TWI713524B - 按需求塡充安瓿之再塡充 - Google Patents
按需求塡充安瓿之再塡充 Download PDFInfo
- Publication number
- TWI713524B TWI713524B TW105115410A TW105115410A TWI713524B TW I713524 B TWI713524 B TW I713524B TW 105115410 A TW105115410 A TW 105115410A TW 105115410 A TW105115410 A TW 105115410A TW I713524 B TWI713524 B TW I713524B
- Authority
- TW
- Taiwan
- Prior art keywords
- ampoule
- filling
- precursor
- substrate processing
- deposition
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67253—Process monitoring, e.g. flow or thickness monitoring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B3/00—Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
- B65B3/04—Methods of, or means for, filling the material into the containers or receptacles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4481—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67276—Production flow monitoring, e.g. for increasing throughput
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
Abstract
本發明揭露使用按需求填充安瓿的方法及設備。按需求填充安瓿可在執行其他沉積製程的同時,以前驅物對安瓿進行再填充。按需求填充可使安瓿內前驅物的位準維持在相當恆定的位準。可計算該位準,以造成最佳的頭部容積。按需求填充亦可使前驅物的溫度維持在接近於最佳前驅物溫度之溫度。按需求填充可發生於部分沉積製程期間,其中,由於以前驅物填充安瓿而引起之前驅物的攪動最小程度地影響基板沉積。可透過使用按需求填充而使基板產能增加。
Description
本發明係關於填充安瓿的方法及前驅物再填充設備。
某些基板處理操作可利用前驅物。前驅物可容納於安瓿中,且週期性地輸送至反應器。期望可有一致的頭部容積、及一致的前驅物溫度,以確保所處理基板的均勻性。此外,在處理基板時,因再填充而造成之前驅物的攪動係非期望的。再填充需花費時間,且可能會影響產能。
在某些實施例中,可詳述用於填充基板處理設備之安瓿的方法。該方法可包含:(a) 判定符合安瓿填充開始條件,其中該安瓿填充開始條件包含判定該基板處理設備係於一階段中或即將進入該階段,其中在該階段期間,由以前驅物填充該安瓿所引起之該前驅物之擾動將對以該基板處理設備所處理之基板的一致性有最小影響;(b) 以前驅物填充該安瓿,其中以該前驅物對該安瓿的該填充係與至少一其他的基板處理操作同時執行;(c) 判定符合安瓿再填充停止條件;及(d) 停止以該前驅物對該安瓿的該填充。
本揭露內容之一態樣係關於用於填充基板處理設備之安瓿的方法。此類方法之特徵可為下列操作:(a) 判定符合安瓿填充開始條件,其中該安瓿填充開始條件係用於以液體前驅物填充安瓿;(b) 以前驅物填充該安瓿,其中以該前驅物對該安瓿的該填充係與至少一其他的基板處理操作同時執行;(c) 讀取該安瓿中的感測器位準,其指示該填充操作尚未完成;(d) 判定符合二次填充停止條件;及(e) 回應於符合二次填充停止條件的該判定,停止以該前驅物對該安瓿的該填充。
在某些實施例中,該等方法更包含維持填充之累積時間,其開始於該安瓿於上一次接收前驅物的結尾。在若干實施例中,該二次填充停止條件包含判定該填充之累積時間超過臨界值。在若干實施例中,當安瓿再填充暫時停止且沉積開始時,該填充之累積時間會暫時停止一或更多次,但當填充再度開始時,該填充之累積時間重新開始。在若干實施例中,該臨界值係介於約50秒至90秒之間。
在某些實施例中,該等方法包含當在操作(e)中停止該填充時,啟動軟關機。在若干情況下,當在該安瓿中產生該感測器位準的該感測器係為機能失常的時候,執行該方法。在若干情況下,當將該液體前驅物提供至該安瓿的系統係為機能失常的時候,執行該方法。
在某些實施例中,該安瓿填充開始條件包含判定該基板處理設備係於一階段中或即將進入該階段,其中在該階段期間,由以該前驅物填充該安瓿所引起之該液體前驅物之擾動將對以該基板處理設備所處理之基板的一致性有最小影響。在若干實施例中,該安瓿填充開始條件包含判定一系列沉積操作已在容納於該基板處理設備中的基板上完成。在若干情況下,該系列沉積操作係為與原子層沉積相關的沉積操作。在某些實施例中,該安瓿填充開始條件包含判定該前驅物之容積係低於臨界容積。在某些實施例中,該安瓿填充開始條件包含判定當前正在執行用於沉積操作之設定。
在若干實施例中,與填充該安瓿同時執行之該至少一其他的基板處理操作包含晶圓定位操作。在若干情況下,與填充該安瓿同時執行之該至少一其他的基板處理操作包含該前驅物及/或該基板的溫度浸泡。在若干情況下,與填充該安瓿同時執行之該至少一其他的基板處理操作包含泵抽至基底操作。
本揭露內容之若干態樣係關於控制填充基板處理設備之安瓿的方法。此類方法之特徵可為下列操作:(a) 啟動沉積循環之數量的計數器,其中在該沉積循環期間,前驅物被輸送至該基板處理設備之反應腔室,其中該前驅物係以液體形式儲存於該安瓿中;(b) 判定符合安瓿填充開始條件;(c) 讀取該安瓿中的感測器位準,其指示該安瓿係充分地充滿以致於不應將該液體前驅物提供至該安瓿;(d) 判定由該計數器所計的沉積循環之數量超過臨界值;及(e) 回應於由該計數器所計的該沉積循環之數量超過臨界值的該判定,停止該沉積循環。在若干實施例中,該臨界值包含約3000個至6000個之間的沉積循環。
在某些實施例中,在操作(a)中之啟動該計數器步驟發生於當該液體前驅物被輸送至該安瓿時,且其中該計數器繼續計數直至液體前驅物再度被輸送至該安瓿為止。在若干實施例中,該方法包含當在操作(e)中停止該沉積循環時,啟動軟關機。
在若干情況下,當在該安瓿中產生該感測器位準的該感測器係為機能失常的時候,執行該方法。在某些實施例中,該安瓿填充開始條件包含判定該基板處理設備係於一階段中或即將進入該階段,其中在該階段期間,由以該前驅物填充該安瓿所引起之該液體前驅物之擾動將對以該基板處理設備所處理之基板的一致性有最小影響。在某些實施例中,該安瓿填充開始條件包含判定一系列沉積操作已在容納於該基板處理設備中的基板上完成。在若干範例中,該系列沉積操作係為與原子層沉積相關的沉積操作。
在若干實施例中,該安瓿填充開始條件包含判定當前正在執行用於沉積操作之設定。在若干實施例中,該安瓿之填充條件包含與填充該安瓿同時執行之其他的基板處理操作,該其他的基板處理操作係選自由晶圓定位操作、該前驅物及/或該基板的溫度浸泡、泵抽至基底操作所構成的群組。
本揭露內容之若干態樣係關於前驅物再填充系統,其具有下列特徵:(1) 安瓿,其配置以流體地連接至前驅物輸送系統及前驅物源,且配置以容納液體前驅物;及(2) 一或更多控制器,其配置以執行下列操作:(a) 啟動沉積循環之數量的計數器,其中在該沉積循環期間,前驅物被輸送至基板處理設備之反應腔室,其中該前驅物係以液體形式儲存於該安瓿中;(b) 判定符合安瓿填充開始條件;(c) 讀取該安瓿中的感測器位準,其指示該安瓿係充分地充滿以致於不應將該液體前驅物提供至該安瓿;(d) 判定由該計數器所計的沉積循環之數量超過臨界值;及(e) 回應於由該計數器所計的該沉積循環之數量超過臨界值之判定,停止該沉積循環。在若干實施例中,該臨界值包含約3000個至6000個之間的沉積循環。
在若干設計中,該一或更多控制器係更配置以當該液體前驅物被輸送至該安瓿時,在(a)中啟動該計數器,且繼續計數直至液體前驅物再度被輸送至該安瓿為止。在若干實施例中,該一或更多控制器係更配置以當在操作(e)中停止該沉積循環時,啟動軟關機。
