TWI700137B - 金屬積層造形用金屬粉及使用該金屬粉而製作之造形物 - Google Patents

金屬積層造形用金屬粉及使用該金屬粉而製作之造形物 Download PDF

Info

Publication number
TWI700137B
TWI700137B TW107122631A TW107122631A TWI700137B TW I700137 B TWI700137 B TW I700137B TW 107122631 A TW107122631 A TW 107122631A TW 107122631 A TW107122631 A TW 107122631A TW I700137 B TWI700137 B TW I700137B
Authority
TW
Taiwan
Prior art keywords
copper
powder
metal
film
metal powder
Prior art date
Application number
TW107122631A
Other languages
English (en)
Other versions
TW201914712A (zh
Inventor
澁谷義孝
佐藤賢次
Original Assignee
日商Jx金屬股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Jx金屬股份有限公司 filed Critical 日商Jx金屬股份有限公司
Publication of TW201914712A publication Critical patent/TW201914712A/zh
Application granted granted Critical
Publication of TWI700137B publication Critical patent/TWI700137B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1052Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding assisted by energy absorption enhanced by the coating or powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本發明係一種金屬粉,其特徵在於:於銅或銅合金粉之表面形成由Gd、Ho、Lu、Mo、Nb、Os、Re、Ru、Tb、Tc、Th、Tm、U、V、W、Y、Zr、Cr、Rh、Hf、La、Ce、Pr、Nd、Pm、Sm、Ti中之任一種以上所構成之皮膜,且上述皮膜之膜厚為5nm以上且500nm以下。本發明之課題在於提供一種金屬粉及使用該金屬粉而製作之造形物,該金屬粉係利用雷射方式之金屬積層造形用金屬粉,且可維持銅或銅合金之高導電性,並且高效率地進行藉由雷射之熔融。

