組合。電腦可讀儲存媒介的更具體示例的詳盡列表包括以下:攜帶式電腦磁片、硬碟、隨機存取記憶體、唯讀記憶體、可消除程式化唯讀記憶體(EPROM或快閃記憶體)、靜態隨機存取記憶體、光碟唯讀記憶體(CD-ROM)、數位多功能光碟(DVD)、記憶條、軟性磁碟、機械式編碼裝置,例如具有指令編碼在其上的穿孔卡(punch-cards)或凹槽中的凸起結構(raised structure),以及上述內容的任何適當組合。如本文中所使用的電腦可讀儲存媒介不應被理解成本身為過渡信號(transitory signal),例如無線電波或其他自由傳播的電磁波、通過波導管(waveguide)或其他傳輸媒介傳播的電磁波(例如,通過光纖電纜的光脈衝)、或是通過導線傳輸的電信號。
本文所述的電腦可讀程式指令可從電腦可讀儲存媒介下載至相應的電腦/處理裝置,或是透過網路(例如互聯網、區域網路、廣域網路、和/或無線網路)下載至外部儲存裝置。該網絡可以包括銅傳輸電纜、光傳輸纖維、無線傳輸、路由器、防火牆、交換機、閘道電腦(gateway computer)、和/或邊緣伺服器(edge server)。每個電腦/處理裝置中的網路配接卡(network adapter card)或網路介面(network interface)從網路接收電腦可讀程式指令,並將電腦可讀程式指令轉發以儲存在相應電腦/處理裝置中的電腦可讀儲存媒介。
用於執行本發明中操作的電腦可讀程式指令可以是組合指令(assembler instruction)、指令集架構(ISA)指令、機器指令、機器相關指令(machine dependent instruction)、微碼(microcode)、韌體指令(firmware instruction)、狀態設置資料(state-setting data)、積體電路的配置資料、 或是原始碼(source code)/目標碼(object code),其中原始碼或目標碼是以一種或多種編程語言(包括物件導向的編程語言,例如Smalltalk、C++或其類似物),與過程式編程語言(例如「C」編程語言或類似編程語言)的任意組合進行編寫。電腦可讀程式指令可以作為獨立軟體套件而完全在使用者電腦上、部分在使用者電腦且部分在遠端電腦上、或完全在遠端電腦或伺服器上執行。在後一種情況下,遠端電腦可以通過任何類型的網絡(包括區域網路或廣域網路)連接到使用者電腦,或者可以與外部電腦建立連接(例如,通過使用網際網路服務提供業者的網路)。在一些實施例中,包括例如可編程邏輯電路、場可編程閘陣列(Field-Programmable Gate Arrays, FPGA)、可編程邏輯陣列(PLA)可以通過利用電腦可讀程式指令的狀態訊息來執行電腦可讀程式指令,以將電子電路個性化進而執行本發明的各方面。
本文中透過參考根據本發明實施例的方法、設備(系統)、和電腦程式產品的流程圖和/或塊狀圖而對本發明的各方面進行描述。將能理解的是,流程圖和/或塊狀圖的每個區塊,以及流程圖和/或塊狀圖中區塊的結合可以透過電腦可讀程式指令來實現。
這些電腦可讀程式指令將可提供至通用電腦、專用電腦、或其他可編程資料處理設備的處理器以生產機器,使得透過電腦或其他可編程資料處理設備的處理器來執行的指令,能夠創造用於實現流程圖和/或塊狀圖區塊中所指定功能/動作的裝置。這些電腦可讀程式指令亦可儲存在電腦可讀儲存媒介中,電腦可讀儲存媒介可以控制電腦、可編程資料處理設備、和/或其他裝置以特定的方式進行運作,使得具有儲存在其中指令的電腦可讀儲存媒介包括製品(article of manufacture),此製品包含實現流程圖和/或塊狀圖區塊中所指定功能/動作的各方面的指令。
電腦可讀程式指令亦可裝載至電腦、其他可編程資料處理設備、或其他設備上,使一系列操作步驟在電腦、其他可編程設備、或其他設備上執行以產生電腦實現的過程,從而使在電腦、其他可編程設備、或其他設備上執行的指令能夠實現流程圖和/或塊狀圖區塊中所指定的功能/動作。
圖式中的流程圖和塊狀圖示出根據本發明各個實施例的系統、方法和電腦程式產品所可能實現的架構、功能性與操作。以這點而言,流程圖或塊狀圖中的每個區塊可以表示指令的模組、片段或部分指令,其中部分指令包括用於實現指定邏輯功能的一個或多個可執行指令。在一些替代實施方式中,區塊中所指出的功能可以不按圖中指出的順序進行。舉例來說,取決於涉及的功能,實際上基本上可同時執行先後示出的兩個區塊,或者有時可以相反的順序執行這些區塊。還應該注意的是,塊狀圖和/或流程圖的每個區塊,以及塊狀圖和/或流程圖的區塊組合可以由基於專用硬體的系統來實現,其執行指定的功能或動作、或執行專用硬體與電腦指令的組合。
基於說明的目的,已經示出本發明各種實施例的描述,但是這些描述並不旨在是窮舉的(exhaustive)或限制所揭露的實施例。在不脫離所描述實施例的範疇下,許多修改和變化對於本領域中具有通常知識者而言將是顯而易見的。本文中選擇使用的術語是為了最好地解釋實施例的原理、對市場上存在的技術的實際應用或技術改進 、或者使本領域中具有通常知識者能夠理解本文中所述的實施例。
100:多層單元的一選擇器一電阻器結構 102:底電極 104:第一介面層 106:雙向閥值開關選擇器 108:第二介面層 110:相變化記憶體單元 112:第三介面層 114:頂電極 140:記憶體系統 141:控制器 142:讀取電路 143:行解碼器 144:電源 145:列解碼器 146:陣列 400,400a,400b,400c:部分重置脈衝 500:部分設定脈衝 600,602,604,606:操作 700:電壓讀取脈衝 702:電流信號 800:分佈 T1:時間 It1:第一電流閥值 It2:第二電流閥值 WL1~WL4:字元線 BL1~BL4:位元線 T melt,T crystal:閥值 Vts:設定閥值電壓 Vtr:重置閥值電壓 Vrange:範圍 Vread_target:電壓讀取脈衝的電壓位準 Vtarget:標的電壓 Vt:部分重置閥值電壓 Vti:閥值電壓位準 V:實際電壓 σ:機率分佈