在某些實施例中,該安瓿填充開始條件包含判定該基板處理設備係於一階段中或即將進入該階段,其中在該階段期間,由以該前驅物填充該安瓿所引起之該液體前驅物之擾動將對以該基板處理設備所處理之基板的一致性有最小影響。在某些實施例中,該安瓿填充開始條件包含判定一系列沉積操作已在容納於該基板處理設備中的基板上完成。在某些實施例中,該安瓿之填充條件包含與填充該安瓿同時執行之其他的基板處理操作,該其他的基板處理操作係選自由晶圓定位操作、該前驅物及/或該基板的溫度浸泡、泵抽至基底操作所構成的群組。
在若干實施例中,該基板處理設備包含:沉積腔室;及基板處理站,其包含於該沉積腔室內,其中該基板處理站包含基板固持器,該基板固持器係配置以接收基板,且該前驅物輸送系統係配置以在由該基板處理站所接收之該基板的處理期間輸送前驅物。
本揭露內容之另一態樣係關於前驅物再填充系統,其包含:(1) 安瓿,其配置以流體地連接至前驅物輸送系統及前驅物源,且配置以容納液體前驅物;及(2) 一或更多控制器,其配置以執行下列操作:(a) 判定符合安瓿填充開始條件,其中該安瓿填充開始條件係用於以液體前驅物填充安瓿;(b) 以該前驅物填充該安瓿,其中以該前驅物對該安瓿的該填充步驟係與至少一其他的基板處理操作同時執行;(c) 讀取該安瓿中的感測器位準,其指示該填充操作尚未完成;(d) 判定符合二次填充停止條件;及(e) 回應於符合二次填充停止條件的判定,停止以該前驅物對該安瓿的該填充。
在某些實施例中,該一或更多控制器係更配置以維持填充之累積時間,其開始於該安瓿上一次接收前驅物的結尾。在若干情況下,該二次填充停止條件包含判定該填充之累積時間超過臨界值。在若干實施例中,該一或更多控制器係更配置以當安瓿再填充暫時停止且沉積開始時,暫時停止該填充之累積時間一或更多次。
在若干實施例中,該臨界值係介於約50秒至90秒之間。在若干實施例中,該一或更多控制器係更配置以當在操作(e)中停止該填充時,啟動軟關機。
在某些實施例中,該安瓿填充開始條件包含判定該基板處理設備係於一階段中或即將進入該階段,其中在該階段期間,由以該前驅物填充該安瓿所引起之該液體前驅物之擾動將對以該基板處理設備所處理之基板的一致性有最小影響。在某些實施例中,該安瓿填充開始條件包含判定該前驅物之容積係低於臨界容積。在若干實施例中,與填充該安瓿同時執行之該至少一其他的基板處理操作包含該前驅物及/或該基板的溫度浸泡。
在若干實施例中,基板處理設備包含:沉積腔室;及基板處理站,其包含於該沉積腔室內,其中該基板處理站包含基板固持器,該基板固持器係配置以接收基板,且該前驅物輸送系統係配置以在由該基板處理站所接收之該基板的處理期間輸送前驅物。
本發明之此等及其他特徵將參考圖式而詳加描述於下。
以下在隨附圖式及實施方式中提出了本說明書中所描述之標的之一或更多實施例之細節。參閱實施方式、圖式、及申請專利範圍,其他特徵、態樣、及優點將變得顯而易見。應注意,除非特別指出圖式為縮尺圖,否則以下圖式之相對尺寸可能未按比例繪製。
應瞭解,如本說明書中所使用,用語「半導體晶圓」係指涉由半導體材料(例如:矽)所製成的晶圓、及由一般不被認為是半導體的材料(例如:介電質及/或導體)所製成的晶圓(但通常有半導體材料設置在其上)兩者。絕緣層覆矽(SOI, Silicon on insulator)晶圓係為一此類範例。本揭露內容中所敘述之設備及方法可用於多種尺寸的半導體晶圓(包含直徑200 mm、300 mm、及450 mm的半導體晶圓)處理中。
均勻性為高品質半導體晶圓之處理中的重要因素。例如,沉積層的厚度及品質在每個晶圓之間、以及晶圓之特徵部內應為均勻的。在半導體處理的某些實施例中,在將液體前驅物沉積於半導體晶圓上之前可能需要使其汽化。液體前驅物可容納於安瓿中,並且載氣(例如:氬、或其他惰性的氣體)可流過安瓿,以將汽化的前驅物運送至半導體處理腔室。載氣可被「推過」(氣體受到壓迫而通過管線的情況)、或「拉過」(氣體可能經由真空而被拉引而通過管線)安瓿,以運送汽化的前驅物。在如原子層沉積(ALD, Atomic Layer Deposition)的某些沉積製程中,晶圓均勻性可因安瓿內氣體之相當恆定的頭部容積、以及恆定的前驅物溫度而受益。在某些此類實施例中,目標的頭部容積可為安瓿容積之約20%-30%的容積。因此,當頭部容積為安瓿容積的約20%-30%時,可以前驅物來填充安瓿的約70%-80%。另外,晶圓均勻性亦可因缺乏導致前驅物不平均汽化的前驅物攪動而受益。最後,高晶圓產能在半導體晶圓的生產中係為重要的。目前,安瓿通常係透過以下各者而填充:手動填充、自動填充、同步填充、或於維護期間再填充。然而,目前技術均未結合用於沉積期間之相當恆定之頭部容積及前驅物溫度、沉積期間前驅物攪動的缺乏、及高晶圓產能。
圖1A顯示具有按需求填充安瓿之範例基板處理設備的示意圖。圖1A顯示具有安瓿102及處理腔室132的基板處理設備100。
在圖1A中所示的圖中,安瓿102容納前驅物104。在某些實施例中,安瓿可具有約600 mL至3 L間的容積。在所示之實施例中,安瓿可為約1.2 L的安瓿。前驅物通過流動路徑112而流入安瓿102。閥114控制前驅物通過流動路徑112的流動。當閥114開啟時,前驅物可流過流動路徑112而至安瓿102中,對安瓿102進行填充。當閥114關閉時,前驅物不可流至安瓿102中。在所示之實施例中,流動路徑112係為連接至安瓿102之底部的流動路徑。在其他實施例中,容納前驅物的流動路徑可為例如量桿的其他配置,且可自安瓿的底部以外的區域對安瓿進行填充。
處理腔室132包含歧管120及噴淋頭122。某些實施例可包含不只一個噴淋頭,例如兩噴流頭、或四噴淋頭。在此類實施例中,歧管將流體分配至噴淋頭。某些其他的實施例可以另外的裝置(例如,注入器)替代歧管來分配前驅物。在其他實施例中,處理腔室可不包含歧管。
噴淋頭122可透過流動路徑138而流體連接至歧管120,且閥130可安裝在流動路徑上,以控制流體自歧管120流至噴淋頭122的流動。噴淋頭122可將流過流動路徑138的流體分配至位於處理腔室132中的處理站。處理站可容納基板。處理站並未顯示於圖1A中。
歧管120亦可透過其他流動路徑而連接至真空。閥128可控制真空。在某些實施例中,閥130及128其中最多一者可在任何給定的時間開啟。真空可用以在噴淋頭122未預備接收流體流動時,容許載氣及/或前驅物氣體的持續流動。
流動路徑118及136將安瓿102連接至歧管120。閥126係位於流動路徑118上。閥126控制所有流至歧管120之流體的流動。當閥126關閉時,無流體可流至歧管120。相反地,當閥126開啟時,流體可流動至歧管。另外,閥124亦位於流動路徑118上。閥124控制載氣流至閥126的流動。
閥116係位於流動路徑136上。閥116控制前驅物氣體自安瓿102流至閥126的流動。
流動路徑106連接基板處理設備100與載氣源。載氣通過流動路徑106而進入基板處理設備100之其餘流動路徑的流動係藉由閥108而控制。若閥108關閉,則可能無流體流過基板處理設備100。
流動路徑134連接流動路徑106與安瓿102。位於流動路徑134上之閥110控制載氣自流動路徑106流至安瓿102中的流動。載氣流至安瓿102中後,其可與汽化的前驅物進行混合,以形成前驅物氣體。
可透過各種閥的開啟及關閉而控制流體通過基板處理設備100的流動。開啟的閥及關閉的閥之某些配置將於圖4A至4D中詳加討論。
圖1B顯示的是具有按需求填充安瓿之另一範例基板處理設備的示意圖。圖1B中之基板處理設備100B係與圖1A中之基板處理設備100相似。基板處理設備100B包含藉由流動路徑142而連接之額外的閥140。在圖1B中所示之圖100B的實施例中,流動路徑142及閥140可為載氣流至閥126提供額外的路徑。在某些實施例中,通過閥124的流動路徑可用以在基板處理設備的操作期間使載氣流動,而通過閥140的流動路徑可用以在基板處理設備的維護期間使載氣流動。
圖2係為詳述使用按需求填充安瓿之範例沉積製程操作的處理流程圖。圖2詳述安瓿填充操作、及安瓿填充操作相較於其餘製程操作的時間表。在圖2中,安瓿填充操作係顯示於圖式的右側,而其他沉積製程操作係顯示於左側。圖2中所詳述之製程操作可為ALD處理操作,或可為使用液體反應物的其他類型之基板處理操作,例如化學氣相沉積法、包含原子層蝕刻法的蝕刻操作等。
在操作202中,執行製程操作的設定。操作202包含涉及處理操作之設定(例如,設備的一般性檢查、銷的舉升、基板的裝載、及操作的程式化)的許多不同任務。
在操作202之後,操作204開始安瓿的填充。操作204開始進行安瓿的初始填充。在操作204的一開始,安瓿可為完全空的。