Description

金屬積層造形用金屬粉及使用該金屬粉而製作之造形物
本發明係關於一種適於金屬積層造形之金屬粉、及使用該金屬粉而製作之造形物。
近年來,嘗試使用金屬3D印表機技術,來製作複雜形狀且難以造形之立體構造之金屬零件。3D印表機亦被稱為積層造形法(AM),為如下方法:於平板上薄薄地鋪滿金屬粉而形成金屬粉末層,使電子束或雷射光掃描該金屬粉末層而使之熔融、凝固,另外,於其上薄薄地鋪滿新粉末,以相同之方式藉由雷射光使特定之部分熔融、凝固,重複進行該步驟,藉此製作複雜形狀之金屬造形物。
作為金屬積層造形中使用之金屬粉,於專利文獻1中揭示有一種實施表面處理後之金屬粉。該技術藉由使用矽烷偶合劑等於銅粉等金屬粉之表面形成有機皮膜,可於不藉由預加熱進行部分燒結之情況下以沈積之狀態對金屬粉直接照射電子束(EB)。作為EB方式中使用之粉末,為了提昇粉體之特性,有效的是實施如上所述之表面處理而於金屬粉之表面形成皮膜。
[先前技術文獻]
[專利文獻]
專利文獻1:日本特開2017-25392號公報
另一方面,於為雷射方式之情形時,使用雷射光作為熱源,另外,無需如EB方式之預加熱,故而對金屬粉所要求之特性與使用電子束之EB方式不同。於雷射方式之金屬積層造形中,亦考慮對金屬粉實施表面處理而改善特性,但必須考慮與EB不同之雷射特有之問題。
根據此種情況,本發明之課題在於提供一種金屬粉及使用該金屬粉而製作之造形物,該金屬粉係利用雷射方式之金屬積層造形用金屬粉,且可維持銅或銅合金之高導電性,並且高效率地進行藉由雷射之熔融。
為了解決上述課題,本發明人等進行努力研究,結果獲得如下見解:藉由利用雷射光之吸收率高、且不固溶或不易固溶於銅之金屬材料於銅或銅合金粉之表面形成皮膜,而使上述課題、即維持銅或銅合金之高導電性並且高效率地進行藉由雷射之熔融變得可能。本案係基於該見解,提供以下之發明。
1)一種金屬粉,其特徵在於:於銅或銅合金粉之表面形成由Gd、Ho、Lu、Mo、Nb、Os、Re、Ru、Tb、Tc、Th、Tm、U、V、W、Y、Zr、Cr、Rh、Hf、La、Ce、Pr、Nd、Pm、Sm、Ti中之任一種以上所構成之皮膜,且上述皮膜之膜厚為5nm以上且500nm以下。
2)如上述1)記載之金屬粉,其特徵在於:銅或銅合金粉之粒徑d50為20μm以上且100μm以下。
3)如上述1)或2)記載之金屬粉,其特徵在於:銅或銅合金粉之氧濃度為1000wtppm以下。
4)一種金屬積層造形物,其使用有上述1)至3)中任一項記載之金屬 粉,其特徵在於:導電率為90%IACS以上。
5)如上述4)記載之金屬積層造形物,其特徵在於:相對密度為97%以上。
形成於銅或銅合金之表面之皮膜(金屬材料)幾乎不固溶於銅或銅合金內,故而可維持銅或銅合金之高導電性,並且金屬積層造形中使用之雷射光之吸收率高,故而可高效率地進行藉由雷射之熔融,可提高作業效率。進而,形成於銅或銅合金之表面之被膜之組成由於導熱度小於銅,故而可更有效率地使用雷射光之熱。另外,作為次要之效果,構成皮膜之上述金屬材料之熔點高於銅或銅合金,故而不易發生由雷射光之熱所引起之變質,即便於對造形無助益而進行回收並再利用之情形時,亦可維持粉末之性狀。
銅雖具有高導電性(導電率:95%IACS),但產生若構成皮膜之金屬材料固溶於銅或銅合金中,則無法維持其優異之導電性之問題。因此,作為皮膜中使用之金屬材料,選擇不固溶或不易固溶於銅或銅合金之材料。此處,對銅之固溶量係金屬元素之固有性質,一般可自被稱為相圖之表示兩個元素相對於溫度之相關關係之圖中提取材料。本發明係於相圖中參照銅側之固溶量,使用於液相以下之溫度下最大固溶量為0.2at%以下之金屬材料。
作為對銅之固溶量為0.2at%以下之金屬材料,較佳為使用Gd、Ho、Lu、Mo、Nb、Os、Re、Ru、Tb、Tc、Th、Tm、U、V、W、Y、Zr、 Cr、Rh、Hf、La、Ce、Pr、Nd、Pm、Sm、Ti中之任一種以上。另外,該金屬材料對於雷射方式之金屬積層造形中通常使用之Nd:YAG雷射(波長:1064nm)表現出較高之吸收率。具體而言,銅單質之吸收率為13%左右,相對於此,於藉由該等金屬材料形成皮膜之情形時,較低者亦表現出20%以上之吸收率,於較高之情形時表現出30%以上之吸收率,於更高之情形時表現出40%以上之吸收率。藉由利用此種金屬材料被覆銅或銅合金粉之表面,可維持銅之較高之導電率,並且高效率地進行藉由雷射之熔融。
