TWI717178B - 一種具氣密空腔的微機電裝置 - Google Patents

一種具氣密空腔的微機電裝置 Download PDF

Info

Publication number
TWI717178B
TWI717178B TW108148275A TW108148275A TWI717178B TW I717178 B TWI717178 B TW I717178B TW 108148275 A TW108148275 A TW 108148275A TW 108148275 A TW108148275 A TW 108148275A TW I717178 B TWI717178 B TW I717178B
Authority
TW
Taiwan
Prior art keywords
heater
movable electrode
electrode
microelectromechanical device
inner bottom
Prior art date
Application number
TW108148275A
Other languages
English (en)
Other versions
TW202124255A (zh
Inventor
李柏勳
陳明發
許郁文
黃肇達
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW108148275A priority Critical patent/TWI717178B/zh
Priority to US16/882,039 priority patent/US11820650B2/en
Application granted granted Critical
Publication of TWI717178B publication Critical patent/TWI717178B/zh
Publication of TW202124255A publication Critical patent/TW202124255A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/186Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer using microstructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0083Temperature control
    • B81B7/009Maintaining a constant temperature by heating or cooling
    • B81B7/0096Maintaining a constant temperature by heating or cooling by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00246Monolithic integration, i.e. micromechanical structure and electronic processing unit are integrated on the same substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0092Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0278Temperature sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Fluid Pressure (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

一種微機電裝置,包括一基板、一固定電極、一可動電極及一加熱器。基板包含一上表面、一內底面及一內側面。內側面環繞且連接內底面。內側面及內底面定義一凹槽。固定電極設置於內底面。可動電極覆蓋凹槽。可動電極、內底面及內側面定義一氣密空腔。加熱器位於可動電極上且位於氣密空腔上方。

