TWI721545B - 側向式/垂直式電晶體結構及其製造與使用方法 - Google Patents

側向式/垂直式電晶體結構及其製造與使用方法 Download PDF

Info

Publication number
TWI721545B
TWI721545B TW108131089A TW108131089A TWI721545B TW I721545 B TWI721545 B TW I721545B TW 108131089 A TW108131089 A TW 108131089A TW 108131089 A TW108131089 A TW 108131089A TW I721545 B TWI721545 B TW I721545B
Authority
TW
Taiwan
Prior art keywords
microfluidic device
transistor
substrate
microfluidic
array
Prior art date
Application number
TW108131089A
Other languages
English (en)
Other versions
TW201943460A (zh
Inventor
艾瑞克 D 賀伯斯
賈斯汀 K 維利
Original Assignee
美商柏克萊燈光有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商柏克萊燈光有限公司 filed Critical 美商柏克萊燈光有限公司
Publication of TW201943460A publication Critical patent/TW201943460A/zh
Application granted granted Critical
Publication of TWI721545B publication Critical patent/TWI721545B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/005Dielectrophoresis, i.e. dielectric particles migrating towards the region of highest field strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/026Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]
    • H01L27/0821
    • H01L27/0823
    • H01L27/14681
    • H01L29/73
    • H01L29/732
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0424Dielectrophoretic forces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micromachines (AREA)
  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本發明係關於一種可包括基底之微流體器件,該基底之外表面形成一或多個用來容納流體介質之外殼。該基底可包括獨立可控電晶體結構之陣列,該等電晶體結構各者可包括側向式電晶體與垂直式電晶體。該等電晶體結構可經光啟動,且該等側向式與垂直式電晶體可由此係光電晶體。可啟動各個電晶體結構以產生從該基底之外表面區域(及由此在該外殼中之流體介質)至共用電導體的暫時電連接。該暫時電連接可一般於該區域引起局部電動力,其可足夠強以移動在外殼中之鄰近微型物體。

