TWI692633B - 整合式分析裝置之陣列 - Google Patents

整合式分析裝置之陣列 Download PDF

Info

Publication number
TWI692633B
TWI692633B TW104127926A TW104127926A TWI692633B TW I692633 B TWI692633 B TW I692633B TW 104127926 A TW104127926 A TW 104127926A TW 104127926 A TW104127926 A TW 104127926A TW I692633 B TWI692633 B TW I692633B
Authority
TW
Taiwan
Prior art keywords
layer
array
color filter
light
signal
Prior art date
Application number
TW104127926A
Other languages
English (en)
Other versions
TW201621301A (zh
Inventor
安妮特 格羅特
拉維 薩克森納
保羅 朗得奎斯特
Original Assignee
美商加州太平洋生物科學公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商加州太平洋生物科學公司 filed Critical 美商加州太平洋生物科學公司
Publication of TW201621301A publication Critical patent/TW201621301A/zh
Application granted granted Critical
Publication of TWI692633B publication Critical patent/TWI692633B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • G01N21/6454Individual samples arranged in a regular 2D-array, e.g. multiwell plates using an integrated detector array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/4238Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in optical recording or readout devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/4244Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in wavelength selecting devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6478Special lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7756Sensor type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/068Optics, miscellaneous
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0873Using optically integrated constructions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12102Lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12109Filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/189Structurally combined with optical elements not having diffractive power
    • G02B5/1895Structurally combined with optical elements not having diffractive power such optical elements having dioptric power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films

Abstract

本發明提供整合式分析裝置之陣列及該等陣列之產生方法。該等陣列在以高密度的大量高度多工之光學反應之分析中為有用的,該等高度多工之光學反應包括生化反應,諸如核酸定序反應。該等裝置允許使用諸如頻譜、振幅及時間解析度或上述各者之組合進行的光學信號之高靈敏度鑒別。該等裝置包括整合式繞射波束整形元件,該整合式繞射波束整形元件提供自該等光學反應發射的光之空間分離。