金屬積層造形中所使用之銅或銅合金粉通常使用數微米至數百微米者。較佳為對於此種銅或銅合金粉,將上述皮膜之膜厚設為5nm以上且500nm以下。若皮膜之膜厚未達5nm,則有無法充分地獲得作為表面皮膜之上述效果之情況。另一方面,於膜厚為500nm之情形時,於經表面處理之銅或銅合金粉中,表面皮膜之比率成為10wt%左右,若為該程度,則可將對銅之固溶量維持為較低,於造形物中保持銅之較高之導電性。
形成於銅粉之表面皮膜之膜厚可利用AES(歐傑電子能譜法)藉由深度方向之分析來進行測定。
[AES分析]
分析裝置:AES(日本電子股份有限公司製造,型式JAMP-7800F)
‧極限真空度:2.0×10-8Pa
‧試樣傾斜角:30度
‧絲極電流:2.22A
‧探針電壓:10kV
‧探針電流:2.8×10-8A
‧探針直徑:約500nm
‧濺鍍速率:1.9nm/min(以SiO2換算)
作為銅或銅合金粉,較佳為使用平均粒徑d50為20μm以上且100μm以下者。藉由將平均粒徑d50設為20μm以上,於造形時粉末不易飛揚,粉末之操作變得容易。另外,藉由將平均粒徑d50設為100μm以下,容易製造高精細之積層造形物。此外,平均粒徑d50係指於進行圖像分析測定所獲得之粒度分佈中累計值50%時之粒徑。
銅或銅合金粉中之氧濃度較佳為1000wtppm以下,更佳為500wtppm以下。進而較佳為250wtppm以下。其原因在於:若於銅或銅合金粉之內部氧較少,則可避免於內包有氧之狀態下成為造形物,可減小對造形物之導電性造成不良影響之可能性。氧濃度可藉由LECO公司製造之TCH600,利用非活性氣體熔解法進行測定。
於本發明中,使用銅或銅合金作為金屬積層造形用金屬粉之基質金屬,作為銅合金,較佳為使用含有12at%以下之Cr、Bi、W、Y、Zr、Nd中之任一種以上者作為合金成分。另外,該等金屬對銅之固溶量未達0.2at%,如上所述無損銅之導電性之成分。另外,藉由該等元素之添加,雷射之吸收率變高,可更高效率地進行藉由雷射之熔融。
對本發明之銅或銅合金粉之表面處理方法進行說明。
首先,準備必需量之銅或銅合金粉。粉末較佳為使用平均粒徑d50為20~100μm者。粒徑可藉由進行篩選而獲得目標粒度。另外,銅或合金粉可使用霧化法製作,另外,藉由調整製作霧化粉時之環境之氧濃度,可將銅或銅合金粉中所含之氧濃度設為1000wtppm以下。
其次,對銅或銅合金粉進行表面處理。表面處理可使用鍍覆法或筒式濺鍍法實施。於鍍覆法中,將銅或銅合金粉浸漬於鍍覆液中,於銅或銅合金粉之表面形成金屬鍍覆層。此時,可根據形成皮膜之金屬種類,選擇鍍覆液,另外,藉由調整鍍覆時間,可適當調整皮膜之厚度。
於筒式濺鍍法中,將銅或銅合金粉投入至多角滾筒中,一面使滾筒旋轉,一面濺鍍金屬材料(靶)而於銅粉之表面形成其金屬皮膜。此時,根據形成皮膜之金屬或合金之種類,選擇濺鍍靶之種類。此外,於為合金之情形時,使用合金靶,或者使用同時濺鍍,藉此可形成合金皮膜。表面皮膜之膜厚可藉由使濺鍍之輸出與時間、滾筒之轉速等變化來進行調整。藉此,可獲得於銅或銅合金粉形成有特定之金屬皮膜之金屬粉。
實施例
以下,基於實施例及比較例進行說明。此外,本實施例僅為一例,並不受該例任何限制。即,本發明僅由申請專利範圍限制,包含本發明中所包括之實施例以外之各種變化。
(實施例1-5:表面皮膜之膜厚)
準備粒徑d50:25μm、氧濃度:750wt%之霧化銅粉,使用筒式濺鍍裝置,於該銅粉之表面形成鋯皮膜。此時,將濺鍍輸出設為100W,將滾筒之轉速設為4rpm,調整濺鍍時間,藉此使皮膜之膜厚變化。實施例1-5係分別使膜厚變化為5nm、50nm、100nm、300nm、500nm者。
