TWI696801B - Complex vapor chamber structure - Google Patents

Complex vapor chamber structure Download PDF

Info

Publication number
TWI696801B
TWI696801B TW108114675A TW108114675A TWI696801B TW I696801 B TWI696801 B TW I696801B TW 108114675 A TW108114675 A TW 108114675A TW 108114675 A TW108114675 A TW 108114675A TW I696801 B TWI696801 B TW I696801B
Authority
TW
Taiwan
Prior art keywords
equalizing plate
structure according
plate structure
composite temperature
chamber
Prior art date
Application number
TW108114675A
Other languages
Chinese (zh)
Other versions
TW202040083A (en
Inventor
劉雪輝
陳九明
殷建武
Original Assignee
大陸商深圳興奇宏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳興奇宏科技有限公司 filed Critical 大陸商深圳興奇宏科技有限公司
Priority to TW108114675A priority Critical patent/TWI696801B/en
Application granted granted Critical
Publication of TWI696801B publication Critical patent/TWI696801B/en
Publication of TW202040083A publication Critical patent/TW202040083A/en

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A complex vapor chamber structure includes a main body and at least one tubular body. The main body has a first chamber, a first opening and a second opening. A first capillary structure is disposed in the first chamber. A working fluid is filled in the first chamber. The first and second openings pass through one face of the main body to communicate with the first chamber. The tubular body has a first end, a second end and a passage. The first and second ends are respectively correspondingly inserted in the first and second openings, whereby the passage of the tubular body communicates with the first chamber via the first and second ends to form a loop for vapor-liquid circulation.

Description

複合式均溫板結構 Composite temperature-equalizing plate structure

本發明是有關於一種均溫板結構,尤指一種可大幅提高散熱效率之複合式均溫板結構。 The invention relates to a temperature equalizing plate structure, in particular to a composite temperature equalizing plate structure which can greatly improve the heat dissipation efficiency.

隨現行電子設備逐漸以輕薄作為標榜之訴求,故各項元件皆須隨之縮小其尺寸,但電子設備之尺寸縮小伴隨而來產生的熱變成電子設備與系統改善性能的主要障礙。所以業界為了有效解決電子設備內的元件散熱問題,便分別提出具有導熱效能較佳的均溫板(Vapor chamber)及熱管(Heat pipe),以有效解決現階段的散熱問題。 As current electronic devices are gradually becoming thinner and thinner, the size of each component must be reduced accordingly. However, the heat generated by the reduction in size of electronic devices has become a major obstacle to improving the performance of electronic devices and systems. Therefore, in order to effectively solve the heat dissipation problem of components in electronic devices, the industry has proposed a Vapor chamber and a heat pipe with better thermal conductivity to effectively solve the current heat dissipation problem.

均溫板(Vapor chamber)係包括呈矩型狀之殼體及其殼體內部腔室壁面的毛細結構,且該殼體內部填充有工作液體,並該殼體的一側(即蒸發區)係貼設在一發熱元件(如中央處理器、南北橋晶、電晶體等)上吸附該發熱元件所產生之熱量,使液態之工作液體於該殼體之蒸發區產生蒸發轉換為汽態,將熱量傳導至該殼體之冷凝區,該汽態之工作液體於冷凝區受冷卻後冷凝為液態,該液態之工作液體再透過重力或毛細結構回流至蒸發區繼續汽液循環,以有效達到均溫散熱之效果。 Vapor chamber includes a rectangular-shaped shell and a capillary structure on the wall surface of the inner chamber of the shell, and the interior of the shell is filled with working liquid, and one side of the shell (that is, the evaporation area) It is attached to a heating element (such as central processor, north-south bridge crystal, transistor, etc.) to absorb the heat generated by the heating element, so that the liquid working liquid is evaporated and converted into a vapor state in the evaporation area of the casing. Conducting heat to the condensation area of the shell, the vaporous working liquid is condensed into a liquid state after being cooled in the condensation area, and the liquid working liquid flows back to the evaporation area through gravity or capillary structure to continue the vapor-liquid circulation to effectively achieve The effect of uniform temperature heat dissipation.