當安瓿正進行填充的同時,溫度浸泡於操作206中發生。溫度浸泡可加熱前驅物,以使其處於期望的溫度(例如針對ALD中所使用之某些前驅物約為攝氏20至100度之間),及/或其可在沉積之前加熱基板。加熱前驅物所達到之溫度可取決於前驅物的化學組成。某些實施例可將前驅物及/或基板自室溫加熱上升至更高的溫度(例如,約攝氏25-45度間的溫度)。其他實施例可將前驅物及/或基板自室溫加熱上升至約攝氏25-60度間的溫度,而又其他的實施例可將前驅物及/或基板自室溫加熱上升至甚至更高的溫度(例如,高達約攝氏80度)。對正在填充之前驅物進行加熱浸泡可造成前驅物處於可汽化至所期望之量的最佳溫度。此外,於安瓿填充期間對前驅物進行加熱浸泡可容許更大的基板產能,係由於同時執行兩設定操作所致。最後,由於無載氣流過安瓿來運送汽化的前驅物氣體,因此在加熱浸泡期間填充安瓿亦可使由填充期間之前驅物的攪動所造成的影響最小化。
操作206之溫度浸泡完成之後,但在操作210中管線進行進料之前,在操作208中安瓿停止填充。安瓿可因為各種不同的狀況而停止進行填充。此類狀況係更詳加描述於圖3中。在某些實施例中,安瓿初始可為全滿的位準。在此類實施例中,可略過安瓿的初始填充。
在操作210中,執行管線進料。管線進料係在將前驅物氣體輸送至處理腔室中之前,使氣體通過基板處理設備之流動路徑的流動。換言之,通往腔室的管線進行進料,以減少通往腔室之閥開啟時的延遲。例如,某些實施例可使載氣流過各種流動路徑,以自安瓿運送前驅物氣體。此類前驅物氣體的預流動可藉由以沉積中所使用之前驅物氣體對流動路徑預進料而有助於使沉積具有更一致之初始循環,以使在通往處理腔室之閥切換為開啟時,前驅物氣體更快地抵達處理腔室內。
在操作210中之管線進料後,於操作212中執行沉積。於操作212中執行之沉積可為單一循環的沉積,或者可為複數循環的沉積,例如ALD期間所執行者。
在操作212中執行沉積操作後,於操作216中開始二次安瓿填充。操作216中之二次安瓿填充可將安瓿重新填充至全滿位準、或可設計成填充安瓿直至符合另一停止填充條件為止。當在操作220中符合停止填充條件時,二次安瓿填充操作停止。二次安瓿填充容許安瓿維持相當一致的頭部容積,而造成更佳的晶圓均勻性。在二次安瓿填充期間,可加熱安瓿,以容許有更一致的前驅物溫度。在例如圖2中所描述之實施例的某些實施例中,二次安瓿填充係定時發生於由填充所造成之前驅物的攪動對基板處理有最小影響的期間。在若干實施例中,此類期間可為無沉積執行時的期間。在其他實施例中,若前驅物之蒸汽壓低於某個臨界值,則可於此類期間執行沉積。具有低蒸汽壓的前驅物對因再填充而造成之攪動可能較不敏感,而因此可能較適合在執行沉積的同時進行再填充。例如,具有少於約1 Torr蒸汽壓的前驅物為可於沉積期間進行再填充的前驅物。在某些實施例中,於二次安瓿填充之任何單一操作期間所再填充之前驅物量可少於總安瓿容積的約40%,例如少於總安瓿容積的約20%、少於約10%、少於約5%、或少於約2%。
在執行二次安瓿填充的同時,仍執行其他製程操作,例如泵抽至基底、及晶圓定位。在操作214中,執行泵抽至基底。泵抽至基底為由真空泵所提供之將腔室抽空至基底壓力的製程。該製程藉由例如處理腔室中之真空埠而自基板處理腔室移除剩餘的材料。
在操作218中,執行晶圓定位。晶圓定位為基板至基板處理腔室內之額外處理站的轉移及定向。晶圓定位可在基板處理腔室具有複數處理站的情況下執行。在某些實施例(例如,涉及僅有一個處理站之處理腔室的實施例)中,可不執行晶圓定位。
在操作218中之晶圓定位後,製程可重新繼續進行至操作212,並再次執行沉積操作直至已執行所有需要的沉積為止。可在每一輪沉積間執行安瓿填充。
圖3係為詳述用以控制範例按需求填充安瓿之演算法的處理流程圖。在操作302中,給出執行前驅物填充的命令。操作302可對應於圖2中之操作204或216。執行前驅物填充的命令可透過包含於控制器中的邏輯而給出。控制器可為用以控制基板處理設備之其他沉積操作的控制器,或其可為專用於控制與安瓿相關之操作的獨立控制器。
一旦給出執行前驅物填充的命令,前驅物即開始填充安瓿。在執行前驅物填充期間,控制器亦可同時地執行操作304、306、及308。
在操作304中,控制器查看安瓿全滿感測器是否開啟。安瓿可包含位準感測器,例如分離式位準感測器。位準感測器可設定以偵測安瓿內之某前驅物位準,例如全滿位準。可計算此類前驅物全滿位準以造成含有最佳頭部容積之安瓿。在某些實施例中,全滿位準可為臨界容積,其計算以達成最佳頭部容積。例如,此類臨界容積可為約為安瓿總容積的70%-80%附近的前驅物容積,例如約為安瓿總容積的75%。在其他實施例中,臨界容積可為一段範圍的容積。在此類實施例中,落於該範圍內的前驅物容積可滿足全滿的條件。在某些此類實施例中,後續的二次安瓿填充可基於所偵測到之前驅物容積而調整。例如,可調整後續二次安瓿填充的停止條件。
在某些其他的實施例中,位準感測器可回報低位準。當安瓿內前驅物之容積低於安瓿容積之臨界百分比時可回報低位準。在此類實施例中,臨界容積可為少於安瓿容積的約50%之容積。在此類實施例中,基板處理設備可在位準感測器回報低位準時停止基板的處理。在某些實施例中,基板處理設備可在停止基板處理以進行安瓿再填充之前,結束一系列基板沉積操作中的所有沉積循環。
在操作306中,控制器查看安瓿填充計時器是否已逾期。安瓿填充計時器可為設定於控制器中的計時器,以使執行安瓿填充製程僅達一段持續時間,該持續時間接近將安瓿填充至全滿位準所需之持續時間。在某些實施例中,為導入若干安全係數,填充計時器可為稍微長於將安瓿填充至全滿位準所需之時間的持續時間。在其他實施例中,安瓿填充計時器可比將安瓿填充至全滿所需之持續時間長許多。在此類實施例中,可選擇填充計時器的持續時間,以容許有最佳的機會來將安瓿填充至全滿位準,且可依靠安瓿全滿感測器作為預防安瓿之過度填充的主要機制。
在某些實施例中,用於初始填充及二次填充的填充計時器可為不同的。在此類實施例中,初始填充計時器可為例如45秒以下,而二次填充計時器可為例如5至10秒之間。在其他實施例中,填充計時器可基於校正係數而調整。校正係數可為說明各種不同的基板處理設備之再填充管線的壓力差異之係數。因此,具有高再填充管線壓力的基板處理設備可具有低校正係數,其造成填充計時器更短,而具有低再填充管線壓力的基板處理設備可具有高的校正係數,其造成填充計時器更長。再填充管線壓力可基於基板處理設備之固有特性而改變,或其可基於操作者對於一件特定裝備的經驗而改變。例如,若期望前驅物中的攪動進一步降低,則可降低再填充管線的壓力。此外,校正係數可說明前驅物再填充管線內的壓力指示器之上游的任何變化。可影響管線壓力的因素包含再填充管線的直徑及長度。
在某些實施例中,無論於初始填充期間所偵測到之狀況如何,二次填充計時器皆可保持恆定。在其他實施例中,二次填充計時器可取決於初始填充期間所偵測到之條件而調整。 例如,若初始填充期間,安瓿全滿感測器從未偵測到為開啟狀態,則二次填充計時器的持續時間可延長,以容許安瓿在二次填充操作期間達到全滿位準的可能性更大。
在操作308中,控制器查看是否已要求明確停止命令。 在某些實施例中,停止填充安瓿的明確停止命令可在某些沉積步驟(例如,在該沉積步驟執行期間同時進行安瓿填充可能導致無法接受之前驅物攪動)執行之前程式化至控制器中。明確停止命令可為對抗安瓿全滿感測器及/或安瓿填充計時器故障的進一步防衛。此外,在某些實施例中,填充計時器及/或全滿容積可為使用者定義的參數。明確停止命令可防止參數之使用者定義中的錯誤影響基板處理的品質。
若控制器自操作304、306、或308其中任一者偵測到「是」的結果,則控制器接著繼續進行至操作310,且前驅物填充停止。若自操作304、306、或308其中任一者未偵測到「是」的結果,則控制器可返回至操作302,並繼續執行前驅物填充。
圖4A顯示圖1A之範例基板處理設備之基板處理中的步驟。圖4A中所示之步驟對應於圖2之操作204。圖4A、以及圖4B-C中所示之基板處理設備100可為與圖1A中所示之基板處理設備的配置具有相似配置的基板處理設備。在圖4A-D中,實線代表無流動的流動路徑,虛線代表有液體前驅物流動的流動路徑,斷線代表有載氣流動的流動路徑,而點斷線代表有前驅物氣體流動的流動路徑。
在圖4A中,執行安瓿102的初始填充。在圖4A中所示的實施例中,除閥114外之所有閥為關閉的。開啟閥114,以容許前驅物流動至安瓿102中。在其他實施例中,閥108、124、126、及128可為開啟的。在圖4A中,可加熱安瓿102,以使前驅物處於期望的溫度,以促進前驅物的汽化。
圖4B顯示圖1A之範例基板處理設備之基板處理中的另一步驟。圖4B中所示之步驟對應於圖2之操作210。在圖4B中,由於停止前驅物填充所需之條件的至少一者已觸發,閥114現為關閉的。
在圖4B中,閥108、110、116、及126係開啟的,以容許基板處理設備以前驅物氣體流動對流動路徑118及136進行預進料。由於在圖2中,噴淋頭122並未預備接收前驅物氣體流動,因此流過流動路徑118及136的前驅物氣體接著流過流動路徑138而至轉儲源(dump source)。前驅物氣體的連續流動係透過流動路徑118及136而供應,以確保在噴淋頭122預備接收前驅物氣體時,前驅物氣體預備供應。
