TWI716390B - 伺服馬達控制裝置及衝突檢測方法 - Google Patents

伺服馬達控制裝置及衝突檢測方法 Download PDF

Info

Publication number
TWI716390B
TWI716390B TW105108868A TW105108868A TWI716390B TW I716390 B TWI716390 B TW I716390B TW 105108868 A TW105108868 A TW 105108868A TW 105108868 A TW105108868 A TW 105108868A TW I716390 B TWI716390 B TW I716390B
Authority
TW
Taiwan
Prior art keywords
servo motor
speed
signal
acceleration
unit
Prior art date
Application number
TW105108868A
Other languages
English (en)
Other versions
TW201638690A (zh
Inventor
桃澤義秋
伊藤彰啟
Original Assignee
日商日本電產三協股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本電產三協股份有限公司 filed Critical 日商日本電產三協股份有限公司
Publication of TW201638690A publication Critical patent/TW201638690A/zh
Application granted granted Critical
Publication of TWI716390B publication Critical patent/TWI716390B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • G05B19/4141Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller characterised by a controller or microprocessor per axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/001Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by measuring acceleration changes by making use of a triple differentiation of a displacement signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34013Servocontroller

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Electric Motors In General (AREA)
  • Manipulator (AREA)
  • Feedback Control In General (AREA)

Abstract

本發明提供一種衝突檢測精度較高之伺服馬達控制裝置。
伺服馬達控制部10a之位置指令速度維度信號輸出部110a輸出與位置指令對應之速度維度信號。伺服馬達速度維度信號輸出部120輸出伺服馬達20之速度維度信號。於該等速度偏差之絕對值達到特定值以上之情形時,第一衝突檢測部130檢測其為衝突。位置指令加速度維度轉換部140a將與位置指令相關之速度維度信號轉換為加速度維度信號並輸出。伺服馬達加速度維度轉換部150輸出伺服馬達20之加速度維度信號。於加速度偏差之絕對值達到特定值以上之情形時,第二衝突檢測部160檢測其為衝突。基於此,選擇部180根據參數設定部190之檢測方法選擇設定191來選擇第一衝突檢測部130與第二衝突檢測部160。