Description

一種具氣密空腔的微機電裝置
本發明係關於一種具氣密空腔的微機電裝置,適用於感測環境中的氣體的濃度、氣壓、濕度及溫度。
以往,在有感測環境狀態的需求時,會分別使用感測環境的裝置(例如:溫度計、濕度計)來進行感測。未來,可將不同感測功能的感測器整合在智慧型手機或家庭中之智慧家電等智慧型電子裝置。因此,相關領域之業者發展出可感測環境的微機電裝置,並將此種微機電裝置整合於智慧型電子裝置中。當使用者或智慧家庭之控制主機需要取得智慧型電子裝置之環境狀態時,便能控制此種可感測環境的微機電裝置進行環境狀態的感測。
然而,感測環境的微機電裝置,其精確度易受各種環境條件影響。以量測氣壓用的微機電裝置為例,其通常會在基板內設置間隔有距離的兩電極。當外部壓力有所變化時,兩電極的距離會有所變化,藉由量測兩電極的距離而推算外部壓力值。然而,藉由上述方式量測的壓力值,容易受到周遭環境溫度的波動影響而產生誤差。
本發明提出一種具氣密空腔的微機電裝置,藉由將量測氣壓用的組件加熱至特定的工作溫度,使量測氣壓用的組件的溫度穩定,進而提升量測氣壓用的組件所量測到之壓力值的穩定度與準確度。
本發明之一實施例提出一種微機電裝置,包括一基板、一固定電極、一可動電極及一加熱器。基板包含一上表面、一內底面及一內側面。內側面環繞且連接內底面。內側面及內底面定義一凹槽。固定電極設置於內底面。可動電極覆蓋凹槽。可動電極、內底面及內側面定義一氣密空腔。加熱器設置於可動電極上且位於氣密空腔上方。
本發明之另一實施例提出一種微機電裝置,包括一基板、一氣壓感測器、一氣體感測器及一溫度感測器。基板包含一上表面、一內底面及一內側面。內側面環繞且連接內底面。內側面及內底面定義一凹槽。氣壓感測器設置於凹槽。氣壓感測器包含一固定電極及一可動電極。固定電極設置於內底面。可動電極覆蓋凹槽。可動電極、內底面及內側面定義一氣密空腔。氣體感測器設置於氣壓感測器上。氣體感測器包含一加熱器、一電性絕緣層、一感應電極及一感應材料層。加熱器設置於可動電極上且位於氣密空腔上方。電性絕緣層設置於加熱器與可動電極之間。感應電極設置於加熱器上方且與加熱器電性絕緣。感應材料層覆蓋感應電極。溫度感測器設置於氣壓感測器上。溫度感測器設置於可動電極上且位於氣密空腔上方,電性絕緣層設置於溫度感測器與可動電極之間。
根據本發明之一實施例之微機電裝置,利用可動電極與固定電極量測氣壓。在量測氣壓時,藉由加熱器將可動電極與固定電極加熱至特定溫度,使其溫度穩定,進而提升所量測到之壓力值的穩定度與準確度。
以上之關於本發明內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。
以下在實施方式中詳細敘述本發明之實施例之詳細特徵以及優點,其內容足以使任何本領域中具通常知識者了解本發明之實施例之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何本領域中具通常知識者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。
於本說明書之所謂的示意圖中,由於用以說明而可有其尺寸、比例及角度等較為誇張的情形,但並非用以限定本發明。於未違背本發明要旨的情況下能夠有各種變更。實施例及圖式之描述中所提及之上下前後方位為用以說明,而並非用以限定本發明。
請參照圖1、圖2、圖3及圖4。圖1繪示依照本發明之一實施例之微機電裝置之立體示意圖。圖2繪示依照圖1之微機電裝置沿A-A線剖面之立體剖面示意圖。圖3繪示依照圖1之微機電裝置沿A-A線剖面之側視剖面示意圖。圖4繪示依照圖1之微機電裝置之立體分解示意圖。
如圖1及圖2所示,於本實施例中,微機電裝置1包括一基板10、一氣壓感測器11、一氣體感測器12、一溫度感測器13、電性絕緣層14、電性絕緣層15及積體電路16。