在圖4B中,前驅物氣體為載氣及汽化前驅物的混合物。載氣流過流動路徑106及134而進入安瓿102,該流動路徑106及134分別具有開啟的閥108及110。安瓿容納汽化前驅物,且載氣與汽化前驅物混合以形成前驅物氣體。接著前驅物氣體經由流動路徑136而流出安瓿102。
圖4C顯示圖1A之範例基板處理設備之基板處理中的額外步驟。圖4C中所示之步驟對應於圖2之操作212。在圖4C中,閥128為關閉的,但閥130現為開啟的,以容許前驅物氣體流過噴淋頭122而至處理腔室132中。
圖4D顯示圖1A之範例基板處理設備之基板處理中的進一步步驟。圖4D中所示之步驟對應於圖2之操作214。在圖4D中,閥110及116為關閉的,但閥124為開啟的。因此並無前驅物氣體之流動通過流動路徑,但載氣可流過流動路徑106及118。此外,閥130現為關閉的,以防止載氣流至噴淋頭122中。閥128現為開啟的,以容許載氣流至轉儲源。
在圖4D中,閥114為開啟的,以容許以前驅物對安瓿102進行再填充。圖4D中所示之再填充係為二次前驅物再填充。
圖5係為具有按需求填充之基板處理相對於不具有按需求填充之基板處理的基板處理結果的比較。在圖5中,由「X」標記所代表之標繪圖係為使用按需求填充的沉積製程,而由方形標記所代表之標繪圖係為未使用按需求填充的沉積製程。
如圖5中所示,使用按需求填充的沉積製程具有較一致的厚度,而未使用按需求填充的沉積製程在其厚度方面具有較大的變異。相較於未使用按需求填充的製程,使用按需求填充的沉積製程顯示更佳的製程均勻性。感 測器位準
在某些實施例中,採用額外的防護措施以解決可能的設備問題,例如安瓿液體位準感測器故障。如上所提及,安瓿可具有一或更多感測器。在若干實施例中,其感測安瓿內之液體的一或更多位準。在某些實施例中,單一感測器感測兩或更多位準,而在更進一步的實施例中,單一感測器感測三或更多位準。圖6描繪一實施例,其中安瓿601具有一或更多感測器,其配置以感測三個感測器位準:全滿感測器位準603、低感測器位準605、及空乏感測器位準607。
在某些實施例中,全滿感測器位準係在於安瓿總填充容積的約70%與90%間之安瓿容積。在某些實施例中,低感測器位準係在於安瓿總填充容積的約40%與60%間之位準。在某些實施例中,空乏感測器位準係設定於安瓿總填充容積的約10%至30%。在一範例中,全滿位準感測器係標記於總安瓿容積的約73%,低位準感測器係設定於安瓿容積的約48% ,而空乏位準感測器係設定於總安瓿容積的約12%,其可約為330立方英吋。進一步舉例而言,安瓿容積可為約100與1000立方英吋之間,取決於反應腔室之尺寸及所承受的製程(單或複數)。
可利用各種類型的物理性感測器以判定內部填充位準。範例包含單一點及多點的液體位準感測器,例如可由「Neal Systems, Inc.」取得者。在若干情況下, 單一物理性感測器可量測兩或更多位準。在一範例中,多點感測器係配置以量測三位準,全滿位準、低位準、及空乏位準。
在若干實施例中,安瓿控制邏輯採用使用全滿感測器的主要檢查。當全滿感測器將狀態自關閉改變為開啟,表示液體位準已達到全滿位準,該控制邏輯命令填充系統停止安瓿的進一步填充。
在若干實施例中,安瓿控制邏輯採用用於防止安瓿空乏的主要檢查。此檢查可判定全滿感測器已保持在關閉的狀態,且達設定數量的循環卻未發生填充,例如在某些ALD製程方面為約230個循環。在此類情況下,該控制邏輯可命令系統(i) 開始填充(假設可平順地停止沉積製程)或(ii) 停止沉積直至安瓿感測器正常運作為止。在若干實施例中,此檢查中循環的數量係基於由ALD製程所造成的液體消耗之預期位準、及安瓿的總容積。例如,在若干安瓿中,只要計算到一定質量的液體已被ALD製程所消耗(例如約3至7g的液體),便提供自動填充的保護措施。
若感測器故障,則上述主要檢查其中一或兩者會故障。一故障模式發生於當全滿感測器(或相關軟體)未能準確地感測安瓿液體已達到全滿位準的情況下。可將額外的保護措施建立至如上所述之安瓿控制邏輯中。
在某些實施例中,設計或程式化系統,以使當發生不合邏輯之感測器讀取時,系統輸入軟關機(soft shutdown),或者採取其他措施以避免對系統及/或製造中之晶圓造成損害。此類不合邏輯的一結果發生於當多位準感測器偵測到全滿感測器為開啟而較低位準感測器為關閉的情況下。此結果顯示,液體已達到全滿位準但未達到空乏位準。顯然,此類狀態無法存在。
在另一實施例中,當多位準感測器之最低位準感測器(例如,空乏感測器)為關閉時,系統會自動採取其他預警步驟。在各種實施例中,由於低於最低位準的液體被視為使安瓿處於對晶圓及/或系統本身產生損害的狀態,因此最低位準感測器係設計成當其為關閉時觸發軟關機。軟關機 (Soft shutdown)
在某些實施例中,當使用此小節中或該專利申請案全文的其他處所述之保護措施而產生錯誤時,ALD工具或其他沉積工具會遭受「軟關機(soft shutdown)」。在某些實施例中,軟關機阻止ALD系統執行進一步的沉積步驟或通常在正常ALD處理期間進行的其他程序。在若干實施例中,軟關機將試圖結束腔室中當前的晶圓處理、移開晶圓、以及使模組處於離線(OFFLINE)模式。隨後,直至解決模組所發生的問題為止,將無更多晶圓被處理。若正發生填充,軟關機亦可阻止進一步的安瓿填充。
在某些實施例中,軟關機程序對操作者或對製造設施內的控制例程產生通知。該通知可識別觸發軟關機的特定問題。此類通知的範例可包含關閉狀態的空乏位準感測器、當累積之再填充時間超出臨界值時的同時全滿位準感測器卻保持開啟、以及處於開啟狀態達一段延長期間(例如,大於臨界值的期間)的全滿感測器。在接收此類通知之後,負責維護ALD工具的控制系統及/或操作者即採取校正措施,其中該校正措施意欲修正所通知之問題並容許ALD工具重新開始正常操作。例如,操作者可修正機能失常的感測器、手動校準安瓿液體位準等。在採取此類校正措施後,該工具可重新開始正常操作,例如,使用如本說明書中其他處所述之按需求填充程序的安瓿再填充。過度填充 (overfill) 之保護措施
在某些實施例中,安瓿填充程序包含例行程序或其他邏輯,以解決當系統操作的方式係預期全滿感測器應為開啟,但該全滿感測器卻顯示不為開啟時所引起之問題。舉例而言,當實際上液體已達到感測器之位準時,有錯誤的或機能失常的感測器可能會顯示關閉,而因此感測器應顯示開啟。見圖6之感測器位準603。為解決此潛在問題,安瓿填充邏輯乃維持一自上一次填充安瓿的結尾時開始的再填充累積時間。例如,每當全滿感測器變成開啟時,累積計時器可重新設定,且中止通往安瓿的液體。若再填充之累積時間超過臨界值,且感測器尚未達到開啟的狀態,則邏輯啟動軟關機。換言之,在需要填充安瓿的任何時候, 假設其將花費的時間不會長於{T}時間。此時間係為複數填充次數(填充累積需求)的總時間。安瓿填充邏輯記錄填充的總長度,且若其超過{T},則將在當前運作的例行程序中輸入錯誤狀態。例如,若F1 = 12s,F2 = 40s,且F3 = 12s,當T = 60s (舉例而言),則邏輯將在F3結尾之前4秒輸入錯誤狀態。
累積計時器的臨界值可基於各種參數,且通常包含所論及的再填充操作期間之安瓿填充速率 、安瓿容積(尤其是預期提供安全操作之液體的最大容積)、及當計時器為開啟時,在發生於ALD製程步驟期間的來自安瓿之液體的消耗速率。應瞭解,ALD製程可能在複數安瓿再填充操作進行之間執行。在某些實施例中,計時器臨界值係介於約30秒至300秒之間。在某些實施例中,計時器臨界值係介於約50秒至90秒之間(例如,約60秒)。在某些實施例中,臨界填充時間係基於使用針對製造設施之特定製程化學物消耗速率及安瓿填充速率的實驗室試驗條件而決定。
圖7呈現過度填充保護措施之特定實施例的流程圖。該流程圖中所示之該等方塊代表用於在沉積模組中實施安瓿填充控制之程式或其他邏輯中的執行步驟。在所描繪的實施例中,將安瓿控制邏輯描繪為開始於起始操作703的迴路。在執行中,在每一處理週期,無特殊操作發生於方塊703。在每一處理週期中,在判斷點705,製程邏輯判定全滿感測器是否為開啟的狀態。若為如此,則不執行例行程序的過度填充保護措施部分,而製程繼續進行,如參照圖8所描述的部分。在例行程序的過度填充保護措施部分中,全滿感測器不為開啟,則如圖7中所描繪,邏輯提供指令以利用前驅物填充安瓿,如方塊707中所描繪。同時,製程重新設定循環數,其可用於空乏保護模式中,如參照圖8所描述的部分。見方塊709。當填充繼續進行,填充計時器自填充計時器上一次重新設定時開始,紀錄累積的填充時間。見方塊711。接著,安瓿填充邏輯判定總累積填充時間是否大於臨界值,例如60秒。見判斷方塊713。若為如此,邏輯使系統處於錯誤狀態中,且停止執行,如方塊715所描繪。接著系統可輸入如上述之軟關機,且製程結束,如方塊717所描繪。若由填充計時器所記錄的累積時間未超過臨界值,則控制邏輯自方塊713至隨後的判斷方塊719繼續進行,其中判斷方塊719判定系統是否將執行沉積。若非如此,例行程序於方塊717平順地結束。然而,若邏輯判定將繼續進行沉積,則製程停止前驅物填充,並同時暫停計時器,如方塊721所繪示。應瞭解,在沉積製程的過程期間,沉積至基板上的材料之循環沉積可為了晶圓定位、泵抽至基底、及前述其他操作而暫停。每當此情況發生時,安瓿可再次開始填充,且計時器重新啟動。