Description

伺服馬達控制裝置及衝突檢測方法
本發明係關於一種伺服馬達控制裝置及衝突檢測方法,尤其是關於一種具備使動作對象物動作之伺服馬達之伺服馬達控制裝置及衝突檢測方法。
自先前,於伺服馬達之控制裝置中,存在有對機械臂等之動作對象物進行衝突檢測之技術。
例如,於專利文獻1中記載有對具有移動體之致動器進行控制之致動器控制裝置。專利文獻1之裝置具備:電流檢測單元,其於致動器之驅動過程中即移動體自加速結束後至開始減速前移動之期間,檢測流向致動器內之馬達之電流值;以及衝突檢測單元,其於由電流檢測單元檢測到之電流值超過特定之閾值之情形時,檢測移動體之衝突。即,於專利文獻1之技術中,係若轉矩指令值超過閾值,則輸出衝突檢測信號。
[先前技術文獻] [專利文獻]
[專利文獻1]日本特開2014-87235號公報
然而,於專利文獻1之技術中,存在有無法在施加偏置負載之情形時或加減速度時檢測到衝突之問題。因此,衝突檢測之檢測精度不 足。
本發明係鑒於此種狀況研究而成者,其目的在於提供一種能夠解決上述問題並能夠提高衝突檢測之精度之伺服馬達控制裝置。
本發明之伺服馬達控制裝置之特徵在於,其係具備使動作對象物動作之伺服馬達及根據位置指令對上述伺服馬達進行控制之伺服馬達控制部者,且上述伺服馬達控制部具備:位置指令速度維度信號輸出部,其輸出與上述位置指令對應之速度維度信號;伺服馬達速度維度信號輸出部,其輸出上述伺服馬達之速度維度信號;第一衝突檢測部,其於由上述位置指令速度維度信號輸出部輸出之速度維度信號、與由上述伺服馬達速度維度信號輸出部輸出之速度維度信號之差分值即速度偏差之絕對值達到特定值以上之情形時,檢測為衝突;位置指令加速度維度轉換部,其將由上述位置指令速度維度信號輸出部輸出之速度維度信號轉換為加速度維度信號並輸出;伺服馬達加速度維度轉換部,其將由上述伺服馬達速度維度信號輸出部輸出之速度維度信號轉換為加速度維度信號並輸出;第二衝突檢測部,其於由上述位置指令加速度維度轉換部輸出之加速度維度信號、與由上述伺服馬達加速度維度轉換部輸出之加速度維度信號之差分值即加速度偏差之絕對值達到特定值以上之情形時,檢測為衝突;以及選擇部,其根據特定之參數,選擇上述第一衝突檢測部與上述第二衝突檢測部。
藉由以此方式構成,於位置控制中,能夠對應於應用程式之用途等,適當地選擇第一衝突檢測部與第二衝突檢測部,從而能夠提高衝突檢測之精度。
本發明之伺服馬達控制裝置之特徵在於,其係具備使動作對象物動作之伺服馬達及根據速度指令控制上述伺服馬達之伺服馬達控制部者,且上述伺服馬達控制部具備:速度指令速度維度信號輸出部, 其輸出與上述速度指令對應之速度維度信號;伺服馬達速度維度信號輸出部,其輸出上述伺服馬達之速度維度信號;第一衝突檢測部,其於由上述速度指令速度維度信號輸出部輸出之速度維度信號、與由上述伺服馬達速度維度信號輸出部輸出之速度維度信號之差分值即速度偏差值之絕對值達到特定值以上之情形時,檢測為衝突;速度指令加速度維度轉換部,其將由上述速度指令速度維度信號輸出部輸出之速度維度信號轉換為加速度維度信號並輸出;伺服馬達加速度維度轉換部,其將由上述伺服馬達速度維度信號輸出部輸出之速度維度信號轉換為加速度維度信號並輸出;第二衝突檢測部,其於由上述速度指令加速度維度轉換部輸出之加速度維度信號、與由上述伺服馬達加速度維度轉換部輸出之加速度維度信號之差分值即加速度偏差之絕對值達到特定值以上之情形時,檢測為衝突;以及選擇部,其根據特定之參數,選擇上述第一衝突檢測部與上述第二衝突檢測部。
藉由以此方式構成,於速度控制中,能夠對應於應用程式之用途等,適當地選擇第一衝突檢測部與第二衝突檢測部,從而能夠提高衝突檢測之精度。
本發明之伺服馬達控制裝置之特徵在於,上述伺服馬達控制部進而具備第三衝突檢測部,該第三衝突檢測部於由上述伺服馬達加速度維度轉換部輸出之加速度維度信號之絕對值達到特定值以上之情形時,檢測為衝突,上述選擇部根據上述特定之參數亦選擇上述第三衝突檢測部。
藉由以此方式構成,於加減速和緩之狀況下,藉由對加速度維度信號自身與特定值進行比較,能夠提高衝突檢測之精度。
本發明之伺服馬達控制裝置之特徵在於,上述伺服馬達速度維度信號輸出部將由檢測上述伺服馬達之位置之位置檢測感測器檢測到之位置信號經微分後之信號,作為速度維度信號輸出。
藉由以此方式構成,能夠藉由微分器簡單地取得速度維度信號,從而能夠簡化構成。
本發明之伺服馬達控制裝置之特徵在於,上述伺服馬達速度維度信號輸出部將藉由速度觀測器算出之速度推定信號作為速度維度信號輸出,上述速度觀測器係根據向模型之控制對象輸入之輸入信號與上述控制對象之輸出信號來推定速度。
藉由以此方式構成,即使於使用觀測器之構成中,亦能夠進行衝突檢測。
本發明之伺服馬達控制裝置之特徵在於,上述伺服馬達控制裝置具備反饋迴路,該反饋迴路算出對上述位置指令之值乘以比例增益後得到之信號、與由上述位置檢測感測器檢測到之位置信號經微分濾波器微分後之信號之偏差,上述伺服馬達速度維度信號輸出部將配設在上述反饋迴路內之上述微分濾波器之輸出信號作為速度維度信號輸出。
藉由以此方式構成,能夠簡化運算,從而簡化構成。
本發明之伺服馬達控制裝置之特徵在於,上述第一衝突檢測部算出對上述位置指令之值乘以比例增益後得到之信號、與由上述位置檢測感測器檢測到之位置信號經微分後之信號之差分值作為擬似速度偏差來代替上述速度偏差,並於該擬似速度偏差之絕對值達到特定值以上之情形時,檢測為衝突。
藉由以此方式構成,能夠簡化運算,從而簡化構成。
本發明之伺服馬達控制裝置之特徵在於,上述第二衝突檢測部算出將上述擬似速度偏差經微分後之信號作為擬似加速度信號來代替上述加速度偏差,並於該擬似加速度偏差之絕對值達到特定值以上之情形時,檢測為衝突。
藉由以此方式構成,能夠簡化運算,從而簡化構成。
本發明之伺服馬達控制裝置之特徵在於,上述選擇部根據自外部設定之上述參數,選擇上述第一衝突檢測部、上述第二衝突檢測部以及上述第三衝突檢測部中之任意一個。
藉由以此方式構成,能夠隨時自外部設定適於衝突檢測之電路等,且電路變更之負載減少,從而能夠簡單變更。
本發明之伺服馬達控制裝置之特徵在於,上述選擇部之上述第一衝突檢測部之特定值、上述第二衝突檢測部之特定值以及上述第三衝突檢測部之特定值係自外部設定。
藉由以此方式構成,能夠隨時自外部設定特定值,且變更之負載少,從而能夠簡單地變更。
本發明之伺服馬達控制裝置之特徵在於,上述速度維度信號係包含以1/(τ s+1)為傳遞函數之要素作為控制系統模型之濾波器之信號。
藉由以此方式構成,能夠使控制模型之要素包含於濾波器,從而能夠擬似地得到與實際之信號接近之信號。
本發明之伺服馬達控制裝置之特徵在於,上述濾波器自外部設定截止頻率。
藉由以此方式構成,變更負載減少,從而能夠適當且簡單地選擇截止頻率。