特別指出本文中所描述的專有權細節,並清楚地保護於說明書結尾的申請專利範圍中。藉由以下與圖式結合的詳細描述,本發明實施例的前述和其他特徵以及優點將是顯而易見的。其中:
第1圖是示出傳統相變化記憶單元中溫度對時間關係的圖表;
第2圖是根據本發明的非限制性實施例中,多層單元的一選擇器一電阻器三維交叉點記憶體結構的塊狀圖;
第3圖是根據本發明的非限制性實施例所繪示的記憶體系統,其中包括複數個彼此連接而形成縱橫式陣列(crossbar array)的多層單元的一選擇器一電阻器結構;
第4圖是根據本發明的非限制性實施例所繪示的圖表,其示出對包含在多層單元的一選擇器一電阻器結構中的相變化記憶體單元進行編程的方法;
第5圖是根據本發明的另一非限制性實施例所繪示的圖表,其示出對包含在多層單元的一選擇器一電阻器結構中的相變化記憶體單元進行編程的方法;
第6圖是根據本發明的非限制性實施例所繪示的流程圖,其示出從包含在多層單元的一選擇器一電阻器結構中的相變化記憶體單元讀取資料的方法;
第7圖是根據本發明的另一非限制性實施例所繪示的圖表,其示出從包含在多層單元的一選擇器一電阻器結構中的相變化記憶體單元讀取資料的方法;以及
第8圖是根據本發明的非限制性實施例,示出讀取電壓與標的電壓之間關係的圖表,用以對包含在多層單元的一選擇器一電阻器結構中的相變化記憶體單元進行調整。
本文所繪示的圖表皆是說明性質的。 在不背離本發明的精神時,圖表或圖表中所描述的操作可以有許多變化。 例如,可以不同的順序執行動作,或者可以添加、刪除或修改動作。同樣,術語「耦接」及其變化形式是描述在兩個元件之間具有連通路徑,並不意味著元件之間的直接連接而在其之間沒有中間的元件/連接。所有這些變化形式皆被視為說明書的一部分。
在圖式和以下所述的實施例詳細描述中,圖式示出的各個元件具有兩位或三位的元件符號。除少數例外,每個元件符號的最左方數字對應於該些元件被第一次示出時的圖式。
100:多層單元的一選擇器一電阻器結構
106:雙向閥值開關選擇器
110:相變化記憶體單元
140:記憶體系統
141:控制器
142:讀取電路
143:行解碼器
144:電源
145:列解碼器
146:陣列
WL1~WL4:字元線
BL1~BL4:位元線

Claims (25)

  1. 一種記憶體系統,包括: 至少一多層單元的一選擇器一電阻器結構,包括一相變化記憶體單元與一閥值開關選擇器的一堆疊配置; 一位元線,與該閥值開關選擇器電性連通,以及一字元線,與該相變化記憶體單元電性連通;以及 一控制器,與該位元線和該字元線電性連通,該控制器是配置以從不同電壓脈衝的一族群中選擇至少一電壓脈衝,該族群包括一讀取脈衝、一部分設定脈衝、一設定脈衝、一部分重置脈衝以及一重置脈衝,且該控制器還配置以將已選擇的該至少一電壓脈衝傳送到該至少一多層單元的一選擇器一電阻器結構。
  2. 如請求項1所述之記憶體系統,其中該閥值開關選擇器為一雙向閥值開關選擇器。
  3. 如請求項2所述之記憶體系統,其中該相變化記憶體單元包括一非結晶與結晶區域的分佈,其中與該雙向閥值開關選擇器的一閥值電壓結合的該非結晶與結晶區域的分佈,決定該多層單元的一選擇器一電阻器結構的一閥值電壓。
  4. 如請求項3所述之記憶體系統,其中該部分設定脈衝改變該非結晶與結晶區域的分佈,使得該多層單元的一選擇器一電阻器結構的該閥值電壓介於與該多層單元的一選擇器一電阻器結構的一完全設定狀態相對應的閥值電壓位準,以及與一完全重置狀態相對應的閥值電壓位準之間。
  5. 如請求項4所述之記憶體系統,其中該多層單元的一選擇器一電阻器結構的該閥值電壓是根據一施加的可編程脈衝進行調整。
  6. 如請求項5所述之記憶體系統,其中該施加的可編程脈衝包括: 該部分設定脈衝,用以改變該非結晶與結晶區域的分佈,使得該多層單元的一選擇器一電阻器結構的該閥值電壓介於與該相變化記憶體單元的一完全設定狀態相對應的一第一位準,以及與該相變化記憶體單元的一完全重置狀態相對應的一第二位準之間。
  7. 一種用於對一多層單元的一選擇器一電阻器結構進行編程的方法,該方法包括: 施加各具有一電壓位準的複數個部分重置電壓脈衝至該多層單元的一選擇器一電阻器結構,各該電壓位準從與該多層單元的一選擇器一電阻器結構的一完全設定狀態相對應的一第一閥值電壓,增加至與該多層單元的一選擇器一電阻器結構的一完全重置狀態相對應的一第二閥值電壓; 其中各該部分重置電壓脈衝將至少一資料數值進行重置,該至少一資料數值對應大於該第一閥值電壓且小於該第二閥值電壓的一中間閥值電壓。
  8. 如請求項7所述之方法,其中該完全設定狀態對應一最低資料數值,該完全重置狀態對應大於該最低資料數值的一最高資料數值。
  9. 如請求項8所述之方法,其中該複數個部分重置電壓脈衝包括: 一第一中間閥值電壓脈衝,具有一第一中間電壓位準;以及 一第二中間閥值電壓脈衝,具有大於該第一中間電壓位準的一第二中間電壓位準。
  10. 如請求項9所述之方法,其中: 該第一中間閥值電壓脈衝對應於一第一中間閥值電壓,該第一中間閥值電壓對應於一第一中間資料數值,且該第二中間閥值電壓脈衝對應於一第二中間閥值電壓,該第二中間閥值電壓對應於一第二中間資料數值;以及 該第一中間資料數值大於該最低資料數值且小於該最高資料數值,而該第二中間資料數值同時大於該最低資料數值與該第一中間資料數值,但仍小於該最高資料數值。