Description

側向式/垂直式電晶體結構及其製造與使用方法
本發明一般係關於包括具有光致動電動組態,及特定言之光致動介電泳(DEP)組態之基板的微流體器件。
微流體器件可係用於處理微型物體諸如生物細胞之便利平台。微流體器件中之微型物體可藉由在該器件中選擇性地產生局部電動力而經選擇且移動。本申請案中揭示之本發明實施例包括對在微流體器件中產生電動力的改良。
在一些實施例中,微流體器件包括具有微流體結構及基底之外殼,其可包括共用電導體。該微流體結構及該基底之外表面可共同界定在該外殼中之流動路徑。該基底可包括電晶體結構之陣列,其各者可包括將該基底外表面之對應區域連接至共用導體的側向式雙極電晶體。在一些實施例中,該微流體器件可係包括用於控制該微流體器件操作之控制設備的系統之部分。
在一些實施例中,使微型物體在微流體器件中之流體介質中移動之方法可包括向偏壓電極與該基底之共用電導體提供偏置功率。該方法亦可包括於該基底外表面之第一區域啟動第一電晶體結構,在經啟動之第一電晶體結構附近產生足以使鄰近微型物體在流動路徑中移動的電動力。
由此,在一態樣中,本發明提供具有包括微流體結構及基底之外殼的微流體器件。該微流體結構及該基底外表面可共同界定在該外殼中之流動路徑。在特定實施例中,該基底可包括共用導體及電晶體結構之陣列,各電晶體結構具有將該基底外表面之對應區域連接至共用導體的側向式雙極電晶體。在該陣列中各個電晶體結構可額外具有連接該基底外表面之對應區域的垂直式雙極電晶體。
在該陣列中各個電晶體結構可包括射極區域、基極區域、及集極區域。在特定實施例中,該基極區域可圍繞該射極區域,及該集極區域可圍繞該基極區域。在該陣列中各個電晶體結構可與該陣列中之其他電晶體結構物理分離。例如,在該陣列中該等電晶體結構可藉由溝渠與該陣列中之其他電晶體結構物理分離。
在特定實施例中,該射極區域可具有約10nm至約500nm,或約50nm至約150nm之垂直厚度。在特定實施例中,該射極區域可包括N-型摻雜劑。該射極區域之N-型摻雜劑可選自由銻、砷、及磷組成之群。
在特定實施例中,該基極區域可具有在約10nm與約400nm間(例如,在約200nm與約300nm間)之側向寬度。在相關實施例中,該基極區域可具有等於或大於該基極區域之側向寬度之垂直厚度。例如,該基極區域之垂直厚度係該基極區域之側向寬度的約二至四倍,或該基極區域之側向寬度的約三至四倍(例如約3.5倍)。該基極區域可包括P-型摻雜劑,諸如硼、鋁、鈹、鋅、或鎘。
在特定實施例中,該集極區域可具有在約100nm與約1000nm間,或在約600nm與約750nm間之側向寬度。此外,該集極區域可具有等於或大於該集極區域之側向寬度之垂直厚度。例如,該集極區域之垂直厚度可係該集極區域之側向寬度的約二至十倍,或該集極區域之側向寬度的約四至八倍(例如,約六倍)。在特定實施例中,該集極區域可包括N-型摻雜 劑。該N-型摻雜劑可選自由銻、砷、及磷組成之群。在特定實施例中,該集極區域可具有約5ohm-cm至約10ohm-cm之電阻率。
在特定實施例中,該基極區域之垂直厚度可係該射極區域之垂直厚度的約6至12倍。在特定實施例中,該集極區域之垂直厚度可係該基極區域之垂直厚度的約3至6倍。
在特定實施例中,該溝渠可具有至少比該等集極、基極、及射極區域之組合垂直深度大10%的垂直深度。該溝渠之垂直深度可係例如約2,000nm至約11,000nm。該溝渠之側向寬度可係約100nm至約1000nm。在特定實施例中,可將電絕緣材料設置於該等溝渠中。
在特定實施例中,該陣列之電晶體結構之間距可係約1000nm至約20,000nm,或約8000nm至約12,000nm,或約5000nm至約10,000nm。
在特定實施例中,共用導體可包括其上安置電晶體結構陣列之N+半導體基板。該N+半導體基板包括選自由銻、砷、及磷組成之群的摻雜劑。在特定實施例中,該N+矽基板可具有約0.025ohm-cm至約0.050ohm-cm之電阻率。
在特定實施例中,可將介電邊界設置於該基底之外表面,介於該陣列之相鄰對之電晶體結構間。該邊界可覆蓋該陣列之各個電晶體結構之射極區域之周邊部分,且具有暴露該射極區域外側之內部的開口(或窗)。該介電邊界之窗可暴露該陣列之電晶體結構之射極區域之外表面的內部以直接與在流動路徑中之流體介質接觸。在特定實施例中,該介電邊界可具有約750nm至約2,000nm之垂直厚度。在特定實施例中,該介電邊界可覆蓋該射極區域外側之周圍部分約10nm至約200nm。
在特定實施例中,該微流體結構及該基底可一起界定複數個相互連接之流體結構,其中該流動路徑係該等流體結構之一。該微流體結構及該 基底一起進一步界定至少一個繫留欄(holding pen)。該繫留欄可連接至該流動路徑。該流動路徑可包括流體通道。
該陣列之電晶體結構可將該基底外表面之不同區域連接至共用導體,及該基底外表面之區域可經設置成與流動路徑中之流體介質直接接觸。在特定實施例中,該微流體器件可額外包括偏壓電極。該流動路徑可經設置於該偏壓電極與該基底之共用電導體間。
在特定實施例中,該微流體器件之基底包括第一區段及與第一區段電絕緣之第二區段。該電晶體結構陣列可係電晶體結構之第一陣列及電晶體結構之第二陣列,且該電晶體結構之第一陣列可位於該基底之第一區段中及該電晶體結構之第二陣列可位於該基底之第二區段中。該共用導體可係與該電晶體結構之第一陣列(例如,該基底之第一區段之電晶體結構)共用但不與該電晶體結構之第二陣列(例如,該基底之第二區段之電晶體結構)共用之第一共用導體。該基底可進一步包括與第二區段之電晶體結構共用但不與第一區段之電晶體結構共用之第二共用導體。
在另一態樣中,提供一種具有第一及第二微流體器件之微流體裝置,各器件係以任何本文描述或另外揭示之微流體器件的方式構造。該第一微流體器件之外殼可係獨立並從該第二微流體器件之外殼分離。該第一微流體器件之共用電導體與該第二微流體器件之共用電導體可經電連接。由此,可具有與該第一微流體器件及該第二微流體器件共用之電導體。
在另一態樣中,提供一種包括本文描述或另外揭示之微流體器件,及用於控制該微流體器件操作之控制設備的系統。該控制設備可包括用於控制流體介質在流動路徑中之流動的流動控制器、及/或光源、空間光調變器、及用於將所選擇之光圖案引導至外殼中的光路徑。或者,或此外,該控制設備可包括用於在外殼內捕獲影像之光器件。該控制設備可包括用於控制該微流體器件操作之處理器。
在另一態樣中,提供使微型物體在微流體器件中之流體介質中移動之方法。該微流體器件可係任何本文描述或另外揭示之微流體器件。該等方法可包括以下步驟:向微流體器件(例如,該偏壓電極及該基底之共用電導體)提供偏置功率,及於該基底外表面之第一區域啟動第一電晶體結構,由此在經啟動之第一電晶體結構附近產生足以使鄰近微型物體在該微流體器件之流動路徑中移動的電動力。在特定實施例中,啟動該第一電晶體結構包括將光束引導至該第一電晶體結構之基極區域上。該光束可具有約0.1W/cm2至約1000W/cm2之強度。
在特定實施例中,提供至該微流體器件之偏置功率具有約1Vppk至約50Vppk之峰間電壓。在特定實施例中,該偏置功率具有約100kHz至約10MHz之頻率。在特定實施例中,該偏置功率具有方波形、正弦波形、或三角波形。
在特定實施例中,啟動該第一電晶體結構可包括在該第一電晶體結構之側向式雙極電晶體中引起第一電流。該第一電流可在經啟動之第一電晶體結構與偏壓電極間之流動路徑中引起不均勻電場,且該不均勻電場可產生電動力。該電動力可將鄰近微型物體推離該不均勻電場。由此,該電動力可使鄰近微型物體移動遠離對應於經啟動之第一電晶體結構的該基底外表面之第一區域。
在特定實施例中,啟動該第一電晶體結構可包括在該經啟動之第一電晶體結構之垂直式雙極電晶體中引起第二電流。該第二電流可增強該電動力。例如,第二電流可使該電動力之量值增加至少25%。在特定實施例中,在側向式電晶體中第一電流之電流密度可係在該經啟動之第一電晶體結構之垂直式電晶體中的第二電流之電流密度的至少1.5倍。
在特定實施例中,該微型物體可係珠粒,諸如聚苯乙烯珠粒或玻璃珠粒。該珠粒可具有約1μm至約50μm之直徑。在特定實施例中,該微型 物體可係生物細胞。該細胞可係選自由SP2、HeLa、胚細胞、精細胞、卵細胞及人類T細胞(jurkat cell)組成之群。
在特定實施例中,該微流體器件之流動路徑中之流體介質可選自由PBS、RPMI、或DMEM組成之群。該微流體器件之流動路徑中之流體介質可具有約10mS/m至約2S/m之導電率。
在特定實施例中,該方法包括維持在流動路徑中流體介質之溫度。該溫度可維持於約5℃至約55℃。
100:微流體器件
102:外殼
104:微流體管路元件
110:基底
112:外殼102之內表面
114:電動元件
140:微流體結構
142:微流體通道
144:微流體室
150:罩蓋
152:孔
160:偏壓電極
162:偏壓電極
164:偏壓電源
170:控制及監視系統
172:控制器
174:數位處理器
176:數位記憶體
178:控制/監視設備
180:可控光投影系統
200:基底
202:區域
204:支撐層
206:電晶體結構
206a:電晶體結構
206b:電晶體結構
208:開口
210:介電邊界
212:阻障
214:基底200之外表面
220:集極區域
222:集極區域之側向部分
224:集極區域之垂直部分
230:基極區域
232:基極區域之側向部分
234:基極區域之垂直部分
240:射極區域
242:射極區域之垂直側
244:射極區域之內側
246:射極區域240之外側
252:側向式電晶體
254:垂直式電晶體
256:覆蓋部
270:側向傳導路徑
272:垂直傳導路徑
402:介電邊界210之厚度
404:覆蓋部256之長度
406:集極區域220側向部分222之寬度
410:基極區域230側向部分232之寬度
414:阻障212從介電邊界210至基底200之垂直長度
418:阻障212之間距
422:阻障212寬度
426:集極區域220垂直部分224之厚度
430:基極區域230垂直部分234之厚度
434:射極區域240之厚度
502:微流體器件
504:微流體器件
512:共用電連接器
600:微流體器件
602:基底
604:區段
606:區段
608:電絕緣分離器
612:第一共用電導體
614:第二共用電導體
702:微型物體
706:局部電動力
712:光束
714:不均勻電場
722:垂直電流
724:側向電流
742:流體介質
800:從一電晶體結構至另一電晶體結構移動微型物體過程
802:步驟
804:步驟
806:步驟
900:製備基底200之過程實例
902:步驟
904:步驟
906:步驟
908:步驟
910:步驟
912:步驟
914:步驟
1000:半導體基板
1002:經摻雜支撐層
1006:基板1000之外表面
1102:集極摻雜層
1202:溝渠
1204:電絕緣材料
1206:電晶體結構位點
1302:遮罩
1304:開口
1306:距離
1312:遮罩1302之厚度
1314:開口1304之尺寸
1316:開口1304之尺寸
1402:基極摻雜區域
1412:覆蓋部
1414:基極摻雜區域1402之深度
1502:射極摻雜區域
1512:射極摻雜區域1502在遮罩1302下之覆蓋部
1514:射極摻雜區域1502之深度
圖1闡明經構造用於在根據本發明之一些實施例的器件內部選擇性產生局部電動力的微流體器件之一實例。
圖2係根據本發明之一些實施例之圖1器件之基底之實例組態的橫截面部分透視圖。
圖3A為圖2基底的橫截面側視圖。
圖3B係圖3A之俯視圖。
圖3C係不具有邊界結構之圖3B之俯視圖。
圖4係圖3A之橫截面側視圖,其中標示各種尺寸。
圖5係根據本發明之一些實施例分享相同共用電導體之多個微流體器件的橫側面側視圖。
圖6係根據本發明之一些實施例包括該器件之不同區段所共用之多個電導體之微流體器件的橫截面側視圖。
圖7係包括圖2基底之微流體器件的橫截面部分側視圖並闡明在根據本發明之一些實施例之器件中選擇性移動微型物體之實例。
圖8係如在圖7中闡明用於移動微型物體之方法實例。
圖9係根據本發明之一些實施例用於製備圖2基底之方法實例。
圖10、11、12A、12B、13A、13B及14至16闡明根據本發明之一些 實施例藉由圖9之方法形成的中間結構。
本說明書描述本發明之例示性實施例及應用。然而,本發明並不受限於此等例示性實施例及應用或操作該等例示性實施例及應用或本文描述之方式。此外,該等圖可顯示簡化或部分圖,且圖中元件之尺寸可經放大或其他處理而並非按比例。此外,當在本文中使用術語「在...上」、「附接至」、「連接至」、「偶合至」或類似詞語時,一個元件(例如,材料、層、基板等等)可係「在」另一元件「上」、「附接至」、「連接至」、或「偶合至」另一元件,而不論該一元件是否係直接在另一元件上、附接至、連接至、或偶合至另一元件或在該一元件與另一元件間存在一或多個中介元件。此外,若提供方向(例如,上、下、頂部、底部、側面、向上、向下、下方、上方、上部、下部、水平、垂直、「x」、「y」、「z」等等),則其係相對性且僅作為實例提供並係出於易於闡明及討論之目的而不具限制性。此外,當提及元素清單(例如,元素a、b、c)時,此提及意欲包括所列出元素任一者的本身、並非全部列出元素之任何組合、及/或全部列出元素之組合。
如本文使用,「大體上」、「一般」、或「約」意指足供意圖目的之用。術語「大體上」、「一般」、或「約」由此容許與諸如一般技術者所將預期之絕對或最佳狀態、尺寸、測量、結果等等之少量不明顯變化而不會明顯影響總體效能。當參照數值或參數或可以數值表示之特徵使用時,「大體上」或「一般」意指在10%內。術語「該等」意指大於一者。術語「設置於」之意義涵蓋「位於」。
如本文中參照數值、尺寸、或參數所使用,以下縮寫定義如下:「nm」意指奈米;「μm」意指微米;「W/cm」意指瓦特每釐米;「W/cm2」意指瓦特每平方釐米;「kHz」意指千赫;「MHz」意指百萬 赫茲;「Vppk」意指峰間電壓;及「mS/m」意指毫西門每米。符號「/」意指數學除法。
如本文使用之「微流體器件」或「微流體裝置」係包括一或多個經構造以收容流體之分離微流體管路的器件,各個微流體管路包括流體相互連接之管路元件,包括但不限於區域、流動路徑、通道、室、及/或圍欄。特定微流體器件(例如,包括罩蓋之彼等)將進一步包括至少兩個經構造以容許流體(及視情況,存在於該流體中之微型物體或液滴)流入及/或流出該微流體器件的孔。一些微流體器件之微流體管路將包括至少一個微流體通道及/或至少一個室。一些微流體管路將收容小於約1mL之流體體積,例如,小於約750、500、250、200、150、100、75、50、25、20、15、10、9、8、7、6、5、4、3、或2μL。在特定實施例中,該微流體管路收容約1至2、1至3、1至4、1至5、2至5、2至8、2至10、2至12、2至15、2至20、5至20、5至30、5至40、5至50、10至50、10至75、10至100、20至100、20至150、20至200、50至200、50至250、或50至300μL。