本發明之衝突檢測方法之特徵在於,其係由具備使動作對象物動作之伺服馬達及根據位置指令控制上述伺服馬達之伺服馬達控制部之伺服馬達控制裝置執行者,且包含:輸出與上述位置指令對應之速度維度信號,輸出上述伺服馬達之速度維度信號,並算出所輸出之與上述位置指令對應之速度維度信號、與所輸出之上述伺服馬達之速度維度信號之差分即速度偏差,輸出與上述位置指令對應之加速度維度信號,輸出上述伺服馬達之加速度維度信號,並算出所輸出之與上述 位置指令對應之加速度維度信號、與所輸出之上述伺服馬達之加速度維度信號之差分值即加速度偏差,並於根據特定之參數選擇之上述速度偏差以及加速度偏差中之任一者之絕對值達到特定值以上之情形時,檢測為衝突。
藉由以此方式構成,能夠對應於應用程式之用途等,適當地選擇衝突檢測之方式,從而能夠提高衝突檢測之精度。
根據本發明,能夠根據特定之參數來選擇利用速度偏差進行衝突檢測及利用加速度偏差進行衝突檢測,藉此提供一種衝突檢測之檢測精度良好之伺服馬達控制裝置。
1:伺服馬達控制裝置
2:動作對象物
3:主機裝置
10、10a、10b:伺服馬達控制部
20:伺服馬達
30:檢測部
100:控制系統
110a:位置指令速度維度信號輸出部
110b:速度指令速度維度信號輸出部
111、310:微分器
112:濾波器
120:伺服馬達速度維度信號輸出部
130:第一衝突檢測部
140a:位置指令加速度維度轉換部
140b:速度指令加速度維度轉換部
150:伺服馬達加速度維度轉換部
160:第二衝突檢測部
170:第三衝突檢測部
180:選擇部
190:參數設定部
191:檢測方法選擇設定
192:特定值設定
193:截止設定
200:比例增益要素
210:積分濾波器要素
220:馬達增益要素
230:控制對象要素
240:微分濾波器要素
250:向前路徑
260:第一反饋路徑
270:第二反饋路徑
300:觀測器
X:控制系統
圖1係本發明之實施形態之伺服馬達控制裝置之系統構成圖。
圖2係表示圖1所示之伺服馬達控制部執行位置控制時之控制構成之方塊圖。
圖3係表示圖1所示之伺服馬達控制部執行速度控制時之控制構成之方塊圖。
圖4係表示圖1或圖2所示之包括控制系統之控制構成之方塊圖。
<實施形態> 〔控制系統X之構成〕
參照圖1,對本發明之實施形態之控制系統X之構成進行說明。控制系統X為用於對機器人、機床、車輛、船舶、飛機、工廠設備等各種機器進行控制之系統。
又,本實施形態之控制系統X包含伺服馬達控制裝置1、動作對象物2及主機裝置3。
伺服馬達控制裝置1係根據位置指令或者速度指令調整控制量同 時對伺服馬達20進行控制,從而使動作對象物2動作之裝置。又,伺服馬達控制裝置1進行動作對象物2之衝突檢測。
於根據位置指令執行位置控制之情形時,伺服馬達控制裝置1檢測到機械臂因與障礙物接觸等而停止作為該衝突檢測。並且,於根據速度指令執行速度控制之情形時,伺服馬達控制裝置1檢測到機床之旋轉部件因缺齒或傳動帶故障等而停止。
又,伺服馬達控制裝置1成為執行本實施形態之衝突檢測方法之硬體資源。
動作對象物2係成為由伺服馬達控制裝置1實施動作控制之對象之部件。動作對象物2例如為工業用機器人之臂、機床之旋轉部件、車輛之車輪或齒輪或傳動帶、船舶之軸、飛機之螺旋槳、工廠設備之致動器等。
主機裝置3為用於控制並管理各種機器等之外部機器。具體而言,主機裝置3例如為PLC(Programmable Logic Controller:可編程邏輯控制器)、FC(Factory Computer:工廠電腦)、伺服器(Server)、PC(Personal Computer:個人電腦)等。主機裝置3執行用於控制並管理伺服馬達控制裝置1之應用程式(Application Program)。藉此,主機裝置3向伺服馬達控制裝置1發送位置指令或者速度指令,並自伺服馬達控制裝置1接收各種信息。又,主機裝置3亦可取得用戶之指示,對後述之參數設定部190(圖2、圖3)設定各種設定值。
又,伺服馬達控制裝置1包含伺服馬達控制部10、伺服馬達20以及檢測部30。
伺服馬達控制部10根據來自主機裝置3之位置指令或者速度指令來控制伺服馬達20。具體而言,伺服馬達控制部10例如包括:FPGA(Field Programmable Gate Array:現場可編程閘陣列)、ASIC(Application Specific Integrated Circuit:特殊應用積體電路)、 DSP(Digital Signal Processor:數位信號處理器)、CPU(Central Processing Unit:中央處理單元)、MPU(Micro Processing Unit:微處理單元)等控制運算單元;以及類比或數位驅動部(放大器),其用於向伺服馬達20供給電力進行驅動。
此處,伺服馬達控制部10係如下述般可於根據位置指令執行位置控制之情形時與根據速度指令執行速度控制之情形時,藉由主機裝置3之應用程式變更構成。
伺服馬達20為AC伺服馬達20、DC伺服馬達20以及線性致動器等。伺服馬達20使動作對象物2動作。
檢測部30包含檢測伺服馬達20之軸等之位置之位置檢測感測器,具體而言,檢測部30包含檢測伺服馬達20之位置並輸出之位置檢測感測器。該位置檢測感測器例如為磁式或光學式之編碼器(Encoder)等。
又,檢測部30之輸出信號係輸入至伺服馬達控制部10,並用於位置控制或速度控制之反饋(Feedback)控制。
再者,藉由伺服馬達控制部10之控制運算單元實現之後述之各部分亦可由特定之數位電路構成。又,除數位電路之外,既可由類比電路構成,亦可藉由於RAM(Random Access Memory:隨機存取記憶體)中展開並執行儲存於ROM(Read Only Memory:唯讀記憶體)之控制程式,來構成藉由硬體資源執行軟體之電路。
又,亦可構成為不使用擬似微分器而取得馬達之速度維度信號。於此種情形時,如後述般,藉由觀測器300(圖4)根據動作對象物2之動作模型推測伺服馬達20之速度等而進行控制。
〔伺服馬達控制部10之構成〕
其次,參照圖2至圖4,對圖1之伺服馬達控制部10之詳細之控制構成進行說明。
圖2係執行以伺服馬達20之位置指令為輸入、以伺服馬達20之位置為輸出之位置控制而進行衝突檢測之情形時的伺服馬達控制部10a之構成。
伺服馬達控制部10a包含位置指令速度維度信號輸出部110a、伺服馬達速度維度信號輸出部120、第一衝突檢測部130、位置指令加速度維度轉換部140a、伺服馬達加速度維度轉換部150、第二衝突檢測部160、第三衝突檢測部170、選擇部180以及參數設定部190。
控制系統100具有動作對象物2之模型,並表示藉由反饋進行控制之控制系統100之整體。
位置指令速度維度信號輸出部110a自主機裝置3等輸入位置指令,並輸出與該位置指令對應之速度維度信號。
又,位置指令速度維度信號輸出部110a包含微分器111以及濾波器112。
微分器111係對位置指令實施微分並轉換成速度維度之擬似微分部等。