熱管(Heat pipe)的原理與理論架構與均溫板相同,於該熱管之內壁設有一毛細結構,其後將該熱管抽真空並填充工作液體,最後封閉以形成熱管結構。當工作液體由蒸發部受熱蒸發後擴散至該冷凝端,並該工作液體 於該蒸發部係為汽態,由該蒸發部離開後向該冷凝端擴散時逐步受冷卻冷凝轉換為液態,並且再透過毛細結構回流至該蒸發部。 The principle and theoretical structure of the heat pipe is the same as that of the temperature equalizing plate. A capillary structure is provided on the inner wall of the heat pipe, and then the heat pipe is evacuated and filled with working liquid, and finally closed to form a heat pipe structure. When the working liquid is heated and evaporated by the evaporation part, it diffuses to the condensing end, and the working liquid Since the evaporation part is in a vapor state, it gradually cools, condenses, and turns into a liquid state when it diffuses from the evaporation part to the condensation end, and then returns to the evaporation part through the capillary structure.

比較均溫板與熱管兩者只有熱傳導的方式不同,均溫板的熱傳導方式是二維的,是面的熱傳導方式,然而,熱管的熱傳導方式是一維的熱傳導方式(即遠端散熱),故現今的電子元件僅配合單一的熱管或均溫板已不敷使用,因此,有業者將均溫板與熱管結合在一起使用,當均溫板內部的工作液體受熱蒸發後轉換成汽態工作液體,除了一部分工作液體會朝均溫板頂側方向流動外,另一部份的工作液體會流到熱管的一冷凝端而轉換為液態工作液體後,再經由熱管毛細結構的毛細力回流到均溫板內而達到汽液循環,然而,雖然習知的均溫板結合熱管能同時具有均溫散熱及遠端散熱之功效,但相對地,當液態工作液體從熱管之冷凝端回流至均溫板內部的過程中其流動路徑也相對被拉長,如此也增加了散熱時間,導致散熱效率較差。 Comparing the temperature equalization plate and the heat pipe, only the heat conduction method is different. The heat conduction method of the temperature equalization plate is two-dimensional, which is the surface heat conduction method. However, the heat pipe heat conduction method is the one-dimensional heat conduction method (ie, remote heat dissipation). Therefore, today's electronic components are only used with a single heat pipe or temperature equalization plate, so some people use the temperature equalization plate and the heat pipe together. When the working liquid inside the temperature equalization plate is heated and evaporated, it is converted into a vapor state. Liquid, except that a part of the working liquid will flow toward the top side of the temperature equalization plate, the other part of the working liquid will flow to a condensing end of the heat pipe and be converted into a liquid working liquid, and then return to the capillary force of the heat pipe capillary structure. Vapor-liquid circulation is achieved in the temperature equalization plate. However, although the conventional temperature equalization plate combined with the heat pipe can have the effect of uniform temperature heat dissipation and remote heat dissipation, relatively, when the liquid working liquid returns from the condensation end of the heat pipe to the average During the process inside the warm plate, the flow path is relatively elongated, which also increases the heat dissipation time, resulting in poor heat dissipation efficiency.

爰此,為有效解決上述之問題,本發明之主要目的在於提供一種大幅提升整體散熱效率之複合式均溫板結構。 Secondly, in order to effectively solve the above-mentioned problems, the main purpose of the present invention is to provide a composite temperature equalizing plate structure that greatly improves the overall heat dissipation efficiency.

為達上述目的,本發明係提供一種複合式均溫板結構,係包括一本體及至少一管體;該本體具有一第一腔室及一第一開口及一第二開口,該第一腔室內具有一第一毛細結構並填充有一工作液體,該第一、二開口貫穿該本體一側並與該第一腔室相連通,該管體具有一第一端及一第二端及一通道,該第一、二端分別對應插接前述第一、二開口,並該通道透過該第一、二端與所述第一腔室相連通。 To achieve the above object, the present invention provides a composite temperature-equalizing plate structure, which includes a body and at least one tube; the body has a first chamber and a first opening and a second opening, the first cavity The chamber has a first capillary structure and is filled with a working liquid. The first and second openings penetrate one side of the body and communicate with the first chamber. The tube body has a first end, a second end and a channel The first and second ends respectively plug into the first and second openings, and the channel communicates with the first chamber through the first and second ends.