  11. 如請求項10所述之方法,其中該最低資料數值為二進位資料數值00,該第一中間資料數值為二進位資料數值01,該第二中間資料數值為二進位資料數值10,而該最高資料數值為二進位資料數值11。
  12. 一種用於對一多層單元的一選擇器一電阻器結構進行編程的方法,該方法包括: 施加一部分設定電壓至該多層單元的一選擇器一電阻器結構; 將該部分設定電壓從包括一第一電壓位準的一完全重置閥值電壓,降低至包括一第二電壓位準的一完全設定閥值電壓,該第二電壓位準小於該第一電壓位準; 其中該部分設定電壓將對應於一部分設定閥值電壓的至少一資料數值進行設定,該部分設定閥值電壓包括小於該第一電壓位準且大於該第二電壓位準的一中間電壓位準。
  13. 如請求項12所述之方法,其中施加該部分設定電壓的步驟包括: 生成具有一後緣的一部份設定電壓脈衝。
  14. 如請求項13所述之方法,其中降低該部分設定電壓的步驟包括: 控制該後緣的一下降時間。
  15. 如請求項14所述之方法,其中控制該下降時間的步驟包括: 選擇將會使該後緣降低的一標的斜率;以及 根據該標的斜率而降低該後緣,以便於將對應於該部分設定閥值電壓的該至少一資料數值進行設定。
  16. 如請求項15所述之方法,其中在控制該下降時間的步驟中對一編程電流進行控制,該編程電流是流經該多層單元的一選擇器一電阻器結構的一相變化記憶體單元。
  17. 如請求項16所述之方法,其中該編程電流控制該相變化記憶體單元的一相變化材料的一結晶固化時間。
  18. 一種從一多層單元的一選擇器一電阻器結構讀取資料的方法,該方法包括: 施加至少一電壓讀取脈衝至該多層單元的一選擇器一電阻器結構,並響應於施加的該電壓讀取脈衝而感應出流經該多層單元的一選擇器一電阻器結構的一電流; 監控流經該多層單元的一選擇器一電阻器結構的該電流的一電流位準; 偵測該電流位準從一第一電流閥值至一第二電流閥值的一上升,該上升是響應於該電壓讀取脈衝到達一閥值電壓時的一電壓位準,該閥值電壓是對應於儲存在該多層單元的一選擇器一電阻器結構中的一中間資料數值;以及 從該多層單元的一選擇器一電阻器結構中讀取該中間資料數值。
  19. 如請求項18所述之方法,其中該電壓讀取脈衝為一三角形脈衝。
  20. 如請求項19所述之方法,更包括: 偵測一中斷性讀取,其響應於該電流位準的該上升而改變該電壓讀取脈衝的該電壓位準; 從該多層單元的一選擇器一電阻器結構讀取該中間資料數值;以及 將一相變化記憶體單元重新編程至一原始單元狀態。
  21. 如請求項18所述之方法,更包括: 將複數個該電壓讀取脈衝依序施加至一相變化記憶體單元的一中間電壓位準閥值; 將各該電壓讀取脈衝的該電壓位準與該中間電壓位準閥值進行比較; 當一給定電壓讀取脈衝的該電壓位準超出該中間電壓位準閥值時,偵測該電流位準的該上升;以及 從該多層單元的一選擇器一電阻器結構中讀取與該中間電壓位準閥值相對應的該中間資料數值。
  22. 如請求項21所述之方法,其中該中間電壓位準閥值包括從一較低電壓位準閥值,上升至一較高電壓位準閥值的複數個該中間電壓位準閥值。
  23. 一種用於將一多層單元的一選擇器一電阻器結構的一已編程閥值電壓分佈的至少一中間閥值電壓進行調整的方法,該方法包括: 確定該多層單元的一選擇器一電阻器結構的一實際閥值電壓; 施加複數個電壓編程脈衝,用以對包含在該多層單元的一選擇器一電阻器結構中的一相變化記憶體單元進行編程,以編程到具有一標的數值的一單元狀態; 根據該複數個電壓編程脈衝,以對包含在該多層單元的一選擇器一電阻器結構中的該相變化記憶體單元的一中間閥值電壓分佈進行確定; 從該中間閥值電壓分佈中選擇待驗證的一標的中間閥值電壓; 施加一電壓讀取脈衝以符合該標的中間閥值電壓;以及 當該電壓讀取脈衝的一電壓位準尚未超出該多層單元的一選擇器一電阻器結構的該實際閥值電壓時,確定該標的中間閥值電壓已被編程到正確的電壓位準。
  24. 如請求項23所述之方法,更包括: 當該電壓讀取脈衝的該電壓位準超出該多層單元的一選擇器一電阻器結構的該實際閥值電壓時,確定該標的中間閥值電壓被編程到不正確的電壓位準; 對用於編程該標的中間閥值電壓的一編程脈衝的一先前電壓位準進行確定; 選擇該電壓編程脈衝的一修正電壓位準,其不同於該前先電壓位準;以及 執行至少一後續編程操作,以將該標的中間閥值電壓進行重新編程,直到該電壓編程脈衝的該修正電壓位準不超出該多層單元的一選擇器一電阻器結構的該實際閥值電壓。
  25. 如請求項24所述之方法,其中施加該電壓讀取脈衝的步驟包括: 確定該中間閥值電壓分佈的一機率分佈;以及 在該標的中間閥值電壓的一範圍內施加該電壓讀取脈衝; 其中該範圍是該標的中間閥值電壓與該電壓讀取脈衝的該電壓位準之間的一差值,且該範圍是大於零但小於該機率分佈的一半。
TW109112376A 2020-01-22 2020-04-13 記憶體系統及其操作方法 TWI726680B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/749,722 2020-01-22
US16/749,722 US11139025B2 (en) 2020-01-22 2020-01-22 Multi-level cell threshold voltage operation of one-selector-one-resistor structure included in a crossbar array

Publications (2)

Publication Number Publication Date
TWI726680B true TWI726680B (zh) 2021-05-01