濾波器112例如為一次IIR濾波器(Infinite Impulse Response Filter:無限脈衝應答濾波器)。藉此,濾波器112輸出時間延遲之信號。又,濾波器112包含以1/(τ s+1)為傳遞函數之要素作為控制系統100之模型。此處,τ為時間常數,s為拉普拉斯算子。又,濾波器112之截止頻率等之參數可自外部設定,具體而言,藉由參數設定部190之截止設定193來設定。
再者,該截止設定193亦可根據伺服增益之設定值來算出濾波器之截止頻率。
又,亦可使用除一次濾波器之外之各種濾波器作為濾波器112。
伺服馬達速度維度信號輸出部120輸出伺服馬達20之速度維度信號。
作為一例,伺服馬達速度維度信號輸出部120取得由檢測部30之位置檢測感測器檢測到之伺服馬達20之位置信號,並藉由微分器對其實施微分並作為速度維度信號輸出。於此種情形時,伺服馬達速度維度信號輸出部120算出自實際之控制系統100得到之位置反饋值之微分值即速度反饋值。
再者,伺服馬達速度維度信號輸出部120能夠藉由其他方式算出速度維度信號。關於該速度維度信號之取得、算出方法,將於下文敍述。
第一衝突檢測部130被輸入由位置指令速度維度信號輸出部110a輸出之速度維度信號與由伺服馬達速度維度信號輸出部120輸出之速度維度信號之差分值即速度偏差。於此基礎之上,當已輸入之速度偏差之絕對值達到特定值以上時,第一衝突檢測部130檢測為衝突。第一衝突檢測部130於檢測為衝突之情形時,輸出衝突檢測信號。
位置指令加速度維度轉換部140a將由位置指令速度維度信號輸出部110a輸出之速度維度信號轉換為加速度維度信號並輸出。具體而言,位置指令加速度維度轉換部140a藉由微分器對已輸入之與位置指令相關之速度維度信號進一步實施微分並轉換為加速度維度,並將加速度維度作為加速度維度信號輸出。
伺服馬達加速度維度轉換部150將伺服馬達20之速度維度信號轉換為加速度維度信號並輸出。具體而言,作為一例,伺服馬達加速度維度轉換部150藉由微分器對由伺服馬達速度維度信號輸出部120輸出之速度維度信號進一步實施微分並轉換為加速度維度,並將加速度維度作為加速度維度信號輸出。
第二衝突檢測部160被輸入由位置指令加速度維度轉換部140a輸出之加速度維度信號與由伺服馬達加速度維度轉換部150輸出之加速度維度信號之差分值即加速度偏差。於此基礎之上,於加速度偏差之 絕對值達到特定值以上之情形時,第二衝突檢測部160檢測為衝突。第二衝突檢測部160於檢測到衝突之情形時,輸出衝突檢測信號。
在由伺服馬達加速度維度轉換部150輸出之加速度維度信號之絕對值達到特定值以上之情形時,第三衝突檢測部170檢測為衝突。第三衝突檢測部170於檢測到衝突之情形時,輸出衝突檢測信號。
選擇部180根據參數設定部190之檢測方法選擇設定191來選擇將第一衝突檢測部130、第二衝突檢測部160以及第三衝突檢測部170中之哪一個用於衝突判定。又,選擇部180將該已選擇之部之衝突檢測信號輸出到主機裝置3等。
參數設定部190主要設定各種設定,且將各種設定儲存於RAM、EEPROM等非暫時性之記錄媒體中。參數設定部190之各設定值能夠藉由主機裝置3等之外部之機器來設定。又,各設定值亦可藉由雙列直插式封裝開關等來設定。
又,參數設定部190包含檢測方法選擇設定191、特定值設定192以及截止設定193。
檢測方法選擇設定191係指定選擇部180係採用第一衝突檢測部130、第二衝突檢測部160以及第三衝突檢測部170中之哪一個來設定衝突檢測之特定之參數之設定信息。於以正常之速度使伺服馬達20動作之應用程式中,該特定之參數優先選擇採用了速度偏差之第一衝突檢測部130。並且,於加減速快之應用程式中,特定之參數優先選擇採用了加速度偏差之第二衝突檢測部160。並且,於加減速和緩之應用程式中,特定之參數優先選擇採用了加速度之反饋之第三衝突檢測部170。
再者,該特定之參數不僅由數值指定,亦可由如特定之數學模型、模糊函數、人工類神經網路之函數形式來指定。
特定值設定192係第一衝突檢測部130之特定值、第二衝突檢測 部160之特定值、第三衝突檢測部170之特定值。該特定值設定192亦可準備單一之值,於每一個應用程式中替換使用。再者,亦可準備特定值設定192之特定值分別用於第一衝突檢測部130、第二衝突檢測部160以及第三衝突檢測部170。
截止設定193設定濾波器112之截止頻率。再者,由於能夠根據伺服增益之設定值算出該截止頻率,因此亦可藉由利用截止設定193變更設定伺服增益,來設定截止頻率。
再者,第一衝突檢測部130、第二衝突檢測部160以及第三衝突檢測部170亦可藉由其他方式來進行衝突檢測。關於其他衝突檢測之方法將於下文敍述。
又,亦可為不存在第三衝突檢測部170之構成。
其次,參照圖3,對執行以伺服馬達20之速度指令為輸入、以伺服馬達20之速度為輸出之速度控制時之伺服馬達控制部10b之構成進行說明。於圖2與圖3中,對相同之構成要素標註相同之符號。
伺服馬達控制部10b具備速度指令速度維度信號輸出部110b以及速度指令加速度維度轉換部140b。
速度指令速度維度信號輸出部110b自主機裝置3等輸入速度指令,並輸出與該速度指令對應之速度維度信號。
速度指令速度維度信號輸出部110b由於此時速度指令為速度維度之值不實施微分,而輸入至與包含在位置指令速度維度信號輸出部110a中之濾波器相同之濾波器112中。
速度指令加速度維度轉換部140b將由速度指令速度維度信號輸出部110b輸出之速度維度信號轉換為加速度維度信號並輸出。該處理與位置指令加速度維度轉換部140a相同。
〔控制系統100之模型之構成〕
其次,參照圖4,於控制系統100中,採用考慮到內部狀態之狀 態空間表現之模型,對取得速度維度信號以及加速度維度信號等時之細節、其他衝突檢測方式等,進行說明。
控制系統100結合理想傳遞函數(模型)進行模型匹配控制,上述理想傳遞函數為具有用於對應於動作對象物2而適當地控制伺服馬達20之理想特性之傳遞函數。
若將拉普拉斯算子設為s,則該模型能夠表現為m0/(s2+m1s+m0)。該模型例如能夠如下述般變形。
m0/(s2+m1s+m0)=ω1ω2/(s+ω1)(s+ω2))
此處,ω1、ω2為模型之截止頻率,且以下之關係式成立。
m0=ω1ω2,m1=ω1+ω2……式(1)
再者,由於根據動作對象物2以及伺服馬達20之特性或控制之目地來設定ω1、ω2,因此能夠得到所需之控制應答特性。
又,控制系統100具備比例增益要素200、積分濾波器要素210、馬達增益要素220、包含伺服馬達及動作對象物之控制對象要素230、微分濾波器要素240、向前路徑250、第一反饋路徑260以及第二反饋路徑270。
此處,將用包含向伺服馬達20供給電力之放大器(未圖示)之特定之增益與伺服馬達20之轉矩常數的特定值除以動作對象物2以及伺服馬達20之慣性力矩之值(慣性,inertia)得到之值(增益)設為K。