在圖7中所描繪的實施例中,全滿感測器仍處於關閉狀態,如此一來只要有可能時便發生安瓿再填充,與基本的按需求填充之邏輯一致,而藉此仍處於對安瓿過度填充的危險中。回到製程流程邏輯中的方塊721,系統開始執行沉積,且接著增加循環計數器的計數,如方塊723及725中所繪示,其將參照圖8詳加描述。製程控制接著返回方塊703,而再度檢查全滿感測器。
如所說明,圖7中所描繪之邏輯闡明過度填充保護措施模式之操作,並假設全滿感測器仍隨時為開啟。在此狀態下,填充計時器持續增加且從未重新設定,如方塊711所繪示。因此,即使在上述按需求填充演算法期間於填充停止的同時填充計時器一再暫停,累積的填充時間越來越接近臨界值,且最終將觸發進入錯誤狀態的輸入,如繪示於方塊713與715。
儘管敘述於此小節中的保護措施係用於當全滿感測器為有錯誤的或機能失常而呈現於過度填充保護措施的文義內容中,但該保護措施可擴展至全滿感測器未變為開啟但實際上正常執行的其他情況。例如,由於將液體提供至安瓿的操作存在故障或其他問題,當液體並未達到其位準時,全滿感測器可能維持在關閉的狀態。此類問題的範例包含通往安瓿的再填充閥未正常操作、自製造設施至安瓿的液體輸送緩慢或根本沒輸送等。在此等情況之各者中,「全滿感測器維持關閉已達一段延長時期,然而安瓿再填充推定一直進行」的事實顯示存在問題,而就此而言,安瓿控制邏輯將此問題標示為錯誤,而可啟動軟關機。對抗低安瓿液體位準之保護措施
在某些實施例中,可設計安瓿控制邏輯以解決當液體實際上尚未達到該位準時,該液體位準感測器卻顯示其為開啟所引起之潛在問題。在此類情況下,感測器應正常顯示關閉。當液體位準變得具危險性地低,此感測器的故障可能會導致安瓿再填充失敗。對抗未填滿的主要保護措施依賴感測器,其在液體位準下降至低於感測器之顯示位準時顯示關閉。在某些實施例中,控制邏輯藉由自上一次執行安瓿填充時開始記錄前驅物循環,而提供輔助保護措施。若此類循環的數量大於臨界數量,系統可執行軟關機。
在某些實施例中,安瓿空乏保護邏輯可包含以下特徵: ●在穩定狀態操作期間,假設每{N}個沉積循環,安瓿將至少填充一次。 ●自上一次的填充開始,控制邏輯記錄循環的數量。 ●若該計數超過{N},將使製程模組進入軟關機狀態。 ●若實際上執行填充,則將該計數重新設定至零(0)。 ●估計{N}為5000循環(此數值係製程特定的,且可基於實際工具而調整)。
圖8呈現圖7之流程圖,但描繪空乏保護措施模式,其係建立於按需求填充安瓿邏輯之上。如前,迭代的製程判定全滿感測器是否為開啟,如繪示於判斷方塊705。在此範例中,假設全滿感測器故障,其中當實際上其應為關閉時顯示其為開啟。如所繪示,當在方塊705邏輯判定全滿感測器為開啟,安瓿填充邏輯將停止任何當前的前驅物填充。見方塊801。同時,邏輯重新設定填充計時器 ,其係關於參照圖7所述之過度填充保護措施例行程序。於方塊801停止前驅物填充之後,製程接著判定是否是該執行沉積的時候,如判斷方塊719所繪示,其敘述於上。假設欲執行沉積,製程邏輯命令系統執行沉積,如方塊721所繪示。隨著沉積的進行,每一循環均列入計算,或至少是那些有消耗前驅物的該等循環。見方塊723。當循環計數增加高于一或更多依序之沉積循環(其可能會為了晶圓定位等而週期性地暫停),循環計數器比較當前循環數與若干循環臨界數量,如於判斷方塊725所繪示。如所說明,判定循環計數以保護安瓿使其不會變成具危險性之未填滿的狀態。當循環計數最終超過臨界值 - 推定因全滿感測器有錯誤或機能失常 – 便將製程控制導向方塊715,在其中使系統處於錯誤狀態且結束例行程序之執行,通常伴隨著軟關機。直至循環計數超過臨界值之前,製程會重複地循環回到方塊703及705,在其中再次檢查全滿感測器。假設,如此處之情況,全滿感測器仍為開啟,則製程經過包含方塊801(在其中沉積繼續發生,且無重新開始的安瓿填充)的分支而繼續進行。
所選擇之循環臨界值可基於消耗安瓿中之一數量的前驅物所用之循環的數量而決定,該前驅物數量會使安瓿內之液體位準減少至對製程有負面影響(例如,將負面地影響所沉積的膜之特性)的點。可基於安瓿之尺寸、及因此於再填充期間對位準方面之改變的回應、及每ALD循環的液體前驅物消耗量來決定臨界值。在某些實施例中,循環臨界值係介於約3000個至8000個循環間。在某些實施例中,循環臨界值係介於約4000個至6000個循環間(例如,約5000個循環)。循環的數量可對應於所處理之晶圓的特定數量;例如,介於約50個至100個晶圓。
在某些ALD製程中,並非每個循環都會自安瓿消耗液體前驅物。例如,某些沉積製程期間的一或更多ALD循環故意不自安瓿汲取前驅物。此類「未用劑」循環可用以針對製程之正常作用、及微粒之產生、或可能值得注意的其他問題而檢查。在此類循環期間,安瓿內之液體位準不會減少。因此,在若干實施例中,安瓿控制邏輯辨識出不會自安瓿消耗液體前驅物的循環,便因此不將該循環納入於其計數中,該計數係用於針對錯誤狀態而與臨界值比較之循環之數量。控制器配置
在若干實施例中,控制器係為系統的部分,該系統可為本說明書中所述範例的部分。該控制器可包含「邏輯」,例如安瓿填充邏輯、或本說明書中所討論的其他控制邏輯。此類系統可包含半導體處理設備,含一或複數處理工具、一或複數腔室、用於處理的一或複數工作台、及/或特定處理元件(晶圓基座、氣流系統、安瓿等)。該等系統可與電子裝置整合,以於半導體晶圓或基板之處理前、處理期間、及處理後控制其操作。可將該等電子裝置稱為「控制器」,其可控制一或複數系統的各種元件或子部件。依據處理之需求及/或系統之類型,可將控制器程式化以控制本說明書中所揭露之製程的任一者,包含處理氣體之輸送、溫度設定(如:加熱及/或冷卻)、壓力設定、真空設定、功率設定、射頻(RF, radio frequency)產生器設定、RF匹配電路設定、頻率設定、流率設定、流體輸送設定、位置及操作設定、安瓿之再填充、進出工具及連接至特定系統或與特定系統介面接合的其他傳送工具及/或負載鎖室之晶圓傳送。
廣泛而言,可將控制器定義為具有接收指令、發送指令、控制操作、允許清潔操作、允許端點量測等之各種積體電路、邏輯、記憶體、及/或軟體的電子設備。該積體電路可包含儲存程式指令的韌體形式之晶片、數位信號處理器(DSPs, digital signal processors)、定義為特殊應用積體電路(ASICs, application specific integrated circuits)之晶片、及/或執行程式指令(如:軟體)之一或更多的微處理器或微控制器。程式指令可為以各種個別設定(或程式檔案)之形式傳送到控制器的指令,其定義用以在半導體晶圓上、或針對半導體晶圓、或對系統執行特定製程的操作參數。在若干實施中,該操作參數可為由製程工程師所定義之配方的部分,該配方係用以在一或更多的層、材料、金屬、氧化物、矽、二氧化矽、表面、電路、及/或晶圓之晶粒的製造期間,完成一或更多的處理步驟。
在若干實施中,控制器可為電腦的部分或耦接至電腦,該電腦係與系統整合、耦接至系統、或透過網路連接至系統、或上述之組合。例如,控制器係可位於「雲端」、或為晶圓廠主機電腦系統的全部或部分,其可允許晶圓處理之遠端存取。該電腦能達成對該系統之遠端存取,以監視製造操作之目前製程、查看過去製造操作之歷史、查看來自多個製造操作之趨勢或性能指標,來改變目前處理之參數,以設定處理步驟來接續目前的處理、或開始新的製程。在若干範例中,遠端電腦(如:伺服器)可透過網路將製程配方提供給系統,該網路可包含區域網路或網際網路。該遠端電腦可包含可達成參數及/或設定之輸入或編程的使用者介面,該等參數或設定接著自該遠端電腦傳送至該系統。在若干範例中,控制器接收資料形式之指令,在一或更多的操作期間,其針對該待執行的處理步驟之每一者而指定參數。應瞭解,該等參數可特定於待執行之製程的類型、及工具(控制器係配置成與該工具介面接合或控制該工具)的類型。因此,如上所述,控制器可分散,例如藉由包含一或更多的分離的控制器,其透過網路連接在一起並朝共同的目標而作業,例如本說明書中所敘述之製程及控制。用於此類目的之分開的控制器之範例可為腔室上之一或更多的積體電路,其與位於遠端(例如為平台等級、或為遠端電腦的部分)之一或更多的積體電路連通,其結合以控制該腔室上的製程。