Description

整合式分析裝置之陣列 相關申請案之交互參照
本申請案主張2014年8月27日申請之美國臨時申請案第62/042,793號之權益,該美國臨時申請案之揭示內容以引用方式全部併入本文。
本發明係有關於整合式分析裝置之陣列。
發明背景
在分析系統中,增加在任何給定時間由給定系統進行的分析之數目之能力已為增加實用及延長此類系統之壽命的關鍵組件。特定而言,藉由增加以給定系統進行的分析之多工因素,技術人員可增加系統之整體通量,藉此增加該系統之效用同時減少與該用途相關聯的成本。
在光學分析中,增加多工通常引起增加之困難,因為增加多工可需要更複雜的光學系統、增加的照明或偵測性能及新反應圍阻策略。在一些狀況下,系統設法藉由許多折疊及甚至數個數量級來增加多工,此進一步暗示此等考慮。同樣地,在某些狀況下,將使用系統所針對的分析環境為高度靈敏度的,使得給定系統中的不同分析之間 的變化可並非可容忍的。此等目標通常與簡單地使系統較大及具有較高功率的蠻力法不一致,因為此等步驟通常導致甚至更大的後果,例如在互反應串音中,起因於較低信號及較高雜訊的降低之信號雜訊比等。因此,將為合意的是,提供具有大體上增加之多工以用於分析系統之所要分析及尤其用於在高度靈敏的反應分析中使用的分析系統,且在許多狀況下,為進行此舉同時最小化此增加之多工之負面影響。
同時,繼續需要增加分析系統之效能且降低與製造及使用系統相關聯的成本。特定而言,繼續需要增加分析系統之通量。繼續需要降低分析系統之大小及複雜性。繼續需要具有靈活組態且容易可縮放的分析系統。
發明概要
本發明藉由在一態樣中提供一種整合式分析裝置之陣列來解決此等及其他問題,每一裝置包含:奈米級發射容積;偵測器層,其光學地耦合至奈米級發射容積;繞射波束整形元件,其安置在奈米級發射容積與偵測器層之間;以及色彩過濾層,其安置在繞射波束整形元件與偵測器層之間;其中光係由發射容積內之多個發射體自該奈米級發射容積發射; 其中偵測器層包含多個感測區域;且其中繞射波束整形元件空間分離自奈米級發射容積發射的光,且經由色彩過濾層將空間分離光導引至該等多個感測區域。
在另一態樣中,本發明提供一種整合式分析裝置之陣列,每一裝置包含:奈米級發射容積;偵測器層,其光學地耦合至奈米級發射容積;繞射波束整形元件,其安置在奈米級發射容積與偵測器層之間;以及色彩過濾層,其安置在繞射波束整形元件與偵測器層之間,其中色彩過濾層包含2至9個色彩過濾元件,每一色彩過濾元件特定於光波長之一範圍;其中光係由發射容積內之多個發射體自該奈米級發射容積發射;其中偵測器層包含多個感測區域,且其中感測區域光學地耦合至色彩過濾元件;且其中繞射波束整形元件將自奈米級發射容積發射的光空間分離成多個光束,且引導空間分離光束穿過色彩過濾元件且將空間分離光束導引至感測區域上。
在一些實施例中,以上陣列進一步包含分析物,該分析物安置在奈米級發射容積內。在特定實施例中,分析物包含生物樣本,更特定實施例中,生物樣本包含核酸,且在甚至更特定實施例中,生物樣本包含聚合酶。
以上陣列可包含至少1,000、至少10,000、至少100,000、至少1,000,000或甚至至少10,000,000個奈米級發射容積。
在另一態樣中,本發明提供用於產生本文所示之整合式分析裝置之陣列之方法。
A、C、G、T‧‧‧軌跡
102‧‧‧固定化複合物
104、304‧‧‧虛線
106‧‧‧零模波導
108、110‧‧‧核苷酸
112‧‧‧信號脈衝
114‧‧‧信號
200、500‧‧‧整合式分析裝置
202‧‧‧反應槽/元件
204‧‧‧光學元件串
206~212‧‧‧光學元件
220‧‧‧偵測器元件/偵測器/元件
302‧‧‧實線
306‧‧‧垂直線
402~408‧‧‧發射頻譜
410、412‧‧‧濾通器線
502‧‧‧反應槽
504‧‧‧整合式光學元件串
505‧‧‧光學波導/波導
508‧‧‧透鏡元件層
510‧‧‧色彩過濾層/過濾層
510a‧‧‧部分/濾波器部分
510b‧‧‧濾波器部分
512‧‧‧偵測器層
512a、512b‧‧‧像素/感測區域
702、902、1102、2102‧‧‧ZMW/奈米井
708、908、1108、2108‧‧‧繞射波束整形元件
710a、710b‧‧‧色彩過濾元件
712a、712b‧‧‧感測區域
910、1110‧‧‧色彩過濾層
2105‧‧‧波導
2110‧‧‧色彩過濾區域
圖1A至圖1B示意性地例示可使用所揭示整合式分析裝置陣列進行的示範性核酸定序過程。
圖2提供整合式分析裝置的示意性方塊圖。
圖3A提供用於兩個信號事件之激發頻譜及所指示窄頻帶激發照明的示意圖,同時圖3B示意性地例示基於兩個信號事件之窄頻帶照明的所得偵測信號。
圖4示意性地例示用於四個螢光標記基團中每一者之信號分佈,該等信號分佈上覆有兩個不同濾色器分佈中每一者。
圖5示意性地例示用於偵測來自定序反應之信號的整合式分析裝置,其中透鏡元件空間分離自反應槽發射的光,且導引光穿過色彩過濾層並將光導引至偵測器層上。
圖6示意性地例示用於二色、二振幅序列合成反應之信號軌跡。
圖7A至圖7B例示包括用於發射光之空間分離的繞射波束整形元件的簡化整合式分析裝置的兩個視圖。
圖8A至圖8C例示繞射波束整形元件設計之修改 對例如繞射波束整形元件與偵測器層之間的空間之效應。
圖9A至圖9B表示來自ZMW/奈米井之發射光穿過代表性繞射波束整形元件設計之傳輸。
圖10A至圖10D例示在沒有濾色器的情況下波長對穿過雙繞射波束整形元件的發射傳遞之效率及效應。
圖11A至圖11B例示代表性奈米級裝置之設計、構造及分析,該代表性奈米級裝置包括用於自發射容積傳輸的光之空間分離之繞射波束整形元件。
圖12A例示對藉由介電質干涉濾波器進行的光學斥拒之入射角的相依性。圖12B及圖12C示意性地展示在整合式裝置中之各種位置包括低指數層以便增加光學斥拒之效率。
圖13例示示範性吸收染料層之光學性質。
圖14例示示範性介電質堆疊之光學性質。
圖15示意性地例示示範性混合雷射斥拒濾波器之結構及該濾波器之光學性質。
圖16A至圖16B例示示範性介電質堆疊之物理性質及堆疊層之數目與光傳輸之間的關係。
圖17例示包含TiO2/Al2O3介電質堆疊及Aptina red1吸收層的混合濾波器之光學性質。
圖18例示包含TiO2/SiO2介電質堆疊及Aptina red1吸收層的混合濾波器之光學性質。
圖19例示藉由兩個示範性暗鏡塗層達成的減小之反射率。
圖20A至圖20D例示本揭示案之示範性陣列內的整合式裝置之佈置。
圖21例示本發明之示範性裝置之陣列內之整合式分析裝置之特定特徵。
圖22A至圖22E例示本裝置之示範性單元槽之組件及該等裝置之一般特徵。
圖23例示圖22之組件之組裝視圖。
圖24提供本揭示內容之示範性單元槽的橫截面圖。
圖25例示根據本揭示內容製造的示範性整合式裝置之橫截面SEM顯微照片。
圖26A至圖26R展示用於製造包含繞射波束整形元件的整合式分析裝置之陣列的示範性製程流程。
較佳實施例之詳細說明
整合式分析裝置
多工光學分析系統使用於多種不同應用中。此類應用可包括單個分子之分析,且可涉及在單個生物分子進行反應時觀察例如該等單個生物分子。出於論述之容易性,本文關於較佳應用論述此類多工系統:核酸序列資訊之分析,及尤其單分子核酸序列分析。雖然關於特定應用描述,但是應暸解,本文所描述之裝置及系統之應用具有較廣泛應用。
在單分子核酸定序分析之情形下,觀察單個固定 化核酸合成複合物以在個別核苷酸併入伸長引子序列中時識別該等個別核苷酸,該單個固定化核酸合成複合物包含聚合酶、技術人員試圖要說明序列的模板核酸及與模板序列之一部分互補的引子序列。通常藉由在核苷酸之併入之前、期間或之後觀察核苷酸上的光學可偵測標記來監測併入。在一些狀況下,此類單分子分析使用「每次一個鹼基方法」,藉此每次將單個類型之標記核苷酸引入至複合物且與複合物接觸。在併入時,將未併入核苷酸自複合物沖走,且標記併入核苷酸經偵測為固定化複合物之一部分。
在一些情況下,添加僅單個類型之核苷酸以偵測併入。此等方法隨後需要各種不同類型之核苷酸(例如,A、T、G及C)之循環穿過,以便能夠決定模板之序列。因為在任何給定時間僅單個類型核苷酸與複合物接觸,所以任何併入事件在定義上為接觸核苷酸之併入。此等方法雖然稍微有效,但當模板序列包括多個重複核苷酸時通常遭受困難,因為可併入自單個併入事件不可區分的的多個鹼基。在一些狀況下,對此問題之所提議解決方案包括調整存在的核苷酸之濃度,以確保單個併入事件為動力上有利的。
在其他狀況下,同時添加多個類型之核苷酸,但該等核苷酸可藉由不同光學標記在每一類型之核苷酸上之存在區分。因此,此類方法可使用單個步驟來識別序列中之給定鹼基。特定而言,將各自帶有可區分標記的所有四個核苷酸添加至固定化複合物。複合物隨後經詢問以識別哪一類型之鹼基經併入,且因而識別模板序列中之下一個 鹼基。
在一些狀況下,此等方法每次僅監測一鹼基之添加,且因而,該等方法(且在一些狀況下,單核苷酸接觸方法)需要額外控制以避免多個鹼基在任何給定步驟中經添加,且因此由偵測系統遺漏。通常,此類方法使用核苷酸上之終止劑基團,一旦一核苷酸已經併入,該等終止劑基團防止引子之進一步伸長。此等終止劑基團通常為可移除的,從而允許在所偵測併入事件之後的受控重新伸長。同樣地,為避免混淆來自先前併入核苷酸之標記,此等核苷酸上之標記基團通常經組配為可移除的或以其他方式不可激活的。
在另一過程中,即時監測單分子引子伸長反應,以識別伸長產物中之核苷酸之繼續併入以說明下層模板序列。在此單分子即時(或SMRTTM)定序中,核苷酸在聚合酶媒介模板相依引子伸長反應中之併入過程在該聚合酶媒介模板相依引子伸長反應發生時經監測。在較佳態樣中,模板/聚合酶引子複合物經提供於光學受限區域內、通常經固定化,該光學受限區域諸如零模波導(ZMW),或透明基板之表面之近端、光學波導等(參見例如美國專利第6,917,726號及第7,170,050號以及美國專利申請公告第2007/0134128號,該等美國專利及美國專利申請公告之全部揭示內容以藉此以引用方式整體併入本文以用於所有目的)。光學受限區域針對將要使用的螢光標記核苷酸以適當激發輻射照亮。因為複合物在光學受限區域或極小照明容積內,所以僅直 接包圍複合物的反應容積經受激發輻射。因此,例如在併入事件期間與複合物相互作用的該等螢光標記核苷酸在照明容積內存在充分的時間以將該等螢光標記核苷酸識別為已經併入。雖然本文所揭示的裝置中之感興趣的分析物為併入螢光標記核苷酸的模板/聚合酶引子複合物,但應理解,可使用本揭示內容之裝置監測其他感興趣的分析物,尤其感興趣的螢光分析物。
此定序過程之示意性說明展示於圖1中。如圖1A中所示,聚合酶、模板核酸及引子序列之固定化複合物102經提供於光學局限例如零模波導106之觀察容積(如由虛線104所示)內。當適當核苷酸類似物例如核苷酸108經併入新生核酸股中時,該適當核苷酸類似物經照亮延長時間段,該延長時間段對應於標記核苷酸類似物在併入期間於觀察容積內之保留時間,此產生與該保留相關聯的信號,例如,如由圖1B中之A軌跡所示的信號脈衝112。一旦併入,附接至標記核苷酸類似物之多磷酸鹽組分的標記經釋放。當下一個適當核苷酸類似物例如核苷酸110與複合物接觸時,該下一個適當核苷酸類似物亦經併入,從而導致圖1B之T軌跡中的對應信號114。藉由監測如由模板序列之下層互補性所規定的鹼基至新生股中之併入,可獲得模板之序列資訊之長伸展。
以上定序反應可經併入通常為整合式分析裝置的裝置中,該裝置理想地即時提供多個定序反應之同時觀察。雖然每一裝置之組件及系統中之裝置之組態可變化, 但每一整合式分析裝置通常至少部分包含如圖2中之方塊圖所示的一般結構。如所示,整合式分析裝置200通常包括反應槽202,分析物(亦即,聚合酶模板複合物及相關聯螢光反應物)經安置於該反應槽中,且光學信號自該反應槽發出。分析系統進一步包括偵測器元件220,該偵測器元件經安置成處於與反應槽202光通訊中。反應槽202與偵測器元件220之間的光通訊係藉由光學元件串204提供,該光學元件串由大體上指定為206、208、210及212的一或多個光學元件組成,以用於有效地將來自反應槽202之信號導引至偵測器220。此等光學元件通常包含許多元件,諸如透鏡、濾波器、光柵、鏡、棱柱、折射材料、孔口等或此等元件之各種組合,取決於本申請案之特定性。藉由將此等元件整合至單個裝置架構中,改良反應槽與偵測器之間的光學耦合之效率。整合式分析系統之實例包括用於照亮反應槽及偵測自反應槽發射的光學信號之各種方法描述於美國專利申請公告第2012/0014837號、第2012/0019828號及第2012/0021525號中,該等美國專利申請公告各自以引用方式整體併入本文以用於所有目的。
如以上所述,安置於反應槽(例如,圖2中之元件202)內或以其他方式在裝置之表面上固定化的分析物(例如,聚合酶模板複合物與相關聯螢光反應物)發射傳輸至偵測器元件(例如,圖2中之元件220)的光。對於螢光分析物,該分析物藉由激發光源照亮,而對於其他分析物,諸如化學發光或其他此類分析物,激發光源可並非必要的。反應槽 容積之至少一部分亦即發射容積光學地耦合至偵測器元件,使得自此容積內之分析物發射的光藉由偵測器元件量測。為最大化同時量測的分析物之數目,盡可能地減小本析裝置之大小,使得每一裝置內之發射容積為奈米級發射容積。理想地,奈米級發射容積與偵測器元件之間的光學耦合為高度有效的,以便最大化裝置之靈敏度且最大化信號輸出。如以下進一步詳細地描述,自奈米級發射容積發射的光可在到達偵測器元件之前進一步例如藉由透鏡元件及色彩過濾層操縱。
習知分析系統通常量測多個頻譜相異信號或信號事件,且因此必須利用複雜光學系統來分離且清楚地偵測該等不同信號事件。然而,可藉由經偵測的頻譜可區分信號之量或數目之減少來簡化整合式裝置之光學路徑。然而,此減少可經理想地實現,而不減少可經偵測的相異反應事件之數目。例如,在基於四個不同可偵測信號事件來區分四個不同反應的分析系統中,其中典型系統將不同信號頻譜指派給每一不同反應,且藉此偵測且區分每一信號事件,在替代性方法中,四個不同信號事件將由少於四個不同信號頻譜表示,且實情為將至少部分依賴於信號事件之間的其他非頻譜區別。
例如,按照慣例將使用四個頻譜可區分信號(例如,「四色」定序系統)以便識別且表徵四個不同核苷酸中每一者之併入的定序操作在一替代性組態之情形下可使用單色或二色分析,例如,信賴於具有僅一個或兩個相異可 區分頻譜信號的信號。然而,在此替代性組態中,對信號頻譜複雜性之依賴之此降低以區分來自多個亦即較大數目之不同信號產生反應事件的信號之能力為代價而不成功。特定而言,此替代性組態可依賴於不同於發射頻譜的一或多個信號特性(包括例如信號強度、激發頻譜或兩者)來區分來自彼此的信號事件,而非僅依賴於信號頻譜來區分反應事件。
在一特定替代性組態中,整合式分析裝置中之光學路徑因此可藉由利用信號強度作為兩個或兩個以上信號事件之間的區分特徵來簡化。在其最簡單迭代中,且參考示範性定序過程,兩個不同類型之核苷酸將帶有螢光標記,該等螢光標記各自在相同激發照明(亦即,具有相同或大體上重疊頻譜帶)下發射螢光,且因此將提供使用單個激發源激發之效益。來自每一螢光標記的所得信號在相同照明下將具有相異信號強度或振幅,且因此將可藉由該等信號之個別信號振幅來區分。此兩個信號可具有部分或完全重疊的發射頻譜,但基於發射頻譜之任何差異的信號之分離將為不必要的。
因此,對於使用信號振幅不同的兩個或兩個以上信號事件的分析系統,此類系統之整合式分析裝置可容易地經由通常將用來分離頻譜相異信號的該等組件中之一些或全部之移除受益,該等組件諸如多個激發源及該等激發源之相關聯光學元件串,以及用於信號事件之色彩分離光學器件(例如,濾波器及二向色鏡),此舉在許多狀況下需要 至少部分分離用於每一頻譜相異信號之光學元件串及偵測器。因此,極大地簡化用於此等整合式分析裝置之光學路徑,從而允許將偵測器元件置放成更接近於反應槽,且改良用於此等裝置之偵測過程之整體效能。
將在特定激發照明分佈下產生不同信號振幅的信號產生分析物之供應可以許多方式實現。例如,可使用不同螢光標記,該等不同螢光標記呈現重疊但包括不同最大值的激發頻譜分佈。因而,在窄波長處的激發將通常導致用於每一螢光基團之不同信號強度。此例示於圖3A中,該圖展示兩個不同螢光標記基團(分別為實線302及虛線304)之激發頻譜。當經受在藉由垂直線306所示的波長範圍處的激發照明時,每一螢光標記將以對應振幅發射信號。在給定激發波長處的所得信號隨後在圖3B之條形圖中分別展示為實線條及虛線條。在給定激發波長處的此兩個信號產生標記之強度之差異易於用來區分兩個信號事件。如將暸解的,此類頻譜不清晰信號在同時發生時將並非容易可區分的,因為該等信號將導致附加重疊信號,除非如以下所論述,此類頻譜不清晰信號起因於頻譜相異激發波長。如將暸解的,此相同方法可與多於兩個標記基團一起使用,其中在給定激發頻譜處的所得發射具有可區分強度或振幅。
類似地,兩個不同螢光標記基團可具有相同或大體上類似激發頻譜,但由於該等標記基團之量子產率而提供不同及可區分的信號發射強度。
此外,雖然關於兩個相異螢光染料描述,但是將暸解,每一不同標記基團可各自包括多個標記分子。例如,每一反應物可包括能量傳遞染料對,該能量傳遞染料對在以單個照明源激發時產生不同強度之發射。例如,標記基團可包括在給定激發波長處激發的供體螢光團及在供體之發射波長處激發的受體螢光團,從而導致能量傳遞至受體。藉由使用激發頻譜在不同程度上重疊供體之發射頻譜的不同受體,此方法可產生整體標記基團,該整體標記基團以用於給定激發波長及位準之不同信號振幅發射。同樣地,調整供體與受體之間的能量傳遞效率想同樣地導致在給定激發照明下的不同信號強度。
替代地,不同信號振幅可藉由給定反應物上之信號產生標記基團中之多個來提供,例如,將單個標記分子放在反應物上,而將2個、3個、4個或更多個別標記分子放在不同反應物上。所得發射信號將反映存在於反應物上的標記之數目且因此將指示該反應物之身份。
與對以上目的有用的諸如核苷酸類似物的螢光試劑有關的示範性組成及方法描述於例如美國專利申請公告第2012/0058473號;第2012/0077189號;第2012/0052506號;第2012/0058469號;第2012/0058482號;第2010/0255488號;第2009/0208957號中,該等美國專利申請公告各自以引用方式整體併入本文以用於所用目的。