TW202129649A TW202129649A (zh) 2021-08-01

Family

ID=76857948

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109112376A TWI726680B (zh) 2020-01-22 2020-04-13 記憶體系統及其操作方法

Country Status (3)

Country Link
US (2) US11139025B2 (zh)
CN (1) CN113160865A (zh)
TW (1) TWI726680B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11139025B2 (en) 2020-01-22 2021-10-05 International Business Machines Corporation Multi-level cell threshold voltage operation of one-selector-one-resistor structure included in a crossbar array
US20230029141A1 (en) * 2021-07-23 2023-01-26 Taiwan Semiconductor Manufacturing Company Embedded double side heating phase change random access memory (pcram) device and method of making same
CN113643741B (zh) * 2021-08-16 2023-12-15 湖北大学 一种基于1s1r的逻辑运算单元及运算方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140047163A1 (en) * 2012-08-08 2014-02-13 Donghun Kwak Nonvolatile memory device and programming method
US20150129829A1 (en) * 2013-11-13 2015-05-14 Crossbar, Inc. One time programmable and multi-level, two-terminal memory cell
US9691479B1 (en) * 2016-04-29 2017-06-27 Hewlett Packard Enterprise Development Lp Method of operating and apparatus of memristor arrays with diagonal lines interconnect between memristor cells
US20180159032A1 (en) * 2016-12-05 2018-06-07 Samsung Electronics Co., Ltd. Semiconductor device and method for fabricating the same

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276653A (en) 1991-02-13 1994-01-04 Mckenny Vernon G Fuse protection circuit
US5796671A (en) 1996-03-01 1998-08-18 Wahlstrom; Sven E. Dynamic random access memory
US5796650A (en) 1997-05-19 1998-08-18 Lsi Logic Corporation Memory circuit including write control unit wherein subthreshold leakage may be reduced
US6490203B1 (en) 2001-05-24 2002-12-03 Edn Silicon Devices, Inc. Sensing scheme of flash EEPROM
US6590807B2 (en) 2001-08-02 2003-07-08 Intel Corporation Method for reading a structural phase-change memory
JP4049604B2 (ja) 2002-04-03 2008-02-20 株式会社ルネサステクノロジ 薄膜磁性体記憶装置
JP2004062922A (ja) 2002-07-25 2004-02-26 Renesas Technology Corp 不揮発性半導体記憶装置
JP4266302B2 (ja) 2002-11-27 2009-05-20 株式会社ルネサステクノロジ 不揮発性記憶装置
JP4113423B2 (ja) 2002-12-04 2008-07-09 シャープ株式会社 半導体記憶装置及びリファレンスセルの補正方法
US7589343B2 (en) 2002-12-13 2009-09-15 Intel Corporation Memory and access device and method therefor
US6795338B2 (en) 2002-12-13 2004-09-21 Intel Corporation Memory having access devices using phase change material such as chalcogenide