如本文使用之「奈米流體器件」或「奈米流體裝置」係一類具有包含至少一個經構造以收容小於約1μL(例如,小於約750、500、250、200、150、100、75、50、25、20、15、10、9、8、7、6、5、4、3、2、1nL或更少)之流體體積之管路元件之微流體管路的微流體器件。通常,奈米流體器件將包括複數個管路元件(例如,至少2、3、4、5、6、7、8、9、10、15、20、25、50、75、100、150、200、250、300、400、500、600、700、800、900、1000、1500、2000、2500、3000、3500、4000、4500、5000、6000、7000、8000、9000、10,000個、或更多)。在特定實施例中,該至少一個管路元件中之一或多個(例如,全部)係經構造以收容約100pL至1nL、100pL至2nL、100pL至5nL、250 pL至2nL、250pL至5nL、250pL至10nL、500pL至5nL、500pL至10nL、500pL至15nL、750pL至10nL、750pL至15nL、750pL至20nL、1至10nL、1至15nL、1至20nL、1至25nL、或1至50nL之流體體積。在其他實施例中,該至少一個管路元件中之一或多個(例如,全部)係經構造以收容約100至200nL、100至300nL、100至400nL、100至500nL、200至300nL、200至400nL、200至500nL、200至600nL、200至700nL、250至400nL、250至500nL、250至600nL、或250至750nL之流體體積。
如本文使用之「微流體通道」或「流動通道」係指具有顯著長於水平尺寸(及垂直尺寸,若該流微體器件包括罩蓋)之長度之微流體器件的流動區域。例如,該流動通道可係水平(或垂直)尺寸之至少5倍的長度,例如,至少10倍的長度,至少25倍的長度,至少100倍的長度,至少200倍的長度,至少500倍的長度,至少1,000倍的長度,至少5,000倍的長度,或更長。在一些實施例中,流動通道之長度係在約100,000微米至約500,000微米之範圍內,包括其間任何範圍。在一些實施例中,該水平尺寸係在約100微米至約1000微米(例如,約150至約500微米)之範圍內,及若存在,該垂直尺寸係在約25微米至約200微米,例如,約40至約150微米之範圍內。應注意流動通道在微流體器件中可具有各種不同空間組態,及由此並不限於完全線性元件。例如,流動通道可係,或包括一或多個具有如下組態之區段:曲線、彎曲、螺旋、傾斜、先端下傾、分岔(例如,多個不同流動路徑)、及其任何組合。此外,流動通道可沿其路徑具有加寬及收縮的不同橫截面積,以於其中提供期望之流體流動。
在一些實施例中,微流體器件可包括具有外表面之基底,該外表面係一或多個用於容納流體介質之外殼的部分。該基底可包括獨立可控電晶體結構之陣列,電晶體結構之各者可包括側向式電晶體及垂直式電晶體, 其二者均可係光電晶體。可啟動各個電晶體結構以產生從該基底之外表面區域(及由此在外殼中之流體介質)至共用電導體的暫時電連接。該暫時電連接一般可於該區域引發足夠強以使鄰近微型物體在該外殼中移動的局部電動力。
圖1闡明包括微流體器件100及控制與監視系統170之微流體系統之實例。該微流體器件100可包括一或多個外殼102,其可包括一或多個微流體管路元件104(例如,微流體通道142及微流體室144)。外殼102及由此微流體管路元件104可經構造以容納一或多種流體介質(未顯示)。例如,可將該介質(未顯示)設置於外殼102之內表面112上。微流體管路元件104可相互連接以形成一或多個微流體管路。如顯示,外殼102之內表面112可包括經構造以引起足夠強而可使微型物體(未顯示)在外殼102中移動之選擇性局部電動力的電動元件。電動力之一實例係介電泳(DEP)力。
儘管外殼102可以各種方式構造,但在圖1中闡明之外殼102包括電動構造之基底110(後文稱為「EK-構造之基底」)、微流體結構140、及罩蓋150。基底110、微流體結構140、及罩蓋150可彼此附接。例如,微流體結構140可設置於基底110上,且罩蓋150可設置於微流體結構140上。基底110、微流體結構140、及罩蓋150可界定外殼102及由此界定微流體管路元件104。一或多個孔152可提供進入外殼102之入口及/或離開外殼102之出口。可存在超過一個孔152,其各者可係入口、出口、或入口/出口孔。或者,可存在一個孔152,其可係入口/出口孔。該或該等孔152可包括,例如,貫穿通道、閥等等。
該EK構造之基底110可包括基板或可相互連接之複數個基板。例如,EK構造之基底110可包括一或多個半導體基板。該EK-構造之基底110可進一步包括印刷電路板總成(「PCBA」)。例如,該(等)基板可安裝在PCBA上。如表明,微流體結構140可設置於基底110上。外殼102之內 表面112可包括基底110之外表面,其可由此提供外殼102及由此該微流體管路元件104之一些壁(例如,地板)。表面112可包括電動元件114,其可係獨立可控以在外殼102中之微型物體(未顯示)上選擇性地引起局部電動力。如將觀察到,各個電動元件114可包括同時含有側向式及垂直式電晶體(其均可係光電晶體)之電晶體結構。微流體器件100可包括偏壓電極160、162,可將偏壓電源164連接至該等偏壓電極以供電給電動元件114。如顯示,外殼102可直接設置於偏壓電極160、162之間。偏壓電極160、162各可包括一或多個電導體(例如,導電板、跡線等等)。偏壓電極160、162之電導體/導電板可係可獨立編址。該等可獨立編址之導體/導電板可電連接至EK-構造基底110之不同區域,由此提供具有分離EK構造區域之EK構造之基底110。例如,對於包括複數個基板的EK構造之基底110而言,各個基板可電連接至偏壓電極162之單一可獨立編址之導電板。該等可獨立編址之導體/導電板可通過相應的電晶體開關連接至一或多個AC電壓源。
微流體結構140可包括提供外殼102及由此微流體管路元件104之一些壁的空腔或類似物。例如,微流體結構140可提供微流體管路元件104之側壁。微流體結構140可包括撓性及/或彈性材料諸如橡膠、塑膠、彈性體、聚矽氧(例如,可光圖案化聚矽氧或「PPS」)、聚二甲基矽氧烷(「PDMS」)、或其類似物,其任一者可係透氣性。可構成微流體結構140之材料的其他實例包括剛性材料諸如模製玻璃、可蝕刻材料諸如矽、光阻劑(例如,SU8)、或其類似物。前述材料可係大體上不透氣。在圖1中闡明之微流體管路元件104之實例包括微流體室144(例如,繫留欄)所流體連接的微流體通道142(流動路徑之實例)。微流體管路元件104之其他實例包括微流體貯槽(未顯示)、微流體井(未顯示)等等。
罩蓋150可設置於微流體結構140上及可提供外殼102及由此微流體管 路元件104之一些壁(例如,頂壁)。在一些實施例中,罩蓋150可包括大體上剛性材料。該一或多個孔152可提供一或多個穿過偏壓電極162及罩蓋150進入外殼102之通道。流體介質(未顯示)可由此通過該(等)孔152進入或離開外殼102。儘管在圖1中罩蓋150係設置於微流體結構140上方,但前述定向可不同。例如,基底110可設置於微流體結構140上方,而微流體結構140可位於罩蓋150上方。
圖1亦闡明用於控制及監視微流體器件100之控制及監視系統170之實例。如顯示,系統170可包括控制器172及控制/監視設備178。儘管在圖1中分開顯示,但可控光投影系統180可被視為控制/監視設備178的部分。控制器172可經構造以直接及/或通過控制/監視設備178來控制並監視器件100。
控制器172可包括數位處理器174及數位記憶體176。處理器174可係(例如)數位處理器、電腦等等,及數位記憶體176可係用於將數據及機器可執行指令(例如軟體、韌體、微程式碼等等)儲存為非暫態數據或信號的數位記憶體。處理器174可經構造成依照此等儲存於記憶體176中之機器可執行指令操作。或者或此外,處理器174可包括固線式數位電路及/或類比電路。控制器172可由此經構造以執行任何本文討論之過程(例如,圖8之過程800)、此過程之步驟、功能、行為等等。控制器172或控制器172之任何部分本文有時稱為「電路」,不論處理器174是否係經構造以依照儲存在記憶體176中之機器可執行指令操作及/或包括固線式數位邏輯電路及/或類比電路。
可控光投影系統180可包括光源(例如,汞燈諸如高壓汞燈、氙弧燈等等)、空間燈光調變器(例如,數位鏡面器件(DMD)、微光閘陣列系統(MSA)、透射式液晶顯示器(LCD)、矽基液晶(LCOS)器件、鐵電矽基液晶器件(FLCOS)、掃描雷射器件等等)、及用於將所選擇之光圖案引導至 外殼102中之光路徑(例如,光學元件串)。例如,控制器172可導致光投影系統180將變化的光圖案投影至外殼102中。
除包括可控光投影系統180外,該控制/監視設備178可包括許多不同類型之用於控制或監視微流體器件100及利用微流體器件100執行之過程之設備中之任一者。例如,設備178可包括用於向微流體器件100提供功率之電源(未顯示);用於向微流體器件100提供流體介質或自微流體器件100接收流體介質的流體介質源(未顯示);用於控制外殼102中之介質流動之流動控制器(未顯示);用於捕獲外殼102內部之影像(例如,微型物體之影像)的影像捕獲機構(未顯示)諸如光器件(未顯示);用於將能量引導至外殼102中以激勵反應之激勵機構(未顯示);或類似物。
全部或部分的外殼102可設置於電極160、162間。例如,如顯示,偏壓電極160可設置於罩蓋150上,及偏壓電極162可設置於基底110上。偏壓電源164之實例包括交流(AC)電源。圖2至4闡明圖1之EK構造基底110之組態實例200,其中電動元件114係經實施為各包括側向式電晶體252及垂直式電晶體254之電晶體結構206。EK構造基底200可由此替代圖1及/或任何本文討論之基底110。在圖2中基底200之外表面214係等同於圖1中外殼102之內表面112。外殼102中之流體介質(未顯示)可由此直接位在基底200之外表面214上及由此直接與外表面214之特徵部諸如介電210及藉由介電210中之開口208暴露的表面214之區域202接觸。在圖2中,EK構造之基底200經顯示為設置於偏壓電極162上。
如顯示,EK構造之基底200可包括電晶體結構206之陣列,各電晶體結構206可經啟動以選擇性地將基底200之外表面214之不同區域202連接至共用導體(例如,支撐基板204及/或偏壓電極162)。如將觀察到,此可一般在區域202上方在設置於外殼102中之外表面214上之流體介質(未顯示)中暫時產生局部電動力。設置於外殼102中的此介質(未顯示)可與區域 202直接接觸。儘管在圖2中闡明之電晶體結構206之陣列係呈行及列的規則圖案,但電晶體結構206亦可以包括不規則圖案之其他圖案設置。電晶體結構206之陣列可由此係規則或不規則陣列。
電晶體結構206可設置於(例如,安置於)支撐層204上。介電邊界210及電絕緣阻障212可物理分離電晶體結構206。介電邊界210可設置於外表面214上及由此被視為外表面214的部分。介電邊界210可在鄰近電晶體結構206間提供外部介電邊界但亦個別地向電晶體結構206提供開口208。阻障212可從介電邊界210延伸至支撐層204且在基底200中物理分離相鄰的電晶體結構206。如顯示,可將開口208之尺寸定為使得介電邊界210覆蓋電晶體結構206之射極區域240之外側246之外周邊。在後文中,將介電邊界210之覆蓋射極區域240之周邊部分之部分稱為覆蓋部及在圖3A中標示為256。介電邊界210可包括介電材料,其實例包括氧化矽。阻障212可包括電絕緣材料。
如在圖3A至3C中最佳觀察到,各個電晶體結構206可包括射極區域240、基極區域230、及集極區域220。如顯示,射極區域240可設置於基極區域230中,該基極區域230可設置於集極區域220中。阻障212可從介電邊界210充分延伸至基底200,以使一電晶體結構206之射極區域240、基極區域230、及集極區域220與相鄰電晶體結構206之射極區域240、基極區域230及集極區域220物理分離。
如顯示,射極區域240可包括構成外表面214之部分的外側246、與外側246相對之內側244、及垂直側242。基底200之外表面214之區域202可係藉由介電邊界210中之開口208暴露之射極區域240之外側246的內部部分。
基極區域230及集極區域220可包括側向部分232、222及垂直部分234、224。如在圖3A中闡明,基極區域230之側向部分232可設置於射極區域240之側面242與集極區域220之側向部分222之間。集極區域220之側 向部分222可設置於基極區域230之側向部分232及垂直部分234與使電晶體結構206與相鄰電晶體結構206分離之阻障212之間。
基極區域230之垂直部分234可設置於射極區域240之內側244與集極區域220之垂直部分224間。集極區域220之垂直部分224可相似地設置於基極區域230之垂直部分234與支撐層204間。
各個電晶體結構206可包括多個電晶體。例如,電晶體結構206可包括側向式電晶體252(例如,雙極接面電晶體),其包括射極區域240、基極區域230之側向部分232、及集極區域220之側向部分222。當經啟動時,前述側向式電晶體252可如下提供從射極區域240之外側246(及由此基底200之外表面214之區域202)至支撐層204及偏壓電極162的側向傳導路徑270:側向傳導路徑270可從射極區域240之外側246穿過射極區域240之側面242,進入且穿過基極區域230之側向部分232,進入且穿過集極區域220之側向部分222,隨後進入且穿過集極區域220之垂直部分224至支撐層204,及穿過支撐層204至偏壓電極162。
電晶體結構206亦可包括垂直式接面電晶體254(例如,另一雙極接面電晶體),其可包括射極區域240、基極區域230之垂直部分234、及集極區域220之垂直部分224。當經啟動時,前述垂直式電晶體254可如下提供從包括射極區域240之外側246之基底200之外表面214之區域202至支撐層204及偏壓電極162的垂直傳導路徑272:垂直傳導路徑272可從射極區域240之外側246穿過至射極區域之內側244,進入且穿過基極區域230之垂直部分234,進入且穿過集極區域220之垂直部分224,隨後進入且穿過支撐層204至偏壓電極162。由此,當經啟動時,電晶體結構206可提供從包括射極區域240之外側246之基底200之外表面214之區域202至支撐層204及偏壓電極162的穿過側向式電晶體252之側向傳導路徑270及穿過垂直式電晶體254之垂直傳導路徑272。如可觀察到,支撐層204及偏壓電極162 可係導電性,且其任一者或兩者可由此係共用導體之實例。
基底200可包括半導體基板。例如,基底200可包括矽基板、砷化鎵基板等等。支撐層204、集極區域220、基極區域230、及射極區域240可包括半導體基板之經摻雜區域。例如,支撐層204、集極區域220、及射極區域240可摻雜有第一類型摻雜劑,及基極區域230可摻雜有相反類型摻雜劑。由此,例如,支撐層204、集極區域220、及射極區域240可摻雜有N型摻雜劑,及基極區域230可摻雜有P型摻雜劑。在另一實例中,支撐層204、集極區域220、及射極區域240可摻雜有P型摻雜劑,及基極區域230可摻雜有N型摻雜劑。
然而,摻雜有相同類型摻雜劑之區域可摻雜有不同濃度之該摻雜劑。例如,支撐層204、集極區域220、及/或射極區域240中之一或多者可經摻雜成所謂之N+區域,而彼等區域中之其他者係經摻雜為N區域,其中+表示較高濃度之N型摻雜劑。相似地,若支撐層204、集極區域220、及射極區域240係P摻雜,則彼等區域中之一或多者可經摻雜為P+區域。此外,如一般技術者應瞭解,N+及N-摻雜區域可包括P型摻雜劑,其限制條件為N型摻雜劑的含量較P型摻雜劑豐富且主導該區域之總體電學特性。相似地,P+及P-摻雜區域可包括N型摻雜劑,其限制條件為P型摻雜劑的含量較N型摻雜劑豐富且主導該區域之總體電學特性。該N型摻雜劑可係任何負載體(例如電子)的來源。適宜N或N+摻雜劑之實例包括磷、砷、銻等等。P型摻雜劑可係任何正載體(例如,電洞)之來源。適宜P或P+摻雜劑之實例包括硼、鋁、鈹、鋅、鎘、銦等等。