又,將用與動作對象物2以及伺服馬達20之黏性相關之項除以動作對象物2以及伺服馬達20之慣性得到之值即增益設為p。
於此種情形時,各個要素表現如下:
比例增益要素200為m0。
又,積分濾波器要素210係以(s2+q1s+q0)/(s2+a1s)表示之傳遞函數。
又,馬達增益要素220為1/K。
又,包含伺服馬達以及動作對象物之控制對象要素230係表示控制對象,且以K/(s2+ps)表示之傳遞函數。
又,微分濾波器要素240係以(b2s2+b1s)/(s2+q1s+q0)表示之傳遞函數。
又,向前路徑250係自控制系統100之輸入向輸出之路徑。
又,第一反饋路徑260係自控制系統100之輸出部向輸入側之第一反饋迴路。
又,第二反饋路徑270係自控制系統100之輸出部向輸入側之第二反饋迴路。此處,第二反饋路徑270算出對位置指令之值乘以比例增益而得到之信號之偏差。即,第二反饋路徑270係算出對位置指令之值乘以比例增益而得到之信號、與由位置檢測感測器檢測到之位置信號經微分濾波器要素240微分後之信號之偏差的反饋迴路。
再者,a1、b1、b2滿足以下關係。
a1=q1+m1-p……式(2)
b1=q0×m1……式(3)
b2=(q1-p)×(m1-p)+q0……式(4)
又,上述之q0、q1係用於對動作對象物2以及伺服馬達20進行適當地控制而任意設定之值。
藉由此種構成,伺服馬達速度維度信號輸出部120可選擇圖4所示之速度反饋(a)、速度反饋(b)、速度反饋(c)中之任一者之值作為速度維度信號,並用於速度維度信號之算出與輸出。
如上所述,速度反饋(a)為藉由微分器算出由檢測部30之位置檢測感測器等檢測到之伺服馬達20之位置信號(位置反饋值)之速度反饋值。
速度反饋(b)為由觀測器300推定之速度推定信號。觀測器300為根據向模型之控制對象輸入之輸入信號與控制對象之輸出信號來推定 速度之速度觀測器。具體而言,觀測器300基於向控制對象要素230之輸入與自控制對象要素230之輸出來推定增益K與p。此時,觀測器300亦可構成為:例如藉由最小二乘法等推定增益K。於此種情形時,於已知增益K與p之情形時,觀測器300可使用增益K與p之值。又,於該等值為未知之情形時,以特定時間間隔來逐次執行增益K與p之推定。
再者,於不使用速度反饋(b)之情形時,亦可為不使用觀測器300之構成。
速度反饋(c)為第二反饋路徑270之微分濾波器要素240之輸出信號。即,速度反饋(c)將配設在第二反饋迴路內之微分濾波器之輸出信號作為速度維度信號輸出。
再者,關於伺服馬達速度維度信號輸出部120使用哪一個速度反饋值,可於參數設定部190中進行設定。
又,第一衝突檢測部130算出對位置指令值乘以比例增益而得到之信號與由位置檢測感測器檢測到之位置信號經微分後之信號之差分值作為擬似速度偏差代替上述之速度偏差,並且能夠使用擬似速度偏差代替速度偏差進行衝突檢測。即,第一衝突檢測部130算出比例增益要素200之輸出值與第二反饋路徑270之微分濾波器要素240之輸出值之差分值作為擬似速度偏差。並且,於此種情形時,第一衝突檢測部130於已算出之擬似速度偏差之絕對值達到特定值以上之情形時檢測為衝突。
又,同樣,第二衝突檢測部160亦可算出由微分器310將擬似速度偏差經微分後之信號作為擬似加速度偏差來代替加速度偏差。於此種情形時,第二衝突檢測部160於已算出之擬似加速度偏差之絕對值達到特定值以上之情形時,檢測為衝突。又,第三衝突檢測部170亦能夠使用擬似加速度偏差之值來進行衝突檢測。
〔本實施形態之效果〕
藉由如上所述般構成,能夠獲得如下效果。
先前,如專利文獻1所記載之進行使用了轉矩之衝突檢測之方式中,無法獲得充分之衝突檢測精度。
本發明之實施形態之伺服馬達控制裝置1之特徵在於,其係具備使動作對象物動作之伺服馬達20及根據位置指令對伺服馬達20進行控制之伺服馬達控制部10a者,且伺服馬達控制部10a具備:位置指令速度維度信號輸出部110a,其輸出與位置指令對應之速度維度信號;伺服馬達速度維度信號輸出部120,其輸出伺服馬達20之速度維度信號;第一衝突檢測部130,其於由位置指令速度維度信號輸出部110a輸出之速度維度信號與由伺服馬達速度維度信號輸出部120輸出之速度維度信號之差分值即速度偏差之絕對值達到特定值以上之情形時,檢測為衝突;位置指令加速度維度轉換部140a,其將由上述位置指令速度維度信號輸出部110a輸出之速度維度信號轉換為加速度維度信號並輸出;伺服馬達加速度維度轉換部150,其將由上述伺服馬達速度維度信號輸出部120輸出之速度維度信號轉換為加速度維度信號並輸出;第二衝突檢測部160,其於由上述位置指令加速度維度轉換部140a輸出之加速度維度信號與由上述伺服馬達加速度維度轉換部150輸出之加速度維度信號之差分值即加速度偏差之絕對值達到特定值以上之情形時,檢測為衝突;以及選擇部180,其根據參數設定部190之檢測方法選擇設定191來選擇上述第一衝突檢測部130與上述第二衝突檢測部160。
藉由以此方式構成,能夠適當地選擇並使用與應用程式之用途等相應之第一衝突檢測部130與第二衝突檢測部160。此處,第一衝突檢測部130與使用位置偏差、轉矩之情形相比,能夠高精度地進行衝突檢測。又,第二衝突檢測部160能夠於伺服馬達20之加減速快之狀 況下精度更高地進行衝突檢測。因此,由於能夠根據與應用程式對應之特定之參數進行選擇,從而能夠提高衝突檢測之檢測精度。
又,於專利文獻1之技術中,無法在加減速時檢測衝突,但本發明藉由選擇第二衝突檢測部160而可於加減速時亦檢測衝突。
又,本發明之實施形態之伺服馬達控制裝置1之特徵在於,其係具備使動作對象物動作之伺服馬達20及根據速度指令對伺服馬達20進行控制之伺服馬達控制部10b者,且伺服馬達控制部10b具備:速度指令速度維度信號輸出部110b,其輸出與速度指令對應之速度維度信號;伺服馬達速度維度信號輸出部120,其輸出伺服馬達20之速度維度信號;第一衝突檢測部130,其於由速度指令速度維度信號輸出部110b輸出之速度維度信號與由伺服馬達速度維度信號輸出部120輸出之速度維度信號之差分即速度偏差之絕對值達到特定值以上之情形時,檢測為衝突;速度指令加速度維度轉換部140b,其將由速度指令速度維度信號輸出部110b輸出之速度維度信號轉換為加速度維度信號並輸出;伺服馬達加速度維度轉換部150,其將由伺服馬達速度維度信號輸出部120輸出之速度維度信號轉換為加速度維度信號並輸出;第二衝突檢測部160,其於由速度指令加速度維度轉換部140b輸出之加速度維度信號與由伺服馬達加速度維度轉換部150輸出之加速度維度信號之差分值即加速度偏差之絕對值達到特定值以上之情形時,檢測為衝突;以及選擇部180,其根據參數設定部190之檢測方法選擇設定191選擇第一衝突檢測部130與第二衝突檢測部160。