如以上所描述,利用此類方法的整合式分析裝置想像藉由頻譜鑒別要求之消除進行的複雜性之降低,例如, 使用信號振幅或其他非頻譜特性作為信號鑒別之基礎。組合此類非頻譜鑒別方法與更常見頻譜鑒別方法的整合式分析裝置亦可提供優於更複雜頻譜鑒別系統的優點。藉由自「四色」鑒別系統轉移至基於信號強度及色彩來區分信號的系統,技術人員仍可相對於習知四色分離方案降低整個光學系統之複雜性。例如,在偵測四個離散反應事件的分析操作中,例如,在核酸序列分析中,可提供在給定發射/偵測頻譜內的兩個信號事件,亦即,在相同頻譜窗內的發射信號,及在相異發射/偵測頻譜內的其他兩個事件。在每一頻譜窗內,信號事件之對產生相對於彼此的可區分信號強度。
為便於論述,關於螢光信號事件之兩個基團描述此概念,其中每一基團之成員藉由螢光強度不同,且基團藉助於該等基團之發射頻譜不同。如將暸解的,簡化光學系統之使用(例如,將兩個偵測通道用於兩個相異發射頻譜)不要求信號之兩個基團之發射分佈不重疊或每一基團之成員之發射頻譜極佳地重疊。實情為,在許多較佳態樣中,可使用每一不同信號事件擁有獨特發射頻譜的更複雜信號分佈,但以每一信號將基於每一通道中的信號強度來呈現兩個偵測通道內之獨特的信號分佈的方式。
為在本裝置中使用,樣本中之每一「發射體」因此應具有獨特信號分佈,如剛剛所描述,以便經適當識別。含有多個發射體的樣本因此可容易地使用本裝置加以區分。在一些實施例中,裝置區分4個至18個發射體、4個至12個 發射體,或甚至4個至8個發射體。在特定實施例中,裝置區分四個發射體,例如核酸定序反應之四個不同鹼基。
圖4示意性地例示用於四個螢光標記基團中每一者之信號分佈,該等信號分佈上覆有兩個不同濾波器分佈中每一者。如所示,四個標記基團分別產生發射頻譜402、404、406及408。雖然來自此四個基團的信號彼此部分重疊,但該等信號各自具有不同最大值。當經受如藉由濾通器線410及412所示的二通道濾波方案時,來自每一標記的信號將產生介於兩個偵測通道之間的獨特信號分佈。特定而言,使信號路由穿過光學元件串,該光學元件串包括根據所示頻譜分佈濾波的兩個路徑。對於每一信號,不同位準之發射光將通過每一路徑且在相關聯偵測器上經偵測。通過每一濾波路徑的信號之量由信號之頻譜特性規定。
在以上所描述之混合模式方案之狀況下,可提供包括至少兩個相異偵測通道的偵測系統,其中每一偵測通道傳送不同於每一其他通道的頻譜內之光。此類系統亦包括在偵測通道之光學通訊內之反應混合物,其中反應混合物產生至少三個不同光學信號,該等不同光學信號與其他光學信號相比各自在兩個偵測通道內產生獨特信號型樣。
在所有狀況下,每一信號產生反應物經選擇以提供信號強度及信號通道中至少一者與每一其他信號完全相異的信號。如以上所述,給定通道中之信號強度部分由光學信號之性質(例如,光學信號之發射頻譜)以及該信號通過的濾波器(例如,允許到達給定通道中之偵測器的該頻譜之 部分)規定。然而,信號強度亦可藉由隨機變數調整,諸如當標記基團在其發射信號時之定向,或特定反應之其他變數。因此,對於保證為完全不同於給定通道內之另一信號之強度的信號之強度,在較佳態樣中,解釋此變化。
在減少數目之頻譜相異信號事件的情況下,亦降低整合式裝置之光學路徑之複雜性。圖5例示用於執行光學分析(例如,核酸定序過程)之非按比例示例性裝置架構,該非按比例示例性裝置架構部分依賴於不同信號之非頻譜鑒別,且選擇性地部分依賴於頻譜區別。如所示,整合式分析裝置500可包括界定在裝置之表面層上的反應槽502。如此圖中所示,反應槽包含安置於表面層中的奈米井。此類奈米井可在基板表面中構成凹陷或經安置穿過額外基板層到達下層透明基板的孔口,例如,如在零模波導(ZMW)陣列(參見例如美國專利第7,181,122號及第7,907,800號,且亦參見以下)中所使用。然而,亦應理解,在一些實施例中,感興趣的樣本可在其他方面受限制,且可自分析裝置省略該等實施例中之奈米級反應槽。例如,若感興趣的目標以無分離反應槽的裝置之表面上的圖案固定化,則可在該等位置處觀察結合事件或其他感興趣的事件,而無需樣本之實體分離。可適合地使用此方法監測例如固定化核酸與該等固定化核酸之互補序列之間的雜交反應或例如抗體與該等抗體之配位體之間的結合反應,其中結合對之任一成員可在裝置之表面上的特定位置處固定化,如此項技術中之一般技術者將理解。
將激發照明自激發光源(未示出)傳輸至反應槽或傳輸至固定化目標,該激發光源可與基板分離或亦整合至基板中。如所示,光學波導(或波導層)505可用來將激發光(藉由一方向上之箭頭所示,但是光可在任一方向或兩個方向上傳播)傳送於反應槽502或其他固定化目標,其中自波導505發出的消逝場照亮照明容積內之反應物。使用光學波導來照亮反應槽描述於例如美國專利第7,820,983號及美國專利申請公告第2012/0085894號中,該美國專利及該美國專利申請公告各自以引用方式整體併入本文以用於所有目的。奈米級反應槽(本文中亦被稱為「奈米井」或「ZMW」)可作用來增強螢光向下進入裝置中之發射且限制向上散射的光之量。
經由包含一或多個光學元件的整合式光學元件串504將來自奈米級反應槽或來自固定化目標的發射光導引至偵測器。光學元件串包括透鏡元件層508,以將來自反應槽內之發射容積的發射光導引至安置在反應槽下方的偵測器層512。如以下更詳細地描述,本揭示內容之整合式分析裝置中之透鏡元件層較佳地包含繞射波束整形元件,該繞射波束整形元件用來以高效率將發射光分離成至少兩個波束,以用於通過色彩過濾層510。繞射波束整形元件可例如將發射光分離成經導引至偵測器層上的兩個、三個、四個或甚至更多至少部分分離的波束。取決於繞射波束整形元件之組態,分裂波束可以線性方式組織,或該等分裂波束可佈置於陣列中,例如,佈置於2 x 2波束陣列中等。此 類佈置將通常由偵測器層之感測區域之組態規定。
偵測器層通常包含一個或較佳地包括多個感測區域512a-b,例如,陣列偵測器(例如CMOS偵測器)中之像素,該等感測區域經由繞射波束整形元件光學地耦合至給定分析裝置內之發射容積。雖然例示為像素512a-b之線性佈置,但是將暸解此類像素可以柵格、n x n正方形、n x m矩形、環形陣列或任何其他便利定向佈置。以下更詳細地描述示範性佈置。
應理解,在本揭示案之上下文中,裝置中之兩個組件之「光學耦合」不意欲隱含耦合之方向性。換言之,因為光能穿過光學裝置之傳輸為完全可逆的,所以第一組件至第二組件之光學耦合應視為等效於第二組件至第一分量之光學耦合。
來自反應槽502的衝擊在偵測器層之像素上的發射信號隨後經偵測且記錄。如以上所述,色彩過濾層510較佳地安置在偵測器層與奈米級發射容積之間,以容許不同頻譜相異信號行進至偵測器層512中之不同相關聯感測區域512a及512b。例如,濾波器層510之部分510a僅允許具有相異第一發射頻譜的信號到達該部分之相關聯感測區域512a,而濾波器層510之濾波器部分510b僅允許具有相異第二頻譜的信號到達該濾波器部分之相關聯感測區域512b。
在利用此組態的定序系統之情形下,四個核苷酸中兩個之併入將產生信號,該等信號將經由濾波器部分510a傳遞至感測區域512a且由濾波器部分510b阻擋。因為 在此兩個信號之間,一信號將具有高於另一信號的信號強度,使得偵測器層512中之感測區域512a將能夠產生指示此類不同信號強度的信號回應。同樣地,四個核苷酸中其他兩個之併入將產生信號,該等信號將經由濾波器部分510b傳遞至感測區域512b且由濾波器部分510a阻擋。因為在此兩個信號之間,一信號將具有高於另一信號的信號強度,使得偵測器層512中之感測區域512b將能夠產生指示此類不同信號強度的信號回應。
偵測器層可操作地耦合至通常整合至基板中的適當電路,以用於將信號回應提供至處理器,該處理器選擇性地包括、整合於相同裝置結構內或與偵測器層及相關聯電路分離但電子地耦合至該偵測器層及相關聯電路。電路之類型之實例描述於美國專利申請公告第2012/0019828號中。
如將自先前揭示內容及圖5暸解的,本文所描述之整合式分析裝置不需要在利用習知四色光學器件的系統中必要的更複雜光學路徑,從而在一些狀況下消除對過量信號分離光學器件、二向色鏡、棱柱或濾波器層的需要。特定而言,雖然展示為具有單個過濾層,如所述,但在選擇性態樣中,過濾層可經消除或可以阻擋來自激發源的雜散光的過濾層(雷射斥拒濾波器層(參見以下))替換,而非區分來自反應槽的不同發射信號。即使包括過濾層510,亦導致與習知四色系統相比的簡化及/或更有效的光學器件,該等光學器件需要多層濾波器或窄帶通濾波器,此通常需要 在感測區域之每一子集上方的混合層或複合方法,因此阻擋信號以任何給定發射波長到達感測區域子集中一或多個,從而導致來自每一信號事件的少得多的光子之偵測。另一方面,圖5中所示之光學器件組態僅阻擋整個信號光之一較小部分到達偵測器。替代地,此類習知系統將需要全部四個不同信號類型之分離及微分方向,從而導致包括額外光學元件,例如棱柱或光柵,以達成頻譜分離。包括頻譜轉向元件(亦即,基於色彩來空間分離光的光學元件)的奈米級整合式分析裝置之實例提供於美國專利申請公告第2012/0021525號中。
圖6展示用於使用來自本發明之整合式系統的二色/二振幅信號集合的即時定序操作之示意性示範信號輸出,其中一軌跡(虛線)表示與A(高強度信號)及T(較低強度信號)鹼基之併入相關聯的信號,而另一信號軌跡(實線)表示與G(高)及C(低)鹼基相關聯的不同發射頻譜之信號。如得自色彩通道及信號之強度的併入之計時及所併入鹼基之身份隨後用來解釋鹼基序列。
用於發射光之空間分離的透鏡元件
如以上所提及,本揭示內容之奈米級整合式分析裝置包括安置在奈米級發射容積與偵測器層之間的透鏡元件層。此層之透鏡元件用來以高效率沿兩個或兩個以上空間分離光學路徑導引自奈米級發射容積發射的光。除將發射光學信號分裂至分離光學路徑中之外,透鏡元件可另外校準且/或聚焦發射光。特定而言,此類透鏡元件理想地能 夠以近軸上射線校準發射光,以及例如在藉由色彩過濾層進行的色彩分離之前分裂發射光。另外,此類透鏡元件容易使用標準技術製造。
本裝置之整合式光學透鏡元件可為折射透鏡或繞射透鏡,取決於所要的光學性質及物理性質,如此項技術中之一般技術者將理解。繞射透鏡在一些情況下可提供改良之影像品質,更容易小型化且/或相較於可比較的折射透鏡製造起來較便宜。在一些狀況下,透鏡可包括分離折射組件及繞射組件,或可為將兩個特徵組合於單個透鏡元件中的混合透鏡。
在較佳實施例中,本分析裝置之透鏡元件為繞射波束整形元件或該繞射波束整形元件之變體。此類元件通常包括菲涅耳(Fresnel)類透鏡特徵。菲涅耳透鏡由相關於入射照射具有特定錐形形狀或具有交替透明及不透明帶(亦稱為菲涅耳帶)的一系列同心環組成,該等菲涅耳透鏡在其藉由繞射而非折射或反射起作用時亦稱為波帶片或菲涅爾波帶片。此等結構導致通過裝置的光藉由選擇吸收或選擇相移之聚焦,且因此允許裝置充當透鏡。特定透鏡設計取決於將要聚焦的輻射、用來構造透鏡的材料之折射指數及所要焦距,如此項技術中熟知的。在一些實施例中,本裝置之透鏡元件為充當繞射陣列聚焦元件的修改型菲涅耳透鏡。此混合透鏡元件可由於其將發射光空間分離成多個斑點之能力而被稱為繞射波束整形元件。雖然本揭示內容之整合式分析裝置將在各種實施例中描述為包括繞射波束整 形元件,但是應理解此等為裝置之較佳實施例,且其他透鏡元件可無限制地包括於本分析裝置中。
各種材料及方法可用來製造本裝置之透鏡元件,如此項技術中之一般技術將理解。例如,可藉由對於感興趣的光為透明的材料之平面表面中之波帶之蝕刻及吸收或相移材料至蝕刻波帶中之後續沉積來形成透鏡元件。例如,相位菲涅爾波帶片為相位菲涅爾透鏡之階梯近似。當階層之數目增加時,相位菲涅爾波帶片之效率增加。具體而言,二相菲涅爾波帶片可展示為具有40.5%之最大繞射效率,而四相菲涅爾波帶片具有81%之最大繞射效率。透鏡元件諸如繞射波束整形元件之光學效率因此在一些實施例中為至少40%、至少50%、至少60%、至少70%、至少80%或甚至更高。在較佳實施例中,光學效率為至少40%。用於設計具有所要空間分離性能的透鏡元件之技術為此項技術中已知的。例如,二元光學器件技術在用於雷射波束之調處(例如,用於分裂及組合雷射波束)的光學元件之設計中之應用由Leger等人描述(1988)The Lincoln Laboratory Journal 1(2):225。光射線追蹤軟體諸如光學設計程式Zemax可用來設計此類元件。
菲涅耳透鏡及其變體已使用各種技術併入先進光學裝置中,例如作為照明系統(參見例如美國專利第6,002,520號)中、發光裝置(參見例如美國專利第6,987,613號)中、固態成像裝置(參見例如美國專利第7,499,094號)中、影像感測器(參見例如美國專利第8,411,375號)中及整合式 紅外感測器(參見例如美國專利申請公告第2013/0043552號)中之成像光學器件。本揭示內容之透鏡元件之設計及該等透鏡元件至本分析裝置陣列中之整合可使用類似方法來達成。
繞射波束整形元件對於光在本裝置之偵測途徑中之空間分離之使用提供優於諸如反射錐體或拋物面鏡的傳統光學元件的若干優點。特定而言,此類繞射波束整形元件提供自發射容積發射的光之離軸聚焦。此類元件進一步需要最小面積、最小間距,且導致相鄰偵測器元件之間的最小串音。不同於如通常使用於奈米級整合式分析裝置中的反射錐體或抛物面鏡,或傳統折射透鏡元件,本揭示內容之繞射波束整形元件可同時以高效率校準且分裂自發射容積發射的光。此外,本繞射波束整形元件容易使用標準微晶片製造技術,例如使用標準沉積、移除及圖案化技術來製造。
包括用於發射光之空間分離的繞射波束整形元件的簡化示範性整合式分析裝置之兩個視圖展示於圖7中。圖7A展示二像素裝置(亦即,在偵測器層中含有兩個感測區域的裝置)的俯視圖,其中ZMW/奈米井702定位在兩個感測區域712a及712b之間的邊界上方。應注意,介入繞射波束整形元件、色彩過濾層及裝置之其他特徵自圖7A之視圖省略。圖7B展示相同裝置的側視圖,指示自ZMW/奈米井發射的光將如何通過由繞射波束整形元件708以及色彩過濾元件710a及710b以到達偵測器層之感測區域712a及712b。
本裝置之繞射波束整形元件之設計可根據需要變化以獲得通過元件的發射光之所要空間分離、校準及/或聚焦。例如,如圖8中所示,標稱設計(畫幅A)可包括介於繞射波束整形元件與偵測器層之間的充分空間,以允許包括例如雷射斥拒干涉濾波器層(參見以下)或其他光學特徵。在一些情形下,增加繞射波束整形元件與偵測器層(畫幅B)之間的側向間距可為有利的,而在其他情形下,藉由減少繞射波束整形元件與偵測器層(畫幅C)之間的側向間距來構建更緊密結構可為有利的。繞射波束整形元件之光學性質之改變容易藉由繞射波束整形元件之設計之修改達成,如此項技術中之一般技術者將理解。
圖9展示來自ZMW/奈米井之發射容積的發射光穿過代表性繞射波束整形元件設計之模擬傳輸。模擬裝置之基本設計示意性地展示於圖9A中,該基本設計包括ZMW/奈米井902、繞射波束整形元件908及色彩過濾層910之定位。如圖9B中所示,穿過如圖9A中所示地設計的繞射波束整形元件傳輸的光之強度藉由繞射波束整形元件之繞射效應空間分離。如圖9A中所示之繞射波束整形元件908之組成及結構係使用ZEMAX光學射線追蹤軟體來設計,且如圖9B中所示穿過繞射波束整形元件的光之傳輸性質係使用Lumerical FDTD(有限差分時域)馬克士威方程式(Maxwell equation)電磁傳播軟體來模型化。
應注意,本繞射波束整形元件不意欲基於色彩分離光。實情為,此等繞射波束整形元件之特徵在於該等繞 射波束整形元件提供所有頻譜之傳輸之最大效率,且色彩區別係由色彩過濾層提供。就此而言,圖10展示在沒有濾色器的情況下波長對穿過雙繞射波束整形元件之發射傳遞之效率及效應。如自上方觀察的繞射波束整形元件之相位型樣展示於圖10A中。用於630nm發射的在偵測器階層處之場分佈展示於圖10B中。與發射波長有關的繞射波束整形元件之效率針對無任何透鏡佈局但具有沉積a-Si的搜集路徑展示於圖10C中。2μm氧化物線係針對具有與a-Si層相距2μm之偵測器的裝置,且4μm氧化物線係針對具有距a-Si層4μm之偵測器的裝置。在此等裝置中,像素為相對大的(~8μm x 10μm)。波長對裝置之聚焦之效應展示於圖10D中。
圖11例示根據本揭示內容製造的奈米級裝置之設計、構造及分析,該奈米級裝置包括用於自發射容積傳輸的光之空間分離之繞射波束整形元件。圖11A展示裝置之設計特徵,包括ZMW/奈米井1102、繞射波束整形元件1108及色彩過濾層1110。裝置進一步包括用於激發光至ZMW/奈米井之遞送之波導(WG)、裝置表面上之金屬(Al)及抗反射(TiN)塗層、繞射波束整形元件上方及下方的氧化矽隔片層,及繞射波束整形元件之表面上之孔口層。各種特徵之近似尺寸提供於圖中。圖11B展示對應於根據圖11A中概括的設計構造的裝置的SEM顯微照片。
孔口層
本揭示內容之整合式分析裝置可選擇性地包括一或多個孔口層。孔口層經製造於奈米級分析裝置之其他 層之間,例如ZMW/奈米井層與繞射波束整形元件層之間、繞射波束整形元件層與色彩過濾層之間及/或色彩過濾層與偵測器層之間。孔口提供開口以允許來自ZMW/奈米井之發射光至偵測器元件中在給定單元槽內之感測區域之最大傳輸,同時最小化來自激發源(例如,波導)、來自裝置內之自身螢光或來自相鄰單元槽之間的串音的光之背景傳輸。孔口層通常由光之傳輸為不合需要的光阻擋材料且由光之傳輸為所要的透明材料構造。用於在孔口層中使用的適合光阻擋材料包括例如氮化鈦、諸如鉻的金屬或任何其他適當光阻擋材料。光阻擋材料較佳地為氮化鈦。用於在孔口層中使用的適合透明材料包括例如SiO2、Si3N4、Al2O3、TiO2、GaP等。在較佳實施例中,孔口層為近似100nm厚。
雷射斥拒濾波器元件及色彩過濾元件
本揭示內容之整合式分析裝置另外包括經設計來傳輸某些波長之光,同時顯著地減少或阻擋其他波長之光的特徵。特定而言,合意的是,將盡可能多的信號有關之光傳輸至偵測器之適當區域且阻擋所有或至少最多雜訊有關之光。此外,因為本裝置之透鏡元件經設計來傳輸自分析物發射的所有波長之光,所以通常有必要使用介於透鏡元件與偵測器層之不同感測區域之間的色彩過濾元件,以便區分分析物中之不同發射體。
裝置因此包括安置在透鏡元件層與偵測器層之間的色彩過濾層。色彩過濾層內之不同色彩過濾元件通常用於經由透鏡元件傳輸的空間分離波束中每一者。空間分 離光通常在藉由偵測器層中之對應感測區域偵測之前通過色彩過濾層。在本發明之一些實施例中,色彩過濾層包含多個色彩過濾元件,每一色彩過濾元件特定於光波長之一範圍。在更特定實施例中,色彩過濾層包含2至9個色彩過濾元件。在甚至更特定實施例中,色彩過濾層包含2個色彩過濾元件、感測區域及分離波束。