使用分光光度計(日立製作所製造,U-4100),對形成有皮膜之銅粉測定波長1064nm之雷射光之吸收率。將其結果示於表1。確認到於實施例1-5中,與未形成皮膜之銅粉(比較例1)相比,吸收率均變高。另外,可知隨著膜厚變厚,吸收率增加。
其次,使用金屬積層造形機(Concept Laser製造),製作造形物(90mm×40mm×20mm),對該造形物使用市售之渦流式導電率計測定導電率。其結果為導電率均表現出90%IACS以上之良好之值。此外,IACS(International annealed copper standard,國際退火銅標準)係作為電阻(或導電度)之基準,將國際上採用之退火標準軟銅(體積電阻率:1.7241×10-2 μΩcm)之導電率規定為100%IACS。
另外,亦對各造形物之相對密度進行測定。於造形物之密度測定中,使用阿基米德法,依據「JIS Z 2501:燒結金屬材料-密度、含油率及開放氣孔率試驗方法」進行。此外,液體使用水。將理論密度設為8.94,計算相對密度(=理論密度/測定密度×100),結果獲得均為97%以上之高密度者。
另外,使用供於4次以上之造形但對造形無助益而回收之粉末(未造形粉)而製作造形物(90mm×40mm×20mm)。以與上述相同之方式對該造形物測定相對密度及導電率,結果可見到密度降低,但關於導電率,均表現出90%IACS以上之良好之值。
(實施例6-31:表面皮膜之金屬種類)
準備粒徑d50:25μm、氧濃度:750wt%之霧化銅粉,使用筒式濺鍍裝置,改變金屬之種類(Gd、Ho、Lu、Mo、Nb、Os、Re、Ru、Tb、Tc、Th、Tm、U、V、W、Y、Zr、Cr、Rh、Hf、La、Ce、Pr、Nd、Pm、Sm)於該銅粉之表面形成皮膜。此外,以皮膜之膜厚成為100nm之方式調整濺鍍條件或滾筒之轉速。
對形成有皮膜之銅粉,以與實施例1相同之方式測定波長1064nm之雷射光之吸收率。將其結果示於表1。確認到於實施例6-31中,與未形成皮膜之銅粉(比較例1)相比,吸收率均變高。另外,使用各金屬粉,以與實施例1相同之方式製作造形物,測定其相對密度及導電率。如表1所示,於任一情形時,均獲得相對密度為97%以上之高密度者,另外,導電率亦表現出90%IACS以上之良好之值。另外,關於使用未造形粉所製作之造形物,可見到密度降低,但導電率均表現出90%IACS以上之良好之值。
(實施例32-37:藉由鍍覆處理或化學合成處理之皮膜形成)
準備粒徑d50:25μm、氧濃度:750wt%之霧化銅粉,使用鍍覆處理或化學 合成處理(鉻酸鹽處理、鈦酸鹽處理),於該銅粉之表面形成金屬(Cr、Ru、Rh、Os、Ti)之皮膜。此外,以皮膜之膜厚成為100nm之方式,調整各種處理條件。
以與實施例1相同之方式對形成有皮膜之銅粉測定波長1064nm之雷射光之吸收率。將其結果示於表1。確認到於實施例32-37中,與未形成皮膜之銅粉(比較例1)相比,吸收率均變高。另外,使用各金屬粉,以與實施例1相同之方式製作造形物,測定其相對密度及導電率。如表1所示,於任一情形時,均獲得相對密度為97%以上之高密度者,另外,導電率亦表現出90%IACS以上之良好之值。另外,關於使用未造形粉所製作之造形物,可見到密度降低,但導電率均表現出90%IACS以上之良好之值。
(實施例38-39:銅粉之粒徑)
將霧化銅粉之粒徑d50分別設為50μm、80μm,除此以外,以與實施例2相同之方式,使用筒式濺鍍裝置,於該銅粉之表面形成鋯皮膜。濺鍍條件或滾筒之轉速係以膜厚成為50nm之方式適當調整。
以與實施例1相同之方式對形成有皮膜之銅粉測定波長1064nm之雷射光之吸收率。將其結果示於表1。確認到於實施例38、39中,與未形成皮膜之銅粉(比較例1)相比,吸收率均變高。另外,使用各金屬粉,以與實施例1相同之方式製作造形物,測定其相對密度及導電率。如表1所示,於任一情形時,均獲得相對密度為97%以上之高密度者,另外,導電率亦表現出90%IACS以上之良好之值。另外,關於使用未造形粉所製作之造形物,可見到密度降低,但導電率均表現出90%IACS以上之良好之值。
(實施例40-41:銅粉之氧濃度)