支撐層204可經大量摻雜,及由此,例如,係具有在約0.025ohm-cm與約0.050ohm-cm間之電阻率之N+區域。集極區域220及/或射極區域240可係較少量摻雜,及由此,例如,可係具有在約5ohm-cm至約10ohm-cm間之電阻率之N區域。或者,射極區域240可經大量摻雜。例如,該射 極區域240之摻雜密度可係在約1018cm-3至約1021cm-3之範圍內。基極區域230之摻雜密度可係在約1016cm-3至約1018cm-3之範圍內。前述數值及範圍僅係作為實例提供而非意在限制。
圖4指出基底200之特定尺寸。所闡明尺寸之適宜大小之實例包括下列。介電邊界210之厚度402可係在約750nm與約2,000nm間,或約750nm與約850nm間。覆蓋射極區域240周邊之介電邊界210之覆蓋部256之長度404可係介於約10nm與約200nm間。集極區域220之側向部分222之寬度406可係如下:在約100nm與約1,000nm間;或在約600nm與約750nm間。基極區域230之側向部分232之寬度410可在約10nm與約400nm間;或在約200nm與約300nm間。射極區域240之厚度434可係如下:在約10nm與約500nm間;或在約50nm與約150nm間。基極區域230之垂直部分234之厚度430可係如下相對側向部分232之寬度410之任一者:大於或等於;二至四倍大;三至四倍大;或3.5倍大。集極區域220之垂直部分224之厚度426可係如下相對側向部分222之寬度406之任一者:大於或等於;二至十倍大;四至八倍大;或六倍大。基極區域230之垂直部分234之厚度430可係射極區域440之厚度434的六至十二倍。集極區域220之垂直部分224之厚度426可係基極區域230之垂直部分234之厚度430的三至六倍。前述數值及範圍僅作為實例提供而非意在限制。
阻障212從介電邊界210至基底200之垂直長度414可係如下:在約2,000nm與約11,000nm間;或比射極區域240大至少10%、基極區域230之垂直部分234、及集極區域220之垂直部分224之組合厚度434、430、426。阻障212之間距418(例如,相鄰阻障212之垂直中心軸間之距離)(其亦係電晶體結構206之間距)可係如下:在約1,000nm與約20,000nm間;在約8,000nm與約12,000nm間;或在約5,000nm與約10,000nm間。阻障212之寬度422可係在約100nm與約1,000nm間。前述數值及範圍僅作為實例提供 而非意在限制。
如在圖2至4中闡明之EK構造基底200係為實例且涵蓋變型。例如,在一或多個電晶體結構206中,區域240可係集極區域及區域220可係射極區域。在另一實例中,側向式電晶體252及/或垂直式電晶體254中之一或兩者可係除接面電晶體外之電晶體類型。例如,側向式電晶體252及/或垂直式電晶體254中之一或兩者可係場效應電晶體。圖5及6闡明額外變型之實例。
圖5顯示複數個微流體器件502、504(顯示兩個,但可有更多),其各者可係如圖1之器件100,其中圖2至4之基底200替代基底110。如顯示,微流體器件502、504可係不同且彼此分離但共享相同的共用電連接器512,其或者可係如圖1之偏壓電極162。
圖6描繪包括含複數個彼此電絕緣之區段604、606的基底602之微流體器件600。基底602之第一區段604可係如圖2至4之基底200,包括由阻障212分離之電晶體結構206之陣列。第二區段606可相似地如基底200,包括由其他阻障212分隔之另一電晶體結構206之陣列。儘管區段604、606係相同基底602的部分,但區段604、606可係彼此電絕緣,例如,藉由電絕緣分離器608。如顯示,第一區段604可包括經連接及由此與第一區段604之電晶體結構206共用但不與第二區段606之電晶體結構206共用之第一共用電導體612。相似地,第二區段606可包括經連接及由此與第二區段606之電晶體結構206共用但不與第一區段604之電晶體結構206共用之第二共用電導體614。
圖7闡明圖1之器件100的部分、橫截面側視圖,其中圖2至4之EK構造基底200替代基底110。其顯示微型物體702設置於通道142中之流體介質742中。如顯示,可啟動其中一個電晶體結構206b,打開其側向式電晶體252及垂直式電晶體254。此可導致沿側向電流路徑270(在圖3A中顯示) 之側向電流724及沿垂直電流路徑272(亦在圖3A中顯示)之垂直電流722。此可在偏壓電極160與經啟動之電晶體結構206b之射極區域240之外側246間引起局部不均勻電場714。不均勻電場714可在外殼中一般在基底200之表面214(對應於經啟動之電晶體結構206b之外側246)之區域202上方產生局部電動力706(例如,DEP力)。
側向電流724與垂直電流722之組合可使電動力706之強度增強至超過僅藉由電流722、724之一者所產生之力。據信側向電流724可使電動力706較僅藉由垂直電流所產生之電動力增加至少5%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%或更多。在一些實施例中,側向電流724可係垂直電流722的至少1.5倍。
藉由不均勻電場714產生之力706可係推斥力(如在圖7中闡明),其可足夠強以將鄰近微型物體702推離經啟動之電晶體結構206b,例如,至未經啟動之電晶體結構206a。或者,儘管未在圖7中顯示,由不均勻電場714產生之力706可係將微型物體702拉至不均勻電場714的引力。力706係推斥力或引力可取決於包括介質742之導電性、偏置功率之頻率(例如,由偏壓電源164(參見圖1)提供)、及/或類似參數的數個參數而定。
電晶體結構206可經構造成以數個方式的任一者啟動。例如,電晶體結構206可藉由啟動其基極區域230(其可引發上文討論之電流722、724)來啟動。在一些實施例中,該等電晶體結構206可係經構造成藉由經引導至基極區域230上之光束啟動的光電晶體結構。例如,如在圖7中闡明,可藉由將光束712引導至其基極區域230之側向部分232上來啟動電晶體結構206b。或者,或此外,可藉由將光束(未顯示)引導至其基極區域230之垂直部分234上來啟動電晶體結構206b。偏壓電極160及罩蓋150可係實質上光透明及/或經設置以提供光束路徑(例如,712)。介電邊界210之厚度 可係足夠薄以容許光束712穿透至基極區域230之側向部分232,及/或射極區域240之厚度可足夠薄以容許光束穿透至基極區域230之垂直部分234。介電邊界210及射極區域240之適宜厚度的實例提供於上文。
亦如在圖7中顯示,在缺乏光束時,電晶體結構260a不經啟動。電晶體結構206之陣列中之電晶體結構206可由此藉由將獨立光束712引導至電晶體結構206之基極區域230上並隨後移除光束712來獨立啟動及撤銷啟動。如上文表明,控制器172可控制並改變藉由可控光投影系統180引導至外殼102中之光圖案及由此控制並改變個體之啟動及如同圖7中顯示之電晶體結構206所構造之EK元件114之圖案。
或者,一或多個電晶體結構206可經構造來以除光外之方式啟動。例如,可對一或多個電晶體結構206之基極區域230提供獨立電導線(未顯示),其可由此藉由通過該導線對基極區域230施加啟動信號來啟動並藉由移除該啟動信號來撤銷啟動。
圖8係從一電晶體結構206移動微型物體(如702)至另一電晶體結構206之過程800之實例。在步驟802中,啟動電晶體結構。例如,如在圖7中闡明,可如上文討論啟動電晶體結構206b(例如,經由光束712)。在步驟804中,該經啟動之電晶體結構(例如,圖7中之206b)引起側向及垂直電流(例如,圖7中之722、724),其一般在經啟動之電晶體結構上方產生局部不均勻電場(例如,714)。在步驟806中,該不均勻電場可在鄰近微型物體上引起足以移動該微型物體702朝向或遠離該力的電動力(例如,圖7中之706),亦如上文討論。例如,如在圖7中顯示,力706可係將微型物體702推離經啟動之電晶體結構206b至鄰近未經啟動之電晶體結構206a的推斥力。
如表明,圖1中之電動元件114可各自經構造為電晶體結構206。可藉由重複步驟802至806以使微型物體702在外殼102中如期望地移動之圖案 選擇性地啟動及撤銷啟動電動元件114之一者來使微型物體(例如,如圖7中之702)從電動元件114移動至電動元件114。儘管未顯示,然電動元件114之圖案可同時經啟動來以期望方向推動微型物體。
微型物體702可係任何類型之無生命或生物微型物體。例如,微型物體702可係微型珠粒(例如,聚苯乙烯珠粒或玻璃珠粒,其直徑在約1μm與約50μm間)、微型柱(microrod)等等。生物微型物體之實例包括細胞,諸如SP2、HeLa、或人類T細胞等等,及胚細胞、精細胞、卵細胞等等。
在一些實施例中,流體介質742可具有在約10mS/m與約2S/m間之導電性。流體介質之實例包括鹽水溶液(例如,PBS等等)及細胞培養基(例如,RPMI DMEM等等)。過程800可包括將介質742維持於約5℃與約55℃間之溫度。
可藉由該偏壓電源164提供至偏壓電極160、162之偏置功率的實例包括下列。具有在約1Vppk至約50Vppk間之峰間電壓及/或在約100kHz與約10MHz間之頻率的交流(AC)偏置功率。該偏置功率可係方波形、正弦波形、或三角波形。光束712可具有在約0.1W/cm2與約1000W/cm2間之強度。
圖9之過程900闡明製備在圖2至4中闡明之EK構造基底200的實例。圖10至16顯示在過程900期間製得之中間結構之實例。
在步驟902中,過程900可獲得包括經摻雜支撐層之半導體基板。圖10闡明包括經摻雜支撐層1002之半導體基板1000之實例。在圖10至16中將基板1000之外表面標示為1006。半導體基板1000可包括上文指出用於基底200之任何半導體材料。如將觀察到,經摻雜支撐層1002可係在基底200中支撐層204之基礎且可由此摻雜有任何該等材料並係依照上文針對支撐層204指出之任何參數。或者,可於步驟902獲得不具有經摻雜支撐層1002之基板1000,該經摻雜支撐層1002可在進行過程900的期間或之後 形成。
在步驟904中,過程900可在基板中形成集極摻雜層,其可摻雜有與該經摻雜支撐層相同類型之摻雜劑。圖11顯示在緊鄰經摻雜支撐層1002之基板1000中形成之經摻雜集極層1102之實例。集極摻雜層1102可摻雜有任何該等材料並係依照上文針對集極區域220所指出之任何參數。
在步驟906中,過程900可在於步驟902獲得之基板中形成電絕緣阻障212(參見圖2至4)。如在圖12A與12B中闡明,可在基板1000中形成從外表面1006穿過集極摻雜層1102至經摻雜支撐層1002中的溝渠1202。被溝渠1202包圍(例如,環繞)之基板1000的部分界定待於其中形成電晶體結構206(參見圖2至4)的電晶體結構位點1206。溝渠1202可由此圍繞基板1000中電晶體結構206之期望位置形成。亦如在圖12A與12B中顯示,溝渠1202可填充有電絕緣材料1204。
在步驟908中,過程900可在基板上形成於電晶體結構位點處具有開口之遮罩。圖13A與13B闡明在基板1000之表面1006上形成具有開口1304之遮罩1302的實例。如顯示,該遮罩1302可具有厚度1312,且各個開口1304可小於其對應的電晶體結構位點1206,使得遮罩1302覆蓋並從溝渠1202延伸距離1306至電晶體結構位點1206中。在圖13A與13B中,將開口1304之尺寸標示為1314、1316。
如將觀察到,遮罩1302作為電晶體結構206之基極區域230及射極區域240將通過其於各個電晶體位點1206形成的遮罩。在一些實施例中,前述係遮罩1302之唯一功能,其隨後在進行步驟910、912後移除。在其他實施例中,遮罩1302亦係介電邊界210。在此等實施例中,遮罩1302可包括上文針對介電邊界210指出之任何材料且可具有上文針對介電邊界210指出之任何尺寸及參數。可於步驟908形成具有此等尺寸及參數之遮罩1302。或者,可於步驟908形成具有不同參數之遮罩1302並隨後在進行步驟910、912後修改為具有介電邊界210之期望尺寸及參數。例如,可於步 驟908形成具有有助於進行步驟910、912之厚度1312的遮罩1302。在進行步驟910、912後,厚度1312可降低至介電邊界210之期望厚度402(參見圖4)。
在步驟910中,過程900可通過在遮罩中於電晶體位點處之開口形成集極摻雜層中之基極摻雜區域。圖14顯示於電晶體位點1206處在集極摻雜層1102中形成基極摻雜區域1402的實例。可控制摻雜過程之參數使得基極摻雜區域1402自基板1000之表面1006至集極層1102之深度1414係在圖4中闡明之期望尺寸430、434的總和。相似地,可控制摻雜過程之參數使得基極摻雜區域1402在遮罩1302下方之覆蓋部1412係在圖4中闡明之期望尺寸410、404之總和。在步驟910中之該摻雜可係使用上文針對電晶體結構206之基極區域230所指出之任何材料且依照上文針對電晶體結構206之基極區域230所指出之任何參數。
在步驟912中,過程900可通過在遮罩中於電晶體位點處之開口在於步驟910形成之基極摻雜區域中形成射極摻雜區域。圖15闡明在基極摻雜區域1402中形成射極摻雜區域1502的實例。可控制摻雜過程之參數使得射極摻雜區域1502從基板1000之表面1006至基極摻雜區域1402之深度1514係在圖4中闡明之期望尺寸434。相似地,可控制摻雜過程之參數使得射極摻雜區域1502在遮罩1302下之覆蓋部1512係在圖4中闡明之期望尺寸404。步驟912中之該摻雜可係利用上文針對電晶體結構206之射極區域240指出之任何材料且依照上文針對電晶體結構206之射極區域240指出之任何參數。
在步驟914中,可提供介電邊界210。如表明,可採用遮罩1302作為介電邊界210,在此情形下可如期望地修改遮罩1302及留於原地作為介電邊界210。或者,可移除遮罩1302作為步驟914之部分及可在該基板之外表面1006上形成介電邊界210。
圖16闡明由於過程900而於其中一個電晶體位點1206處形成之電晶體結構206(參見圖2至4)。經填充之溝渠1202係阻障212。經摻雜支撐層1002係支撐層204。在經填充之溝渠1202間在基極摻雜區域1402及射極摻雜區域1502下方之集極摻雜層1102係集極區域220。在射極摻雜區域1502下方之基極摻雜區域1402係基極區域230,及射極摻雜區域1502係射極區域240。圖10至16僅闡明可藉由過程900在基板1000中形成電晶體結構206的眾多電晶體位點1206之一。由此,可在基板1000上藉由過程900形成眾多此等電晶體結構206。例如,可在基板1000上藉由過程900形成彼此相鄰的複數個電晶體結構206,例如,呈行列型陣列。
儘管已於本說明書中描述本發明之特定實施例及應用,但此等實施例及應用僅係例示性,且眾多變型係可能的。
100‧‧‧微流體器件
102‧‧‧外殼
104‧‧‧微流體管路元件
110‧‧‧基底
112‧‧‧外殼102之內表面
114‧‧‧電動元件
140‧‧‧微流體結構
142‧‧‧微流體通道
144‧‧‧微流體室
150‧‧‧罩蓋
152‧‧‧孔
160‧‧‧偏壓電極
162‧‧‧偏壓電極
164‧‧‧偏壓電源
170‧‧‧控制及監視系統
172‧‧‧控制器
174‧‧‧數位處理器
176‧‧‧數位記憶體
178‧‧‧控制/監視設備
180‧‧‧可控光投影系統