裝置可另外且選擇性地包括在雷射斥拒濾波器層內之一或多個雷射斥拒濾波器元件。雷射斥拒濾波器層安置在激發源與偵測器層之間,通常在整合式裝置之色彩過濾層與偵測器層之間。此類雷射斥拒濾波器元件(亦稱為「泵」斥拒元件)在完全整合式分析裝置(諸如本揭示內容之裝置)之狀況下具有特定重要性,因為此等裝置之整合式性質可對所有層之聚合厚度產生約束,且亦可增加必須保證斥拒所在的角頻寬。對於非整合式偵測器裝置,負責非信號光之斥拒的沉積層可為數十微米厚(在參加的若干濾波器上求和),但通常僅需要斥拒在<10度之角範圍(包括視域(「FOV」)及濾波器傾角兩者)上的光。然而,對於諸如本文示範的裝置的整合式裝置,用於泵斥拒之層可需要為如5微米薄或甚至更少。
整合式裝置情況下的另一考慮保證斥拒的非信號光經有效地終止(亦即,該斥拒的非信號光例如藉由將該斥拒的非信號光轉換成熱來有效地自光學系統移除,該轉換係藉由吸收來達成)。對於非整合式裝置,此終止通常並非關鍵的,而對於整合式裝置,反射光可到達具有少量(原 則上,一個)反射的另一偵測器位點,且此外,不存在用於斥拒光自裝置逸出的局部退出埠。出於此等原因,重要的是確保散射光理想地在一反射中有效地轉換成熱。適合於在本整合式裝置中使用的兩個類型之詳細性質描述於本揭示內容之後續部分中。
色彩過濾元件及雷射斥拒濾波器元件具有彼此共用的特徵,因為該等色彩過濾元件及該等雷射斥拒濾波器元件兩者經設計來傳輸某些波長之光,同時阻擋其他波長之光。然而,色彩過濾元件用來區分自分析物中之不同發射體發射的光之波長,而雷射斥拒濾波器元件經設計來藉由散射或其他方式阻擋起因於波導或其他激發源的背景雜訊。因此,通常將不同色彩過濾元件置放在來自透鏡元件的空間分離光與偵測器層中之該等多個感測區域之間,且通常將單個雷射斥拒濾波器元件可具有類似性質的多個雷射斥拒濾波器元件置放在透鏡元件與偵測器層之間,較佳地在色彩過濾層與偵測器層之間。用於在本裝置之色彩過濾元件及雷射斥拒濾波器元件中使用的適合材料包括例如非晶矽/氧化矽干涉堆疊、聚合物類抗蝕劑、摻雜PECVD氧化物、具有吸收染料之有機聚矽氧等。在較佳實施例中,色彩過濾元件及雷射斥拒濾波器元件為薄膜干涉濾波器。在更佳實施例中,自非晶矽及氧化矽之層準備色彩過濾元件及雷射斥拒濾波器元件。在其他較佳實施例中,雷射斥拒元件安置在色彩過濾層與偵測器層之間。
多層及混合雷射斥拒濾波器元件
理想雷射斥拒濾波器提供在樣本激發之波長處的光能之深斥拒(例如,在用於典型雷射照明源之532nm處的OD>=6),顯示在樣本發射之波長處的高傳輸之寬視窗,且進一步顯示感興趣的波長之間的小斯托克斯位移(Stokes shift)。另外,對於雷射斥拒濾波器而言合意的是顯示具有角度及偏振的最小色散、最小厚度及受控終止。此外,濾波器堆疊較佳地為便宜的且為在適合於整合式裝置之其他組件之製造的條件(例如,溫度)下可容易製造的。
在介電質薄膜雷射斥拒濾波器之狀況下,針對非信號光在寬範圍之入射角上獲得充分濾波效能在此類堆疊之設計中有時可為挑戰。例如,考慮到指定波長範圍,邊緣濾波器可提供高反射效率但僅在特定範圍之入射角(通常自垂直入射直至特定值)內。在本文所描述之整合式裝置設計中之一些中,為阻止激發源之散射光子到達偵測器,在寬角頻譜上的斥拒可為合意的,尤其用以阻擋具有相較於典型薄膜堆疊可充分支援的較高入射角的光子。
本揭示內容藉由在一態樣中提供多層雷射斥拒濾波器來解決此問題,該等多層雷射斥拒濾波器包含低指數全內反射(TIR)層,以便減少高角度散射光之傳輸。具體而言,低指數層包括於激發源與偵測器層之間的裝置堆疊中,以便最小化背景信號。傳統介電質長通濾波器,例如如圖12A之左側畫幅中所示,比具有較高入射角的該等射線(例如,圖中之外射線)更有效地反射具有較低入射角的射線(例如,圖中之中間射線)。如圖12A之右側畫幅中所示,當 此濾波器設計併入整合式裝置中時,來自波導之高角度散射光具有傳輸穿過濾波器堆疊及到達感測器之相對較高機會。然而,在本揭示內容之設計方案中,例如在圖12B之左側畫幅中所示之結構中,在整合式激發波導與低角度斥拒濾波器之間增添低指數TIR層,諸如介電質濾波器堆疊。高角度散射光在遭遇低指數TIR層時經歷全內反射,且在多個跳動之後自側面退出整合式裝置。同時,較低角度散射光經傳輸穿過低指數TIR層但藉由介電質濾波器堆疊斥拒。TIR層及濾波器堆疊之組合效應因此導致阻擋具有寬角頻譜之散射光的阻障濾波器。
對用於主題多層過濾器堆疊之低指數TIR層之一候選材料為空氣,具有幾乎零色散低折射指數,但其他低指數材料亦為適合的,包括具有低折射指數及其他適合性質的其他氣體、液體及固體。用於低指數TIR層之材料之特定選擇將取決於相鄰層之折射指數及其他物理性質,如此項技術中之一般技術者將理解。
為幫助收集散射光且減少多次散射之機會,吸收層或補片可選擇性地增添至裝置,如圖12B之右側畫幅中所示。用於在此吸收層中使用的材料係基於該等材料之吸收波長、該等材料消散光能之能力及該等材料在整合式裝置之製造中之適合性來選擇。
以上描述之寬角頻譜多層邊緣濾波器之各種組態係可能的,取決於低指數層之位置、厚度、材料選擇及層之數目。如以上所描述,低指數層可直接置放在激發波 導包覆下方,因此產生最短共振腔長度且因此限制二次散射之機會。然而,低指數層可替代地置放於薄膜堆疊內,如圖12C之左側畫幅中所例示,或置放在薄膜堆疊與偵測層之間,如圖12C之右側畫幅中所例示。此等組態增加共振腔長度,且因此可增加二次散射之機會,但該等組態可有利地促進裝置之製造。在此等實例中未展示的是透鏡元件層,該透鏡元件層可在雷射斥拒濾波器元件上方或下方,但該透鏡元件層較佳地在雷射斥拒濾波器上方。
在任何狀況下,額外TIR設計約束至雷射斥拒濾波器設計中之併入產生低指數層之附加價值。例如,在雷射斥拒濾波器設計中藉由併入低指數層(或多個層)作為整體組件,例如,因為濾波器不再限於薄膜堆疊但可包括自激發波導至探測層的層,所以整合式裝置效能可經充分最佳化。
本揭示內容在另一態樣中進一步提供雷射斥拒濾波器元件,該等雷射斥拒濾波器元件包含介電質堆疊及吸收層之組合。此類混合濾波器利用對干涉塗層及吸收層之入射角之互補相依性。具體而言,如以上所提及,用於斥拒之干涉塗層通常對於以垂直入射為中心的錐體最佳地執行,其中色散根據干涉薄膜中之角度之餘弦影響效能,而吸收斥拒層之效能傾向於隨入射角而增加,並且色散根據吸收層中之角度之餘弦影響效能。由於此互補性質,可在最小厚度中以寬角度範圍上之目標最小值之斥拒來達成混合塗層。針對較高折射指數薄膜且針對較低折射指數吸 收層減少此厚度。請注意,具有用於非信號光之吸收(但信號光之最小吸收)的薄膜可有效地使用於混合斥拒濾波器中。
作為適合於與介電質濾波器堆疊結合使用的吸收染料之一實例,Aptina red1具有含有600nm以上的高傳輸的吸收頻譜。參見Pang等人(2011)Lab Chip 11:3698,圖2。雖然在此出版物中所使用的厚度為相對大的(8μm),但是可使用較薄層,取決於裝置之雷射激發之波長。例如,5μm層在532nm處提供OD>6,4.7μm層在540nm處提供OD>6,且2.8μm層在562nm處提供OD>6。適合於在本混合濾波器堆疊中使用的其他吸收染料及顏料可由此項技術中之一般技術者容易地識別。
特定而言,藉由吸收染料層諸如藉由Aptina red1染料層進行的雷射斥拒有利地不顯示非信號光之偏振色散、弱角色散及受控終止。另外,有角度非均勻散射可允許吸收染料層之進一步薄化。若半球之某些部分具有將要斥拒的較低強度非信號光,或若強度在一些角度處具有已知偏振相依性,則此資訊可用來進一步減少混合斥拒濾波器厚度(用於給定斥拒目標)。吸收斥拒濾波器例如Aptina red1染料層之缺點包括適度大的消光係數、相對大的厚度(5μm)及需要使用具有相當大的斯托克斯位移(532nm至~620nm)的樣本染料。然而,可藉由吸收層與介電質堆疊在本混合斥拒濾波器中之組合來最大程度地抵消此等缺點。圖13例示吸收染料層之弱角色散(左側畫幅)及缺乏偏振色散(右側 畫幅)。
關於混合斥拒濾波器之介電質堆疊組件,尤其有利的斥拒濾波器(尤其具有對角度之低相依性的該等斥拒濾波器)藉由極高指數材料對於濾波器之干涉部分之使用係可能的。以532nm泵發現針對此等目的之效用的示範性材料為作為高指數材料的GaP(磷化鎵)及作為低指數材料的TiO2,但是可利用其他適合材料,如以下所描述,且如此項技術中之一般技術者將理解。應注意的是通常將TiO2用作用於通常產生之塗層的高指數材料。圖14例示nH/nL GaP/TiO2介電質堆疊之有利性質,尤其532nm泵源(由向下箭頭指示)之區域中的高消光係數,及可控制的斯托克斯位移。然而,材料亦顯示介於0度與45度之間的顯著角色散(具有藍色位移)及p偏振光學信號(570nm附近的上軌跡)與s偏振光學信號(570nm附近的中間軌跡)之間的顯著偏振色散(分裂)。
將吸收染料層及介電質干涉堆疊組合於單個混合雷射斥拒濾波器中之優點例示於圖15中。具體而言,圖15A展示此混合濾波器的示範性示意性設計,其中下層為GaP/TiO2薄膜堆疊且上層為Aptina red1染料。混合濾波器以3μm總厚度達成OD=6斥拒,其中OD=2藉由吸收層提供且OD=4藉由干涉層提供。偏振色散及角色散可藉由濾波器元件之設計補償。如圖15B及圖15C中所例示,入射角對透射率之效應針對p偏振光(上軌跡)及s偏振光(下軌跡)展示於圖15B中,且波長對透射率之效應針對45度入射光(左側軌 跡、p偏振及s偏振)且針對0度入射光(右側軌跡)展示於圖15C中。吸收層控制透射光之終止,且整體設計在樣本發射波長處提供可容忍的斯托克斯位移、合理厚度及良好傳輸。
混合斥拒濾波器之介電質堆疊組件之光學性質可根據需要藉由選擇用來構造堆疊的材料、藉由每一層之厚度及藉由層之數目來調整。利用來製造干涉濾波器的介電質材料一般為非導體材料,通常為金屬鹽及金屬氧化物,具有特定折射指數。示範性材料包括SiO2、SiO、Si2O3、Al2O3、BeO、MgO、CeF3、LiF、NaF、MgF2、CaF2、TiO2、Ta2O5、ZrO2、HfO2、Sb2O3、Y2O3、CeO2、PbCl2及ZnS。GaP由於其極高折射指數而亦具有用途。介電質堆疊較佳地以整體結構(H/2 L H/2)N來設計,其中H層為具有相對高折射指數的第一材料且L層為具有相對低折射指數的第二材料。堆疊內之每一層之實體厚度係基於所要光學性質加以選擇,如此項技術中所理解。值「N」為括號內的結構之重複單元之數目且為整數。阻帶中之傳輸隨著增加的整體厚度(例如,當N增加時)傾向於零(對於給定入射角)。圖16A例示具有N之各種值的GaP/TiO2堆疊之物理性質及光學性質。圖16B例示使用不同H及L對的干涉堆疊之物理性質及光學性質之進一步比較。
圖17及圖18突出混合斥拒濾波器中之Gap/TiO2堆疊與其他傳統介電質堆疊材料之使用相比的優點。以上且在圖15B及圖15C中描述包含GaP/TiO2介電質堆疊及 Aptina redl吸收層的混合斥拒濾波器之光學性質。為比較,包含TiO2/Al2O2介電質堆疊及Aptina red1吸收層的混合斥拒濾波器之光學性質展示於圖17A及圖17B中,且包含TiO2/SiO2介電質堆疊及Aptina red1吸收層的混合斥拒濾波器之光學性質展示於圖18A及圖18B中。重要地,TiO2/Al2O3堆疊及TiO2/SiO2堆疊之有效指數低於Gap/TiO2堆疊之有效指數,因此使用此等濾波器導致較大角度及偏振色散。對於TiO2/Al2O3混合斥拒濾波器之分散補償需要4.7μm的厚度(用於吸收層之~3.6μm及用於介電質堆疊之~1.1μm)。對於TiO2/SiO2混合斥拒濾波器之分散補償需要4.5μm的厚度(用於吸收層之~3.6μm及用於介電質堆疊之~0.9μm)。如自圖17B顯而易見的,TiO2/Al2O3混合斥拒濾波器將理想地與具有相對大斯托克斯位移(例如,532nm激發及>635nm發射)的螢光染料一起使用,且TiO2/SiO2混合斥拒濾波器將最佳地與具有甚至更大斯托克斯位移的染料一起使用。
應理解,可變化塗層之順序以便達成混合雷射斥拒濾波器元件之最佳效能。例如,可以吸收第一、干涉塗層第二來排序該等層,或反之亦然。吸收材料可攜帶於諸如PMMA的基質材料中,且可經成型或圖案化以適應在有限容積內或容許較簡單整合。
塗層可以不同製程步驟來產生,且接合至總成中,如此項技術中之一般技術者將理解。
因此,本揭示內容因此在此態樣中提供:整合式分析裝置之陣列,每一裝置包含: 奈米級發射容積;偵測器層,其光學地耦合至奈米級發射容積;繞射波束整形元件,其安置在奈米級發射容積與偵測器層之間;色彩過濾層,其安置在繞射波束整形元件與偵測器層之間;激發源,其光學地耦合至奈米級發射容積;以及雷射斥拒濾波器元件,其安置在激發源與偵測器層之間;其中光係由發射容積內之多個發射體自奈米級發射容積發射;其中偵測器層包含多個感測區域;且其中繞射波束整形元件空間分離自奈米級發射容積發射的光,且經由色彩過濾層將空間分離光導引至該等多個感測區域。
在一些實施例中,雷射斥拒濾波器元件為多層或混合斥拒濾波器元件。
在特定實施例中,雷射斥拒濾波器元件為多層濾波器元件,該多層濾波器元件包含介電質干涉濾波器層及低指數全內反射層。在更特定實施例中,裝置中每一者進一步包含吸收層。
在其他特定實施例中,雷射斥拒濾波器元件為混合斥拒濾波器元件,該混合斥拒濾波器元件包含吸收層及介電質堆疊層。
在一些實施例中,雷射斥拒濾波器元件顯示在532nm處的低光學傳輸及超過620nm的高光學傳輸。
暗鏡元件
在另一態樣中,本揭示內容之整合式分析裝置進一步包含暗鏡元件。「暗鏡」一詞通常用來描述具有傾向於在無內在散射的情況下吸收入射光的塗層及亦具有低傳輸的塗層之表面。在於光源附近具有非樣本螢光材料之貯器的整合式裝置中,非信號光至螢光材料之貯器中之傳輸可導致附加雜訊背景且應予以避免。將暗鏡塗層置放在裝置中在傳遞信號(或照明)光方面並非直接有效的區域上改良整合式裝置之整體能力,以在斥拒非信號光可衝擊另一裝置位點之前有效地終止非信號光。
示範性暗鏡塗層之光學性質例示於圖19中,其中圖19A展示在以Cr塗佈的介電質堆疊上可達成反射率之顯著降低。使用替代性塗層,例如TaN塗層,甚至更低的反射率係可能的,如圖19B中所例示。其他材料適合用作暗鏡塗層,如此項技術中之一般技術者將理解。
暗鏡塗層可經置放於散射表面上以減小撞擊信號角頻帶內的另一裝置位點之概率,或增加在到達另一裝置位點之前用於吸收之路徑長度。
角度敏感及/或偏振敏感的暗鏡塗層可用來容許信號光之高效傳輸,同時達成非信號光之一些目標水準之吸收。
因此,本揭示內容因此在此態樣中提供: 整合式分析裝置之陣列,每一裝置包含:奈米級發射容積;偵測器層,其光學地耦合至奈米級發射容積;繞射波束整形元件,其安置在奈米級發射容積與偵測器層之間;色彩過濾層,其安置在繞射波束整形元件與偵測器層之間;暗鏡濾波器元件;其中光係由發射容積內之多個發射體自奈米級發射容積發射;其中偵測器層包含多個感測區域;且其中繞射波束整形元件空間分離自奈米級發射容積發射的光,且經由色彩過濾層將空間分離光導引至該等多個感測區域。
在實施例中,暗鏡元件包含在散射表面上之暗鏡塗層。
整合式分析裝置之陣列
為獲得遺傳定序之廣泛應用(例如在研究及診斷中)可需要的大量序列資訊,需要高通量系統。如以上所述且藉由實例之方式,為增強系統之定序通量,通常監測多個複合物,其中每一複合物定序單獨模板序列。在基因體定序或其他大DNA組分之定序之狀況下,此等模板將通常包含基因體DNA之重疊片段。藉由定序每一片段,技術人員隨後可自來自片段的重疊序列資料組裝鄰接序列。
如以上所描述且如圖1中所示,此定序系統之模板/DNA聚合酶引子複合物提供於光學受限區域內、通常經固定化,該光學受限區域諸如零模波導(ZMW)或奈米井,或透明基板之表面近端、光學波導等。較佳地,此類反應槽大量地排列在基板上,以便達成基因體或其他大規模DNA定序方法必要的規模。此類陣列較佳地包含完整整合式分析裝置,諸如,例如,圖2及圖5之方塊圖中所示之裝置。包含光學分析裝置之陣列的整合式系統之實例提供於美國專利申請公告第2012/0014837號;第2012/0019828;以及第2012/0021525號中。
整合式分析裝置之陣列諸如包含ZMW/奈米井的裝置之陣列可以超高密度製造,提供自每平方釐米1000個ZMW至每平方釐米1,000,000個ZMW或更多間的任何數目。因此,在任何給定時間,分析發生在自100、1000、3000、5000、10,000、20,000、50,000、100,000、1百萬、1千萬或單個分析系統內或甚至單個基板上的甚至更多奈米級發射容積或其他反應區域中的反應可為可能的。
使用前述系統,已描述陣列中之數千或數以萬計的ZMW/奈米井之同時標靶照明。然而,當對多工之需要增加時,陣列上的ZMW之密度及提供此類陣列之標靶照明之能力難度增加,因為ZMW串音(來自鄰近ZMW的信號,該等信號在其退出陣列時污染每一其他信號)、起因於較高水準之較密照明的減小之信號雜訊比等之問題增加。本發明之陣列及方法解決此等問題中之一些。
給定信號入射的偵測器上這定位指示(1)陣列中之ZMW/奈米井內之起源發射容積,及(2)用來例如識別在伸長反應中併入的螢光標記核苷酸類似物之類型的信號分量之發射特性。如以上所述,偵測器在一些狀況下可包括多個感測區域,各自用於偵測自發射容積經由繞射波束整形元件及色彩過濾層傳遞至偵測器層的光。例如,在定序之狀況下,用於每一反應槽之感測器可具有4個元件,一元件用於四個鹼基中每一者。在一些狀況下,感測區域可提供色彩鑒別,但是色彩過濾層較佳地用來區分用於適當感測區域之光之適當色彩。在此等實施例中,感測區域僅偵測信號之強度,而不鑒別色彩。在一些狀況下,感測器元件使用發射特性之組合識別所併入核苷酸。
圖20例示有用地使用於本揭示內容之陣列中的示範性裝置佈置。在每一狀況下,自上方觀察陣列,其中暗圓表示ZMW/奈米井。如所示,ZMW/奈米井直接定位在波導上方,該等波導識別為寬箭頭。在圖20A及圖20C中所示之陣列之狀況下,波導之「節距」為2個行(亦即,波導藉由兩行感測區域/像素之寬度分離),而對於圖20B及圖20D之陣列,波導之節距為1個行(亦即,波導藉由一行感測區域/像素之寬度分離)。受陣列中每一者中之繞射波束整形元件影響的發射光之空間分離藉由與ZMW/奈米井中之一些相關聯的兩個細箭頭指示。例如,在圖20A之裝置中,繞射波束整形元件將發射光導引至與波導垂直(亦即,以90°)對準的兩個感測區域上。在圖20B之裝置中,繞射波束整形 元件將發射光導引至與波導共線(亦即,以0°)的兩個感測區域上。對於圖20C及圖20D之裝置,繞射波束整形元件將發射光導引至相對於波導成對角線(亦即,以45°)的兩個感測區域上。如自該等圖顯而易見的,圖20C及20D之裝置關於個別波導之節距不同。