將霧化銅粉之氧濃度分別設為450wtppm、200wtppm,除此以外,以與實施例2相同之方式,使用筒式濺鍍裝置,於該銅粉之表面形成鋯皮膜。濺鍍條件或滾筒之轉速係以膜厚成為50nm之方式適當調整。
以與實施例1相同之方式對形成有皮膜之銅粉測定波長1064nm之雷射光之吸收率。將其結果示於表1。確認到於實施例40、41中,與未形成皮膜之銅粉(比較例1)相比,吸收率均變高。另外,使用各金屬粉,以與實施例1相同之方式製作造形物,測定其相對密度及導電率。如表1所示,於任一情形時,均獲得相對密度為97%以上之高密度者,另外,導電率亦表現出90%IACS以上之良好之值。另外,關於使用未造形粉所製作之造形物,可見到密度降低,但導電率均表現出90%IACS以上之良好之值。
(實施例42-61:於銅合金粉之情形時)
準備粒徑d50:25μm、氧濃度:750wt%之霧化銅合金粉(Cu-Cr、Cu-Bi、Cu-W、Cu-Y、Cu-Zr、Cu-Nd),使用筒式濺鍍裝置,於該銅合金粉之表面形成鋯皮膜。濺鍍條件或滾筒之轉速係以膜厚成為100nm之方式適當調整。
以與實施例1相同之方式對形成有皮膜之銅合金粉測定波長1064nm之雷射光之吸收率。將其結果示於表1。確認到於實施例42-61中,與未形成皮膜之銅合金粉(比較例2-7)相比,吸收率均變高。另外,使用各金屬粉,以與實施例1相同之方式製作造形物,測定其相對密度及導電率。如表1所示,於任一情形時,均獲得相對密度為97%以上之高密度者,另外,導電率亦表現出90%IACS以上之良好之值。另外,關於使用未造形粉所製作之造形物,可見到密度降低,但導電率均表現出90%IACS以上之良好之值。
Figure 107122631-A0305-02-0011-1
Figure 107122631-A0202-12-0011-2
(比較例1-7:無皮膜之銅粉或銅合金粉)
準備粒徑d50:25μm、氧濃度:750wt%之銅或銅合金(Cu-Cr、Cu-Bi、Cu-W、Cu-Y、Cu-Zr、Cu-Nd)霧化粉。
對該銅或銅合金粉,以與實施例1相同之方式測定波長1064nm之雷射光之吸收率。將其結果示於表2。比較例1-7中吸收率均為13~27%左右。另外,使用各金屬粉,以與實施例1相同之方式製作造形物,測定其相對密度及導電率。如表2所示,於任一情形時,相對密度均為83~95%左右,與形成有皮膜之情形相比為低密度。另外,導電率亦為85%IACS左右,與形成皮膜之情形相比,導電率較低。
(比較例8-12:表面皮膜之金屬種類)
準備粒徑d50:25μm、氧濃度:750wt%之霧化銅粉,使用筒式濺鍍裝置,於該銅粉之表面形成各金屬(Ni、Co、Zn,Au、Ag)皮膜。此外,以皮膜之膜厚成為100nm之方式,調整各濺鍍條件或滾筒之轉速。
另外,使用各金屬粉,以與實施例1相同之方式製作造形物,測定其相對密度及導電率。如表2所示,導電率亦為85%IACS左右,與形成實施例6-31之皮膜之情形相比導電率降低。
(比較例13-14:表面皮膜之膜厚)
準備粒徑d50:25μm、氧濃度:750wt%之霧化銅粉,使用筒式濺鍍裝置,於該銅粉之表面形成鋯皮膜。此時,調整濺鍍條件及滾筒之轉速,分別使膜厚變化為2nm、700nm。對該金屬粉,以與實施例1相同之方式測定波長1064nm之雷射光之吸收率。將其結果示於表2。將膜厚設為2nm之比較例13之吸收率為17%左右。另外,使用各金屬粉,以與實施例1相同之方式製作造形物,測定其相對密度及導電率。如表2所示,將膜厚設為700nm之比較例14之導電率為88%IACS左右,導電率降低。
Figure 107122631-A0202-12-0012-3
[產業上之可利用性]
本發明之金屬粉藉由於銅或銅合金粉之表面形成特定之金屬皮膜,雷射光之吸收率上升,可高效率地進行藉由雷射之熔融,並且可維持銅或銅合金之高導電性。本發明之金屬粉可用作用以製造「為複雜形狀,尤其要求高傳導率或高密度之金屬零件(以散熱為目的之散熱片或熱交換器、電子零件用接頭材料等)」之雷射式金屬積層造形用金屬粉。