透過本發明此結構的設計,當至少一熱源與該本體相貼附時,首先,所述本體的第一板體(即蒸發區)會吸附該熱源產生的熱量將第一腔室內的液態工作液體產生蒸發並轉換為汽態工作液體,一部分的汽態工作液體擴散將熱量傳導至該本體的第二板體(即冷凝區)處,並於該處汽態之工作液體受冷卻後冷凝為液態,該液態之工作液體滴落該第一毛細結構回流至該第一板體以繼續汽液循環,進以有效達到均溫散熱之效果,此外,另一部分的汽態工作液體藉由所述管體之通道與該本體之第一腔室彼此相互連通的結構設計擴散至該管體之通道中進行冷凝,並於該通道冷凝轉化為液態工作液體,如此一來,本發明複合式均溫板結構同時具有二維及三維的熱傳導方式,得以達到該本體的第一腔室及管體的通道內部形成一迴路式汽液循環,進而可大幅提升整體散熱效率。 Through the design of the structure of the present invention, when at least one heat source is attached to the body, first, the first plate of the body (ie, the evaporation area) will absorb the heat generated by the heat source to work in the liquid state in the first chamber The liquid evaporates and is converted into a vaporous working liquid. A part of the vaporous working liquid diffuses and conducts heat to the second plate (ie, the condensation zone) of the body, where the vaporous working liquid is condensed after cooling. Liquid state, the liquid working liquid drops to the first capillary structure and flows back to the first plate body to continue the vapor-liquid circulation, so as to effectively achieve the effect of uniform temperature heat dissipation. In addition, another part of the vapor-state working liquid passes the The structure design of the channel of the tube body and the first chamber of the body communicating with each other diffuses into the channel of the tube body to condense, and condenses into the channel to transform into a liquid working liquid. In this way, the composite temperature equalization of the present invention The plate structure has both two-dimensional and three-dimensional heat conduction modes, which can achieve a loop vapor-liquid circulation inside the first chamber of the body and the channel of the tube body, which can greatly improve the overall heat dissipation efficiency.

2:複合式均溫板結構 2: Composite temperature-average plate structure

20:本體 20: Ontology

20a:第一板體 20a: the first plate

20b:第二板體 20b: second plate

200:第一腔室 200: first chamber

201:第一開口 201: the first opening

202:第二開口 202: second opening

21:第一毛細結構 21: The first capillary structure

22:工作液體 22: Working fluid

3:管體 3: tube body

30:第一端 30: first end

300:第一延伸部 300: first extension

301:第一缺口 301: the first gap

31:第二端 31: Second end

310:第二延伸部 310: second extension

311:第二缺口 311: Second notch

32:通道 32: channel

4:第一凸緣 4: First flange

5:第二凸緣 5: second flange

6:散熱鰭片組 6: cooling fin set

第1圖係為本發明複合式均溫板結構第一實施例之立體分解圖;第2圖係為本發明複合式均溫板結構第一實施例之立體組合圖;第3圖係為本發明複合式均溫板結構第二實施例之部分立體剖視圖;第4圖係為本發明複合式均溫板結構第三實施例之立體分解圖;第5圖係為本發明複合式均溫板結構第三實施例之立體組合圖;第6圖係為本發明複合式均溫板結構第三實施例之實施示意圖。 Fig. 1 is an exploded perspective view of the first embodiment of the composite temperature equalizing plate structure of the present invention; Fig. 2 is a perspective assembled view of the first embodiment of the composite temperature equalizing plate structure of the present invention; Partial perspective sectional view of the second embodiment of the composite temperature equalizing plate structure of the invention; FIG. 4 is a perspective exploded view of the third embodiment of the composite temperature equalizing plate structure of the invention; FIG. 5 is a composite temperature equalizing plate of the invention A three-dimensional assembly diagram of the third embodiment of the structure; FIG. 6 is a schematic diagram of the implementation of the third embodiment of the composite temperature equalizing plate structure of the present invention.