圖21例示如自上方觀察的裝置之陣列,其中更詳細地展示特定單元槽內之示範性繞射波束整形元件2108之設計。在單元槽內亦標記的是ZMW/奈米井2102、波導2105及將定位在偵測層之感測區域上方的兩個色彩過濾區域2110之一。在此等裝置中,感測區域將與波導共線,且波導節距將為1個行。在此圖中未展示的是第二色彩過濾區域及以上已描述之裝置之各種其他特徵,例如,孔口元件、雷射斥拒元件、金屬及抗反射表面層、波導包覆層、電子電路等。
圖22展示用來構建本裝置之示範性單元槽及該等裝置之一般特徵的各種典型元件。自單元槽之畫幅上方觀察該等元件。具體而言,圖22A例示繞射波束整形元件,其中繞射波束整形元件(及另外單元槽自身)之尺寸為大致10μm x 15μm。圖22B例示ZMW/奈米井(展示為小正方形)及該ZMW/奈米井之相關聯波導。如所指示,波導之寬度為大致0.3μm至0.7μm,且該波導係在近似9μm寬之溝槽中製造。圖22C例示半徑2.8μm及3.0μm之兩個圓形色彩過濾區域。然而,當組裝於裝置內時,色彩過濾區域中每一者將相對於ZMW/奈米井偏移近似3.0μm。圖22D例示ZMW/ 奈米井(展示為小正方形)及兩個相關聯孔口元件,該兩個相關聯孔口元件在每一狀況下對應於兩個偏移透明圓。帶有具有近似2.5μm之直徑的圓且相對於ZMW/奈米井偏移近似+/- 2.7μm的較大孔口元件層將通常安置在偵測器層與雷射斥拒層/色彩過濾層之間。帶有具有近似2.0μm之直徑的圓且相對於ZMW/奈米井偏移近似+/- 1.6μm的較小孔口元件層將通常安置在色彩過濾層與繞射波束整形元件層之間。圖22E例示ZMW/奈米井(展示為小正方形)及第三相關聯孔口元件,該第三相關聯孔口元件對應於兩個偏移透明圓。此等圓具有近似1.5μm之直徑,且相對於ZMW/奈米井偏移近似+/- 1.0μm。此孔口元件將通常安置在繞射波束整形元件層與波導之間。
圖23例示圖22之組件至本發明之示範性整合式單元槽中之組裝的示意性表示。ZMW/奈米井作為單元槽之中心中的小正方形為明顯的,且波導經展示為跨越ZMW/奈米井的垂直平行線。示範性裝置自上而下按以下順序包括ZMW/奈米井、波導、第三孔口元件、繞射波束整形元件、第二孔口元件、色彩過濾層、第一孔口元件及偵測器層。示範性裝置可選擇性地包括介於色彩過濾層與第一孔口元件之間或在裝置中之另一位置處的雷射斥拒層。奈米級整合式分析裝置在此等實施例中之繞射波束整形元件將垂直於波導而導引自ZMW/奈米井發射的光。換言之,此示範性裝置將對應於圖20A中所示之陣列佈置。
圖24提供圖23中所描述之裝置的更詳述示意性 橫截面,包括尺寸及示範性材料。根據圖24之設計製造的裝置之橫截面SEM顯微照片展示於圖25中。
用於產生整合式分析裝置之陣列之方法
在另一態樣中,本揭示內容提供用於產生整合式分析裝置之陣列之方法。如以上所描述,此類陣列為有用的,例如,在核酸之大規模定序(尤其包括基因體定序)中。此類陣列可藉由各種方法產生。用於產生本陣列之一較佳方法涉及諸如半導體或MEMS處理方法的微製造方法之使用,該等微製造方法已經高度發展以用於積體電路之產生。類似製程已用來產生用於各種應用的MEMS(微機電系統),該等應用包括墨噴印表機、加速計、壓力轉換器及顯示器(諸如數位微鏡顯示器(DMD))。微製造方法可應用於諸如晶圓的大基板,該大基板稍後可經切粒成許多裝置,從而允許一次許多裝置之產生。
本發明之方法可例如施加諸如光阻劑的抗蝕劑製程,以在基板或其他層上界定結構元件。刻蝕製程可用來產生三維結構,包括整合式分析裝置中之組件結構。沉積製程可用來將層增添至裝置上。諸如灰化、研磨、釋放、剝離及濕式清潔的其他半導體製程亦可用來產生本發明之結構,如以下更詳細地描述。
例如,微影技術可用來使用例如習知光刻、電子束微影術等以自諸如光阻劑的聚合材料之中界定遮罩層。替代地,微影技術可連同層沉積方法一起施加至例如使用鋁、金、鉑、鉻或其他按照慣例使用的金屬的沉積金屬遮 罩層,或其他無機遮罩層,例如,諸如矽、SiO2等的矽石基基板。替代地,負性諧調製程可用來界定對應於例如奈米井的抗蝕劑柱。參見例如美國專利第7,170,050號,該美國專利以引用方式整體併入本文以用於所有目的。遮罩層隨後可經沉積在抗蝕劑柱上,且該等柱隨後經移除。在尤其較佳態樣中,下層基板及遮罩層兩者係由相同材料製造,該材料在尤其較佳態樣中為透明基板材料,諸如SiO2基基板,諸如玻璃、石英或熔融矽石。藉由提供相同材料之遮罩層及下層層,技術人員可確保兩個層具有與該等層所暴露的環境之相同互動性,且因此最小化任何混合表面相互作用。
在SiO2基基板及遮罩層之狀況下,可使用習知製造製程。例如,帶有諸如波導的表面暴露特徵的玻璃基板可具有沉積在該玻璃基板之表面上的抗蝕劑層。遮罩層之負片隨後藉由抗蝕劑層之適當暴露及顯影來界定以提供抗蝕劑島狀物,技術人員希望在該等抗蝕劑島狀物處保持對下層特徵之接取。遮罩層隨後經沉積在表面上且剩餘抗蝕劑島狀物例如藉由剝離製程移除,以提供至下層特徵的開口。在金屬層之狀況下,沉積可藉由若干方式來實現,包括蒸發、濺射等。此類製程描述於例如美國專利第7,170,050號中。在矽石基遮罩層之狀況下,化學汽相沉積(CVD)製程可用來將矽層沉積至表面上。在抗蝕劑層之剝離之後,熱氧化製程可將遮罩層轉換成SiO2。替代地,刻蝕方法可用來使用習知製程以蝕刻至下層層的接取點。例如,矽層可 經沉積在下層基板上。抗蝕劑層隨後經沉積在矽層之表面上,且經暴露及顯影以界定遮罩之圖案。隨後使用適當微分蝕刻以移除矽但不移除下層SiO2基板來自矽層蝕刻接取點。一旦遮罩層經界定,使用例如熱氧化製程再次將矽層轉換成SiO2
本發明之一態樣係關於用於產生整合式分析裝置之陣列之製程,該製程包含以下步驟:提供基板層,該基板層可為光敏偵測器層,諸如CMOS感測器層、CCD層等;在基板層上沉積雷射斥拒濾波器元件層;在雷射斥拒濾波器元件層上沉積色彩過濾層;在色彩過濾層上沉積透鏡元件層,具體而言包括繞射波束整形元件的層;在透鏡元件層上沉積激發波導層,在透鏡元件層上沉積ZMW層;以及圖案化及蝕刻ZMW材料以界定穿透至ZMW層之上包覆中的奈米井之陣列。除非具體描述,否則可在適合的情況下改變本文所描述之製程步驟之順序。在一些實施例中,可增添額外步驟,尤其裝置之其他層之間的一或多個孔口層之沉積及圖案化。以下詳細提供此製造製程之一特定實例。在整合式分析裝置之陣列之產生中有用的製程之進一步實例可見於美國專利申請案第13/920,037號中,該美國專利申請案以引用方式整體併入本文以用於所有目的。
在以上示範性微製造技術中每一者中,製程始於一清潔基板層。在本方法中使用的基板層可具有任何適合剛性材料。基板層材料可包含例如諸如矽石的無機氧化物材料。較佳基板層材料包含偵測器層,諸如例如CMOS晶圓, 亦即,由CMOS感測器或CCD陣列組成的晶圓。參見例如CMOS Imagers From Phototransduction to Image Processing(2004)Yadid-Pecht and Etienne-Cummings,eds.;CMOS/CCD Sensors and Camera Systems(2007)Holst及Lomheim;SPIE出版社。
如以上所提及,本發明之方法在一些狀況下使用抗蝕劑來以微影術界定及產生結構。此等抗蝕劑可為例如光阻劑或電子束抗蝕劑。光阻劑可使用UV、深UV、G線、H線、I線或其他適合波長或波長之集合加以顯影。使用的抗蝕劑之類型及因此使用於處理的測試設備之類型將取決於產生的特徵之尺寸。在本文所描述之許多製程中,較高解析度抗蝕劑及設備將用於對應於反應容積的奈米井之產生,其中奈米井之大小可為大約10nm至500nm,且較低解析度抗蝕劑及相關聯測試設備用於整合式分析裝置之剩餘部分之產生,該剩餘部分可具有在1微米至20微米之尺寸上的特徵。許多抗蝕劑在此項技術中為已知的,且許多抗蝕劑可商購自諸如Rohm及Haas以及Shipley的公司。在本發明之製程中使用的抗蝕劑可為負性光阻劑或正性光阻劑。在本文使用負性光阻劑來描述製程的情況下,將理解,在切實可行的情況下亦可使用適合的正性光阻劑,且反之亦然。在適當的情況下,亦可使用化學放大以便增加抗蝕劑之靈敏度。抗蝕劑之移除、清潔、沖洗、灰化及基板之乾燥可在適當時且如此項技術中所教導且已知地加以執行。
在一些狀況下,用於奈米井之光刻的工具使用能 夠產生具有約10nm至約100nm之大小的特徵之結構的光刻暴露工具。此類系統包括例如AMSL XT1250暴露工具。
在本發明之一些態樣中使用刻蝕製程以便在基板中或在其他層中產生三維特徵,以適合例如光學元件或透鏡或反應容積諸如奈米井。使用的刻蝕製程將取決於所使用的材料之類型、特徵之尺寸及抗蝕劑系統。在一些狀況下,使用濕式蝕刻或濕式化學蝕刻。亦可使用電化學蝕刻。在一些實施例中,將電漿蝕刻或反應性離子蝕刻(RIE)用作刻蝕製程。亦可例如在需要具有高縱橫比之結構的情況下使用深反應性離子蝕刻。亦可使用例如以二氟化氙進行的乾式汽相蝕刻。塊體微機械加工或表面微機械加工可在適當時用來產生本揭示案之裝置結構。在本揭示案之方法中使用的蝕刻可為灰階蝕刻。抗蝕劑形成及蝕刻之條件經控制以產生具有所要幾何形狀(諸如具有所要側壁角度)的側壁。
本發明之一些製程涉及反射層或包覆層之沉積。此等反射層之沉積可藉由包括自溶液在層上噴絲的濕式製程或藉由氣相製程來實現。適合製程包括電鍍、濺射沉積、物理汽相沉積、蒸發、分子束磊晶、原子層沉積及化學汽相沉積。可將金屬用作反射層及包覆層。適合的金屬包括金、鎳、鋁、鉻、鈦、鉑及銀。反射層及/或包覆層可包含鋁,該等反射層及/或包覆層可例如使用可自CVC、Novellus或MRC獲得的可商購濺射工具藉由濺射沉積。
在於本發明之製程期間沉積層的情況下,在一些 狀況下,該等層在移動至製程中之下一步驟之前經處置。例如,沉積層可經退火、平面化、清潔、鈍化或稍微蝕刻以便改良該沉積層之性質。
在本發明之一些方法中,沉積保護層或犧牲層。保護層可為聚合層,或可為無機層。適合的保護層或犧牲層包括鍺(Ge)及非晶矽(a-Si)。保護層可用來產生如本文所描述之特徵。用於保護層或犧牲層的材料之類型可針對該層例如對濕式化學蝕刻劑之選擇反應性加以選取。例如,在一些狀況下,在存在二氧化矽及鋁的情況下以熱過氧化氫選擇性地蝕刻鍺之能力導致鍺經利用來產生與奈米井組合的光學結構。
在一些製程中,可使用拉回製程。拉回製程通常涉及自層內之特徵之邊緣蝕刻進入,以便減小特徵之尺寸。拉回可使用濕化學試劑來執行,該濕化學試劑選擇性地與具有暴露邊緣的層反應。在一些狀況下,使用過氧化氫拉回鍺層。
一些方法使用研磨步驟以自表面移除表面區域。適合的方法包括化學機械研磨或化學機械平面化(CMP)。
本發明之一些方法併入平面化層。用於沉積平面化層之方法取決於使用的材料之類型。平面化層可為硬材料,諸如無機材料,例如氮化矽;該平面化層可為金屬材料,諸如鋁;或該平面化層可為軟材料,諸如聚合材料,例如有機或矽基聚合物。平面化層可為玻璃,諸如二氧化矽材料。在一些狀況下,平面化層包含旋塗式玻璃,諸如 矽酸鹽、磷矽酸鹽或矽氧烷材料。適合的旋塗式玻璃材料例如可得自Honeywell公司。平面化層可包含例如玻璃,該玻璃以其他試劑摻雜以控制該玻璃之融熔性質,諸如硼磷矽玻璃(BPSG)。適合的聚合平面化材料包括例如聚醯亞胺。
在本揭示內容之陣列諸如藉由例如遵循以下實例之製程流程完成之後,該等陣列可進一步諸如例如藉由將陣列分離成個別晶片及使該等晶片準備好定序來處理。進一步處理步驟將取決於情形但可通常包括以下處理:表面處理(用以降低將DNA聚合酶吸引至奈米井之底部的比表面的一系列濕式/汽相處理);堆疊(用以保護表面處理後裝置晶圓之頂表面且在一些狀況下產生用於定序混合物之井的製程);薄化(複合頂板及表面處理後裝置晶圓可經薄化的製程--包括磨光、精削、研磨或其他處理);切粒(使用標準半導體切粒鋸將複合晶圓分成個別晶片的製程);以及封裝(涉及標準拾取及置放工具以將晶片安裝至基板上且產生用於資料收集之電氣輸出/光學輸出的製程)。此等進一步處理步驟為此項技術中已知的或揭示於諸如美國專利申請公告第2008/0176769號及第2011/0183409號的參考文獻中,該等美國專利申請公告以引用方式整體併入本文以用於所有目的。
如先前所述,本發明之陣列可併入分析系統中以用於分析發生在陣列之奈米井中的多個反應。本文所描述之陣列通常具有流體自頂部可達及針對光學分析自底部可 達的奈米井。因此通常將陣列併入感興趣的反應混合物經引入的容器中。在一些狀況下,個別奈米井全部處於與流體之一容積接觸中,該流體可具有例如可經分析的多個核酸模板分子,且該流體可具有核苷酸、輔因素及其他添加劑,以用於進行將要分析的反應。
包含陣列的容器可經置放於具有適當光學組件、電腦控制器及資料分析系統的儀器內。包含陣列的容器可保持在儀器內,使得可控制諸如容器溫度及容器大氣條件的反應條件。容器大氣條件可包含樣本上的例如濕氣的氣體之補給,及諸如氧的其他氣體物種之水平。
相關技術中之一般技術者將易於顯而易見,可在不脫離本發明或本發明之任何實施例之範疇的情況下進行對本文所描述之方法及應用之其他適合修改及調適。現已詳細地描述本發明,參考以下實例將更清楚地理解本發明,以下實例與本文包括在一起以僅用於例示之目的且不意欲為本發明之限制。
實例
根據本發明之一態樣之示範性半導體製造製程展示於圖26中,該圖例示整合式分析裝置之陣列之製造,該整合式分析裝置包含繞射波束整形元件以空間分離自奈米級發射容積發射的光,且經由多個濾色器將空間分離光導引至偵測器層內之多個感測區域。
在示例性方法中,製程始於一清潔半導體基板層,較佳地整合式CMOS偵測器層,但是陣列可經設計成附接至 分離的偵測器裝置。因此,基板層可具有對於自反應井發射的光具充分透明度的任何適合剛性材料。對於適當偵測器層之實例,參見CMOS Imagers From Phototransduction to Image Processing(2004)Yadid-Pecht and Etienne-Cummings,eds.;Springer;CMOS/CCD Sensors ana Camera Systems(2007)Holst及Lomheim;SPIE出版社。
可藉由例如濕式剝離製程或其他適合清潔步驟使基板之表面為沉積作準備。藉由SiN層之鈍化來對焊墊開口,且表面充滿氧化物且經平面化,如圖26A之步驟1至步驟3中所示。
感測器基板層接下來以氧化物圖案化以產生圖案零層對準標示,如圖26A之步驟4至步驟6中所示。圖案化對準對CMOS頂部金屬對準標示,且零標示用於後續堆疊圖案化之最低層次對準層。如圖26A之步驟7至步驟12中所示地沉積孔口1。如以上更詳細地所述,此層用以自繞射波束整形元件篩選出低角度信號雜訊。另外,孔口1層亦可裝飾零標示以使該標示對於後續對準而言更容易看見。在此實例中,孔口層係由氮化鈦組成且為近似100nm厚。感測器基板及孔口1層之圖解表示展示於圖26B中。
接下來沉積雷射斥拒濾波器層,如圖26C之步驟13至步驟15中所示。濾波器包含非晶矽及二氧化矽之交替層,如所示地沉積。感測器基板、孔口1層及雷射斥拒層之圖解表示展示於圖26D中。請注意,步驟14亦包括CF1(色彩過濾層之第一部分)之沉積。此層在圖26D中未展示。
在雷射斥拒濾波器之頂部上準備色彩過濾層,如圖26E之步驟16至步驟26中所示。對於此實例,在偵測器層上存在兩個分離感測區域以用於陣列之每一裝置,因此每一裝置中之色彩過濾層包含兩個不同濾色器,CF1及CF2,如圖26F中圖解地所示。濾波器自身包含非晶矽及二氧化矽之交替層,如所示地沉積。作為雷射斥拒濾波器沉積之部分沉積濾色器CF1。在製程之步驟16至步驟19中圖案化且蝕刻該濾色器。濾色器CF2在製程之步驟20中經沉積,且在步驟22至步驟25中經圖案及蝕刻。感測器基板、孔口1層、雷射斥拒濾波器層及色彩過濾層之圖解表示展示於圖26F中。在此實例中,濾波器CF1及CF2在厚度方面僅在2個氧化層中不同。
在此實例中,如圖26G之步驟27至步驟32中所示地準備第二孔口層(孔口2),且如步驟33至步驟36所示地在此層之頂部上準備透鏡隔片氧化物層。感測器基板、孔口1層、雷射斥拒層、色彩過濾層、孔口2層及透鏡隔片氧化物層之圖解表示展示於圖26H中。
包含繞射波束整形元件的透鏡元件層藉由以下操作來準備:透鏡空間氧化物層之微影圖案化,如圖26I之步驟37至步驟46中所示,及隨後富碳非晶矽之沉積及研磨,如圖26I之步驟47至步驟48中所示。在透鏡隔片氧化物層之微影圖案化之後且在富碳非晶矽之沉積之前形成的中間基板之圖解例示提供於圖26J中。
圖案化、充滿及研磨後透鏡層接下來經圖案化、 以氮化鈦沉積,且再次圖案化以形成孔口3,如圖26K之步驟49至步驟56中所例示。包括感測器基板、孔口1層、雷射斥拒濾波器層、色彩過濾層、孔口2層、透鏡隔片氧化物層、透鏡層及孔口3層的合成基板圖解地例示於圖26L中。
如圖26M中所提供的後續步驟57至步驟68表示反射器氧化物層之沉積。此沉積之結果例示於圖26N中。
激發波導層經增添至基板,如圖260之步驟69至步驟78所示。在此實例中,包含氮化矽波導的材料在步驟69中經沉積,波導在步驟71及步驟74中經蝕刻,且氧化物包覆在步驟76及步驟78中經沉積。此等製程步驟之結果圖解地例示於圖26P中,該圖包括感測器基板、孔口1層、雷射斥拒濾波器層、色彩過濾層、孔口2層、透鏡隔片氧化物層、透鏡層、孔口3層及波導層。
零模波導(ZMW)層之製造展示於圖26Q之步驟79至步驟91中。具體而言,此圖在步驟79中展示鋁/氮化鈦之沉積,且在步驟86中展示ZMW電洞之後續微影開口。此層之增添之結果圖解地例示於圖26R中,該圖包括全部以上層以及ZMW/奈米井層。應注意,圖26之任何視圖中所示之尺寸僅用於例示之目的,且不應被視為以任何方式限制。
在所有其他製程流程步驟完成之後,陣列經處理以使用清潔製程步驟移除所有殘餘物。額外步驟可包括例如深蝕刻步驟以產生至CMOS焊墊之接觸點且將陣列耦合至裝置之其他組件。
本文提及之所有專利、專利公開及其他公佈參考 文獻由此以引用方式整體併入本文,尤如各自已單獨地且具體地以引用方式併入本文。
雖然已提供特定實例,但是以上描述為例示性的而非限制性的。先前描述之實施例之特徵中任何一或多個可以任何方式與本發明中之任何其他實施例之一或多個特徵組合。此外,熟習此項技術者在回顧本說明書後將變得明白本發明之許多變化。因此,本發明之範疇應參考隨附申請專利範圍以及該等申請專利範圍之等效物之全部範疇來決定。
200‧‧‧整合式分析裝置
202‧‧‧反應槽/元件
204‧‧‧光學元件串
206~212‧‧‧光學元件
220‧‧‧偵測器元件/偵測器/元件