藉由以此方式構成,與上述之伺服馬達控制部10a相同,能夠提高衝突檢測之精度。又,若採用速度指令,則可減少微分要素,故而可簡化速度指令速度維度信號輸出部。
又,先前於僅利用位置指令進行衝突檢測之技術中,無法於速度控制時進行衝突檢測。針對該點,藉由本實施形態之伺服馬達控制 部10b,於速度控制時亦可高精度地進行衝突檢測。
又,本發明之實施形態之伺服馬達控制部10之特徵在於,進而具備第三衝突檢測部170,該第三衝突檢測部170於由伺服馬達加速度維度轉換部150輸出之加速度維度信號之絕對值達到特定值以上之情形時,檢測為衝突,且選擇部180根據特定之參數亦選擇第三衝突檢測部170。
藉由以此方式構成,能夠將作為加速度之值之維度信號本身與特定值進行比較,從而於加減速和緩之狀況下提高衝突檢測之精度。
又,本發明之實施形態之伺服馬達控制裝置1之特徵在於,伺服馬達速度維度信號輸出部120將由檢測伺服馬達20之位置之位置檢測感測器檢測到之位置信號經微分後之信號作為速度維度信號輸出。
藉由以此方式構成,能夠藉由微分器簡單地獲得速度維度信號。因此,能夠簡化構成、削減成本。
又,本發明之實施形態之伺服馬達控制裝置1之特徵在於,伺服馬達速度維度信號輸出部120將藉由觀測器300算出之速度推定信號作為速度維度信號輸出,上述觀測器300係根據向模型之控制對象輸入之輸入信號與控制對象之輸出信號來推定速度。
藉由以此方式構成,即使於不採用伺服馬達速度維度信號輸出電路120而採用觀測器300之構成中,亦可進行衝突檢測。
又,本發明之實施形態之伺服馬達控制裝置1之特徵在於,具備第二反饋路徑270,該第二反饋路徑270係算出對位置指令之值乘以比例增益後得到之信號與由位置檢測感測器檢測到之位置信號經微分濾波器要素240微分後之信號之偏差之反饋迴路,伺服馬達速度維度信號輸出部120將配設在第二反饋路徑270內之微分濾波器要素240之輸出信號作為速度維度信號輸出。
藉由以此方式構成,由於可將反饋迴路內之輸出直接作為速度 維度信號使用,因此能夠簡化運算,從而能夠簡化構成、削減成本。
又,本發明之實施形態之伺服馬達控制裝置1之特徵在於,第一衝突檢測部130算出將對位置指令值乘以比例增益而得到之信號與由位置檢測感測器檢測到之位置信號經微分後之信號之差分值作為擬似速度偏差來代替速度偏差,並於擬似速度偏差之絕對值達到特定值以上之情形時,檢測為衝突。
藉由以此方式構成,由於可將傳遞函數之運算中途之值即擬似速度偏差直接作為速度維度信號使用,因此能夠簡化運算,從而能夠簡化構成、削減成本。
又,本發明之實施形態之伺服馬達控制裝置1之特徵在於,第二衝突檢測部160算出將擬似速度偏差經微分後之信號作為擬似加速度偏差來代替加速度偏差,並於擬似加速度偏差之絕對值達到特定值以上之情形時,檢測為衝突。
藉由以此方式構成,由於僅對傳遞函數之運算中途之值實施微分便可將擬似加速度偏差直接作為加速度維度信號使用,因此能夠簡化運算,從而能夠簡化構成、削減成本。
又,本發明之實施形態之伺服馬達控制裝置1之特徵在於,選擇部180根據自外部設定之參數,選擇第一衝突檢測部130、第二衝突檢測部160以及第三衝突檢測部170中之任意一個。
藉由以此方式構成,能夠隨時自外部設定使用適合哪一種衝突檢測之電路。因此,變更之負載減少,從而能夠簡單地變更衝突檢測之方式。
又,本發明之實施形態之伺服馬達控制裝置1之特徵在於,選擇部180之第一衝突檢測部130之特定值、第二衝突檢測部160之特定值以及第三衝突檢測部170之特定值係自外部設定。
藉由以此方式構成,亦可隨時自外部設定特定值之設定。因 此,變更負載減少,從而能夠簡單地變更作為衝突檢測之閾值之特定值。
又,本發明之實施形態之伺服馬達控制裝置1之特徵在於,速度維度信號係包含以1/(τ s+1)為傳遞函數之要素作為控制系統100之模型之濾波器112之信號。
藉由以此方式構成,可使控制模型之要素包含於濾波器112,且可將位置指令值或速度指令值用作輸入至實際之控制對象之值。藉此,可擬似地獲得與實際之信號接近之信號,從而與先前相比,能夠高精度地進行衝突檢測。
又,本發明之實施形態之伺服馬達控制裝置1之特徵在於,濾波器112自外部設定截止頻率。
藉由以此方式構成,由於能夠隨時自外部設定截止頻率,因此變更負載減少。又,能夠結合伺服馬達20適當並簡單地選擇截止頻率。再者,如上所述,亦可根據伺服增益之設定值來算出該截止頻率。
又,本發明之實施形態之衝突檢測方法之特徵在於,其係由具備使動作對象物動作之伺服馬達20及根據位置指令對上述伺服馬達20進行控制之伺服馬達控制部10之伺服馬達控制裝置1執行者,且包含:輸出與上述位置指令對應之速度維度信號,輸出上述伺服馬達20之速度維度信號,並算出所輸出之對應於上述位置指令之速度維度信號與所輸出之上述伺服馬達20之速度維度信號之差分值即速度偏差,輸出與上述位置指令對應之加速度維度信號,輸出上述伺服馬達20之加速度維度信號,並算出所輸出之對應於上述位置指令之加速度維度信號與所輸出之上述伺服馬達20之加速度維度信號之差分值即加速度偏差,並於根據特定之參數選擇之上述速度偏差以及加速度偏差中之任一個絕對值達到特定值以上之情形時,檢測為衝突,藉由以此方式 構成,能夠根據應用程式之用途等適當地選擇並使用衝突檢測之方式。因此,能夠提高衝突檢測之精度。
〔其他實施形態〕
再者,於上述之實施形態中,對伺服馬達20之衝突檢測之例進行了說明。
但,本發明之衝突檢測方法亦可用於檢測控制系統100變得不穩定而引起振動等之狀態之用途。藉此,能夠使伺服馬達20之控制針對於外部干擾等而穩定。
並且,於上述之實施形態中,記載了藉由第一衝突檢測部130、第二衝突檢測部160以及第三衝突檢測部170,將速度偏差之絕對值、加速度偏差之絕對值以及加速度維度信號之絕對值與特定值進行比較來實施衝突檢測。
但,亦可構成為:於將速度偏差之絕對值、加速度偏差之絕對值以及加速度維度信號之絕對值輸入至選擇電路180,藉由檢測方法選擇設定191選擇使用哪一個絕對值後,由參數設定部190之特定值設定192設定之值達到特定值以上之情形時,利用選擇部180後之比較器等檢測為衝突。藉由以此方式構成,能夠藉由一個比較器對衝突檢測之輸出進行處理,從而能夠縮小電路規模、削減成本。
再者,上述實施形態之構成以及動作為一例,當然於不脫離本發明之主旨之範圍內可實施適當之變更。
10a‧‧‧伺服馬達控制部
20‧‧‧伺服馬達
30‧‧‧檢測部
100‧‧‧控制系統
110a‧‧‧位置指令速度維度信號輸出部
111‧‧‧微分器
112‧‧‧濾波器
120‧‧‧伺服馬達速度維度信號輸出部
130‧‧‧第一衝突檢測部
140a‧‧‧位置指令加速度維度轉換部
150‧‧‧伺服馬達加速度維度轉換部
160‧‧‧第二衝突檢測部
170‧‧‧第三衝突檢測部
180‧‧‧選擇部
190‧‧‧參數設定部
191‧‧‧檢測方法選擇設定
192‧‧‧特定值設定
193‧‧‧截止設定

