TWI688985B - 分析光罩的缺陷位置的方法與裝置 - Google Patents

分析光罩的缺陷位置的方法與裝置 Download PDF

Info

Publication number
TWI688985B
TWI688985B TW107106601A TW107106601A TWI688985B TW I688985 B TWI688985 B TW I688985B TW 107106601 A TW107106601 A TW 107106601A TW 107106601 A TW107106601 A TW 107106601A TW I688985 B TWI688985 B TW I688985B
Authority
TW
Taiwan
Prior art keywords
defect
data
defect location
measurement data
image
Prior art date
Application number
TW107106601A
Other languages
English (en)
Other versions
TW201841192A (zh
Inventor
麥可 布達施
勞夫 雄貝杰
Original Assignee
德商卡爾蔡司Smt有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商卡爾蔡司Smt有限公司 filed Critical 德商卡爾蔡司Smt有限公司
Publication of TW201841192A publication Critical patent/TW201841192A/zh
Application granted granted Critical
Publication of TWI688985B publication Critical patent/TWI688985B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/72Repair or correction of mask defects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本發明揭示一種分析一微影光罩(200、700)的至少一缺陷位置(230、730)之方法,該方法具有下列步驟:(a)獲得該微影光罩(200、700)的至少一缺陷位置(230、730)之量測資料;(b)從該微影光罩(200、700)的電腦輔助設計(CAD)資料(300)決定該缺陷位置(230、730)的參考資料;(c)使用至少一位置相關修正值來修正該參考資料;及(d)通過比對該量測資料與該已修正參考資料來分析該缺陷位置(230、730)。