基板10包含一上表面101、一內底面102及一內側面103。內側面103環繞且連接內底面102。內底面102及內側面103定義一凹槽10a。
氣壓感測器11設置於凹槽10a。氣壓感測器11包含一固定電極111及一可動電極112。固定電極111設置於內底面102。可動電極112設置於上表面101且覆蓋凹槽10a。可動電極112、內底面102及內側面103定義一氣密空腔10b。於本實施例中,氣密空腔10b可為一真空氣密空腔,使氣壓感測器11可以量測氣體的絕對壓力。但不以此為限。於其他實施例中,氣密空腔10b亦可具有一氣體,氣體的氣壓小於微機電裝置1所處環境的大氣壓力,使氣壓感測器11可以量測氣體的相對壓力。
於本實施例中,當可動電極112周圍之環境氣壓發生變化時,可動電極112與固定電極111之間的一距離D1也會因而改變。藉由距離D1的變化,可獲得可動電極112與固定電極111之間之電容值的變化。藉由對此電容值的變化進行訊號處理,進而估測環境氣壓的變化。
另外,氣體感測器12設置於氣壓感測器11上。氣體感測器12包含一感測模組120及一加熱器121。感測模組120包含至少一感應電極122及一感應材料層123。
如圖3及圖4所示,加熱器121透過電性絕緣層14設置於可動電極112上且位於氣密空腔10b上方。亦即,電性絕緣層14設置於加熱器121及可動電極112之間且連接加熱器121及可動電極112,使加熱器121及可動電極112電性絕緣。當可動電極112朝向固定電極111移動時,藉由加熱器121設置於可動電極112上,加熱器121可將熱能直接供給可動電極112而無需額外的熱傳路徑,故可減少熱能散失。因此,當可動電極112需要在特定的恆溫環境中工作時,可降低加熱器121消耗的電能。
加熱器121包含導電區1250及加熱區1260。加熱器121之加熱區1260可為平面的螺旋形加熱線圈。當加熱器121周圍之環境氣壓發生變化時,加熱器121與固定電極111之間的一距離D2也會因而改變。如此,加熱器121可隨著可動電極112移動,故不會改變加熱器121與可動電極112之間的熱傳路徑。加熱器121因而能將熱能直接提供給可動電極112並減少熱能散失,進而降低加熱器121消耗的電能。
請參閱圖3,加熱器121之一加熱區1260相對於內底面102之投影的範圍R1位於內底面102之一邊界範圍R2內。因此,氣密空腔10b得具有足夠的範圍涵蓋加熱器121的加熱區1260。氣密空腔10b可為良好的絕熱空腔,藉由其範圍涵蓋加熱器121的加熱區1260,可使加熱區1260的熱量不易散失而達到絕熱的效果,進而降低加熱器121消耗的電能。此外,為了達到最好的絕熱效果,氣密空腔10b可以是真空的氣密空腔。
此外,氣密空腔10b得具有足夠的空間供可動電極112變形。因此,可動電極112與固定電極111之間的距離D1容易隨環境氣壓的變化而變化,進而增加氣壓器11在感測環境氣壓變化時之靈敏度及感測範圍。
請參閱圖1及圖2,氣體感測器之感測模組120設置於加熱器121上方且加熱器121設置於感測模組120與可動電極112之間。感應電極122設置於加熱器121上方且透過另一電性絕緣層15與加熱器121電性絕緣。亦即,電性絕緣層15設置於加熱器121及感應電極122之間,使加熱器121及感應電極122電性絕緣。感應電極122可為一對交錯的指叉電極。感應材料層123覆蓋感應電極122。感測模組120得選用特定類型的感應材料層123,而具有特定類型的感應功能。例如,在本實施例中,感應材料層123為氣體感應用的材料層,則感測模組120可具有氣體感測之功能。在另一未繪示的實施例中,感應材料層123為濕度感應用的材料層,則感測模組120可具有濕度感測之功能。
由上可知,氣體感測器12堆疊於氣壓感測器11之上,故可縮小微機電裝置1的底面積(foot print area)。藉由加熱器121設置於感測模組120與可動電極112之間,感測模組120及氣壓感測器11可共享同一加熱器121,故更可縮小微機電裝置1的底面積。加熱器121受到感測模組120的遮擋而不會暴露於大氣中,如此可減少因熱對流所致的熱能散失,進而降低加熱器121消耗的電能。