Claims (19)

  1. 一種伺服馬達控制裝置,其特徵在於其係具備使動作對象物動作之伺服馬達及根據位置指令對上述伺服馬達進行控制之伺服馬達控制部者,上述伺服馬達控制部具備:位置指令速度維度信號輸出部,其輸出與上述位置指令對應之速度維度信號;伺服馬達速度維度信號輸出部,其輸出上述伺服馬達之速度維度信號;第一衝突檢測部,其於由上述位置指令速度維度信號輸出部輸出之速度維度信號、與由上述伺服馬達速度維度信號輸出部輸出之速度維度信號之差分值即速度偏差值之絕對值達到特定值以上之情形時,檢測為衝突;位置指令加速度維度轉換部,其將由上述位置指令速度維度信號輸出部輸出之速度維度信號轉換為加速度維度信號並輸出;伺服馬達加速度維度轉換部,其將由上述伺服馬達速度維度信號輸出部輸出之速度維度信號轉換為加速度維度信號並輸出;第二衝突檢測部,其於由上述位置指令加速度維度轉換部輸出之加速度維度信號、與由上述伺服馬達加速度維度轉換部輸出之加速度維度信號之差分值即加速度偏差之絕對值達到特定值以上之情形時,檢測為衝突;以及選擇部,其根據特定之參數,選擇上述第一衝突檢測部與上述第二衝突檢測部;且 上述伺服馬達速度維度信號輸出部將由檢測上述伺服馬達之位置之位置檢測感測器檢測到之位置信號經微分後之信號,作為速度維度信號輸出;上述第一衝突檢測部算出對上述位置指令之值乘以比例增益後得到之信號、與上述位置檢測感測器檢測到之位置信號經微分後之信號之差分值作為擬似速度偏差來代替上述速度偏差,並於該擬似速度偏差之絕對值達到特定值以上之情形時,檢測為衝突。
  2. 如請求項1之伺服馬達控制裝置,其中上述伺服馬達控制部進而具備第三衝突檢測部,該第三衝突檢測部於由上述伺服馬達加速度維度轉換部輸出之加速度維度信號之絕對值達到特定值以上之情形時,檢測為衝突,上述選擇部根據上述特定之參數亦選擇上述第三衝突檢測部。
  3. 如請求項1之伺服馬達控制裝置,其中上述伺服馬達速度維度信號輸出部將藉由速度觀測器算出之速度推定信號作為速度維度信號輸出,上述速度觀測器係根據向模型之控制對象輸入之輸入信號與上述控制對象之輸出信號來推定速度。
  4. 如請求項1之伺服馬達控制裝置,其具備反饋迴路,該反饋迴路算出對上述位置指令之值乘以比例增益後得到之信號、與由上述位置檢測感測器檢測到之位置信號經微分濾波器微分後之信號的偏差,上述伺服馬達速度維度信號輸出部將配設在上述反饋迴路內之上述微分濾波器之輸出信號作為速度維度信號輸出。
  5. 如請求項1上述之伺服馬達控制裝置,其中 上述第二衝突檢測部算出上述擬似速度偏差經微分後之信號作為擬似加速度偏差來代替上述加速度偏差,並於該擬似加速度偏差之絕對值達到特定值以上之情形時,檢測為衝突。
  6. 如請求項2之伺服馬達控制裝置,其中上述選擇部根據自外部設定之上述參數,選擇上述第一衝突檢測部、上述第二衝突檢測部以及上述第三衝突檢測部中之任一個。
  7. 如請求項2之伺服馬達控制裝置,其中上述選擇部之上述第一衝突檢測部之特定值、上述第二衝突檢測部之特定值以及上述第三衝突檢測部之特定值係自外部設定。
  8. 如請求項1之伺服馬達控制裝置,其中上述速度維度信號係包含以1/(τ s+1)為傳遞函數之要素作為控制系統模型之濾波器之信號。
  9. 如請求項8之伺服馬達控制裝置,其中上述濾波器係自外部設定截止頻率。
  10. 一種衝突檢測方法,其特徵在於其係由具備使動作對象物動作之伺服馬達及根據位置指令來控制上述伺服馬達之伺服馬達控制部之伺服馬達控制裝置執行者,且包含輸出與上述位置指令對應之速度維度信號,輸出上述伺服馬達之速度維度信號,輸出之速度維度訊號係將由檢測上述伺服馬達之位置之位置檢測感測器檢測到之位置信號經微分後之信號;算出所輸出之與上述位置指令對應之速度維度信號、與所輸出之上述伺服馬達之速度維度信號之差分值即速度偏差,輸出與上述位置指令對應之加速度維度信號, 輸出上述伺服馬達之加速度維度信號,算出所輸出之與上述位置指令對應之加速度維度信號、與所輸出之上述伺服馬達之加速度維度信號之差分值即加速度偏差,於根據特定之參數選擇之上述速度偏差及加速度偏差中之任一者之絕對值達到特定值以上之情形時,檢測為衝突;且算出對上述位置指令之值乘以比例增益後得到之信號、與上述位置檢測感測器檢測到之位置信號經微分後之信號之差分值作為擬似速度偏差來代替上述速度偏差,並於該擬似速度偏差之絕對值達到特定值以上之情形時,檢測為衝突。
  11. 一種伺服馬達控制裝置,其特徵在於其係具備使動作對象物動作之伺服馬達及根據位置指令對上述伺服馬達進行控制之伺服馬達控制部者,且上述伺服馬達控制部具備:速度指令速度維度信號輸出部,其輸出與上述速度指令對應之速度維度信號;伺服馬達速度維度信號輸出部,其輸出上述伺服馬達之速度維度信號;第一衝突檢測部,其於由上述速度指令速度維度信號輸出部輸出之速度維度信號、與由上述伺服馬達速度維度信號輸出部輸出之速度維度信號之差分值即速度偏差值之絕對值達到特定值以上之情形時,檢測為衝突;速度指令加速度維度轉換部,其將由上述速度指令速度維度信號輸出部輸出之速度維度信號轉換為加速度維度信號並輸出;伺服馬達加速度維度轉換部,其將由上述伺服馬達速度維度 信號輸出部輸出之速度維度信號轉換為加速度維度信號並輸出;第二衝突檢測部,其於由上述速度指令加速度維度轉換部輸出之加速度維度信號、與由上述伺服馬達加速度維度轉換部輸出之加速度維度信號之差分值即加速度偏差之絕對值達到特定值以上之情形時,檢測為衝突;以及選擇部,其根據特定之參數來選擇上述第一衝突檢測部與上述第二衝突檢測部;且上述伺服馬達速度維度信號輸出部將由檢測上述伺服馬達之位置之位置檢測感測器檢測到之位置信號經微分後之信號作為速度維度信號輸出;上述第一衝突檢測部算出對上述速度指令之值乘以比例增益後得到之信號、與由上述位置檢測感測器檢測到之位置信號經微分後之信號之差分值作為擬似速度偏差來代替上述速度偏差,並於上述擬似速度偏差之絕對值達到特定值以上之情形時,檢測為衝突。
  12. 如請求項11之伺服馬達控制裝置,其中上述伺服馬達控制部進而具備第三衝突檢測部,該第三衝突檢測部於由上述伺服馬達加速度維度轉換部輸出之加速度維度信號之絕對值達到特定值以上之情形時,檢測為衝突,上述選擇部根據上述特定之參數亦選擇上述第三衝突檢測部。
  13. 如請求項11之伺服馬達控制裝置,其中上述伺服馬達速度維度信號輸出部將藉由速度觀測器算出之速度推定信號作為速度維度信號輸出,上述速度觀測器係根據向模型之控制對象輸入之輸入信號與上述控制對象之輸出信號 來推定速度。
  14. 如請求項11之伺服馬達控制裝置,其具備反饋迴路,該反饋迴路算出對上述速度指令之值乘以比例增益後得到之信號、與由上述位置檢測感測器檢測到之位置信號經微分濾波器微分後之信號的偏差,上述伺服馬達速度維度信號輸出部將配設在上述反饋迴路內之上述微分濾波器之輸出信號作為速度維度信號輸出。
  15. 如請求項11之伺服馬達控制裝置,其中上述第二衝突檢測部算出上述擬似速度偏差經微分後之信號作為擬似加速度偏差來代替上述加速度偏差,並於上述擬似速度偏差之絕對值達到特定值以上之情形時,檢測為衝突。
  16. 如請求項12之伺服馬達控制裝置,其中上述選擇部係根據自外部設定之上述參數,選擇上述第一衝突檢測部、上述第二衝突檢測部以及上述第三衝突檢測部中之任意一個。
  17. 如請求項12之伺服馬達控制裝置,其中上述選擇部之上述第一衝突檢測部之特定值、上述第二衝突檢測部之特定值以及上述第三衝突檢測部之特定值係自外部設定。
  18. 如請求項11之伺服馬達控制裝置,其中上述速度維度信號係包含以1/(τ s+1)為傳遞函數之要素作為控制系統模型之濾波器之信號。
  19. 如請求項18之伺服馬達控制裝置,其中上述濾波器係自外部設定截止頻率。
TW105108868A 2015-03-31 2016-03-22 伺服馬達控制裝置及衝突檢測方法 TWI716390B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-073831 2015-03-31
JP2015073831A JP6517567B2 (ja) 2015-03-31 2015-03-31 サーボモータ制御装置及び衝突検出方法