DE60323202D1 (de) 2003-02-21 2008-10-09 St Microelectronics Srl Phasenwechselspeicheranordnung
KR100564567B1 (ko) 2003-06-03 2006-03-29 삼성전자주식회사 상 변화 메모리의 기입 드라이버 회로
US6965521B2 (en) 2003-07-31 2005-11-15 Bae Systems, Information And Electronics Systems Integration, Inc. Read/write circuit for accessing chalcogenide non-volatile memory cells
US6914255B2 (en) 2003-08-04 2005-07-05 Ovonyx, Inc. Phase change access device for memories
JP4192060B2 (ja) 2003-09-12 2008-12-03 シャープ株式会社 不揮発性半導体記憶装置
EP1548744A1 (en) 2003-12-23 2005-06-29 STMicroelectronics S.r.l. Fast reading, low power consumption memory device and reading method thereof
KR100528341B1 (ko) 2003-12-30 2005-11-15 삼성전자주식회사 자기 램 및 그 읽기방법
US6990017B1 (en) 2004-06-30 2006-01-24 Intel Corporation Accessing phase change memories
US7423897B2 (en) 2004-10-01 2008-09-09 Ovonyx, Inc. Method of operating a programmable resistance memory array
US7646630B2 (en) 2004-11-08 2010-01-12 Ovonyx, Inc. Programmable matrix array with chalcogenide material
ITMI20042462A1 (it) 2004-12-23 2005-03-23 St Microelectronics Srl Memoria ausiliare
KR100697282B1 (ko) 2005-03-28 2007-03-20 삼성전자주식회사 저항 메모리 셀, 그 형성 방법 및 이를 이용한 저항 메모리배열
US7495944B2 (en) 2005-03-30 2009-02-24 Ovonyx, Inc. Reading phase change memories
US7154774B2 (en) 2005-03-30 2006-12-26 Ovonyx, Inc. Detecting switching of access elements of phase change memory cells
US8036013B2 (en) 2005-03-30 2011-10-11 Ovonyx, Inc. Using higher current to read a triggered phase change memory
US8116159B2 (en) 2005-03-30 2012-02-14 Ovonyx, Inc. Using a bit specific reference level to read a resistive memory
US7570524B2 (en) 2005-03-30 2009-08-04 Ovonyx, Inc. Circuitry for reading phase change memory cells having a clamping circuit
JP2006302466A (ja) 2005-04-25 2006-11-02 Elpida Memory Inc 半導体記憶装置
US7319617B2 (en) 2005-05-13 2008-01-15 Winbond Electronics Corporation Small sector floating gate flash memory
US20060279979A1 (en) 2005-06-13 2006-12-14 Tyler Lowrey Method of reading phase-change memory elements
US7656710B1 (en) 2005-07-14 2010-02-02 Sau Ching Wong Adaptive operations for nonvolatile memories
CN101180683B (zh) 2005-09-21 2010-05-26 株式会社瑞萨科技 半导体器件
EP1843356A1 (en) 2006-04-03 2007-10-10 STMicroelectronics S.r.l. Method and system for refreshing a memory device during reading thereof
US7286429B1 (en) 2006-04-24 2007-10-23 Taiwan Semiconductor Manufacturing Company, Ltd. High speed sensing amplifier for an MRAM cell