如圖2所示,溫度感測器13設置於氣壓感測器11上且溫度感測器13設置於感測模組120與可動電極112之間。溫度感測器13透過電性絕緣層14設置於可動電極112上且位於氣密空腔10b上方。亦即,電性絕緣層14設置於溫度感測器13及可動電極112之間且連接溫度感測器13及可動電極112,使溫度感測器13及可動電極112電性絕緣。如圖4所示,溫度感測器13可為平面的螺旋形熱敏電阻。溫度感測器13可配置成與加熱器121之加熱區1260相鄰的螺旋形狀。
藉由溫度感測器13設置於可動電極112上,可精準量測可動電極112的溫度,以供可動電極112所量測之物理量(例如氣壓)進行校正,以提升物理量之量測準確度。藉由溫度感測器13設置於感測模組120與可動電極112之間,感測模組120及氣壓感測器11可共享同一溫度感測器13,故可縮小微機電裝置1的底面積。
如圖3所示,溫度感測器13至內底面102之一距離D3及加熱器121至內底面102之一距離D4實質上相同且彼此電性絕緣。亦即,加熱器121與溫度感測器13可由相同的導電層圖案化而成,因而可使用相同的微機電製程製作,進而能降低製程複雜度及減少製造成本。感測模組120設置於溫度感測器13上方且溫度感測器13設置於感測模組120與可動電極112之間。因此,溫度感測器13在感測可動電極112的溫度時,不會受到環境溫度的干擾,進而能精確地感測可動電極112的溫度。
積體電路16設置於上表面101。積體電路16分別電性連接固定電極111、可動電極112、加熱器121、溫度感測器13及感應電極122。積體電路16可接收溫度感測器13感測之一第一電性訊號及固定電極111、可動電極112感測之一第二電性訊號,對一氣壓值進行校正,以求得準確的氣壓值。
具體而言,積體電路16得接收來自溫度感測器13的第一電性訊號,例如是電阻值。積體電路16接收第一電性訊號以計算環境溫度的溫度值。此外,積體電路16得接收來自氣壓感測器11之關於固定電極111與可動電極112之距離D1的第二電性訊號,例如是電容值。積體電路16接收第二電性訊號以計算環境氣壓的初始壓力值。之後,積體電路16可藉由所計算的溫度值並利用一內建於積體電路16內的表格資料,來校正所述初始壓力值,以消弭環境溫度改變對第二電性訊號造成的偏差。
再者,由於第二電性訊號易因氣壓感測器11的溫度的改變而造成氣壓量測值的偏差。因此,積體電路16可控制加熱器121來對氣壓感測器11進行加熱,使氣壓感測器11能在穩定的環境溫度下工作。此外,積體電路16可同步接收來自溫度感測器13的第一電性訊號,然後藉由即時溫度資料的回饋,控制加熱器所提供熱能,使氣壓感測器11可在一恆溫的環境下工作。由於氣壓感測器11的溫度維持在目標溫度而處於穩定的狀態,故可獲得較穩定的第二電性訊號,以計算出較為精確的壓力值。
以下描述關於感測模組120量測環境中之氣體的方法。感測模組120通常具有特定的工作溫度,例如是350℃。積體電路16控制加熱器121對感測模組120加熱,並同步接收來自溫度感測器13的第一電性訊號,然後藉由回饋機制使感測模組120的溫度達到工作溫度並維持在工作溫度。積體電路16接收來自感測模組120的電性訊號,以求得對應於感應材料層123之氣體的狀態。在本實施例中,感應材料層123為用來檢測外部特定氣體的濃度的特定氣體感應層,則積體電路16可根據來自感測模組120之感應電極122的電性訊號,例如是電阻值,計算得知外部特定氣體的濃度。在另一實施例中,感應材料層123為用來檢測外部氣體的濕度感應層,則積體電路16可根據來自感測模組120之感應電極122的電性訊號,例如是電阻值,計算得知外部氣體的濕度大小。