Claims (4)

  1. 一種金屬粉,其於銅或銅合金粉之表面形成由Gd、Ho、Lu、Mo、Nb、Os、Re、Ru、Tb、Tc、Th、Tm、U、V、W、Y、Zr、Cr、Rh、Hf、La、Ce、Pr、Nd、Pm、Sm、Ti中之任一種以上所構成之皮膜,且上述皮膜之膜厚為5nm以上且500nm以下,並且銅或銅合金粉之粒徑d50為20μm以上且100μm以下。
  2. 如請求項1所述之金屬粉,其中,銅或銅合金粉之氧濃度為1000wtppm以下。
  3. 一種金屬積層造形物,其使用有請求項1或2所述之金屬粉,且導電率為90%IACS以上。
  4. 如請求項3所述之金屬積層造形物,其相對密度為97%以上。
TW107122631A 2017-09-29 2018-06-29 金屬積層造形用金屬粉及使用該金屬粉而製作之造形物 TWI700137B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017190218 2017-09-29
JPJP2017-190218 2017-09-29

Publications (2)

Publication Number Publication Date
TW201914712A TW201914712A (zh) 2019-04-16
TWI700137B true TWI700137B (zh) 2020-08-01

Family

ID=65901239

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107122631A TWI700137B (zh) 2017-09-29 2018-06-29 金屬積層造形用金屬粉及使用該金屬粉而製作之造形物

Country Status (8)

Country Link
US (1) US11260451B2 (zh)
EP (1) EP3566797B1 (zh)
JP (1) JP6650531B2 (zh)
KR (1) KR102301256B1 (zh)
CN (1) CN109843479B (zh)
CA (1) CA3039936C (zh)
TW (1) TWI700137B (zh)
WO (1) WO2019064745A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10953464B2 (en) * 2016-11-22 2021-03-23 The Johns Hopkins University Empowering additive manufacturing metals and alloys against localized three-dimensional corrosion
EP3950176A4 (en) * 2019-06-13 2022-07-20 Fukuda Metal Foil & Powder Co., Ltd. COPPER POWDER FOR SHAPING LAMINATE, SHAPING LAMINATE BODY, METHOD FOR MAKING SHAPING LAMINATE BODY, AND APPARATUS FOR SHAPING LAMINATE
JP6857820B1 (ja) * 2019-12-19 2021-04-14 株式会社アドマテックス 粒子材料及びその製造方法、並びにフィラー材料
CA3158633C (en) * 2020-06-26 2023-12-19 Jx Nippon Mining & Metals Corporation Copper alloy powder having si coating film and method for producing same
CN113543450B (zh) * 2021-06-25 2022-10-25 西安交通大学 一种用于超导腔的铜铌复合材料板的制作方法
CN113798510B (zh) * 2021-08-10 2023-03-31 西安理工大学 利用W改性AlSi10Mg回收粉末3D打印的方法
CN113695582B (zh) * 2021-11-01 2022-01-18 陕西斯瑞新材料股份有限公司 一种耐高温高导电CuCrNb系铜合金粉末的制备方法
CN114559046B (zh) * 2022-01-26 2023-07-25 中北大学 一种增材制造用稀土改性17-4ph高强钢粉末的制备方法
CN114855130B (zh) * 2022-04-27 2023-11-21 鑫合德(清远)智能科技发展有限公司 一种低激光反射率铬包铜复合粉体的制备方法及其制备装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194566A (ja) * 2004-01-06 2005-07-21 Yamaha Corp タングステン−銅複合粉末およびその製造方法ならびにこれを用いた焼結合金の製造方法
JP2015079728A (ja) * 2013-10-17 2015-04-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. 導電性粉末、その製造方法、及び積層セラミックキャパシタ
JP2015132001A (ja) * 2014-01-14 2015-07-23 Jx日鉱日石金属株式会社 表面処理された銅粉及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372845A (en) * 1992-03-06 1994-12-13 Sulzer Plasma Technik, Inc. Method for preparing binder-free clad powders
US6103392A (en) * 1994-12-22 2000-08-15 Osram Sylvania Inc. Tungsten-copper composite powder
TW392179B (en) * 1996-02-08 2000-06-01 Asahi Chemical Ind Anisotropic conductive composition
US6679937B1 (en) * 1997-02-24 2004-01-20 Cabot Corporation Copper powders methods for producing powders and devices fabricated from same
GB2419605B (en) * 2002-07-18 2006-10-18 Honda Motor Co Ltd Method of manufacturing composite copper material
JP4731347B2 (ja) * 2006-02-13 2011-07-20 住友金属鉱山株式会社 複合銅微粉の製造方法
PL2104753T3 (pl) * 2006-11-07 2014-12-31 Starck H C Gmbh Sposób powlekania podłoża i powleczony produkt
JP2008266787A (ja) * 2007-03-28 2008-11-06 Furukawa Electric Co Ltd:The 銅合金材およびその製造方法
TWI505293B (zh) 2012-02-08 2015-10-21 Jx Nippon Mining & Metals Corp The surface treated copper powder
US10056505B2 (en) * 2013-03-15 2018-08-21 Inkron Ltd Multi shell metal particles and uses thereof
WO2015060258A1 (ja) 2013-10-24 2015-04-30 三井金属鉱業株式会社 銀被覆銅粉
JP6030186B1 (ja) * 2015-05-13 2016-11-24 株式会社ダイヘン 銅合金粉末、積層造形物の製造方法および積層造形物
JP6797513B2 (ja) 2015-07-24 2020-12-09 Jx金属株式会社 電子ビーム方式の3dプリンタ用表面処理金属粉およびその製造方法
CN108025358B (zh) * 2015-09-30 2020-04-24 住友电气工业株式会社 导电材料用粉末、导电材料用油墨、导电糊剂以及导电材料用粉末的制造方法
FR3066705B1 (fr) * 2017-05-29 2022-12-02 Commissariat Energie Atomique Particule pour la realisation de pieces metalliques par impression 3d et procede de realisation de pieces metalliques