Description

分析光罩的缺陷位置的方法與裝置
本發明係關於用於分析微影光罩的缺陷位置之方法及裝置。
由於半導體行業不斷增長的積體密度,微影光罩必須在晶圓上形成越來越小的結構。為了將小結構尺寸成像在晶圓上,因此需要越來越複雜的處理程序。這些必須特別確保未處理的半導體材料不會由於處理過程,而意外及/或以不受控制的方式改變。
就微影技術而言,通過將微影系統的曝光波長轉換為更短波長,以解決積體密度日益增長的趨勢。目前在微影系統中經常做為光源的是ArF(氟化氬)準分子雷射,其發射波長約為193nm。
目前正在開發使用EUV(極紫外線)波長範圍(較佳在10nm至15nm的範圍內)的電磁輻射之微影系統。該EUV微影系統基於全新的光束引導概念,該概念無一例外地使用反射光學元件,因為目前無法獲得在該EUV範圍內光學透明的材料。發展EUV系統所面臨的技術挑戰相當巨大,並且需要相當大的開發努力,才能使該系統達到可用於工業應用的水準。
微影光罩、曝光光罩、光罩或僅是光罩對配置在晶圓上的光阻中越來越小的結構的成像有重大的影響。隨著積體密度每次增加,改善 曝光光罩的最小結構尺寸就變得更加重要。因此,微影光罩的製程變得越來越複雜,因此更耗時且最終也更昂貴。由於圖案元素的微小結構尺寸,所以不能不考慮光罩生產期間的缺陷,這些必須盡可能修正。
在修正微影光罩的缺陷之前,必須先找出缺陷並分析。缺陷分析的一種形式是確定缺陷的輪廓。為了確定缺陷的輪廓,通常將光罩的缺陷區域與沒有缺陷的裝罩上等同區域(equivalent region)進行比較。相當於缺陷區域的等同區域是與缺陷區域具有相同圖案元素排列的微影光罩區域,而在等同區域中沒有缺陷。
圖1上方的部分影像顯示掃描電子顯微鏡的截面或像場,其具有延伸到吸收體結構中多個圖案元素上的缺陷。在左下方的外圍區域中,標記了表示等同區域或參考區域的矩形,其尺寸大於缺陷但不具有缺陷。圖1下方如箭頭所示的局部影像係無缺陷參考區域與掃描電子顯微鏡所記錄到的缺陷區域的重疊(superposition)。從兩影像區段的重疊中,可以通過較亮的顏色確定缺陷的完整輪廓。
在圖1的範例中,合適的參考區域有利地與缺陷一起存在於掃描電子顯微鏡記錄的相同影像場中。如果不是這種情況,可以在光罩上的不同位置搜索和使用參考區域。然而,手動搜尋合適的參考區域相當耗時。此外,掃描電子顯微鏡的操作者可能會選錯選擇具有相似外觀的圖案元素結構之參考區域。此外,有可能在光罩上沒有與缺陷區域具有相同圖案元素的第二區域,這可能妨礙檢查缺陷,或者至少變得更難檢查。
下面提到的專利文獻描述減輕上述問題的方法:EP 983 193 A1、US 2003/0 174 876 A1、US 5 849 440與US 5 916 716。
然而,這些文獻並未涉及修復微影光罩的缺陷。
因此,本發明的根本問題之一是指定一種用於分析微影光罩的缺陷位置之改良方法及改良裝置。
根據本發明的一示範具體實施例,由如申請專利範圍第1項之方法來解決此問題。在一具體實施例中,用於分析至少一微影光罩的缺陷位置之方法包括下列步驟:(a)獲得該微影光罩的至少一缺陷位置之量測資料;(b)從該微影光罩的電腦輔助設計(CAD,computer-aided design)資料決定該缺陷位置的參考資料;(c)使用至少一位置相關修正值來修正該參考資料;及(d)通過比對該量測資料與該已修正參考資料來分析該缺陷位置。
因為CAD資料在光罩製程期間所歷經的系統性變更在缺陷位置檢測期間要全面(globally)考量且要局部(locally)考量,讓缺陷分析能夠更精確地執行。首先,因此降低缺陷的錯誤偵測率,進而降低光罩檢測的複雜度。第二,能夠以更精準的方式修復已識別的缺陷,進而提高光罩生產率。
此外,由於在CAD資料的幫助下進行缺陷檢測(晶粒至資料庫(die-to-database)檢測),所以在無可使用等同區域或無參考區域之下還是可檢測微影光罩的缺陷位置。此外,可省去手動搜索參考區域以及錯誤地比較缺陷位置與具有相似圖案元件圖案的光罩部分。
此外,由於已經取消上述手動搜索參考區域,所以使用CAD資料來確定用於修正參考資料的位置相關修正值將有助於更好地進行自動化分析過程。
最後,當使用CAD資料與缺陷位置進行比較時,省略了所使用參考區域的生產不準確性(關鍵點:「線邊緣粗糙度」)和有關參考區域的資料記錄之測量不準確性。通過使用CAD資料而不是參考區域,如此可達成較低的檢測缺陷位置結果變化。
在本申請案內「位置相關」性質意味著修正值在微影光罩的區域上不是恆定的,而是取決於觀察到的光罩位置。