Claims (27)

  1. 一種整合式分析裝置之陣列,每一裝置包含:一奈米級發射容積;一偵測器層,其光學地耦合至該奈米級發射容積;一繞射波束整形元件,其安置在該奈米級發射容積與該偵測器層之間;以及一色彩過濾層,其安置在該繞射波束整形元件與該偵測器層之間,其中該色彩過濾層包含2至9個色彩過濾元件,每一色彩過濾元件特定於光波長之一範圍;其中光係由該發射容積內之多個發射體自該奈米級發射容積發射;其中該偵測器層包含多個感測區域,且其中該等感測區域光學地耦合至該等色彩過濾元件;且其中該繞射波束整形元件將自奈米級發射容積發射的該光空間分離成多個光束,且導引該等空間分離光束穿過該等色彩過濾元件且將該等空間分離光束導引至該等感測區域上。
  2. 如請求項1之陣列,其中每整合式分析裝置之色彩過濾元件、感測區域及分離波束之數目為2。
  3. 如請求項1之陣列,其中該等多個發射體為4個發射體。
  4. 如請求項1之陣列,其中該繞射波束整形元件為一混合透鏡。
  5. 如請求項1之陣列,其中該繞射波束整形元件包含一菲 涅耳透鏡。
  6. 如請求項1之陣列,其中該等色彩過濾元件為二向色濾波器。
  7. 如請求項1之陣列,其中該等色彩過濾元件為薄膜干涉濾波器。
  8. 如請求項1之陣列,其進一步包含:一激發源,其光學地耦合至該奈米級發射容積。
  9. 如請求項8之陣列,其進一步包含:至少一孔口層,其安置在該激發源與該偵測器層之間。
  10. 如請求項8之陣列,其進一步包含:一雷射斥拒濾波器層,其安置在該激發源與該偵測器層之間。
  11. 如請求項10之陣列,其中該雷射斥拒濾波器層安置在該色彩過濾層與該偵測器層之間。
  12. 如請求項8之陣列,其中該陣列在每整合式分析裝置中包含2個色彩過濾元件、2個感測區域及2個分離波束。
  13. 如請求項12之陣列,其中該奈米級發射容積直接在該激發源上方對準。
  14. 如請求項12之陣列,其中該激發源為一波導激發源,且其中該等感測區域相對於該波導激發源為未共線。
  15. 如請求項12之陣列,其中該激發源為一波導激發源,且其中該等感測區域相對於該波導激發源為垂直。
  16. 如請求項12之陣列,其包含多個波導激發源,該等多個 波導激發源光學地耦合至多個奈米級發射容積。
  17. 如請求項16之陣列,其中該等多個波導激發源經定向成彼此平行。
  18. 如請求項17之陣列,其中該等多個奈米級發射容積直接在該等多個波導激發源上方對準。
  19. 如請求項18之陣列,其中該等奈米級發射容積以一規則網格圖案佈置。
  20. 如請求項18之陣列,其中該等奈米級發射容積以一偏移網格圖案佈置。
  21. 如請求項18之陣列,其中該等感測區域相對於該等波導激發源為未共線。
  22. 如請求項21之陣列,其中該等感測區域相對於該等波導激發源為垂直。
  23. 如請求項1之陣列,其中該繞射波束整形元件校準自該發射容積發射的該光。
  24. 如請求項1之陣列,其中該偵測器層為一CMOS感測器之部分。
  25. 如請求項1之陣列,其進一步包含一分析物,該分析物安置在該奈米級發射容積內。
  26. 如請求項25之陣列,其中該分析物包含一核酸。
  27. 如請求項1之陣列,其中該陣列包含至少1,000個奈米級發射容積。
TW104127926A 2014-08-27 2015-08-26 整合式分析裝置之陣列 TWI692633B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462042793P 2014-08-27 2014-08-27
US62/042,793 2014-08-27