Claims (35)

  1. 一種微流體器件,包括:一外殼,其具有一微流體結構及一基底,其中該基底包括一共用電導體,其中該微流體結構及該基底之一外表面一同界定在該外殼中之一流動路徑,其中該基底包括複數個電晶體結構之一陣列,在該陣列中各個該電晶體結構包括將該基底之該外表面之一對應區域連接至該共用導體的一側向式雙極電晶體,及其中,在該陣列中該電晶體結構每一者進一步包含連接該基底之該外表面之該對應區域的一垂直式雙極電晶體。
  2. 如請求項1之微流體器件,其中在該陣列中各個該電晶體結構包括一集極區域、一基極區域、及一射極區域,其中該基極區域圍繞該射極區域,其中該集極區域圍繞該基極區域,及其中在該陣列中各個該電晶體結構係與該陣列中之其他電晶體結構物理性地分離。
  3. 如請求項1之微流體器件,其中在該陣列中各個該電晶體結構係藉由一溝渠與該陣列中之其他電晶體結構物理性地分離,且進一步包含設置於該等溝渠中之一電絕緣材料。
  4. 如請求項2之微流體器件,其中該基極區域包括一P型摻雜劑,其中 該集極區域包含一N型摻雜劑,且其中該射極區域包含一N型摻雜劑。
  5. 如請求項2之微流體器件,其中該集極區域具有5ohm-cm至10ohm-cm之一電阻率。
  6. 如請求項1之微流體器件,其中該共用導體包括其上安置該電晶體結構之陣列的一N+半導體基板,且可選擇地,其中該N+矽基板具有0.025ohm-cm至0.050ohm-cm之一電阻率。
  7. 如請求項1-6中任一項之微流體器件,其中該陣列之該等電晶體結構之一間距係1000nm至20,000nm。
  8. 如請求項1-6中任一項之微流體器件,其中該陣列之該等電晶體結構之一間距係8000nm至12,000nm。
  9. 如請求項3之微流體器件,其中該溝渠之一垂直深度係2,000nm至11,000nm。
  10. 如請求項3之微流體器件,其中該溝渠之一側向寬度係100nm至1000nm。
  11. 如請求項3之微流體器件,其進一步包括設置於該基底之該外表面上在該陣列之相鄰對之該等電晶體結構間的一介電邊界。
  12. 如請求項11之微流體器件,其中該介電邊界之一垂直厚度係750nm 至2,000nm。
  13. 如請求項1之微流體器件,其中該微流體結構及該基底一同進一步界定一繫留欄(holding pen)。
  14. 如請求項13之微流體器件,其中該繫留欄係連接至該流動路徑。
  15. 如請求項1之微流體器件,其中:該微流體結構及該基底一同界定一複數個相互連接之流體結構,及該流動路徑係該等流體結構之一。
  16. 如請求項1之微流體器件,其中該流動路徑包括一微流體通道。
  17. 如請求項1之微流體器件,其中:該陣列之該等電晶體結構將該基底之該外表面之不同區域連接至該共用導體,及該基底之該外表面之該等區域係經設置成直接接觸該流動路徑中之流體介質。
  18. 如請求項17之微流體器件,其進一步包括一偏壓電極,其中該流動路徑係設置於該偏壓電極與該基底之該共用電導體間。
  19. 如請求項1之微流體器件,其中:該基底包括一第一區段及與該第一區段電絕緣之一第二區段; 該等電晶體結構之該陣列係在該第一區段中之該等電晶體結構之一第一陣列,該基底包括在該第二區段中之該等電晶體結構之一第二陣列;該共用導體係與該第一區段之該等電晶體結構共用但不與該第二區段之該等電晶體結構共用之一第一共用導體;及該基底進一步包括與該第二區段之該等電晶體結構共用但不與該第一區段之該等電晶體結構共用之一第二共用導體。
  20. 一種微流體裝置,包括:一第一微流體器件;及一第二微流體器件,其中該第一微流體器件與該第二微流體器件各者係具有如請求項1之微流體器件之特徵,其中該第一微流體器件之該外殼係與該第二微流體器件之外殼分離且不同,及其中該第一微流體器件之該共用電導體與該第二微流體器件之該共用電導體係電連接且構成與該第一微流體器件及該第二微流體器件共用之一電導體。
  21. 一種包括如請求項1之微流體器件之系統,其進一步包括:用於控制該微流體器件之操作的控制設備。
  22. 如請求項21之系統,其中該控制設備係選自於該群組包含用於控制一流體介質在該流動路徑中之流動的一流動控制器,用於在該外殼內部擷取影像之一光器件,及用於控制該微流體器件之操作的一處理器。
  23. 如請求項21之系統,其中該控制設備包括一光源、一空間光調變器、及用於將經選擇之光圖案引導至該外殼中的一光路徑。
  24. 一種在如請求項18之微流體器件中之一流體介質中移動一微型物體之方法,該方法包括:向該偏壓電極及該基底之該共用電導體提供偏置功率;及啟動於該基底之該外表面之該等區域中之第一者處的該等電晶體結構中之一第一電晶體結構,其中該啟動在該經啟動之該第一電晶體結構附近產生足以在該流動路徑中移動鄰近的一微型物體的一電動力。
  25. 如請求項24之方法,其中該啟動在該第一電晶體結構之該側向式雙極電晶體中引起一第一電流,且其中該第一電流在該經啟動之該第一電晶體結構與該偏壓電極間之該流動路徑中引起一不均勻電場,該不均勻電場產生該電動力。
  26. 如請求項25之方法,其中該電動力將鄰近的該微型物體推離該不均勻電場。
  27. 如請求項25之方法,其中該啟動亦在該經啟動之第一電晶體結構之該垂直式電晶體中引起一第二電流。
  28. 如請求項27之方法,其中該第二電流使該電動力之一量值增加至少25%。
  29. 如請求項27之方法,其中在該側向式電晶體中該第一電流之一電流密度係在該經啟動之第一電晶體結構之垂直式電晶體中該第二電流之一電流密度的至少1.5倍。
  30. 如請求項24至29中任一項之方法,其中該啟動包括將一光束引導至該第一電晶體結構,且可選擇地,其中該光束具有0.1W/cm2至1000W/cm2之一強度。
  31. 如請求項24至29中任一項之方法,其中該微型物體係選自下列群組所含之物:一聚苯乙烯珠粒及一玻璃珠粒,其中該微型物體之直徑1μm至50μm。
  32. 如請求項24至29中任一項之方法,其中該微型物體係一生物細胞。
  33. 如請求項24至29中任一項之方法,其中該微流體器件之該流動路徑中之該流體介質具有10mS/m至2S/m之一電導率。
  34. 如請求項24至29中任一項之方法,其中該提供包括提供具有1Vppk至50Vppk之一峰間電壓的該偏置功率。
  35. 如請求項24至29中任一項之方法,其中該提供包括提供頻率100kHz至10MHz之該偏置功率。
TW108131089A 2014-12-08 2015-12-07 側向式/垂直式電晶體結構及其製造與使用方法 TWI721545B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462089085P 2014-12-08 2014-12-08
US62/089,085 2014-12-08