範例系統可包含(但不限於)電漿蝕刻腔室或模組、沉積腔室或模組、旋轉沖洗腔室或模組、金屬電鍍腔室或模組、潔淨腔室或模組、斜邊蝕刻腔室或模組、物理氣相沉積(PVD, physical vapor deposition)腔室或模組、化學氣相沉積(CVD, chemical vapor deposition)腔室或模組、原子層沉積(ALD, atomic layer deposition)腔室或模組、原子層蝕刻(ALE, atomic layer etch)腔室或模組、離子植入腔室或模組、徑跡腔室或模組、及可與半導體晶圓之製造及/或生產有關或用於其中的任何其他半導體處理系統。
如上所述,依據待由工具執行之製程步驟(或複數製程步驟),控制器可與下列一或多者通訊:其他工具電路或模組、其他工具元件、群集工具、其他工具介面、鄰接工具、附近工具、位於整個工廠的工具、主要電腦、另一控制器、或將晶圓之容器帶往或帶離半導體製造廠中的工具位置及/或載入埠的用於材料傳送之工具。
100‧‧‧基板處理設備
100B‧‧‧基板處理設備
102‧‧‧安瓿
104‧‧‧前驅物
106‧‧‧流動路徑
108‧‧‧閥
110‧‧‧閥
112‧‧‧流動路徑
114‧‧‧閥
116‧‧‧閥
118‧‧‧流動路徑
120‧‧‧歧管
122‧‧‧噴淋頭
124‧‧‧閥
126‧‧‧閥
128‧‧‧閥
130‧‧‧閥
132‧‧‧處理腔室
134‧‧‧流動路徑
136‧‧‧流動路徑
138‧‧‧流動路徑
140‧‧‧閥
142‧‧‧流動路徑
202‧‧‧操作
204‧‧‧操作
206‧‧‧操作
208‧‧‧操作
210‧‧‧操作
212‧‧‧操作
214‧‧‧操作
216‧‧‧操作
218‧‧‧操作
220‧‧‧操作
302‧‧‧操作
304‧‧‧操作
306‧‧‧操作
308‧‧‧操作
310‧‧‧操作
601‧‧‧安瓿
603‧‧‧全滿感測器位準
605‧‧‧低感測器位準
607‧‧‧空乏感測器位準
703‧‧‧操作
705‧‧‧檢查操作
707‧‧‧操作
709‧‧‧操作
711‧‧‧操作
713‧‧‧檢查操作
715‧‧‧操作
717‧‧‧操作
719‧‧‧檢查操作
721‧‧‧操作
723‧‧‧操作
725‧‧‧檢查操作
801‧‧‧操作
圖1A顯示具有按需求填充安瓿之範例基板處理設備的示意圖。
圖1B顯示具有按需求填充安瓿之另一範例基板處理設備的示意圖。
圖2係為詳述使用按需求填充安瓿之範例沉積製程操作的處理流程圖。
圖3係為詳述用以控制範例按需求填充安瓿之演算法的處理流程圖。
圖4A顯示圖1A之範例基板處理設備之基板處理中的步驟。
圖4B顯示圖1A之範例基板處理設備之基板處理中的另一步驟。
圖4C顯示圖1A之範例基板處理設備之基板處理中的額外步驟。
圖4D顯示圖1A之範例基板處理設備之基板處理中的進一步步驟。
圖5係為具有按需求填充之基板處理相對於不具有按需求填充之基板處理的基板處理結果的比較。
圖6 繪示具有一感測器及複數感測器位準的安瓿,其適用於提供對抗過度填充及未填滿的保護機制。
圖7呈現安瓿過度填充保護措施之實施例的流程圖。
圖8呈現安瓿低液體位準保護措施之實施例的流程圖。
100‧‧‧基板處理設備
102‧‧‧安瓿
104‧‧‧前驅物
106‧‧‧流動路徑
108‧‧‧閥
110‧‧‧閥
112‧‧‧流動路徑
114‧‧‧閥
116‧‧‧閥
118‧‧‧流動路徑
120‧‧‧歧管
122‧‧‧噴淋頭
124‧‧‧閥
126‧‧‧閥
128‧‧‧閥
130‧‧‧閥
132‧‧‧處理腔室
134‧‧‧流動路徑
136‧‧‧流動路徑
138‧‧‧流動路徑
Claims (40)
- 一種用於填充基板處理設備之安瓿的方法,該方法包含:(a)判定符合安瓿填充開始條件,其中該安瓿填充開始條件係用於以液體前驅物填充該安瓿;(b)以該前驅物填充該安瓿,其中以該前驅物對該安瓿的該填充步驟係與至少一其他的基板處理操作同時執行;(c)判定該安瓿中的感測器位準指示該安瓿未填滿,其中,當該安瓿中的該感測器位準指示該安瓿係填滿時,符合一主要填充停止條件;(d)維持填充該安瓿之累積時間,其中填充該安瓿之該累積時間係從填充該安瓿之該累積時間上一次重新設定之後該前驅物流入該安瓿的所有時間,其中,當該安瓿中的該感測器位準指示該安瓿係填滿時,填充該安瓿之該累積時間係加以重新設定;(e)判定符合二次填充停止條件,其中該二次填充停止條件包含判定填充該安瓿之該累積時間超過一臨界值;及(f)回應於符合該二次填充停止條件的該判定及回應於該安瓿中的該感測器位準指示該安瓿未填滿之該判定,停止以該前驅物對該安瓿的該填充。
- 如申請專利範圍第1項之用於填充基板處理設備之安瓿的方法,其中當安瓿再填充暫時停止且沉積開始時,該填充之累積時間會暫時停止一或更多次,但當填充再度開始時,該填充之累積時間重新開始。
- 如申請專利範圍第1項之用於填充基板處理設備之安瓿的方法,其中該臨界值係介於約50秒至90秒之間。
- 如申請專利範圍第1項之用於填充基板處理設備之安瓿的方法,更包含當在操作(e)中停止該填充時,啟動軟關機。
- 如申請專利範圍第1項之用於填充基板處理設備之安瓿的方法,其中在該安瓿中產生該感測器位準的該感測器係為機能失常的。
- 如申請專利範圍第1項之用於填充基板處理設備之安瓿的方法,其中將該液體前驅物提供至該安瓿的系統係為機能失常的。
- 如申請專利範圍第1項之用於填充基板處理設備之安瓿的方法,其中該安瓿填充開始條件包含:在一或多片基板已裝載進該基板處理設備的一基板處理腔室之後、在該一或多片基板其中任一者已從該基板處理腔室卸載之前、且當沉積未發生在該基板處理腔室時,判定該基板處理設備係於一階段中或即將進入該階段。
- 如申請專利範圍第1項之用於填充基板處理設備之安瓿的方法,其中該安瓿填充開始條件包含判定一系列沉積操作已在容納於該基板處理設備中的基板上完成。
- 如申請專利範圍第8項之用於填充基板處理設備之安瓿的方法,其中該系列沉積操作係為與原子層沉積相關的沉積操作。
- 如申請專利範圍第1項之用於填充基板處理設備之安瓿的方法,其中該安瓿填充開始條件包含判定該前驅物之容積係低於臨界容積。
- 如申請專利範圍第1項之用於填充基板處理設備之安瓿的方法,其中該安瓿填充開始條件包含判定當前正在執行用於沉積操作之設定。
- 如申請專利範圍第1項之用於填充基板處理設備之安瓿的方法,其中與填充該安瓿同時執行之該至少一其他的基板處理操作包含晶圓定位操作。
- 如申請專利範圍第1項之用於填充基板處理設備之安瓿的方法,其中與填充該安瓿同時執行之該至少一其他的基板處理操作包含該前驅物及/或該基板的溫度浸泡。
- 如申請專利範圍第1項之用於填充基板處理設備之安瓿的方法,其中與填充該安瓿同時執行之該至少一其他的基板處理操作包含泵抽至基底操作。
- 一種用於控制填充基板處理設備之安瓿的方法,包含:(a)啟動沉積循環之數量的計數器,其中在該沉積循環期間,前驅物被輸送至該基板處理設備之反應腔室,其中該前驅物係以液體形式儲存於該安瓿中;(b)判定符合安瓿填充開始條件;(c)讀取該安瓿中的感測器位準,其指示該安瓿係充分地充滿,以致於不應將該液體前驅物提供至該安瓿;(d)判定由該計數器所計的該沉積循環之數量超過臨界值;及(e)回應於該計數器所計的該沉積循環之數量超過該臨界值的該判定,停止該沉積循環。
- 如申請專利範圍第15項之用於控制填充基板處理設備之安瓿的方法,其中該臨界值包含約3000個至6000個之間的沉積循環。
- 如申請專利範圍第15項之用於控制填充基板處理設備之安瓿的方法,其中在操作(a)中之啟動該計數器的該步驟發生於當該液體前驅物被輸送至該安瓿時,且其中該計數器繼續計數直至該液體前驅物再度被輸送至該安瓿為止。
- 如申請專利範圍第15項之用於控制填充基板處理設備之安瓿的方法,更包含當在操作(e)中停止該沉積循環時,啟動軟關機。
- 如申請專利範圍第15項之用於控制填充基板處理設備之安瓿的方法,其中在該安瓿中產生該感測器位準的該感測器係為機能失常的。
- 如申請專利範圍第15項之用於控制填充基板處理設備之安瓿的方法,其中該安瓿填充開始條件包含判定該基板處理設備係於一階段中或即將進入該階段,其中在該階段期間,由以該前驅物填充該安瓿所引起之該液體前驅物之擾動將對以該基板處理設備所處理之基板的一致性有最小影響。
- 如申請專利範圍第15項之用於控制填充基板處理設備之安瓿的方法,其中該安瓿填充開始條件包含判定一系列沉積操作已在容納於該基板處理設備中的基板上完成。
- 如申請專利範圍第21項之用於控制填充基板處理設備之安瓿的方法,其中該系列沉積操作係為與原子層沉積相關的沉積操作。
- 如申請專利範圍第15項之用於控制填充基板處理設備之安瓿的方法,其中該安瓿填充開始條件包含判定當前正在執行用於沉積操作之設定。