Publications (2)

Publication Number Publication Date
TW201621301A TW201621301A (zh) 2016-06-16
TWI692633B true TWI692633B (zh) 2020-05-01

Family

ID=55400514

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104127926A TWI692633B (zh) 2014-08-27 2015-08-26 整合式分析裝置之陣列

Country Status (8)

Country Link
US (6) US9606068B2 (zh)
EP (1) EP3186617A4 (zh)
JP (4) JP6815990B2 (zh)
CN (2) CN107003241B (zh)
AU (1) AU2015306603B2 (zh)
CA (1) CA2959518A1 (zh)
TW (1) TWI692633B (zh)
WO (1) WO2016033207A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753739B (zh) * 2021-01-08 2022-01-21 閎康科技股份有限公司 物性分析方法、物性分析試片及其製備方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2959518A1 (en) * 2014-08-27 2016-03-03 Pacific Biosciences Of California, Inc. Arrays of integrated analytical devices
US10487356B2 (en) 2015-03-16 2019-11-26 Pacific Biosciences Of California, Inc. Integrated devices and systems for free-space optical coupling
AU2016276980B2 (en) 2015-06-12 2021-09-23 Pacific Biosciences Of California, Inc. Integrated target waveguide devices and systems for optical coupling
TWI794145B (zh) 2015-10-28 2023-03-01 美商加州太平洋生物科學公司 包含整合性帶通濾波器之光學裝置陣列
EP3465159B1 (en) * 2016-06-01 2023-04-05 Quantum-Si Incorporated Integrated device for detecting and analyzing molecules
BR112019008939B1 (pt) * 2016-11-03 2023-11-07 Mgi Tech Co., Ltd Biossensor, método, e, método para sequenciamento de dna
EP3348974A1 (en) * 2017-01-17 2018-07-18 IMEC vzw An image sensor, an imaging device, an imaging system and a method for spectral imaging
NL2018852B1 (en) * 2017-05-05 2018-11-14 Illumina Inc Optical distortion correction for imaged samples
WO2019090192A1 (en) 2017-11-03 2019-05-09 Pacific Biosciences Of California, Inc. Systems, devices, and methods for improved optical waveguide transmission and alignment
NL2020625B1 (en) * 2017-12-22 2019-07-02 Illumina Inc Two-filter light detection devices and methods of manufacturing same
TWI698638B (zh) 2017-12-28 2020-07-11 美商伊路米納有限公司 具有降低的螢光範圍雜訊的檢測器以及用於降低螢光範圍雜訊的方法
US10621718B2 (en) * 2018-03-23 2020-04-14 Kla-Tencor Corp. Aided image reconstruction
WO2020180899A1 (en) * 2019-03-05 2020-09-10 Quantum-Si Incorporated Optical absorption filter for an integrated device
CN110066723A (zh) * 2019-05-05 2019-07-30 京东方科技集团股份有限公司 基因测序芯片、设备、制造方法
NL2023516B1 (en) * 2019-05-28 2020-12-08 Illumina Inc Manufacturing a flowcell with a planar waveguide
US11272132B2 (en) 2019-06-07 2022-03-08 Pacific Biosciences Of California, Inc. Temporal differential active pixel sensor
CN110487734A (zh) * 2019-08-22 2019-11-22 京东方科技集团股份有限公司 一种光谱检测装置和检测方法
US11105745B2 (en) 2019-10-10 2021-08-31 Visera Technologies Company Limited Biosensor
CN111290063A (zh) * 2019-12-23 2020-06-16 南开大学 一种复振幅调制的介质-金属双层超表面
CN113711368A (zh) * 2020-03-20 2021-11-26 上海芯像生物科技有限公司 用于分子检测和感测的高通量分析系统
CN113686940A (zh) * 2020-03-20 2021-11-23 上海芯像生物科技有限公司 用于分子检测和感测的高通量分析系统
CN115141730A (zh) * 2021-03-29 2022-10-04 上海近观科技有限责任公司 一种分离式测序芯片及其制备方法
CN113093322B (zh) * 2021-03-30 2023-03-28 联合微电子中心有限责任公司 Cmos图像传感器、干涉型滤光片及其制备方法
CA3219059A1 (en) * 2021-05-04 2022-11-10 Pacific Biosciences Of California, Inc. Arrays of integrated analytical devices with reduced-scale unit cell
US11791328B2 (en) * 2021-12-20 2023-10-17 Nanya Technology Corporation Method for fabricating semiconductor device with integrated decoupling and alignment features
CN115290617A (zh) * 2022-08-04 2022-11-04 中国科学院苏州生物医学工程技术研究所 一种区分测序荧光光谱的集成光学器件及其制备方法
CN117347341B (zh) * 2023-12-05 2024-03-19 中国科学院苏州生物医学工程技术研究所 荧光检测器件及制备方法、荧光检测系统和荧光检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201140139A (en) * 2010-03-11 2011-11-16 Pacific Biosciences California Micromirror arrays having self aligned features
CN102985803A (zh) * 2010-02-19 2013-03-20 加利福尼亚太平洋生物科学股份有限公司 集成的分析系统和方法
US20130148682A1 (en) * 2010-07-27 2013-06-13 The Regents Of The University Of California Plasmon lasers at deep subwavelength scale
JP2013524174A (ja) * 2010-06-11 2013-06-17 インダストリアル テクノロジー リサーチ インスティテュート 単一分子検出装置