Publications (2)

Publication Number Publication Date
TW201943460A TW201943460A (zh) 2019-11-16
TWI721545B true TWI721545B (zh) 2021-03-11

Family

ID=54937388

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108131089A TWI721545B (zh) 2014-12-08 2015-12-07 側向式/垂直式電晶體結構及其製造與使用方法
TW104140973A TWI678232B (zh) 2014-12-08 2015-12-07 側向式/垂直式電晶體結構及其製造與使用方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW104140973A TWI678232B (zh) 2014-12-08 2015-12-07 側向式/垂直式電晶體結構及其製造與使用方法

Country Status (13)

Country Link
US (4) US9908115B2 (zh)
EP (2) EP3831482B1 (zh)
JP (2) JP6514776B2 (zh)
KR (2) KR102369770B1 (zh)
CN (2) CN110624614B (zh)
AU (2) AU2015360849B2 (zh)
CA (1) CA2970174C (zh)
DK (1) DK3229958T3 (zh)
HK (1) HK1244748A1 (zh)
IL (2) IL252760B (zh)
SG (2) SG10201900567QA (zh)
TW (2) TWI721545B (zh)
WO (1) WO2016094308A1 (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL297654A (en) 2013-10-22 2022-12-01 Berkeley Lights Inc Microfluidic devices with isolation pens and methods for testing microbiological items using them
US11192107B2 (en) 2014-04-25 2021-12-07 Berkeley Lights, Inc. DEP force control and electrowetting control in different sections of the same microfluidic apparatus
US9815056B2 (en) 2014-12-05 2017-11-14 The Regents Of The University Of California Single sided light-actuated microfluidic device with integrated mesh ground
TWI721545B (zh) * 2014-12-08 2021-03-11 美商柏克萊燈光有限公司 側向式/垂直式電晶體結構及其製造與使用方法
KR20230078838A (ko) 2015-04-22 2023-06-02 버클리 라잇츠, 인크. 미세유체 세포 배양
US10751715B1 (en) 2015-04-22 2020-08-25 Berkeley Lights, Inc. Microfluidic reporter cell assay methods and kits thereof
US10101250B2 (en) 2015-04-22 2018-10-16 Berkeley Lights, Inc. Manipulation of cell nuclei in a micro-fluidic device
CN107810059B (zh) 2015-04-22 2021-03-23 伯克利之光生命科技公司 在微流体装置上冷冻和存档细胞
US10799865B2 (en) 2015-10-27 2020-10-13 Berkeley Lights, Inc. Microfluidic apparatus having an optimized electrowetting surface and related systems and methods
EP3380238A1 (en) 2015-11-23 2018-10-03 Berkeley Lights, Inc. In situ-generated microfluidic isolation structures, kits and methods of use thereof
SG11201804275TA (en) 2015-12-08 2018-06-28 Berkeley Lights Inc Microfluidic devices and kits and methods for use thereof
CA3009073A1 (en) 2015-12-30 2017-07-06 Berkeley Lights, Inc. Microfluidic devices for optically-driven convection and displacement, kits and methods thereof
WO2017117521A1 (en) 2015-12-31 2017-07-06 Berkeley Lights, Inc. Tumor infilitrating cells engineered to express a pro-inflammatory polypeptide
JP6902548B2 (ja) 2016-01-15 2021-07-14 バークレー ライツ,インコーポレイテッド 患者特異的抗癌治療剤の製造方法及びその治療方法
EP3429753A4 (en) 2016-03-16 2019-11-06 Berkeley Lights, Inc. METHODS, SYSTEMS AND DEVICES FOR SELECTION AND PRODUCTION OF GENERICALLY WORKED CLONES
EP3430131B1 (en) 2016-03-17 2022-06-08 Berkeley Lights, Inc. Selection and cloning of t lymphocytes in a microfluidic device
SG11201808914UA (en) 2016-04-15 2018-11-29 Berkeley Lights Inc Methods, systems and kits for in-pen assays
US10675625B2 (en) 2016-04-15 2020-06-09 Berkeley Lights, Inc Light sequencing and patterns for dielectrophoretic transport
EP3463665B1 (en) 2016-05-26 2024-05-01 Bruker Cellular Analysis, Inc. Microfluidic device with covalently modified surfaces
WO2018018017A1 (en) 2016-07-21 2018-01-25 Berkeley Lights, Inc. Sorting of t lymphocytes in a microfluidic device
TWI746715B (zh) 2016-12-01 2021-11-21 美商伯克利之光生命科技公司 用於成像微物件的設備、系統及方法
CA3046827A1 (en) 2016-12-12 2018-06-21 xCella Biosciences, Inc. Methods and systems for screening using microcapillary arrays
CA3048645A1 (en) 2016-12-30 2018-07-05 The Regents Of The University Of California Methods for selection and generation of genome edited t cells
EP3623461A4 (en) 2017-05-12 2021-01-20 Nikon Corporation OBJECT MANIPULATION DEVICE AND OBJECT MANIPULATION METHOD
CN110719956A (zh) 2017-06-06 2020-01-21 齐默尔根公司 用于改良真菌菌株的高通量基因组工程改造平台
EP3721209B1 (en) 2017-10-15 2024-02-07 Berkeley Lights, Inc. Methods for in-pen assays
US10539528B2 (en) 2017-12-19 2020-01-21 International Business Machines Corporation Stacked nanofluidics structure
EP3756165A4 (en) * 2018-04-27 2021-10-13 Hewlett-Packard Development Company, L.P. OBJECT ROTATION BY NON-UNIFORM NON-ROTATING ELECTRIC FIELD
KR20210018219A (ko) 2018-06-06 2021-02-17 지머젠 인코포레이티드 발효 및 생산 중 곰팡이 형태를 제어하기 위한 신호 전달에 포함된 유전자의 조작
US11993766B2 (en) 2018-09-21 2024-05-28 Bruker Cellular Analysis, Inc. Functionalized well plate, methods of preparation and use thereof
CN113348036A (zh) * 2018-11-19 2021-09-03 伯克利之光生命科技公司 具有可编程开关元件的微流体装置
CN109346496A (zh) * 2018-11-23 2019-02-15 德淮半导体有限公司 像素单元、图像传感器及其制造方法
CN118567089A (zh) * 2019-01-16 2024-08-30 皇冠电子公司 用于成像系统的电动学装置的应用
EP3962652A4 (en) 2019-04-30 2023-01-18 Berkeley Lights, Inc. METHODS FOR ENCAPSULATION AND TESTING OF CELLS
CN114829626A (zh) 2019-10-10 2022-07-29 1859公司 用于微流体筛选的方法和系统
EP3894834A4 (en) 2019-11-17 2022-08-31 Berkeley Lights, Inc. SYSTEMS AND METHODS FOR ANALYSIS OF BIOLOGICAL SAMPLES
US11479779B2 (en) 2020-07-31 2022-10-25 Zymergen Inc. Systems and methods for high-throughput automated strain generation for non-sporulating fungi
WO2023018769A1 (en) * 2021-08-10 2023-02-16 Ideal Power Inc. System and method for bi-directional trench power switches
CN116351351A (zh) * 2021-12-28 2023-06-30 彩科(苏州)生物科技有限公司 具有增大的受光照强度的晶体管光镊及微流体设备
CN116351352A (zh) * 2021-12-28 2023-06-30 彩科(苏州)生物科技有限公司 具有对称漏电流的晶体管光镊及包括该光镊的微流体设备
CN116393068A (zh) * 2021-12-28 2023-07-07 彩科(苏州)生物科技有限公司 基于斜向等密度排布光电晶体管的光镊装置及微流体设备
TWI837762B (zh) * 2022-08-10 2024-04-01 醫華生技股份有限公司 非接觸式分選裝置與其光感應結構、及生物微粒分選設備
JP2024049813A (ja) * 2022-09-29 2024-04-10 横河電機株式会社 誘電泳動装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360009A (zh) * 2011-07-22 2012-02-22 南开大学 用于生理体液多指标联合检测的半导体芯片及系统
TWI453399B (zh) * 2010-08-06 2014-09-21 Dna Electronics Ltd 檢測流體性質的微流體感測裝置、其製造方法以及其配置方法
TW201525461A (zh) * 2013-12-25 2015-07-01 Univ Nat Taiwan 微流體裝置
WO2015164847A1 (en) * 2014-04-25 2015-10-29 Berkeley Lights, Inc. Providing dep manipulation devices and controllable electrowetting devices in the same microfluidic apparatus