本發明之上述目的及其結構與功能上的特性,將依據所附圖式之較佳實施例予以說明。 The above objects, structural and functional characteristics of the present invention will be described based on the preferred embodiments of the accompanying drawings.

請參閱第1、2、3圖,係為本發明之複合式均溫板結構之立體分解圖及立體組合圖及部分立體剖視圖,如圖所示,一種複合式均溫板結構2,係包括一本體20及至少一管體3; 該本體20係由一第一板體20a及一第二板體20b對應蓋合並且共同界定形成一第一腔室200,於本發明之結構態樣中,該本體20可選擇為一均溫板或一熱板或是其他等效物,其皆可達到本案相同之效果。 Please refer to Figures 1, 2, and 3, which are a three-dimensional exploded view, a three-dimensional assembly view, and a partial three-dimensional cross-sectional view of the composite temperature equalizing plate structure of the present invention. As shown in the figure, a composite temperature equalizing plate structure 2 includes: A body 20 and at least one tube 3; The body 20 is covered by a first plate body 20a and a second plate body 20b and defines a first chamber 200 together. In the structural aspect of the present invention, the body 20 can be selected as a uniform temperature A hot plate or a hot plate or other equivalents can achieve the same effect in this case.

前述第二板體20b上貫設形成有一第一開口201及一第二開口202,並該第一、二開口201、202與該第一腔室200相連通,於該第一腔室200內設有一第一毛細結構21並其內部填充有一工作液體22。 A first opening 201 and a second opening 202 are formed through the second plate body 20b, and the first and second openings 201 and 202 communicate with the first chamber 200 and are inside the first chamber 200 A first capillary structure 21 is provided and a working liquid 22 is filled inside.

所述管體3具有一第一端30及一第二端31,並該管體3內部形成有一通道32,該第一、二端30、31分別對應插接所述本體20的第一開口201及第二開口202,得以令所述管體3之通道32透過該第一、二端30、31與所述本體20的第一腔室200相連通,並且,由第1、2圖明顯可看出,插設於該本體20上的管體3由俯視觀之其係呈近似於〝ㄩ〞形或〝U〞形的結構態樣。 The tube 3 has a first end 30 and a second end 31, and a channel 32 is formed inside the tube 3, and the first and second ends 30, 31 respectively correspond to the first opening of the body 20 201 and the second opening 202, so that the channel 32 of the tube body 3 communicates with the first chamber 200 of the body 20 through the first and second ends 30, 31, and is obvious from the first and second figures It can be seen that the tube 3 inserted on the body 20 has a structural form similar to a "ㄩ" shape or a "U" shape when viewed from above.

前述之本體20及管體3之材質係選擇為銅或鋁或鐵或不鏽鋼或鈦或鈦合金材質其中任一,所述本體20及管體3可選用相同材質或以混搭之方式配合使用。 The material of the body 20 and the tube 3 is selected from copper, aluminum, iron, stainless steel, titanium, or titanium alloy. The body 20 and the tube 3 can be made of the same material or mixed together.

此外,於本發明之結構態樣中,所述管體3係選擇為一圓形熱管或一扁平熱管或一D型熱管或一平板式熱管或是其他等效物,其皆可達到本案相同之效果。 In addition, in the structural aspect of the present invention, the tube body 3 is selected to be a round heat pipe, a flat heat pipe, a D-type heat pipe, a flat plate heat pipe, or other equivalents, which can achieve the same in this case Of effect.

該通道32的內壁可再進一步設置有一第二毛細結構(圖中未示),或者該通道32的內壁不設置該第二毛細結構(如第2圖所示),於本實施例中,係以該通道32內壁不具有第二毛細結構作為說明實施例並不引以為限。 The inner wall of the channel 32 may be further provided with a second capillary structure (not shown), or the inner wall of the channel 32 is not provided with the second capillary structure (as shown in FIG. 2), in this embodiment It is assumed that the inner wall of the channel 32 does not have a second capillary structure as an illustrative embodiment and is not limited thereto.