Family Cites Families (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821058A (en) 1984-01-16 1998-10-13 California Institute Of Technology Automated DNA sequencing technique
US4645523A (en) 1984-11-15 1987-02-24 At&T Bell Laboratories Fresnel lens fabrication
EP0244394B1 (de) 1986-04-23 1992-06-17 AVL Medical Instruments AG Sensorelement zur Bestimmung von Stoffkonzentrationen
US5135876A (en) 1987-09-24 1992-08-04 University Of Utah Method and apparatus for the regulation of complex binding
GB8911462D0 (en) 1989-05-18 1989-07-05 Ares Serono Res & Dev Ltd Devices for use in chemical test procedures
US6919211B1 (en) 1989-06-07 2005-07-19 Affymetrix, Inc. Polypeptide arrays
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
DE3926604A1 (de) 1989-08-11 1991-02-14 Hoechst Ag Polyimidwellenleiter als optische sensoren
EP0450060A1 (en) 1989-10-26 1991-10-09 Sri International Dna sequencing
US5082629A (en) 1989-12-29 1992-01-21 The Board Of The University Of Washington Thin-film spectroscopic sensor
US5173747A (en) 1990-09-20 1992-12-22 Battelle Memorial Institute Integrated optical directional-coupling refractometer apparatus
US5159661A (en) 1990-10-05 1992-10-27 Energy Conversion Devices, Inc. Vertically interconnected parallel distributed processor
US5239178A (en) 1990-11-10 1993-08-24 Carl Zeiss Optical device with an illuminating grid and detector grid arranged confocally to an object
US5233673A (en) 1991-10-09 1993-08-03 Hughes Aircraft Company Output steerable optical phased array
US5605662A (en) 1993-11-01 1997-02-25 Nanogen, Inc. Active programmable electronic devices for molecular biological analysis and diagnostics
US5446534A (en) 1993-03-05 1995-08-29 Optical Solutions, Inc. Broad band waveguide spectrometer
US5919712A (en) 1993-05-18 1999-07-06 University Of Utah Research Foundation Apparatus and methods for multi-analyte homogeneous fluoro-immunoassays
US5512492A (en) 1993-05-18 1996-04-30 University Of Utah Research Foundation Waveguide immunosensor with coating chemistry providing enhanced sensitivity
US5677196A (en) 1993-05-18 1997-10-14 University Of Utah Research Foundation Apparatus and methods for multi-analyte homogeneous fluoro-immunoassays
US5470710A (en) 1993-10-22 1995-11-28 University Of Utah Automated hybridization/imaging device for fluorescent multiplex DNA sequencing
US5965452A (en) 1996-07-09 1999-10-12 Nanogen, Inc. Multiplexed active biologic array
US5578832A (en) 1994-09-02 1996-11-26 Affymetrix, Inc. Method and apparatus for imaging a sample on a device
US5631734A (en) 1994-02-10 1997-05-20 Affymetrix, Inc. Method and apparatus for detection of fluorescently labeled materials
US5439647A (en) 1994-02-25 1995-08-08 Fiberchem, Inc. Chip level waveguide sensor
US5695934A (en) 1994-10-13 1997-12-09 Lynx Therapeutics, Inc. Massively parallel sequencing of sorted polynucleotides
US5814565A (en) 1995-02-23 1998-09-29 University Of Utah Research Foundation Integrated optic waveguide immunosensor
US6017434A (en) 1995-05-09 2000-01-25 Curagen Corporation Apparatus and method for the generation, separation, detection, and recognition of biopolymer fragments
US5545531A (en) 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays
JP3039347B2 (ja) 1995-12-27 2000-05-08 日立電線株式会社 スイッチング機能を備えた光部品及びそれに使用する導波路型フィルタ
US6611634B2 (en) 1996-03-19 2003-08-26 University Of Utah Research Foundation Lens and associatable flow cell
US6108463A (en) 1996-03-19 2000-08-22 University Of Utah Research Foundation Lens and associatable flow cell
US5867266A (en) 1996-04-17 1999-02-02 Cornell Research Foundation, Inc. Multiple optical channels for chemical analysis
US5832165A (en) 1996-08-28 1998-11-03 University Of Utah Research Foundation Composite waveguide for solid phase binding assays
US6002520A (en) 1997-04-25 1999-12-14 Hewlett-Packard Company Illumination system for creating a desired irradiance profile using diffractive optical elements
WO1998053093A1 (en) 1997-05-23 1998-11-26 Bioarray Solutions Llc Color-encoding and in-situ interrogation of matrix-coupled chemical compounds
US6071748A (en) 1997-07-16 2000-06-06 Ljl Biosystems, Inc. Light detection device
DE19808936A1 (de) * 1998-03-03 1999-09-16 Aventis Res & Tech Gmbh & Co Photodetektor und seine Verwendung
US6388788B1 (en) 1998-03-16 2002-05-14 Praelux, Inc. Method and apparatus for screening chemical compounds
GB9810350D0 (en) 1998-05-14 1998-07-15 Ciba Geigy Ag Organic compounds
CA2339121A1 (en) 1998-07-30 2000-02-10 Shankar Balasubramanian Arrayed biomolecules and their use in sequencing
US6263286B1 (en) 1998-08-13 2001-07-17 U.S. Genomics, Inc. Methods of analyzing polymers using a spatial network of fluorophores and fluorescence resonance energy transfer
US6210896B1 (en) 1998-08-13 2001-04-03 Us Genomics Molecular motors
KR20010090718A (ko) 1998-08-21 2001-10-19 써로메드, 인크. 마이크로볼륨 레이저-스캐닝 사이토미터용 신규한 광학구조물
US6438279B1 (en) 1999-01-07 2002-08-20 Cornell Research Foundation, Inc. Unitary microcapiliary and waveguide structure and method of fabrication
US6330388B1 (en) 1999-01-27 2001-12-11 Northstar Photonics, Inc. Method and apparatus for waveguide optics and devices
US6192168B1 (en) 1999-04-09 2001-02-20 The United States Of America As Represented By The Secretary Of The Navy Reflectively coated optical waveguide and fluidics cell integration
US7056661B2 (en) * 1999-05-19 2006-06-06 Cornell Research Foundation, Inc. Method for sequencing nucleic acid molecules
US6287774B1 (en) 1999-05-21 2001-09-11 Caliper Technologies Corp. Assay methods and system
JP2003501654A (ja) 1999-06-05 2003-01-14 ツェプトゼンス アクチエンゲゼルシャフト 複数の分析対象物の測定のためのセンサプラットフォーム及び方法
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US7209836B1 (en) 1999-07-16 2007-04-24 Perkinelmer Las, Inc. Method and system for automatically creating crosstalk-corrected data of a microarray
US6982146B1 (en) 1999-08-30 2006-01-03 The United States Of America As Represented By The Department Of Health And Human Services High speed parallel molecular nucleic acid sequencing
WO2001016375A2 (en) 1999-08-30 2001-03-08 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services High speed parallel molecular nucleic acid sequencing
US6784982B1 (en) 1999-11-04 2004-08-31 Regents Of The University Of Minnesota Direct mapping of DNA chips to detector arrays
US6867851B2 (en) 1999-11-04 2005-03-15 Regents Of The University Of Minnesota Scanning of biological samples
US6325977B1 (en) 2000-01-18 2001-12-04 Agilent Technologies, Inc. Optical detection system for the detection of organic molecules
DE10012793C2 (de) 2000-03-13 2002-01-24 Fraunhofer Ges Forschung Sensorelement zur optischen Detektion von chemischen oder biochemischen Analyten
WO2001084197A1 (en) 2000-04-28 2001-11-08 Edgelight Biosciences, Inc. Micro-array evanescent wave fluorescence detection device
US6690467B1 (en) 2000-05-05 2004-02-10 Pe Corporation Optical system and method for optically analyzing light from a sample
AU2001264603A1 (en) 2000-05-17 2001-11-26 Quantum Vision, Inc. Waveguide based light source
US6917726B2 (en) 2001-09-27 2005-07-12 Cornell Research Foundation, Inc. Zero-mode clad waveguides for performing spectroscopy with confined effective observation volumes
US20070196815A1 (en) 2000-08-02 2007-08-23 Jason Lappe Positive Selection Procedure for Optically Directed Selection of Cells
JP2002050778A (ja) 2000-08-02 2002-02-15 Nippon Sheet Glass Co Ltd 受光素子アレイおよびそれを用いた光通信モニタモジュール
US6545758B1 (en) 2000-08-17 2003-04-08 Perry Sandstrom Microarray detector and synthesizer
CN1257405C (zh) 2001-01-26 2006-05-24 比奥卡尔技术公司 多通道生物分离系统中的光学检测
US6987613B2 (en) 2001-03-30 2006-01-17 Lumileds Lighting U.S., Llc Forming an optical element on the surface of a light emitting device for improved light extraction
DE60228943D1 (de) 2001-04-10 2008-10-30 Harvard College Mikrolinse zur projektionslithographie und ihr herstellungsverfahren
DE10133844B4 (de) 2001-07-18 2006-08-17 Micronas Gmbh Verfahren und Vorrichtung zur Detektion von Analyten
DE10145701A1 (de) * 2001-09-17 2003-04-10 Infineon Technologies Ag Fluoreszenz-Biosensorchip und Fluoreszenz-Biosensorchip-Anordnung
US6904186B2 (en) 2001-11-16 2005-06-07 Ngk Insulators, Ltd. Optical modulators and a method for modulating light
US7189361B2 (en) 2001-12-19 2007-03-13 3M Innovative Properties Company Analytical device with lightguide Illumination of capillary and microgrooves arrays
WO2004001404A1 (en) 2002-06-19 2003-12-31 Becton, Dickinson And Company Microfabricated sensor arrays
JP2004069395A (ja) 2002-08-02 2004-03-04 Nec Corp マイクロチップ、マイクロチップの製造方法および成分検出方法
US20040197793A1 (en) 2002-08-30 2004-10-07 Arjang Hassibi Methods and apparatus for biomolecule detection, identification, quantification and/or sequencing
FR2846745B1 (fr) 2002-10-30 2004-12-24 Genewave Dispositif de support d'elements chromophores.
CA2547331A1 (en) * 2002-11-25 2004-06-10 Tufts University Electro-optical nucleic acid-based sensor array and method for detecting analytes
US7154592B2 (en) * 2003-02-11 2006-12-26 Bayer Healthcare Llc. Multiwavelength readhead for use in the determination of analytes in body fluids
US6970240B2 (en) 2003-03-10 2005-11-29 Applera Corporation Combination reader
CN100495094C (zh) * 2003-04-23 2009-06-03 斯欧普迪克尔股份有限公司 在soi光学平台上形成的亚微米平面光波设备
WO2004100068A2 (en) 2003-05-05 2004-11-18 D3D, L.P. Optical coherence tomography imaging
WO2004106891A2 (en) 2003-05-22 2004-12-09 University Of Hawaii Ultrasensitive biochemical sensor
TWI329208B (en) 2003-06-03 2010-08-21 Oerlikon Trading Ag Optical substrate for enhanced detectability of fluorescence
DE10325416B4 (de) 2003-06-05 2005-12-22 Hilti Ag Strahlfänger
FI20030867A (fi) 2003-06-10 2004-12-11 Wallac Oy Optinen mittausmenetelmä ja laboratoriomittauslaite
JP3729353B2 (ja) 2003-06-18 2005-12-21 松下電器産業株式会社 固体撮像装置およびその製造方法
KR100503767B1 (ko) 2003-06-27 2005-07-26 학교법인연세대학교 2차원 광변조 미세 개구 어레이 장치 및 이를 이용한 고속미세패턴 기록시스템
US7257141B2 (en) 2003-07-23 2007-08-14 Palo Alto Research Center Incorporated Phase array oxide-confined VCSELs
US7323681B1 (en) 2003-09-11 2008-01-29 Applera Corporation Image enhancement by sub-pixel imaging
US7075059B2 (en) 2003-09-11 2006-07-11 Applera Corporation Image enhancement by sub-pixel imaging
US20050135974A1 (en) 2003-12-18 2005-06-23 Harvey Michael A. Device for preparing multiple assay samples using multiple array surfaces
US7075695B2 (en) 2004-03-01 2006-07-11 Lucent Technologies Inc. Method and apparatus for controlling a bias voltage of a Mach-Zehnder modulator
KR100590548B1 (ko) 2004-03-03 2006-06-19 삼성전자주식회사 광검출 장치
US7302348B2 (en) 2004-06-02 2007-11-27 Agilent Technologies, Inc. Method and system for quantifying and removing spatial-intensity trends in microarray data
DE102004028701B3 (de) * 2004-06-14 2005-11-24 Siemens Ag Gassensor zur Bestimmung von Ammoniak
FR2873445A1 (fr) 2004-07-26 2006-01-27 Genewave Soc Par Actions Simpl Dispositif de detection de la fluorescence emise par des elements chromophores dans des puits d'une plaque a puits multiples
GB2423819B (en) 2004-09-17 2008-02-06 Pacific Biosciences California Apparatus and method for analysis of molecules
US7170050B2 (en) 2004-09-17 2007-01-30 Pacific Biosciences Of California, Inc. Apparatus and methods for optical analysis of molecules
US7417740B2 (en) 2004-11-12 2008-08-26 Medeikon Corporation Single trace multi-channel low coherence interferometric sensor
US7197196B2 (en) 2004-11-22 2007-03-27 National Taiwan University Miniature surface plasmon resonance waveguide device with sinusoidal curvature compensation
US7130041B2 (en) 2005-03-02 2006-10-31 Li-Cor, Inc. On-chip spectral filtering using CCD array for imaging and spectroscopy
GB0507835D0 (en) 2005-04-18 2005-05-25 Solexa Ltd Method and device for nucleic acid sequencing using a planar wave guide
WO2006116726A2 (en) 2005-04-28 2006-11-02 Applera Corporation Multi-color light detection with imaging detectors
WO2006127692A2 (en) * 2005-05-23 2006-11-30 Hess Harald F Optical microscopy with phototransformable optical labels
EP2278303A3 (en) 2005-06-10 2012-02-22 Life Technologies Corporation Method and system for multiplex genetic analysis
US20060291706A1 (en) 2005-06-23 2006-12-28 Applera Corporation Method of extracting intensity data from digitized image
US7227128B2 (en) 2005-06-30 2007-06-05 Applera Corporation System and methods for improving signal/noise ratio for signal detectors
WO2007011549A1 (en) 2005-06-30 2007-01-25 Applera Corporation Two-dimensional spectral imaging system
US20070099212A1 (en) 2005-07-28 2007-05-03 Timothy Harris Consecutive base single molecule sequencing
US7805081B2 (en) 2005-08-11 2010-09-28 Pacific Biosciences Of California, Inc. Methods and systems for monitoring multiple optical signals from a single source
WO2007021755A2 (en) * 2005-08-11 2007-02-22 Eksigent Technologies, Llc Microfluidic systems, devices and methods for reducing noise generated by mechanical instabilities
US7265328B2 (en) * 2005-08-22 2007-09-04 Micron Technology, Inc. Method and apparatus providing an optical guide for an imager pixel having a ring of air-filled spaced slots around a photosensor
US7511257B2 (en) * 2005-08-24 2009-03-31 Aptina Imaging Corporation Method and apparatus providing and optical guide in image sensor devices
US7935310B2 (en) 2005-11-28 2011-05-03 Pacific Biosciences Of California, Inc. Uniform surfaces for hybrid material substrate and methods for making and using same
US7248361B2 (en) 2005-12-22 2007-07-24 Palo Alto Research Center Incorporated Fluorescence reader based on anti-resonant waveguide excitation
US7995202B2 (en) 2006-02-13 2011-08-09 Pacific Biosciences Of California, Inc. Methods and systems for simultaneous real-time monitoring of optical signals from multiple sources
US8975216B2 (en) 2006-03-30 2015-03-10 Pacific Biosciences Of California Articles having localized molecules disposed thereon and methods of producing same
US8599301B2 (en) * 2006-04-17 2013-12-03 Omnivision Technologies, Inc. Arrayed imaging systems having improved alignment and associated methods
EP2027442A2 (en) 2006-05-16 2009-02-25 Applied Biosystems, Inc. Systems, methods, and apparatus for single molecule sequencing
WO2007143669A2 (en) 2006-06-05 2007-12-13 California Institute Of Technology Real time micro arrays
CN101467082B (zh) 2006-06-12 2011-12-14 加利福尼亚太平洋生物科学公司 实施分析反应的基材
US20080033677A1 (en) 2006-06-27 2008-02-07 Applera Corporation Methods And System For Compensating For Spatial Cross-Talk
US20080002929A1 (en) 2006-06-30 2008-01-03 Bowers John E Electrically pumped semiconductor evanescent laser
US7803609B2 (en) 2006-07-21 2010-09-28 Affymetrix, Inc. System, method, and product for generating patterned illumination
EP4220138A1 (en) 2006-09-01 2023-08-02 Pacific Biosciences of California, Inc. Substrates, systems and methods for analyzing materials
US8207509B2 (en) 2006-09-01 2012-06-26 Pacific Biosciences Of California, Inc. Substrates, systems and methods for analyzing materials
US7817281B2 (en) 2007-02-05 2010-10-19 Palo Alto Research Center Incorporated Tuning optical cavities
US20090325211A1 (en) 2007-10-06 2009-12-31 Ye Fang System and method for dual-detection of a cellular response
US7767441B2 (en) 2007-10-25 2010-08-03 Industrial Technology Research Institute Bioassay system including optical detection apparatuses, and method for detecting biomolecules
US7811810B2 (en) 2007-10-25 2010-10-12 Industrial Technology Research Institute Bioassay system including optical detection apparatuses, and method for detecting biomolecules
WO2009059022A1 (en) * 2007-10-30 2009-05-07 Complete Genomics, Inc. Apparatus for high throughput sequencing of nucleic acids
AU2008331824B2 (en) 2007-12-04 2014-07-24 Pacific Biosciences Of California, Inc. Alternate labeling strategies for single molecule sequencing
AU2009204461A1 (en) 2008-01-10 2009-07-16 Pacific Biosciences Of California, Inc. Methods and systems for analysis of fluorescent reactions with modulated excitation
CN101984767B (zh) 2008-01-21 2014-01-29 普莱姆森斯有限公司 用于使零级减少的光学设计
US8411375B2 (en) 2008-01-25 2013-04-02 Aptina Imaging Corporation Method and apparatus providing gradient index of refraction lens for image sensors
US8177408B1 (en) * 2008-02-15 2012-05-15 Fusion Optix, Inc. Light filtering directional control element and light fixture incorporating the same
US8325349B2 (en) * 2008-03-04 2012-12-04 California Institute Of Technology Focal plane adjustment by back propagation in optofluidic microscope devices
WO2009115859A1 (en) 2008-03-19 2009-09-24 S.O.I. Tec Silicon On Insulator Technologies Substrates for monolithic optical circuits and electronic circuits
US7924374B2 (en) 2008-03-25 2011-04-12 Chih-Neng Chang Color filters for display devices
WO2009131535A1 (en) 2008-04-23 2009-10-29 Oesterlund Lars Optical sensor unit for evanescence wave spectroscopy
WO2009149125A2 (en) 2008-06-02 2009-12-10 Life Technologies Corporation Localization of near-field resonances in bowtie antennae: influence of adhesion layers
GB2461026B (en) * 2008-06-16 2011-03-09 Plc Diagnostics Inc System and method for nucleic acids sequencing by phased synthesis
WO2010033193A2 (en) 2008-09-16 2010-03-25 Pacific Biosciences Of California, Inc. Substrates and optical systems and methods of use thereof
WO2010039199A2 (en) * 2008-09-30 2010-04-08 Pacific Biociences Of California, Inc. Ultra-high multiplex analytical systems and methods
US8486630B2 (en) 2008-11-07 2013-07-16 Industrial Technology Research Institute Methods for accurate sequence data and modified base position determination
US8092704B2 (en) 2008-12-30 2012-01-10 Hitachi Global Storage Technologies Netherlands B.V. System, method and apparatus for fabricating a c-aperture or E-antenna plasmonic near field source for thermal assisted recording applications
US20100220315A1 (en) 2009-02-27 2010-09-02 Beckman Coulter, Inc. Stabilized Optical System for Flow Cytometry
US9778188B2 (en) 2009-03-11 2017-10-03 Industrial Technology Research Institute Apparatus and method for detection and discrimination molecular object
WO2010117420A2 (en) 2009-03-30 2010-10-14 Pacific Biosciences Of California, Inc. Fret-labeled compounds and uses therefor
WO2010144150A2 (en) * 2009-06-12 2010-12-16 Pacific Biosciences Of California, Inc. Real-time analytical methods and systems
US8906670B2 (en) 2009-09-11 2014-12-09 Pacific Bioscience Of California, Inc. Zero-mode waveguides with non-reflecting walls
US8367159B2 (en) 2009-09-11 2013-02-05 Pacific Biosciences Of California, Inc. Methods for producing ZMWs with islands of functionality
US8772016B2 (en) 2009-11-13 2014-07-08 Pacific Biosciences Of California, Inc. Sealed chip package
JP5102823B2 (ja) * 2009-12-21 2012-12-19 インターナショナル・ビジネス・マシーンズ・コーポレーション 総テスト時間を最小にするようにテストシナリオを最適化するテスト支援装置、テスト装置、テスト支援方法及びコンピュータプログラム
US8304850B2 (en) 2009-12-22 2012-11-06 Texas Instruments Incorporated Integrated infrared sensors with optical elements, and methods
TWI439548B (zh) 2009-12-23 2014-06-01 Ind Tech Res Inst 序列校正方法與序列校正裝置
US8994946B2 (en) * 2010-02-19 2015-03-31 Pacific Biosciences Of California, Inc. Integrated analytical system and method
US8970671B2 (en) * 2010-02-23 2015-03-03 California Institute Of Technology Nondiffracting beam detection devices for three-dimensional imaging
US9482615B2 (en) 2010-03-15 2016-11-01 Industrial Technology Research Institute Single-molecule detection system and methods
EP2564191B1 (en) 2010-04-28 2017-11-01 Pacific Biosciences Of California, Inc. Nanoscale apertures having islands of functionality
US8865077B2 (en) 2010-06-11 2014-10-21 Industrial Technology Research Institute Apparatus for single-molecule detection
US8669374B2 (en) 2010-08-25 2014-03-11 Gene Shen Functionalized cyanine dyes (PEG)
US20120156100A1 (en) 2010-12-20 2012-06-21 Industrial Technology Research Institute Apparatus for single molecule detection and method thereof
US8564095B2 (en) 2011-02-07 2013-10-22 Micron Technology, Inc. Capacitors including a rutile titanium dioxide material and semiconductor devices incorporating same
WO2012151593A1 (en) * 2011-05-05 2012-11-08 Rutgers, The State University Of New Jersey Multifunctional infrared-emitting composites
US8624482B2 (en) * 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US20140353577A1 (en) * 2011-11-22 2014-12-04 Ritesh Agarwal Emission in nanoscale structures via nanocavity plasmons
US8906320B1 (en) 2012-04-16 2014-12-09 Illumina, Inc. Biosensors for biological or chemical analysis and systems and methods for same
WO2013192106A1 (en) * 2012-06-17 2013-12-27 Pacific Biosciences Of California, Inc. Filter architecture for analytical devices
US9372308B1 (en) 2012-06-17 2016-06-21 Pacific Biosciences Of California, Inc. Arrays of integrated analytical devices and methods for production
EP3699577B1 (en) 2012-08-20 2023-11-08 Illumina, Inc. System for fluorescence lifetime based sequencing
JP2014082987A (ja) * 2012-10-23 2014-05-12 Sony Corp 塩基配列解析方法、塩基配列解析装置及び塩基配列解析プログラム
EP3734255B1 (en) * 2012-12-18 2022-10-19 Pacific Biosciences Of California, Inc. An optical analytical device
EP2752660B1 (en) * 2013-01-07 2016-08-31 Nxp B.V. Integrated circuit comprising an optical CO2 sensor and manufacturing method
US9624540B2 (en) 2013-02-22 2017-04-18 Pacific Biosciences Of California, Inc. Integrated illumination of optical analytical devices
US9005458B2 (en) 2013-02-26 2015-04-14 Micron Technology, Inc. Photonic device structure and method of manufacture
JP2014182280A (ja) * 2013-03-19 2014-09-29 Toshiba Corp 表示装置
KR102276432B1 (ko) * 2014-04-07 2021-07-09 삼성전자주식회사 색분리 소자 및 상기 색분리 소자를 포함하는 이미지 센서
CA2959518A1 (en) * 2014-08-27 2016-03-03 Pacific Biosciences Of California, Inc. Arrays of integrated analytical devices
US10147757B2 (en) * 2015-02-02 2018-12-04 Synaptics Incorporated Image sensor structures for fingerprint sensing
US10487356B2 (en) 2015-03-16 2019-11-26 Pacific Biosciences Of California, Inc. Integrated devices and systems for free-space optical coupling
AU2016276980B2 (en) * 2015-06-12 2021-09-23 Pacific Biosciences Of California, Inc. Integrated target waveguide devices and systems for optical coupling
CN110780382B (zh) * 2018-07-31 2021-03-02 京东方科技集团股份有限公司 光学结构及其制作方法、光源系统、以及检测装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102985803A (zh) * 2010-02-19 2013-03-20 加利福尼亚太平洋生物科学股份有限公司 集成的分析系统和方法
TW201140139A (en) * 2010-03-11 2011-11-16 Pacific Biosciences California Micromirror arrays having self aligned features
JP2013524174A (ja) * 2010-06-11 2013-06-17 インダストリアル テクノロジー リサーチ インスティテュート 単一分子検出装置
US20130148682A1 (en) * 2010-07-27 2013-06-13 The Regents Of The University Of California Plasmon lasers at deep subwavelength scale

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753739B (zh) * 2021-01-08 2022-01-21 閎康科技股份有限公司 物性分析方法、物性分析試片及其製備方法
US11955312B2 (en) 2021-01-08 2024-04-09 Materials Analysis Technology Inc. Physical analysis method, sample for physical analysis and preparing method thereof

Also Published As

Publication number Publication date
JP6815990B2 (ja) 2021-01-20
US20170176335A1 (en) 2017-06-22
TW201621301A (zh) 2016-06-16
JP7132286B2 (ja) 2022-09-06
US11467089B2 (en) 2022-10-11
US20180180548A1 (en) 2018-06-28
US9915612B2 (en) 2018-03-13
US20200018703A1 (en) 2020-01-16
US10234393B2 (en) 2019-03-19
US10859497B2 (en) 2020-12-08
US9606068B2 (en) 2017-03-28
CN107003241B (zh) 2022-01-11
AU2015306603A1 (en) 2017-04-13
JP2017527850A (ja) 2017-09-21
US20160061740A1 (en) 2016-03-03
EP3186617A1 (en) 2017-07-05
WO2016033207A1 (en) 2016-03-03
AU2015306603A2 (en) 2017-06-01
CN114280023A (zh) 2022-04-05
CN107003241A (zh) 2017-08-01
JP2023184771A (ja) 2023-12-28
EP3186617A4 (en) 2018-04-25
US20210325306A1 (en) 2021-10-21
US20230314325A1 (en) 2023-10-05
JP2022141782A (ja) 2022-09-29
JP2020173270A (ja) 2020-10-22
CA2959518A1 (en) 2016-03-03
AU2015306603B2 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
TWI692633B (zh) 整合式分析裝置之陣列
US20210124115A1 (en) Arrays of integrated analytical devices and methods for production
TWI794145B (zh) 包含整合性帶通濾波器之光學裝置陣列
US20230035224A1 (en) Arrays of integrated analytical devices with reduced-scale unit cell