由上可知,氣壓感測器11及感測模組120可共同利用同一加熱器121、同一溫度感測器13及回饋機制而使氣壓感測器11穩定地維持在一特定溫度或使感測模組120穩定地維持在另一特定溫度。此外,氣密空腔10可提供可動電極112移動的空間並可成為一絕熱空腔,使加熱器121所消耗之電能能有效地降低。
請參照圖5,繪示依照本發明之另一實施例之微機電裝置之立體示意圖。於本實施例中,微機電裝置2包括一基板20、一固定電極211、一可動電極212、一加熱器221及電性絕緣層24。
基板20包含一上表面201、一內底面202及一內側面203。內側面203環繞且連接內底面202。內底面202及內側面203定義一凹槽20a。固定電極211設置於內底面202。可動電極212覆蓋凹槽20a。可動電極212、內底面202及內側面203定義一氣密空腔20b。加熱器221透過電性絕緣層24設置於可動電極112上且位於氣密空腔20b上方。亦即,電性絕緣層24設置於加熱器221及可動電極212之間且連接加熱器221及可動電極212,使加熱器221及可動電極212電性絕緣。
當可動電極212周圍之環境氣壓發生變化時,可動電極212與固定電極211之間的一距離D1會因而改變,加熱器221與固定電極211之間的一距離D2也會因而改變。藉由距離D1的變化,可獲得可動電極212與固定電極211之間之電容值的變化。藉由對此電容值的變化進行訊號處理,進而估測環境氣壓的變化。藉由加熱器221將可動電極212加熱至特定的溫度,使可動電極212可在穩定的溫度下工作,以避免環境溫度的改變對電容值的量測產生誤差。
藉由加熱器221設置於可動電極212上且隨著可動電極212移動,加熱器221可將熱能直接供給可動電極212,且加熱器221與可動電極212之間得維持最短熱傳路徑,故可減少熱能散失,進而降低加熱器221消耗的電能。氣密空腔20b可為良好的絕熱空腔,可使加熱器221所產生的熱量不易散失而達到絕熱的效果,進而降低加熱器221消耗的電能。
綜上所述,本發明之一實施例之微機電裝置,利用可動電極與固定電極量測氣壓。在量測氣壓時,藉由加熱器將可動電極與固定電極加熱至特定溫度,使其溫度穩定,進而提升所量測到之壓力值的穩定度與準確度。此外,本發明之實施例之微機電裝置中,在厚度方向,可將氣體感測器(或濕度感測器)堆疊於氣壓感測器之上,以縮小微機電裝置的底面積。此外,為了更加縮小微機電裝置的底面積,氣體感測器(或濕度感測器)可與氣壓感測器共同使用設置於氣體感測器(或濕度感測器)與氣壓感測器之間的同一加熱器及同一溫度感測器。而且,氣密空腔除了作為可動電極的移動空間以外,還可成為用以降低加熱器所消耗之電能的絕熱空腔。
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。
1、2:微機電裝置 10、20:基板 10a、20a:凹槽 10b、20b:氣密空腔 101、201:上表面 102、202:內底面 103、203:內側面 104:下表面 11:氣壓感測器 111、211:固定電極 112、212:可動電極 12:氣體感測器 120:感測模組 121、221:加熱器 1250:導電區 1260:加熱區 122:感應電極 123:感應材料層 13:溫度感測器 14、15、24:電性絕緣層 16:積體電路 D1、D2、D3、D4:距離 R1、R2:範圍
圖1繪示依照本發明之一實施例之微機電裝置之立體示意圖。 圖2繪示依照圖1之微機電裝置沿A-A線剖面之立體剖面示意圖。 圖3繪示依照圖1之微機電裝置沿A-A線剖面之側視剖面示意圖。 圖4繪示依照圖1之微機電裝置之立體分解示意圖。 圖5繪示依照本發明之另一實施例之微機電裝置之立體示意圖。
1:微機電裝置
10:基板
101:上表面
104:下表面
112:可動電極
12:氣體感測器
120:感測模組
121:加熱器
122:感應電極
123:感應材料層
13:溫度感測器
14、15:電性絕緣層