前述之第一、二毛細結構21較佳為粉末燒結體,但並不侷限於此,於具體實施時也可以選擇為網格體、纖維體、溝槽、編織體其中任一種,所述第一、二毛細結構21可選擇為相同結構體或相異結構體或複合型毛細,並該第一、二毛細結構21係透過電化學沉積或電鑄或3D列印或印刷方式所形成。 The aforementioned first and second capillary structures 21 are preferably powder sintered bodies, but it is not limited to this. In specific implementation, any one of a mesh body, a fiber body, a groove, and a braided body can also be selected. The first and second capillary structures 21 may be the same structure, different structures or composite capillaries, and the first and second capillary structures 21 are formed by electrochemical deposition or electroforming or 3D printing or printing.

另外,可直接在前述本體20及管體3之內壁上設置一鍍層(圖中未示),亦或者,也可在所述第一、二毛細結構21上再設置所述鍍層作為提升內部汽液循環效率之結構使用,所述鍍層係為親水性或疏水性其中任一。 In addition, a plating layer (not shown in the figure) may be directly provided on the inner walls of the body 20 and the tube body 3, or alternatively, the plating layer may be further provided on the first and second capillary structures 21 as a lifting interior The structure of vapor-liquid circulation efficiency is used, and the plating layer is either hydrophilic or hydrophobic.

覆請參閱第1圖,該複合式均溫板結構2更具有至少一第一凸緣4及一第二凸緣5,該第一、二凸緣4、5對應設於所述第二板體20b的第一、二開口201、202上,前述管體3之第一、二端30、31分別對應與該第一、二凸緣4、5相互連接設置。 Please refer to FIG. 1, the composite temperature equalizing plate structure 2 further has at least a first flange 4 and a second flange 5, and the first and second flanges 4 and 5 are correspondingly provided on the second plate On the first and second openings 201 and 202 of the body 20b, the first and second ends 30 and 31 of the tube body 3 are correspondingly connected to the first and second flanges 4 and 5, respectively.

請參閱第3圖,為本發明之第二實施例之部分立體剖視圖,如圖所示,所述管體3之第一、二端30、31更分別向外延伸形成一第一延伸部300及一第二延伸部310,並該第一、二延伸部300、310延伸插入該本體20之第一腔室200內,而於所述第一、二延伸部300、310處更分別開設至少一第一缺口301及至少一第二缺口311,所述第一、二缺口301、311與前述本體20的第一腔室200彼此相互連通,前述第一、二延伸部301、311係可選擇抵接(如第3圖所示)或未抵接(圖中未示)所述第一腔室200之底側(即設置在第一毛細結構21之一側)。 Please refer to FIG. 3, which is a partial perspective cross-sectional view of a second embodiment of the present invention. As shown in the figure, the first and second ends 30, 31 of the tube 3 further extend outward to form a first extension 300, respectively And a second extension portion 310, and the first and second extension portions 300, 310 extend into the first chamber 200 of the body 20, and at least at the first and second extension portions 300, 310 respectively A first notch 301 and at least one second notch 311, the first and second notches 301, 311 and the first chamber 200 of the body 20 communicate with each other, and the first and second extensions 301, 311 are optional The bottom side of the first chamber 200 is abutted (as shown in FIG. 3) or not (not shown in the figure) (that is, it is provided on one side of the first capillary structure 21).