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546536A (en) * 1983-08-04 1985-10-15 International Business Machines Corporation Fabrication methods for high performance lateral bipolar transistors
JP2589312B2 (ja) * 1987-07-03 1997-03-12 キヤノン株式会社 光電変換装置
ATE366418T1 (de) 1996-04-25 2007-07-15 Bioarray Solutions Ltd Licht-regulierte, elektrokinetische zusammensetzung von partikeln an oberflächen
EP0809293B1 (en) * 1996-05-21 2001-08-29 Co.Ri.M.Me. Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Power semiconductor structure with lateral transistor driven by vertical transistor
JP3461265B2 (ja) * 1996-09-19 2003-10-27 株式会社東芝 固体撮像装置および固体撮像装置応用システム
AU746549B2 (en) 1996-11-20 2002-05-02 Becton Dickinson & Company Microfabricated isothermal nucleic acid amplification devices and methods
JPH10189755A (ja) * 1996-12-20 1998-07-21 Nec Corp 半導体装置及びその製造方法
EP0856825B1 (en) * 1997-01-31 2004-11-17 STMicroelectronics S.r.l. Process for manufacturing integrated semiconductor devices comprising a chemoresistive gas microsensor
JP3876496B2 (ja) * 1997-09-13 2007-01-31 株式会社ニコン 固体撮像装置
US20100010196A1 (en) 1997-09-26 2010-01-14 Abt Holding Company Compositions and methods for non-targeted activation of endogenous genes
GB2376565B (en) * 1997-10-14 2003-02-05 Patterning Technologies Ltd Method of forming an electronic device
US6294063B1 (en) 1999-02-12 2001-09-25 Board Of Regents, The University Of Texas System Method and apparatus for programmable fluidic processing
US6942776B2 (en) 1999-05-18 2005-09-13 Silicon Biosystems S.R.L. Method and apparatus for the manipulation of particles by means of dielectrophoresis
JP4552240B2 (ja) * 1999-09-09 2010-09-29 ソニー株式会社 固体撮像装置及びその製造方法
KR100346822B1 (ko) * 2000-10-12 2002-08-03 페어차일드코리아반도체 주식회사 저항소자 및 트랜지스터를 포함하는 반도체 장치 형성방법
US20030007894A1 (en) 2001-04-27 2003-01-09 Genoptix Methods and apparatus for use of optical forces for identification, characterization and/or sorting of particles
US6685812B2 (en) 2001-01-09 2004-02-03 The Regents Of The University Of California Movement of particles using sequentially activated dielectrophoretic particle trapping
US6602791B2 (en) * 2001-04-27 2003-08-05 Dalsa Semiconductor Inc. Manufacture of integrated fluidic devices
ITTO20010411A1 (it) 2001-05-02 2002-11-02 Silicon Biosystems S R L Metodo e dispositivo per l'esecuzione di test e saggi ad alta processivita' ed alto valore biologico su cellule e/o composti.
US20040231987A1 (en) 2001-11-26 2004-11-25 Keck Graduate Institute Method, apparatus and article for microfluidic control via electrowetting, for chemical, biochemical and biological assays and the like
AU2003205104A1 (en) * 2002-01-11 2003-07-30 The Pennsylvania State University Method of forming a removable support with a sacrificial layers and of transferring devices
US6958132B2 (en) 2002-05-31 2005-10-25 The Regents Of The University Of California Systems and methods for optical actuation of microfluidics based on opto-electrowetting
JP4235440B2 (ja) 2002-12-13 2009-03-11 キヤノン株式会社 半導体デバイスアレイ及びその製造方法
WO2005008450A2 (en) * 2003-03-28 2005-01-27 The Regents Of The University Of California Method and apparatus for nanogap device and array
JP2004340821A (ja) * 2003-05-16 2004-12-02 Olympus Corp 流路デバイス及び流体制御装置
JP4328168B2 (ja) 2003-10-02 2009-09-09 ソニー株式会社 毛細管現象を利用する物質間の相互作用検出部と該検出部を用いる方法及びバイオアッセイ用基板
US7425253B2 (en) 2004-01-29 2008-09-16 Massachusetts Institute Of Technology Microscale sorting cytometer
US20050221473A1 (en) * 2004-03-30 2005-10-06 Intel Corporation Sensor array integrated circuits
US7612355B2 (en) 2004-04-12 2009-11-03 The Regents Of The University Of California Optoelectronic tweezers for microparticle and cell manipulation
FR2872715B1 (fr) 2004-07-08 2006-11-17 Commissariat Energie Atomique Microreacteur goutte
US7458420B2 (en) 2004-07-22 2008-12-02 Schlumberger Technology Corporation Downhole measurement system and method
US7195341B2 (en) * 2004-09-30 2007-03-27 Lexmark International, Inc. Power and ground buss layout for reduced substrate size
EP1646084A1 (en) * 2004-10-06 2006-04-12 Infineon Technologies AG A method in the fabrication of an integrated injection logic circuit
US20060091015A1 (en) 2004-11-01 2006-05-04 Applera Corporation Surface modification for non-specific adsorption of biological material
AU2006207933B2 (en) 2005-01-28 2010-11-18 Duke University Apparatuses and methods for manipulating droplets on a printed circuit board
EP2348300A3 (en) * 2005-04-06 2011-10-12 The President and Fellows of Harvard College Molecular characterization with carbon nanotube control
EP1885885A4 (en) 2005-05-11 2008-08-27 Nanolytics Inc METHOD AND DEVICE FOR EXECUTING BIOCHEMICAL OR CHEMICAL REACTIONS AT SEVERAL TEMPERATURES
JP4757548B2 (ja) * 2005-06-24 2011-08-24 日本特殊陶業株式会社 マイクロチップ搭載装置
EP1951742A4 (en) 2005-10-27 2011-06-01 Life Technologies Corp OPTOELECTRONIC SEPARATION OF BIOMOLECULES
US20070202561A1 (en) * 2006-02-10 2007-08-30 Becton Dickinson And Company Electronic Detection Immunoassays that Utilize a Binder Support Medium
US20150107995A1 (en) 2006-04-18 2015-04-23 Advanced Liquid Logic, Inc. Droplet Actuator Devices and Methods for Manipulating Beads
US7822510B2 (en) 2006-05-09 2010-10-26 Advanced Liquid Logic, Inc. Systems, methods, and products for graphically illustrating and controlling a droplet actuator
US20080108122A1 (en) * 2006-09-01 2008-05-08 State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon Microchemical nanofactories
CN101558147A (zh) 2006-12-12 2009-10-14 皇家飞利浦电子股份有限公司 用于细胞分析的方法和设备
WO2008119066A1 (en) * 2007-03-28 2008-10-02 The Regents Of The University Of California Single-sided lateral-field and phototransistor-based optoelectronic tweezers
US8037903B2 (en) 2007-04-04 2011-10-18 Micropoint Bioscience, Inc. Micromachined electrowetting microfluidic valve
WO2008147530A1 (en) 2007-05-24 2008-12-04 The Regents Of The University Of California Integrated fluidics devices with magnetic sorting
US20090101988A1 (en) * 2007-10-18 2009-04-23 Texas Instruments Incorporated Bipolar transistors with resistors
EP2237886A1 (en) * 2007-12-17 2010-10-13 Gong, Hai-Qing Microfluidic device
EP2260297B1 (en) 2008-04-03 2018-08-01 The Regents of The University of California Ex-vivo multi-dimensional system for the separation and isolation of cells, vesicles, nanoparticles and biomarkers
US8093064B2 (en) 2008-05-15 2012-01-10 The Regents Of The University Of California Method for using magnetic particles in droplet microfluidics
FR2933315B1 (fr) 2008-07-07 2012-02-10 Commissariat Energie Atomique Dispositif microfluidique de deplacement de liquide
WO2010044932A2 (en) 2008-07-11 2010-04-22 Cornell University Nanofluidic channels with integrated charge sensors and methods based thereon
KR100991752B1 (ko) 2008-07-15 2010-11-03 한국과학기술원 단일 평면 광전자 소자를 이용한 미세입자 구동장치 및구동방법
CN102449163A (zh) 2009-04-03 2012-05-09 加利福尼亚大学董事会 分选细胞和其它生物微粒的方法和装置
US9810680B2 (en) * 2009-04-16 2017-11-07 Nanonex Corporation Nanogap electronic detector for measuring properties of a biomolecule stretched in a nanochannel, and method thereof
US8865489B2 (en) * 2009-05-12 2014-10-21 The Board Of Trustees Of The University Of Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
WO2010147942A1 (en) * 2009-06-16 2010-12-23 Massachusetts Institute Of Technology Multiphase non-linear electrokinetic devices
KR101050761B1 (ko) * 2010-02-19 2011-07-21 경북대학교 산학협력단 배열형 수평 바이폴라 트랜지스터를 이용한 수소이온 감지소자
US8685325B2 (en) 2010-03-09 2014-04-01 Sparkle Power Inc. Field-programmable lab-on-a-chip based on microelectrode array architecture
US20130118905A1 (en) 2010-05-26 2013-05-16 Tosoh Corporation Biological sample immobilizing apparatus
US8653832B2 (en) * 2010-07-06 2014-02-18 Sharp Kabushiki Kaisha Array element circuit and active matrix device
US9533306B2 (en) 2010-08-02 2017-01-03 The Regents Of The University Of California Single sided continuous optoelectrowetting (SCEOW) device for droplet manipulation with light patterns
US8599465B2 (en) 2010-09-23 2013-12-03 Incha Hsieh Method for making an electrowetting device
US8581167B2 (en) 2010-11-16 2013-11-12 Palo Alto Research Center Incorporated Optically patterned virtual electrodes and interconnects on polymer and semiconductive substrates
EP2646830B1 (en) 2010-12-03 2016-04-13 Cellply S.R.L. Rapid screening of monoclonal antibodies
ES2641524T3 (es) 2010-12-03 2017-11-10 Cellply S.R.L. Microanálisis de la función celular
EP2495578B1 (en) * 2011-03-04 2013-09-18 Nxp B.V. Magnetic sensors
US9227200B2 (en) 2011-06-03 2016-01-05 The Regents Of The University Of California Microfluidic devices with flexible optically transparent electrodes
US8980075B2 (en) 2011-07-29 2015-03-17 The Texas A & M University System Digital microfluidic platform for actuating and heating individual liquid droplets
CN102435655A (zh) * 2011-09-05 2012-05-02 湖南大学 基于场效应晶体管的肿瘤诊断仪及其检测方法
US9714463B2 (en) 2011-12-30 2017-07-25 Gvd Corporation Coatings for electrowetting and electrofluidic devices
WO2013110146A2 (en) 2012-01-24 2013-08-01 Katholieke Universiteit Leuven Patterning device
TWI512383B (zh) 2012-07-04 2015-12-11 Ind Tech Res Inst 光學感應式介電泳裝置
CN102866193B (zh) 2012-09-04 2015-04-01 吴传勇 基于介电泳来操控液体中的粒子的器件及方法
US9857333B2 (en) 2012-10-31 2018-01-02 Berkeley Lights, Inc. Pens for biological micro-objects
US9403172B2 (en) * 2012-11-08 2016-08-02 Berkeley Lights, Inc. Circuit based optoelectronic tweezers
TWI467228B (zh) 2012-11-30 2015-01-01 Nat Univ Chung Hsing An electric wetting element and its making method
US9239328B2 (en) 2012-12-17 2016-01-19 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods for an integrated bio-entity manipulation and processing semiconductor device
US9366647B2 (en) 2013-03-14 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Optical detection for bio-entities
US9254487B2 (en) * 2012-12-17 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods for an integrated bio-entity manipulation and processing semiconductor device
WO2014167858A1 (ja) 2013-04-12 2014-10-16 パナソニック株式会社 溶媒制御方法およびエレクトロウェッティング用溶媒
EP3011327A4 (en) * 2013-06-20 2017-03-01 K. Eklund Innovation An integrated sensor device for charge detection
IL297654A (en) 2013-10-22 2022-12-01 Berkeley Lights Inc Microfluidic devices with isolation pens and methods for testing microbiological items using them
US9889445B2 (en) 2013-10-22 2018-02-13 Berkeley Lights, Inc. Micro-fluidic devices for assaying biological activity
WO2015061506A1 (en) 2013-10-22 2015-04-30 Berkeley Lights, Inc. Micro-fluidic devices for assaying biological activity
US11318479B2 (en) * 2013-12-18 2022-05-03 Berkeley Lights, Inc. Capturing specific nucleic acid materials from individual biological cells in a micro-fluidic device
EP3084492B1 (en) 2013-12-20 2022-08-17 Universiteit Gent Adiabatic coupler
CN103943778B (zh) * 2014-04-10 2016-08-17 青岛大学 一种交叉纳米纤维p-n异质结阵列的制备方法
US20150306599A1 (en) 2014-04-25 2015-10-29 Berkeley Lights, Inc. Providing DEP Manipulation Devices And Controllable Electrowetting Devices In The Same Microfluidic Apparatus
US20150306598A1 (en) 2014-04-25 2015-10-29 Berkeley Lights, Inc. DEP Force Control And Electrowetting Control In Different Sections Of The Same Microfluidic Apparatus
US11192107B2 (en) 2014-04-25 2021-12-07 Berkeley Lights, Inc. DEP force control and electrowetting control in different sections of the same microfluidic apparatus
US20150377831A1 (en) 2014-06-27 2015-12-31 The Governing Council Of The University Of Toronto Digital microfluidic devices and methods employing integrated nanostructured electrodeposited electrodes
US9815056B2 (en) 2014-12-05 2017-11-14 The Regents Of The University Of California Single sided light-actuated microfluidic device with integrated mesh ground
TWI721545B (zh) * 2014-12-08 2021-03-11 美商柏克萊燈光有限公司 側向式/垂直式電晶體結構及其製造與使用方法
TWI700125B (zh) 2014-12-10 2020-08-01 美商柏克萊燈光有限公司 用於操作電氣動力裝置之系統
WO2016094715A2 (en) 2014-12-10 2016-06-16 Berkeley Lights, Inc. Movement and selection of micro-objects in a microfluidic apparatus
KR20230078838A (ko) 2015-04-22 2023-06-02 버클리 라잇츠, 인크. 미세유체 세포 배양
US10799865B2 (en) 2015-10-27 2020-10-13 Berkeley Lights, Inc. Microfluidic apparatus having an optimized electrowetting surface and related systems and methods
CA3009073A1 (en) 2015-12-30 2017-07-06 Berkeley Lights, Inc. Microfluidic devices for optically-driven convection and displacement, kits and methods thereof
WO2017117567A1 (en) 2015-12-30 2017-07-06 Berkeley Lights, Inc. Droplet generation in a microfluidic device having an optoelectrowetting configuration
US9726631B1 (en) * 2016-02-09 2017-08-08 International Business Machines Corporation Ultra-sensitive biosensor based on lateral bipolar junction transistor having self-aligned epitaxially grown base
SG11201808914UA (en) 2016-04-15 2018-11-29 Berkeley Lights Inc Methods, systems and kits for in-pen assays
CN114643087A (zh) 2017-04-26 2022-06-21 伯克利之光生命科技公司 使用具有优化电润湿表面的微流体装置的生物处理系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453399B (zh) * 2010-08-06 2014-09-21 Dna Electronics Ltd 檢測流體性質的微流體感測裝置、其製造方法以及其配置方法
CN102360009A (zh) * 2011-07-22 2012-02-22 南开大学 用于生理体液多指标联合检测的半导体芯片及系统
TW201525461A (zh) * 2013-12-25 2015-07-01 Univ Nat Taiwan 微流體裝置
WO2015164847A1 (en) * 2014-04-25 2015-10-29 Berkeley Lights, Inc. Providing dep manipulation devices and controllable electrowetting devices in the same microfluidic apparatus