Claims (22)

  1. 一種微機電裝置,包括: 一基板,包含: 一上表面; 一內底面;以及 一內側面,環繞且連接該內底面,其中該內側面及該內底面定義一凹槽; 一固定電極,設置於該內底面; 一可動電極,覆蓋該凹槽,其中該可動電極、該內底面及該內側面定義一氣密空腔;以及 一加熱器,設置於該可動電極上且位於該氣密空腔上方。
  2. 如請求項1所述之微機電裝置,其中該可動電極設置於該上表面。
  3. 如請求項1所述之微機電裝置,其中該氣密空腔為一真空氣密空腔。
  4. 如請求項1所述之微機電裝置,其中該加熱器之一加熱區相對於該內底面之投影位於該內底面之一邊界範圍內。
  5. 如請求項1所述之微機電裝置,更包括一溫度感測器,其中該溫度感測器設置於該可動電極上且位於該氣密空腔上方。
  6. 如請求項5所述之微機電裝置,其中該溫度感測器至該內底面之一距離及該加熱器至該內底面之一距離實質上相同。
  7. 如請求項1所述之微機電裝置,其中當該可動電極周圍之環境氣壓發生變化時,該可動電極與該固定電極之間的一距離也會因而改變。
  8. 如請求項1所述之微機電裝置,更包括一電性絕緣層,其中該電性絕緣層設置於該加熱器與該可動電極之間且連接該加熱器及該可動電極,使該加熱器及該可動電極電性絕緣。
  9. 如請求項8所述之微機電裝置,其中當該加熱器周圍之環境氣壓發生變化時,該加熱器與該固定電極之間的一距離也會因而改變。
  10. 如請求項1所述之微機電裝置,更包括一感測模組,其中該感測模組設置於該加熱器上方且該加熱器設置於該感測模組與該可動電極之間。
  11. 如請求項10所述之微機電裝置,更包括一溫度感測器,其中該感測模組設置於該溫度感測器上方且該溫度感測器設置於該感測模組與該可動電極之間。
  12. 如請求項10所述之微機電裝置,其中該感測模組為氣體感測器或濕度感測器。
  13. 如請求項12所述之微機電裝置,其中該感測模組包含至少一感應電極及一感應材料層,該至少一感應電極及該感應材料層設置於該加熱器上方。
  14. 如請求項13所述之微機電裝置,更包括一電性絕緣層,其中該電性絕緣層設置於該加熱器與該至少一感應電極之間,使該加熱器及該至少一感應電極電性絕緣。
  15. 如請求項13所述之微機電裝置,其中該基板更包含一積體電路設置於該上表面,該積體電路分別電性連接該固定電極、該可動電極及該加熱器。
  16. 一種微機電裝置,包括: 一基板,包含: 一上表面; 一內底面;以及 一內側面,環繞且連接該內底面,其中該內側面及該內底面定義一凹槽; 一氣壓感測器,設置於該凹槽,包含: 一固定電極,設置於該內底面;以及 一可動電極,覆蓋該凹槽,其中該可動電極、該內底面及該內側面定義一氣密空腔; 一氣體感測器,設置於該氣壓感測器上,並且包含: 一加熱器,設置於該可動電極上且位於該氣密空腔上方; 一電性絕緣層,設置於該加熱器與該可動電極之間; 一感應電極,設置於該加熱器上方且與該加熱器電性絕緣;以及 一感應材料層,覆蓋該感應電極;以及 一溫度感測器,設置於該氣壓感測器上,其中該溫度感測器設置於該可動電極上且位於該氣密空腔上方,該電性絕緣層設置於該溫度感測器與該可動電極之間。
  17. 如請求項16所述之微機電裝置,其中該可動電極設置於該上表面。
  18. 如請求項16所述之微機電裝置,其中該氣密空腔為一真空氣密空腔。
  19. 如請求項16所述之微機電裝置,其中該氣密空腔具有一氣體,該氣體的氣壓小於該微機電裝置所處環境的大氣壓力。
  20. 如請求項16所述之微機電裝置,其中該溫度感測器至該內底面之一距離與該加熱器至該內底面之一距離實質上相同。
  21. 如請求項16所述之微機電裝置,其中該基板更包含一積體電路設置於該上表面,該積體電路分別電性連接該固定電極、該可動電極、該加熱器、該溫度感測器及該感應電極。
  22. 如請求項21所述之微機電裝置,其中該積體電路利用該溫度感測器感測到之一第一電性訊號、該固定電極與該可動電極感測到之一第二電性訊號,以及內建於該積體電路的一表格資料對一壓力值進行校正。
TW108148275A 2019-12-30 2019-12-30 一種具氣密空腔的微機電裝置 TWI717178B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108148275A TWI717178B (zh) 2019-12-30 2019-12-30 一種具氣密空腔的微機電裝置
US16/882,039 US11820650B2 (en) 2019-12-30 2020-05-22 Microelectromechanical apparatus having hermitic chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108148275A TWI717178B (zh) 2019-12-30 2019-12-30 一種具氣密空腔的微機電裝置