- 如申請專利範圍第15項之用於控制填充基板處理設備之安瓿的方法,其中該安瓿之填充條件包含與填充該安瓿同時執行之其他的基板處理操作,該其他的基板處理操作係選自由晶圓定位操作、該前驅物及/或該基板的溫度浸泡、泵抽至基底操作所構成的群組。
- 一種前驅物再填充系統,包含:安瓿,其配置以流體地連接至前驅物輸送系統及前驅物源,且配置以容納液體前驅物;及一或更多控制器,其配置以執行下列操作:(a)啟動沉積循環之數量的計數器,其中在該沉積循環期間,前驅物被輸送至基板處理設備之反應腔室,其中該前驅物係以液體形式儲存於該安瓿中;(b)判定符合安瓿填充開始條件; (c)讀取該安瓿中的感測器位準,其指示該安瓿係充分地充滿,以致於不應將該液體前驅物提供至該安瓿;(d)判定由該計數器所計的該沉積循環之數量超過臨界值;及(e)回應於由該計數器所計的該沉積循環之數量超過該臨界值的該判定,停止該沉積循環。
- 如申請專利範圍第25項之前驅物再填充系統,其中該臨界值包含約3000個至6000個之間的沉積循環。
- 如申請專利範圍第25項之前驅物再填充系統,其中該一或更多控制器係更配置以當該液體前驅物被輸送至該安瓿時,在(a)中啟動該計數器,且繼續計數直至該液體前驅物再度被輸送至該安瓿為止。
- 如申請專利範圍第25項之前驅物再填充系統,其中該一或更多控制器係更配置以當在操作(e)中停止該沉積循環時,啟動軟關機。
- 如申請專利範圍第25項之前驅物再填充系統,其中該安瓿填充開始條件包含判定該基板處理設備係於一階段中或即將進入該階段,其中在該階段期間,由以該前驅物填充該安瓿所引起之該液體前驅物之擾動將對以該基板處理設備所處理之基板的一致性有最小影響。
- 如申請專利範圍第25項之前驅物再填充系統,其中該安瓿填充開始條件包含判定一系列沉積操作已在容納於該基板處理設備中的基板上完成。
- 如申請專利範圍第25項之前驅物再填充系統,其中該安瓿之填充條件包含與填充該安瓿同時執行之其他的基板處理操作,該其他的基板處理操作係選自由晶圓定位操作、該前驅物及/或該基板的溫度浸泡、泵抽至基底操作所構成的群組。
- 如申請專利範圍第25項之前驅物再填充系統,其中該基板處理設備更包含:沉積腔室;及基板處理站,其包含於該沉積腔室內,其中該基板處理站包含基板固持器,該基板固持器係配置以接收基板,且該前驅物輸送系統係配置以在由該基板處理站所接收之該基板的處理期間輸送前驅物。
- 一種前驅物再填充系統,包含:安瓿,其配置以流體地連接至前驅物輸送系統及前驅物源,且配置以容納液體前驅物;及一或更多控制器,其配置以執行下列操作:(a)判定符合安瓿填充開始條件,其中該安瓿填充開始條件係用於以液體前驅物填充安瓿;(b)以該前驅物填充該安瓿,其中以該前驅物對該安瓿的該填充係與至少一其他的基板處理操作同時執行;(c)判定該安瓿中的感測器位準指示該安瓿未填滿,其中,當該安瓿中的該感測器位準指示該安瓿係填滿時,符合一主要填充停止條件;(d)維持填充該安瓿之累積時間,其中填充該安瓿之該累積時間係從填充該安瓿之該累積時間上一次重新設定之後該前驅物流入該安瓿的所有時間,其中,當該安瓿中的該感測器位準指示該安瓿係填滿時,填充該安瓿之該累積時間係加以重新設定;(e)判定符合二次填充停止條件,其中該二次填充停止條件包含判定填充該安瓿之該累積時間超過一臨界值;及(f)回應於符合二次填充停止條件的該判定及回應於該安瓿中的該感測器位準指示該安瓿未填滿之該判定,停止以該前驅物對該安瓿的該填充。
- 如申請專利範圍第33項之前驅物再填充系統,其中該一或更多控制器係更配置以當安瓿再填充暫時停止且沉積開始時,暫時停止該填充之累積時間一或更多次。
- 如申請專利範圍第33項之前驅物再填充系統,其中該臨界值係介於約50秒至90秒之間。
- 如申請專利範圍第33項之前驅物再填充系統,其中該一或更多控制器係更配置以當在操作(e)中停止該填充時,啟動軟關機。
- 如申請專利範圍第33項之前驅物再填充系統,其中該安瓿填充開始條件包含判定該前驅物再填充系統係於一階段中或即將進入該階段,其中在該階段期間,由以該前驅物填充該安瓿所引起之該液體前驅物之擾動將對以該前驅物再填充系統所處理之基板的一致性有最小影響。
- 如申請專利範圍第33項之前驅物再填充系統,其中該安瓿填充開始條件包含判定該前驅物之容積係低於臨界容積。
- 如申請專利範圍第33項之前驅物再填充系統,其中與填充該安瓿同時執行之該至少一其他的基板處理操作包含該前驅物及/或該基板的溫度浸泡。
- 如申請專利範圍第33項之前驅物再填充系統,更包含:沉積腔室;及基板處理站,其包含於該沉積腔室內,其中該基板處理站包含基板固持器,該基板固持器係配置以接收基板,且該前驅物輸送系統係配置以在由該基板處理站所接收之該基板的處理期間輸送前驅物。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/720,595 US11072860B2 (en) | 2014-08-22 | 2015-05-22 | Fill on demand ampoule refill |
US14/720,595 | 2015-05-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201708599A TW201708599A (zh) | 2017-03-01 |
TWI713524B true TWI713524B (zh) | 2020-12-21 |
Family
ID=57359190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105115410A TWI713524B (zh) | 2015-05-22 | 2016-05-19 | 按需求塡充安瓿之再塡充 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6821327B2 (zh) |
KR (1) | KR102647515B1 (zh) |
CN (2) | CN111508870B (zh) |
SG (2) | SG10201910926YA (zh) |
TW (1) | TWI713524B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10351953B2 (en) * | 2017-03-16 | 2019-07-16 | Lam Research Corporation | Systems and methods for flow monitoring in a precursor vapor supply system of a substrate processing system |
CN108962781B (zh) * | 2017-05-23 | 2020-12-08 | 北京北方华创微电子装备有限公司 | 一种药液供给系统 |
US12084771B2 (en) | 2021-03-02 | 2024-09-10 | Applied Materials, Inc. | Control of liquid delivery in auto-refill systems |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080168946A1 (en) * | 2007-01-12 | 2008-07-17 | Samsung Electronics Co., Ltd. | Liquid supplying unit and method, facility for treating substrates with the unit, and method for treating substrates |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63136614A (ja) * | 1986-11-28 | 1988-06-08 | Hitachi Ltd | 処理装置 |
JP2742327B2 (ja) * | 1990-10-19 | 1998-04-22 | 富士写真フイルム株式会社 | 現像装置運転方法 |
US5465766A (en) * | 1993-04-28 | 1995-11-14 | Advanced Delivery & Chemical Systems, Inc. | Chemical refill system for high purity chemicals |
JP3409910B2 (ja) * | 1994-02-20 | 2003-05-26 | 株式会社エステック | 液体材料気化供給装置 |