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194566A (ja) * 2004-01-06 2005-07-21 Yamaha Corp タングステン−銅複合粉末およびその製造方法ならびにこれを用いた焼結合金の製造方法
JP2015079728A (ja) * 2013-10-17 2015-04-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. 導電性粉末、その製造方法、及び積層セラミックキャパシタ
JP2015132001A (ja) * 2014-01-14 2015-07-23 Jx日鉱日石金属株式会社 表面処理された銅粉及びその製造方法

Also Published As

Publication number Publication date
TW201914712A (zh) 2019-04-16
JP6650531B2 (ja) 2020-02-19
EP3566797B1 (en) 2022-04-13
CN109843479A (zh) 2019-06-04
CA3039936C (en) 2021-05-25
US11260451B2 (en) 2022-03-01
US20200188995A1 (en) 2020-06-18
WO2019064745A1 (ja) 2019-04-04
CA3039936A1 (en) 2019-04-04
JPWO2019064745A1 (ja) 2019-11-14
CN109843479B (zh) 2021-09-28
EP3566797A1 (en) 2019-11-13
KR102301256B1 (ko) 2021-09-10
KR20190043568A (ko) 2019-04-26
EP3566797A4 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
TWI700137B (zh) 金屬積層造形用金屬粉及使用該金屬粉而製作之造形物
Lassègue et al. Laser powder bed fusion (L-PBF) of Cu and CuCrZr parts: Influence of an absorptive physical vapor deposition (PVD) coating on the printing process
Constantin et al. Manufacturing of complex diamond-based composite structures via laser powder-bed fusion
Zhang et al. Characterization on laser clad nickel based alloy coating on pure copper
JP7419227B2 (ja) 積層造形用銅合金粉末、積層造形物の製造方法及び積層造形物
Guan et al. Insights into fabrication mechanism of pure copper thin wall components by selective infrared laser melting
JP2009057580A (ja) Ag基合金スパッタリングターゲット、およびその製造方法
TWI647321B (zh) 表面改質構件的製造方法
JP7013823B2 (ja) 連続鋳造用金型の製造方法
Li et al. Influence of different substrates on the microstructure and mechanical properties of WC-12Co cemented carbide fabricated via laser melting deposition
JP2023156376A (ja) 付加製造された耐火金属部材、付加製造方法及び粉末
WO2017203717A1 (ja) 積層造形用の金属粉末、積層造形物の製造方法及び積層造形物
CN113795603B (zh) Ni基合金、Ni基合金粉末、Ni基合金构件和具备Ni基合金构件的制造物
JP7010008B2 (ja) 連続鋳造用鋳型の製造方法
WO2019168166A1 (ja) レーザー吸収率に優れた銅合金粉末
JP7103548B2 (ja) Ni-Cr-Mo系合金部材、Ni-Cr-Mo系合金粉末、および、複合部材
JP2023012810A (ja) 銅基粉、その製造方法、および銅基粉を用いた光造形物の製造方法
Vanzetti Optimization of additive manufacturing processes for copper and its alloys
JP2020045507A (ja) マグネシウム合金成形品及びその製造方法
WO2020225846A1 (ja) 連続鋳造用金型及び連続鋳造用金型の製造方法
MISTRINI Aluminium metal matrix composites reinforced with TiB2 particles for laser powder bed fusion
Zarinejad et al. Advancements and Perspectives in Additive Manufacturing of Tungsten Alloys and Composites: Challenges and Solutions
Kraiem Laser 3D Printing of Diamond-Based Composite Materials for Thermal Management Applications
JP2005082836A (ja) 合金メッキ方法と合金成形品の成形方法