US7391664B2 (en) 2006-04-27 2008-06-24 Ovonyx, Inc. Page mode access for non-volatile memory arrays
JP2008004199A (ja) 2006-06-23 2008-01-10 Toshiba Corp 半導体記憶装置
EP1883113B1 (en) 2006-07-27 2010-03-10 STMicroelectronics S.r.l. Phase change memory device
US7623401B2 (en) * 2006-10-06 2009-11-24 Qimonda North America Corp. Semiconductor device including multi-bit memory cells and a temperature budget sensor
JP5056847B2 (ja) 2007-03-09 2012-10-24 富士通株式会社 不揮発性半導体記憶装置及びその読み出し方法
JP5060191B2 (ja) 2007-07-18 2012-10-31 株式会社東芝 抵抗変化メモリ装置のデータ書き込み方法
US7688634B2 (en) 2007-08-06 2010-03-30 Qimonda Ag Method of operating an integrated circuit having at least one memory cell
US7817475B2 (en) 2007-12-05 2010-10-19 Ovonyx, Inc. Method and apparatus for accessing a phase-change memory
JP5082130B2 (ja) 2008-02-19 2012-11-28 ルネサスエレクトロニクス株式会社 半導体装置
KR20090126587A (ko) 2008-06-04 2009-12-09 삼성전자주식회사 상 변화 메모리 장치 및 그것의 읽기 방법
US7859895B2 (en) 2008-06-06 2010-12-28 Ovonyx, Inc. Standalone thin film memory
US8223580B2 (en) 2008-06-17 2012-07-17 Ovonyx, Inc. Method and apparatus for decoding memory
US8351250B2 (en) 2008-08-28 2013-01-08 Ovonyx, Inc. Programmable resistance memory
US7961495B2 (en) 2008-10-15 2011-06-14 Ovonyx, Inc. Programmable resistance memory with feedback control
US8031516B2 (en) 2008-12-12 2011-10-04 Stephen Tang Writing memory cells exhibiting threshold switch behavior
US20100157647A1 (en) 2008-12-19 2010-06-24 Unity Semiconductor Corporation Memory access circuits and layout of the same for cross-point memory arrays
US7957207B2 (en) 2009-03-10 2011-06-07 Ovonyx, Inc. Programmable resistance memory with interface circuitry for providing read information to external circuitry for processing
KR20100116493A (ko) 2009-04-22 2010-11-01 삼성전자주식회사 비트 라인 저항을 보상하는 가변 저항 메모리 장치
KR101678886B1 (ko) 2009-11-25 2016-11-23 삼성전자주식회사 멀티-레벨 상변환 메모리 장치 및 그 구동 방법
US8374022B2 (en) 2009-12-21 2013-02-12 Intel Corporation Programming phase change memories using ovonic threshold switches
KR101797106B1 (ko) 2010-10-26 2017-11-13 삼성전자주식회사 저항성 메모리 장치와 상기 저항성 메모리 장치를 포함하는 전자 장치들
US8446758B2 (en) * 2010-12-14 2013-05-21 Micron Technology, Inc. Variable resistance memory programming
SG185894A1 (en) 2011-05-23 2012-12-28 Agency Science Tech & Res A current writing circuit for a resistive memory cell arrangement