US5944940A (en) * | 1996-07-09 | 1999-08-31 | Gamma Precision Technology, Inc. | Wafer transfer system and method of using the same |
US6443435B1 (en) * | 2000-10-23 | 2002-09-03 | Applied Materials, Inc. | Vaporization of precursors at point of use |
US20040093938A1 (en) * | 2002-11-15 | 2004-05-20 | Chung-Te Tsai | Liquid in pipeline and liquid level detection and warning system |
JP2006016641A (ja) * | 2004-06-30 | 2006-01-19 | L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude | 金属シリコンオキサイドの製造方法、金属シリコンオキシナイトライドの製造方法、およびシリコンドープされた金属ナイトライドの製造方法 |
US8268078B2 (en) * | 2006-03-16 | 2012-09-18 | Tokyo Electron Limited | Method and apparatus for reducing particle contamination in a deposition system |
US20100151261A1 (en) * | 2006-07-21 | 2010-06-17 | Ce Ma | Methods and apparatus for the vaporization and delivery of solution precursors for atomic layer deposition |
US20090214777A1 (en) * | 2008-02-22 | 2009-08-27 | Demetrius Sarigiannis | Multiple ampoule delivery systems |
KR20110088564A (ko) * | 2008-11-11 | 2011-08-03 | 프랙스에어 테크놀로지, 인코포레이티드 | 반응물 분배 장치 및 전달 방법 |
WO2010083510A1 (en) * | 2009-01-16 | 2010-07-22 | Veeco Instruments, Inc. | Composition and method for low temperature deposition of ruthenium |
CN103635990B (zh) * | 2011-05-28 | 2016-11-16 | 恩特格里斯公司 | 具有净化能力的可再填充的安瓿 |
CN103041954A (zh) * | 2011-10-13 | 2013-04-17 | 北大方正集团有限公司 | 一种用于旋涂设备的液位报警系统 |
JP5841007B2 (ja) * | 2012-05-28 | 2016-01-06 | 株式会社Screenセミコンダクターソリューションズ | 薬液供給方法と基板処理装置 |
JP6199037B2 (ja) * | 2013-01-15 | 2017-09-20 | 鳴香株式会社 | 液肥供給システム及び自動潅水機 |
-
2016
- 2016-05-13 JP JP2016096649A patent/JP6821327B2/ja active Active
- 2016-05-19 TW TW105115410A patent/TWI713524B/zh active
- 2016-05-19 KR KR1020160061379A patent/KR102647515B1/ko active IP Right Grant
- 2016-05-20 SG SG10201910926YA patent/SG10201910926YA/en unknown
- 2016-05-20 SG SG10201604041SA patent/SG10201604041SA/en unknown
- 2016-05-23 CN CN202010098763.XA patent/CN111508870B/zh active Active
- 2016-05-23 CN CN201610345105.XA patent/CN106169432B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080168946A1 (en) * | 2007-01-12 | 2008-07-17 | Samsung Electronics Co., Ltd. | Liquid supplying unit and method, facility for treating substrates with the unit, and method for treating substrates |
Also Published As
Publication number | Publication date |
---|---|
SG10201910926YA (en) | 2020-01-30 |
JP2017014614A (ja) | 2017-01-19 |
CN106169432A (zh) | 2016-11-30 |
CN111508870A (zh) | 2020-08-07 |
CN111508870B (zh) | 2024-03-01 |
KR102647515B1 (ko) | 2024-03-13 |
SG10201604041SA (en) | 2016-12-29 |
CN106169432B (zh) | 2020-03-17 |
JP6821327B2 (ja) | 2021-01-27 |
KR20160137400A (ko) | 2016-11-30 |
TW201708599A (zh) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11959175B2 (en) | Fill on demand ampoule refill | |
TWI684666B (zh) | 按需求塡充安瓿 | |
TWI737630B (zh) | 原子層沉積用之動態前驅物注入 | |
US8834631B2 (en) | Processing apparatus and valve operation checking method | |
TWI713524B (zh) | 按需求塡充安瓿之再塡充 | |
US8409359B2 (en) | Substrate processing apparatus, substrate processing method and storage medium | |
US20160097127A1 (en) | Systems and methods for measuring entrained vapor | |
TW201631204A (zh) | 電漿輔助原子層沉積中之射頻補償用方法及設備 | |
US20090246968A1 (en) | Substrate treating apparatus and substrate treating method | |
JP6721693B2 (ja) | 基板処理装置、液体原料補充システム、半導体装置の製造方法、プログラム | |
US20240240316A1 (en) | Dynamic precursor dosing for atomic layer deposition | |
US20090088909A1 (en) | Batch processing apparatus for processing work pieces | |
JP2020107841A (ja) | 基板処理装置および基板処理装置の運転方法 | |
US20200381268A1 (en) | Method of manufacturing semiconductor device and non-transitory computer-readable recording medium | |
TW202235673A (zh) | 用於原子層沉積的具有管線填充容積容器之前驅物分配系統 |