因此,透過本發明此結構的設計,當至少一熱源(圖中未示)與該本體20相互貼附時,首先,所述本體20的第一板體20a(即蒸發區)會吸附該熱源產生的熱量將第一腔室200內的液態工作液體22產生蒸發並轉換為汽態工作液體22,一部分的汽態工作液體22擴散將熱量傳導至該本體20的第二板體20b(即冷凝區)處,並於該處汽態之工作液體22受冷卻後冷凝為液態,該液態之工作液體22滴落該第一毛細結構21回流至該第一板體20a以繼續汽液循環,進以有效達到均溫散熱之效果。 Therefore, through the design of the structure of the present invention, when at least one heat source (not shown) and the body 20 are attached to each other, first, the first plate 20a (ie, the evaporation area) of the body 20 will adsorb the heat source The generated heat evaporates and converts the liquid working liquid 22 in the first chamber 200 into a vaporous working liquid 22, and a part of the vaporous working liquid 22 diffuses to conduct heat to the second plate body 20b of the body 20 (ie, condensation Zone), where the vaporous working liquid 22 is cooled and condensed into a liquid state, the liquid working liquid 22 drops the first capillary structure 21 back to the first plate body 20a to continue the vapor-liquid circulation, into In order to effectively achieve the effect of uniform temperature heat dissipation.

此外,另一部分的汽態工作液體22藉由所述管體3之通道32與該本體20之第一腔室200彼此相互連通的結構設計擴散至該管體3之通道32中進行冷 凝,並於該該通道32冷凝轉化為液態工作液體22,如此一來,本發明複合式均溫板結構2同時具有二維維及三維的熱傳導方式,得以達到該本體20的第一腔室200及管體3的通道32內部形成一迴路式汽液循環,進而可大幅提升整體散熱效率。 In addition, another part of the vaporous working liquid 22 is diffused into the channel 32 of the tube 3 for cooling by the structure design of the channel 32 of the tube 3 and the first chamber 200 of the body 20 communicating with each other Condensate, and condense in the channel 32 to transform into a liquid working liquid 22, so that the composite temperature equalizing plate structure 2 of the present invention has two-dimensional and three-dimensional heat conduction modes, which can reach the first chamber of the body 20 A loop vapor-liquid circulation is formed inside the channel 32 of the pipe 200 and the tube 3, which can greatly improve the overall heat dissipation efficiency.

請參閱第4、5、6圖,係為本發明複合式均溫板結構第三實施例之立體分解圖及立體組合圖及實施示意圖,如圖所示,與前述第一實施例之差別在於,於該本體20上可設置兩管體3,該管體3的數量及設置位置並無限制,其係依照使用者的需求進行管體3的設置及數量調整,並該管體3也可依照搭配結構及高度不盡相同的複數散熱鰭片組6(如第6圖所示)作調配,同樣也可達成前述之功效。 Please refer to Figures 4, 5, and 6 which are a three-dimensional exploded view and a three-dimensional assembly diagram and an implementation schematic diagram of the third embodiment of the composite temperature equalizing plate structure of the present invention. As shown in the figure, the difference from the foregoing first embodiment lies in Two tubes 3 can be provided on the body 20, and the number and location of the tubes 3 are not limited. The tube 3 is set and adjusted according to the user's needs, and the tube 3 can also be According to the matching structure and height of the plurality of heat dissipation fin groups 6 (as shown in FIG. 6) for deployment, the aforementioned effects can also be achieved.

以上所述,本發明相較於習知具有下列優點:1.大幅提升散熱效率。 As mentioned above, the present invention has the following advantages over conventional ones: 1. Greatly improve the heat dissipation efficiency.

以上已將本發明做一詳細說明,惟以上所述者,僅為本發明之一較佳實施例而已,當不能限定本發明實施之範圍,即凡依本發明申請範圍所作之均等變化與修飾等,皆應仍屬本發明之專利涵蓋範圍。 The present invention has been described in detail above, but the above is only one of the preferred embodiments of the present invention. When the scope of the present invention cannot be limited, that is, all changes and modifications made in accordance with the scope of the application of the present invention Etc., should still be covered by the patent of the present invention.