JP2013114737A (ja) 2011-11-28 2013-06-10 Internatl Business Mach Corp <Ibm> 相変化メモリ・セルをプログラミングするための方法、コンピュータ・プログラム、および装置、ならびに相変化メモリ・デバイス(相変化メモリ・セルのプログラミング)
US8675423B2 (en) 2012-05-07 2014-03-18 Micron Technology, Inc. Apparatuses and methods including supply current in memory
US9245926B2 (en) 2012-05-07 2016-01-26 Micron Technology, Inc. Apparatuses and methods including memory access in cross point memory
US8934280B1 (en) 2013-02-06 2015-01-13 Crossbar, Inc. Capacitive discharge programming for two-terminal memory cells
US8913425B2 (en) 2013-03-12 2014-12-16 Intel Corporation Phase change memory mask
JP5868381B2 (ja) 2013-12-03 2016-02-24 ウィンボンド エレクトロニクス コーポレーション 半導体記憶装置
US9691820B2 (en) 2015-04-24 2017-06-27 Sony Semiconductor Solutions Corporation Block architecture for vertical memory array
US10134470B2 (en) 2015-11-04 2018-11-20 Micron Technology, Inc. Apparatuses and methods including memory and operation of same
US20170338282A1 (en) 2016-05-20 2017-11-23 Intel Corporation Memory module with unpatterned storage material
US9697913B1 (en) 2016-06-10 2017-07-04 Micron Technology, Inc. Ferroelectric memory cell recovery
US9799381B1 (en) 2016-09-28 2017-10-24 Intel Corporation Double-polarity memory read
US10157670B2 (en) 2016-10-28 2018-12-18 Micron Technology, Inc. Apparatuses including memory cells and methods of operation of same
US10008665B1 (en) 2016-12-27 2018-06-26 Intel Corporation Doping of selector and storage materials of a memory cell
US10163982B2 (en) 2017-03-30 2018-12-25 Intel Corporation Multi-deck memory device with inverted deck
US10424374B2 (en) 2017-04-28 2019-09-24 Micron Technology, Inc. Programming enhancement in self-selecting memory
US10424728B2 (en) 2017-08-25 2019-09-24 Micron Technology, Inc. Self-selecting memory cell with dielectric barrier
US10128437B1 (en) 2017-08-31 2018-11-13 Micron Technology, Inc. Semiconductor structures including memory materials substantially encapsulated with dielectric materials, and related systems and methods
US10374014B2 (en) 2017-10-16 2019-08-06 Sandisk Technologies Llc Multi-state phase change memory device with vertical cross-point structure
US10256271B1 (en) 2017-11-30 2019-04-09 International Business Machines Corporation Phase change memory array with integrated polycrystalline diodes
US10381075B2 (en) 2017-12-14 2019-08-13 Micron Technology, Inc. Techniques to access a self-selecting memory device