Also Published As

Publication number Publication date
JP2019134715A (ja) 2019-08-15
IL252760A0 (en) 2017-08-31
IL284234B2 (en) 2023-02-01
US9908115B2 (en) 2018-03-06
US20200078785A1 (en) 2020-03-12
KR102322180B1 (ko) 2021-11-05
TW201632262A (zh) 2016-09-16
US20180193835A1 (en) 2018-07-12
US10350594B2 (en) 2019-07-16
KR20170093213A (ko) 2017-08-14
TWI678232B (zh) 2019-12-01
AU2015360849A1 (en) 2017-07-13
US11596941B2 (en) 2023-03-07
AU2019200127B2 (en) 2020-12-10
EP3831482B1 (en) 2024-01-24
WO2016094308A1 (en) 2016-06-16
CA2970174A1 (en) 2016-06-16
KR20210134086A (ko) 2021-11-08
CN107223074B (zh) 2019-10-18
KR102369770B1 (ko) 2022-03-02
JP6514776B2 (ja) 2019-05-15
IL252760B (en) 2021-06-30
IL284234B (en) 2022-10-01
EP3229958A1 (en) 2017-10-18
TW201943460A (zh) 2019-11-16
SG11201704558QA (en) 2017-07-28
CN110624614A (zh) 2019-12-31
HK1244748A1 (zh) 2018-08-17
IL284234A (en) 2021-07-29
SG10201900567QA (en) 2019-02-27
CN110624614B (zh) 2021-09-21
EP3831482A1 (en) 2021-06-09
EP3229958B1 (en) 2020-09-30
JP6689432B2 (ja) 2020-04-28
US20160184821A1 (en) 2016-06-30
JP2018508366A (ja) 2018-03-29
CN107223074A (zh) 2017-09-29
CA2970174C (en) 2024-01-23
US10792658B2 (en) 2020-10-06
US20210129142A1 (en) 2021-05-06
WO2016094308A9 (en) 2016-12-08
AU2019200127A1 (en) 2019-01-31
AU2015360849B2 (en) 2018-10-11
DK3229958T3 (da) 2020-11-30

Similar Documents

Publication Publication Date Title
TWI721545B (zh) 側向式/垂直式電晶體結構及其製造與使用方法
US10245588B2 (en) Providing DEP manipulation devices and controllable electrowetting devices in the same microfluidic apparatus
CN106461696B (zh) 在同一微流体装置中提供dep操控设备和可控电润湿设备
JP2018508366A5 (zh)
US7956339B2 (en) Single-sided lateral-field and phototransistor-based optoelectronic tweezers
ES2807183T3 (es) Aparato para detección de biomoléculas y su fabricación
CA2883914A1 (en) Selective transferring of micro-devices