Publications (2)

Publication Number Publication Date
TW201638690A TW201638690A (zh) 2016-11-01
TWI716390B true TWI716390B (zh) 2021-01-21

Family

ID=57081572

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105108868A TWI716390B (zh) 2015-03-31 2016-03-22 伺服馬達控制裝置及衝突檢測方法

Country Status (4)

Country Link
JP (1) JP6517567B2 (zh)
KR (1) KR20160117223A (zh)
CN (1) CN106020124B (zh)
TW (1) TWI716390B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11440184B2 (en) * 2017-02-09 2022-09-13 Mitsubishi Electric Corporation Position control device and position control method
KR102113465B1 (ko) * 2017-02-09 2020-05-21 미쓰비시덴키 가부시키가이샤 위치 제어 장치 및 위치 제어 방법
JP6460138B2 (ja) * 2017-03-13 2019-01-30 オムロン株式会社 処理装置、制御パラメータ決定方法、及び制御パラメータ決定プログラム
TWI678277B (zh) * 2017-03-21 2019-12-01 德律科技股份有限公司 障礙偵測方法及壓床防撞方法
CN107357262B (zh) * 2017-05-31 2019-07-23 深圳市亚启科技有限公司 基于运动控制的机械位移碰撞归零控制系统及方法
JP2019000930A (ja) * 2017-06-13 2019-01-10 住友理工株式会社 安全装置
CN107289929A (zh) * 2017-08-08 2017-10-24 珠海市微半导体有限公司 一种机器人碰到障碍物的检测方法和系统及芯片
KR102370879B1 (ko) * 2017-09-12 2022-03-07 주식회사 한화 협동로봇제어장치 및 협동로봇을 제어하는 방법
JP6922747B2 (ja) * 2018-01-11 2021-08-18 トヨタ自動車株式会社 モータのトルク制御装置
JP7180165B2 (ja) * 2018-07-23 2022-11-30 セイコーエプソン株式会社 ロボット、制御装置および制御方法
CN109510551A (zh) * 2018-12-28 2019-03-22 上海辛格林纳新时达电机有限公司 本质安全型伺服系统的实现方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142480A (ja) * 2000-08-21 2002-05-17 Mitsuba Corp サーボモータ制御装置
JP2003236787A (ja) * 2002-02-18 2003-08-26 Kawasaki Heavy Ind Ltd 駆動制御方法および駆動制御装置
CN1781658A (zh) * 2004-11-26 2006-06-07 发那科株式会社 控制器
TWI419442B (zh) * 2008-12-31 2013-12-11 Asml Holding Nv 線性馬達、微影系統、器件製造方法、及光束照明方法
US20140316664A1 (en) * 2013-04-23 2014-10-23 Caterpillar Inc. Aggressive and Stable Speed Control

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146602A (ja) * 1988-08-11 1990-06-05 Fanuc Ltd サーボモータにより駆動される被駆動体の衝突検出・停出方法
DE102005015317B4 (de) * 2005-04-01 2007-02-01 Siemens Ag Verfahren und Steuereinrichtung zur gezielten Reaktion bei einem Kontakt zwischen einem Maschinenelement einer Maschine mit einem Gegenstand
JP4897632B2 (ja) * 2007-09-27 2012-03-14 ファナック株式会社 衝突検出機能を有する工作機械の制御装置
JP2010058709A (ja) * 2008-09-04 2010-03-18 Toyota Motor Corp ブレーキ制御装置
JP2014087235A (ja) 2012-10-26 2014-05-12 Iai Corp アクチュエータ制御装置及びアクチュエータ制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142480A (ja) * 2000-08-21 2002-05-17 Mitsuba Corp サーボモータ制御装置
JP2003236787A (ja) * 2002-02-18 2003-08-26 Kawasaki Heavy Ind Ltd 駆動制御方法および駆動制御装置
CN1781658A (zh) * 2004-11-26 2006-06-07 发那科株式会社 控制器
TWI419442B (zh) * 2008-12-31 2013-12-11 Asml Holding Nv 線性馬達、微影系統、器件製造方法、及光束照明方法
US20140316664A1 (en) * 2013-04-23 2014-10-23 Caterpillar Inc. Aggressive and Stable Speed Control

Also Published As

Publication number Publication date
KR20160117223A (ko) 2016-10-10
JP6517567B2 (ja) 2019-05-22
JP2016194761A (ja) 2016-11-17
CN106020124A (zh) 2016-10-12
TW201638690A (zh) 2016-11-01
CN106020124B (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
TWI716390B (zh) 伺服馬達控制裝置及衝突檢測方法
JP5996127B2 (ja) 摩擦同定方法および摩擦同定装置
JP5209810B1 (ja) イナーシャと摩擦係数とばね定数を同時に推定する機能を備える電動機の制御装置
JP5591400B2 (ja) 駆動機械の負荷特性推定装置
US9952249B2 (en) Inertia estimating method and inertia estimation apparatus of position control apparatus
JP2006146572A (ja) サーボ制御装置および方法
EP3277467B1 (en) A method for controlling an industrial robot by touch
Liu et al. Velocity estimation of robot manipulators: An experimental comparison
JP5151994B2 (ja) 慣性モーメント同定装置とその同定方法、ならびにその同定装置を備えたモータ制御装置
JP7050624B2 (ja) モータ制御装置及びこれを備えた電動ブレーキ装置
CN109844658B (zh) 运动控制装置的参数化的自动优化
JP5832382B2 (ja) 数値制御装置
KR101888518B1 (ko) 모터 제어 장치, 이를 구비한 액티브 롤 스태빌라이저 및 모터 제어 방법
JP5836206B2 (ja) サーボ制御装置
JPWO2009025132A1 (ja) モータ制御装置とその慣性モーメント同定方法
WO2018077593A1 (en) Method for determining a deadzone angle of a backlash in a mechanical drive-train system, method for controlling a drive motor controller as well as drive-train system
Roesch et al. Fuzzy controller for the compensation of path deviations during robotic milling operations
JP7020200B2 (ja) 速度・位置制御システム
JP6043191B2 (ja) モータ速度制御装置
Yoshioka et al. Variable noise-covariance Kalman filter based instantaneous state observer for industrial robot
JP3871030B2 (ja) サーボ制御方法
Rebelo et al. Performance analysis of time-delay bilateral teleoperation using impedance-controlled slaves
Kobayashi et al. Workspace acceleration based MDOF motion control in redundant manipulators
Rata et al. An Efficient Method for Studyingthe Motion Graphs optimization in Electric Drive Systems
CN111404445A (zh) 伺服放大器和伺服系统