KR102449620B1 (ko) 2017-12-20 2022-09-29 유니버시티 오브 로체스터 선택기를 갖는 비 휘발성 저항성 크로스바 어레이를 위한 에너지 효율적인 기록 기법 (energy efficient write scheme for non-volatile resistive crossbar arrays with selectors)
US10424372B1 (en) 2018-04-19 2019-09-24 Micron Technology, Inc. Apparatuses and methods for sensing memory cells
KR102641097B1 (ko) * 2018-12-31 2024-02-27 삼성전자주식회사 저항성 메모리 장치 및 저항성 메모리 장치의 프로그램 방법
US11139025B2 (en) 2020-01-22 2021-10-05 International Business Machines Corporation Multi-level cell threshold voltage operation of one-selector-one-resistor structure included in a crossbar array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140047163A1 (en) * 2012-08-08 2014-02-13 Donghun Kwak Nonvolatile memory device and programming method
US20150129829A1 (en) * 2013-11-13 2015-05-14 Crossbar, Inc. One time programmable and multi-level, two-terminal memory cell
US9691479B1 (en) * 2016-04-29 2017-06-27 Hewlett Packard Enterprise Development Lp Method of operating and apparatus of memristor arrays with diagonal lines interconnect between memristor cells
US20180159032A1 (en) * 2016-12-05 2018-06-07 Samsung Electronics Co., Ltd. Semiconductor device and method for fabricating the same

Also Published As

Publication number Publication date
US11139025B2 (en) 2021-10-05
CN113160865A (zh) 2021-07-23
TW202129649A (zh) 2021-08-01
US20210375360A1 (en) 2021-12-02
US20210225441A1 (en) 2021-07-22
US11557342B2 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
TWI726680B (zh) 記憶體系統及其操作方法
US7558105B2 (en) Phase change memory devices and multi-bit operating methods for the same
TWI658548B (zh) 用於三維記憶體陣列之熱絕緣
JP5626668B2 (ja) 縦型トランジスタ相変化メモリ
US7130214B2 (en) Low-current and high-speed phase-change memory devices and methods of driving the same
CN100559623C (zh) 非易失存储元件及其制造方法
US10854307B2 (en) Apparatuses and/or methods for operating a memory cell as an anti-fuse
JP5126634B2 (ja) 反転可変抵抗メモリセルおよびその作製方法
CN100550408C (zh) 非易失存储元件及其制造方法
US9136472B2 (en) Resistive memory and methods of processing resistive memory
WO2008027279A2 (en) Bottom electrode geometry for phase change memory
US9490426B2 (en) Multiple bit per cell dual-alloy GST memory elements
JP2009123847A (ja) メモリ素子、メモリセル、メモリセルアレイ及び電子機器
US20090003032A1 (en) Integrated circuit including resistivity changing material having a planarized surface
Breitwisch Phase change memory
CN112840460A (zh) 相变存储单元及其制造方法
TWI739306B (zh) 半導體記憶裝置
TWI835235B (zh) 相變化記憶體之全域加熱器
US20230082961A1 (en) Hybrid memory for neuromorphic applications
TW202324732A (zh) 相變化記憶體之全域加熱器