2:複合式均溫板結構 2: Composite temperature-average plate structure

20:本體 20: Ontology

20a:第一板體 20a: the first plate

20b:第二板體 20b: second plate

201:第一開口 201: the first opening

202:第二開口 202: second opening

3:管體 3: tube body

30:第一端 30: first end

31:第二端 31: Second end

4:第一凸緣 4: First flange

5:第二凸緣 5: second flange

Claims (13)

一種複合式均溫板結構,係包括:一本體,具有一第一腔室及一第一開口及一第二開口,該第一腔室內具有一第一毛細結構並填充有一工作液體,該第一、二開口貫穿該本體一側並與該第一腔室相連通;及至少一管體,具有一第一端及一第二端及一通道,該第一、二端分別對應插接前述第一、二開口,並該通道透過該第一、二端與所述第一腔室相連通。 A composite temperature equalizing plate structure includes: a body having a first chamber and a first opening and a second opening, the first chamber has a first capillary structure and is filled with a working liquid, the first One and two openings penetrate one side of the body and communicate with the first chamber; and at least one tube body has a first end and a second end and a channel, and the first and second ends respectively plug into the aforementioned The first and second openings communicate with the first chamber through the first and second ends. 如請求項1所述之複合式均溫板結構,其中所述通道之內壁更設置一第二毛細結構。 The composite temperature equalizing plate structure according to claim 1, wherein a second capillary structure is further provided on the inner wall of the channel. 如請求項1所述之複合式均溫板結構,其中所述本體係由一第一板體及一第二板體對應蓋合所形成,並該第一腔室由該第一、二板體共同界定形成,所述第一、二開口係貫穿該第二板體。 The composite temperature-equalizing plate structure according to claim 1, wherein the system is formed by a corresponding cover of a first plate body and a second plate body, and the first chamber is formed by the first and second plates The body is jointly defined and formed, and the first and second openings pass through the second plate body. 如請求項1所述之複合式均溫板結構,其中更具有至少一第一凸緣及一第二凸緣對應設於所述第一、二開口上,前述管體之第一、二端對應與該第一、二凸緣接設。 The composite temperature equalizing plate structure according to claim 1, further comprising at least a first flange and a second flange corresponding to the first and second openings, and the first and second ends of the tube body Corresponding to the first and second flanges. 如請求項1所述之複合式均溫板結構,其中所述管體之第一、二端更分別具有一第一延伸部及一第二延伸部,並該第一、二延伸部延伸插入該本體之第一腔室內,該第一、二延伸部係選擇抵接或未抵接所述第一腔室之底側。 The composite temperature equalizing plate structure according to claim 1, wherein the first and second ends of the tube body further have a first extension portion and a second extension portion, respectively, and the first and second extension portions are extended and inserted In the first cavity of the body, the first and second extensions are selectively abutting or not abutting the bottom side of the first cavity. 如請求項5所述之複合式均溫板結構,其中所述第一、二延伸部更分別開設至少一第一缺口及至少一第二缺口,該第一、二缺口與所述第一腔室相連通。 The composite temperature-equalizing plate structure according to claim 5, wherein the first and second extensions further define at least one first gap and at least one second gap, the first and second gaps and the first cavity respectively The rooms are connected. 如請求項1所述之複合式均溫板結構,其中所述本體為一均溫板或一熱板。 The composite temperature equalizing plate structure according to claim 1, wherein the body is a temperature equalizing plate or a hot plate. 如請求項1所述之複合式均溫板結構,其中所述管體係為一圓形熱管或一扁平熱管或一D型熱管或一平板式熱管。 The composite temperature equalizing plate structure according to claim 1, wherein the tube system is a circular heat pipe or a flat heat pipe or a D-type heat pipe or a flat plate heat pipe. 如請求項1所述之複合式均溫板結構,其中所述管體由俯視觀之係呈〝ㄩ〞形或〝U〞形。 The composite temperature equalizing plate structure according to claim 1, wherein the tube body is in a "ㄩ" shape or a "U" shape when viewed from above. 如請求項2所述之複合式均溫板結構,其中所述第一、二毛細結構係選擇為粉末燒結體或網格體或纖維體或溝槽或編織體其中任一,所述第一、二毛細結構可選擇為相同結構體或相異結構體或複合型毛細。 The composite temperature-equalizing plate structure according to claim 2, wherein the first and second capillary structures are selected as either powder sintered body or mesh body or fiber body or groove or braided body, the first 2. The second capillary structure can be selected as the same structure or different structures or composite capillary. 如請求項2所述之複合式均溫板結構,其中所述第一、二毛細結構係透過電化學沉積或電鑄或3D列印或印刷方式所形成。 The composite temperature equalizing plate structure according to claim 2, wherein the first and second capillary structures are formed by electrochemical deposition or electroforming or 3D printing or printing. 如請求項1所述之複合式均溫板結構,其中更具有一鍍層,該鍍層係形成於所述本體及管體之內壁上。 The composite temperature-equalizing plate structure according to claim 1, further comprising a plating layer formed on the inner walls of the body and the pipe body. 如請求項1所述之複合式均溫板結構,其中所述本體及管體之材質係選擇為銅或鋁或鐵或不鏽鋼或鈦或鈦合金材質其中任一,所述本體及管體可選用相同材質或以混搭之方式配合使用。 The composite temperature-equalizing plate structure according to claim 1, wherein the material of the body and the tube is selected from any one of copper, aluminum, iron, stainless steel, titanium, or titanium alloy. The body and the tube may be Use the same material or mix and match.
TW108114675A 2019-04-26 2019-04-26 Complex vapor chamber structure TWI696801B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108114675A TWI696801B (en) 2019-04-26 2019-04-26 Complex vapor chamber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108114675A TWI696801B (en) 2019-04-26 2019-04-26 Complex vapor chamber structure