Publications (2)

Publication Number Publication Date
TWI717178B true TWI717178B (zh) 2021-01-21
TW202124255A TW202124255A (zh) 2021-07-01

Family

ID=75237556

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108148275A TWI717178B (zh) 2019-12-30 2019-12-30 一種具氣密空腔的微機電裝置

Country Status (2)

Country Link
US (1) US11820650B2 (zh)
TW (1) TWI717178B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11965852B2 (en) 2022-01-05 2024-04-23 Industrial Technology Research Institute Microelectromechanical sensor and sensing module thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200728605A (en) * 2006-01-20 2007-08-01 Univ Tamkang Thermo-buckled micro-actuator unit made of polymer with high thermal expansion coefficient
TW201723715A (zh) * 2015-12-28 2017-07-01 財團法人工業技術研究院 具儲熱元件的微機電溫度控制系統

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110016A (en) * 1974-07-11 1976-01-27 Iseki Agricult Mach Doryokunokiniokeru sokosokudono seigyosochi
JPH05110016A (ja) * 1991-06-14 1993-04-30 Hitachi Ltd 半導体記憶装置及びその製造方法
JPH05243522A (ja) * 1992-03-02 1993-09-21 Hitachi Ltd 半導体記憶装置およびその製造方法
US7362615B2 (en) * 2005-12-27 2008-04-22 Sandisk Corporation Methods for active boosting to minimize capacitive coupling effect between adjacent gates of flash memory devices
JP2009283488A (ja) * 2008-05-19 2009-12-03 Toshiba Corp 不揮発性メモリ及びその製造方法
US20210063836A1 (en) * 2017-04-26 2021-03-04 View, Inc. Building network
JP2012047725A (ja) * 2010-07-30 2012-03-08 Canon Anelva Corp 静電容量圧力センサ
US10107773B2 (en) * 2012-10-29 2018-10-23 MEMS-Vision International Inc. Methods and systems for humidity and pressure sensor overlay integration with electronics
US9266717B2 (en) 2013-03-15 2016-02-23 Versana Micro Inc Monolithically integrated multi-sensor device on a semiconductor substrate and method therefor
US9176089B2 (en) 2013-03-29 2015-11-03 Stmicroelectronics Pte Ltd. Integrated multi-sensor module
CN103281048B (zh) 2013-06-14 2016-04-20 中国科学院半导体研究所 一种微机械谐振器及其制作方法
US11111135B2 (en) * 2014-07-02 2021-09-07 My01 Ip Holdings Inc. Methods and devices for microelectromechanical pressure sensors
US11664781B2 (en) * 2014-07-02 2023-05-30 Stathera Ip Holdings Inc. Methods and devices for microelectromechanical resonators
US9845236B2 (en) 2015-03-12 2017-12-19 Taiwan Semiconductor Manufacturing Co., Ltd. Monolithic MEMS platform for integrated pressure, temperature, and gas sensor
US9459224B1 (en) 2015-06-30 2016-10-04 Taiwan Semiconductor Manufacturing Co., Ltd. Gas sensor, integrated circuit device using the same, and manufacturing method thereof
US10670554B2 (en) * 2015-07-13 2020-06-02 International Business Machines Corporation Reconfigurable gas sensor architecture with a high sensitivity at low temperatures
GB2542801A (en) * 2015-09-30 2017-04-05 Cambridge Cmos Sensors Ltd Micro gas sensor with a gas permeable region
JP2017181044A (ja) 2016-03-28 2017-10-05 セイコーエプソン株式会社 圧力センサー、高度計、電子機器および移動体
US10209156B2 (en) * 2016-12-15 2019-02-19 Wisenstech Ltd. Micromachined pressure sensor and method of making the same
KR20180133073A (ko) * 2017-06-05 2018-12-13 에스케이하이닉스 주식회사 다수의 강유전체 전계 효과 트랜지스터들을 가진 시냅스를 포함하는 뉴로모픽 소자의 시냅스 어레이
DE112017007860T5 (de) * 2017-09-29 2020-04-30 Intel Corporation Ladungsfangschicht in dünnfilmtransistoren mit rückseitigem gate
KR102466332B1 (ko) 2018-01-02 2022-11-15 삼성전자주식회사 가스 센서 패키지
TWM575864U (zh) 2018-09-21 2019-03-21 研能科技股份有限公司 Particle monitoring module
EP4022281A4 (en) * 2019-08-27 2024-01-24 Volta Labs Inc METHODS AND SYSTEMS FOR DROPLET HANDLING
DE102019130755A1 (de) * 2019-11-14 2021-05-20 Tdk Corporation Sensorvorrichtung, Verfahren zum Herstellen einer Sensorvorrichtung und Sensorbaugruppe
CN213818153U (zh) * 2019-12-30 2021-07-27 楼氏电子(苏州)有限公司 微机电系统换能器和麦克风组件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200728605A (en) * 2006-01-20 2007-08-01 Univ Tamkang Thermo-buckled micro-actuator unit made of polymer with high thermal expansion coefficient
TW201723715A (zh) * 2015-12-28 2017-07-01 財團法人工業技術研究院 具儲熱元件的微機電溫度控制系統

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11965852B2 (en) 2022-01-05 2024-04-23 Industrial Technology Research Institute Microelectromechanical sensor and sensing module thereof

Also Published As

Publication number Publication date
US20210198101A1 (en) 2021-07-01
TW202124255A (zh) 2021-07-01
US11820650B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
US10631368B2 (en) Micro-electromechanical temperature control system with thermal reservoir
US9995593B2 (en) Method for operating a sensor array
US9829388B2 (en) Temperature sensor
EP2290357B1 (en) Thermal humidity sensor
WO2018107522A1 (zh) 压力检测装置和具有其的烹饪器具
US10830649B2 (en) Deep body thermometer
CN103080711A (zh) 红外温度测量及其稳定化
TWI717178B (zh) 一種具氣密空腔的微機電裝置
CN100400971C (zh) 用于压力传感器的温度调节器
JP2012524900A (ja) 真空誘電体を有する静電容量式圧力センサ
US11092559B2 (en) Thermal humidity measuring device
Ge et al. Integrated Multifunctional Electronic Skins with Low‐Coupling for Complicated and Accurate Human–Robot Collaboration
CN113120851B (zh) 具有气密空腔的微机电装置
CN111207883A (zh) 压力传感器
CN113120851A (zh) 具有气密空腔的微机电装置
US20230175866A1 (en) Temperature dependent calibration of movement detection devices
KR20090035774A (ko) 터치 센서 및 이를 이용한 터치 스크린
JP6985086B2 (ja) 圧力センサ
JPH0688802A (ja) 雰囲気センサ
JP7445371B2 (ja) センサ装置
US11808643B2 (en) Thermal conductivity pressure gauge with heated chamber wall
TWI728735B (zh) 熱反應式壓力偵測器
KR100331809B1 (ko) 박막형 절대습도 센서
JP4437336B2 (ja) 静電容量型真空センサ
KR20100037915A (ko) 기울기 또는 가속도 측정이 가능한 반도체 센서 및 그의 제조방법