Publications (2)

Publication Number Publication Date
TWI696801B true TWI696801B (en) 2020-06-21
TW202040083A TW202040083A (en) 2020-11-01

Family

ID=72176368

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108114675A TWI696801B (en) 2019-04-26 2019-04-26 Complex vapor chamber structure

Country Status (1)

Country Link
TW (1) TWI696801B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201479531U (en) * 2009-07-31 2010-05-19 江西蓝天学院 U-shaped tubular phase-change electronic radiator
TWM522332U (en) * 2016-01-29 2016-05-21 Taiwan Microloops Corp Dual material heat spreader and upper shell member thereof
TWM562957U (en) * 2018-04-13 2018-07-01 奇鋐科技股份有限公司 Combination reinforced structure of heat dissipation unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201479531U (en) * 2009-07-31 2010-05-19 江西蓝天学院 U-shaped tubular phase-change electronic radiator
TWM522332U (en) * 2016-01-29 2016-05-21 Taiwan Microloops Corp Dual material heat spreader and upper shell member thereof
TWM562957U (en) * 2018-04-13 2018-07-01 奇鋐科技股份有限公司 Combination reinforced structure of heat dissipation unit

Also Published As

Publication number Publication date
TW202040083A (en) 2020-11-01

Similar Documents

Publication Publication Date Title
TWM517314U (en) Heat dissipation apparatus
EP2713132A1 (en) A vapor-based heat transfer apparatus
TWI443944B (en) Thin hot plate structure
TW201518671A (en) Flat wick structure and vapor chamber having the same
TWI609164B (en) Heat dissipation device
TW200941195A (en) Heat dissipation apparatus and heat pipe thereof
TWM517315U (en) Heat dissipating unit
TWM547094U (en) Vapor chamber
TWI804812B (en) Heat dissipating device
TWM525477U (en) Heat dissipation apparatus
CN210137569U (en) Composite temperature equalization board structure
TWI696801B (en) Complex vapor chamber structure
TW201719101A (en) Heat dissipation device
TWM582575U (en) Structure of compounding type vapor chamber
TWI802373B (en) Heat dissipation module
TWM547657U (en) Assembly device for heat exchange
TWM524451U (en) Integrated heat dissipating device
TWM544619U (en) Vapor chamber
TW202043690A (en) Heat dissipation unit with axial capillary structure
TWM631832U (en) Heat-dissipation module
US9599408B1 (en) Loop heat pipe evaporator including a second heat pipe
TWM584883U (en) Heat dissipation unit with axial capillary
TWI620912B (en) Vapor chamber
JP3168202U (en) Structure of thin plate heat pipe
JP3173270U (en) heat pipe