在一進一步具體實施例中,用於分析至少一微影光罩的缺陷位置之方法包括下列步驟:(a)獲得該微影光罩的至少一缺陷位置之量測資料;(b)從該微影光罩的電腦輔助設計(CAD,computer-aided design)資料決定該缺陷位置的參考資料;(c)從該量測資料與該參考資料決定該至少一缺陷位置的輪廓(contour);及(d)通過使用至少一位置相關修正值來修正該至少一缺陷位置的輪廓,以分析該缺陷位置。
在根據本發明的第二具體實施例中,該位置相關修正值並不用於修正該參考資料,而是用於修正一缺陷位置輪廓或一光罩缺陷的輪廓,該輪廓已經從該量測資料與該參考資料決定。如此,該第二具體實施例將一(全域(global))偏置(bias)套用至該參考資料,以即將一或多個位置相關修正值套用至用一缺陷或該缺陷位置所決定的輪廓。
上述根據本發明的方法之優點也至少部分適用於第二示範具體實施例。當不可能直接取得該參考資料時,此第二具體實施例就特別有用。
獲得該微影光罩的至少一缺陷位置的量測資料可包括使用粒子光束來掃描該至少一缺陷位置。
獲得該量測資料可進一步包括:從用於該微影光罩的檢測工具獲得該至少一缺陷位置的座標。該粒子光束可包括一電子束。
在從檢測工具獲得坐標的基礎上,可使用粒子束,較佳為電子束,詳細分析微影光罩的缺陷位置和缺陷位置周圍的區域。
根據本發明的方法可進一步包括下列步驟:從該量測資料產生一量測資料影像。該量測資料影像可包括該量測資料在監視器上的二維呈現。
決定參考資料可包括:從該CAD資料擷取包括該微影光罩的至少一缺陷位置之區段。
關於擷取該CAD資料的該區段,可使用由檢測工具所供應 的該缺陷位置之座標。而也可根據由該粒子束所掃描的該光罩區域,決定該所需CAD資料的區段。
決定參考資料可包括從該CAD資料合成一參考影像。
根據本發明的方法可以基於資料,即量測資料、參考資料和修正參考資料,或基於影像,即量測資料影像、參考影像和修正參考影像來執行。
從CAD資料產生或合成一參考影像在業界內通常稱為「成像(rendering)」。
合成該參考影像可包括考慮在光罩製程期間CAD資料所經歷的該參考影像系統變化。
在轉移到光罩期間,數個因子造成CAD資料的變化:曝光步驟、光阻的顯影、吸收劑結構的圖案元素蝕刻、與所產生圖案元素的成像或測量。此列舉項目並非窮盡。例如,首先提到的三個因子會導致在光罩上生成的圖案元素產生圓角。上述因子進一步負責偏差的產生,即CAD資料和量測資料的結構元素之尺寸偏差。
合成該參考影像可進一步包括產生該參考影像的至少一結構元素之光邊界。
由於用電子束曝光而產生的影像具有材料對比和拓撲對比(topography constrast),該拓撲對比較佳產生於結構元素的邊緣及/或彎角上。由於這個原因,掃描電子顯微鏡(SEM,scanning electron microscope)影像中的結構元素通常具有較佳用於重疊期間對準兩影像的光邊界。由於上述原因,成像結構元素的光邊緣不對應於從CAD資料生成的結構元素邊緣。
所述至少一結構元素可包括來自以下群組中的元素:該微影光罩的圖案元素、該微影光罩的標記、與該微影光罩的至少一缺陷位置之缺陷。
光罩的標記可用來相對於缺陷位置調整粒子束。
合成該參考影像可進一步包括在光罩生產過程期間描述微影光罩曝光過程的點擴散函數(point spread function)之參數。
點擴散函數(PSF,point spread function)經常用於描述在曝光過程中粒子束與光阻及/或光罩的吸收及/或相移材料之相互作用。
該點擴散函數可包括至少兩高斯分佈的相加。第一高斯分佈可以描述配置在微影光罩上及/或微影光罩內的光阻中粒子束的粒子前向散射,並且至少一第二高斯分佈可以描述配置在微影光罩上及/或微影光罩內光阻中粒子束的粒子後向散射。
該點擴展函數可進一步設計成考慮到相對於微影光罩平面中第一方向和第二方向的偏置不對稱性,其中該第一方向和該第二方向較佳形成直角。上述兩或多個高斯分佈的組合可將該CAD資料的結構元素與該光罩之間的此偏置不對稱性列入考慮。
該點擴散函數的此設計使其可將在缺陷位置分析中一光罩的圖案元素之生產期間將該CAD資料的局部不對稱性變化列入考慮。
該至少一位置相關修正值可將量測資料與該缺陷位置上的CAD資料的關鍵尺寸(CD,critical dimension)間之差異列入考慮。
由於修正值在光罩上並非被視為恆定,而是取決於光罩上的位置,因此可以在傳送到光罩上期間,針對CAD資料的上述系統變化執行局部調適。因此,可改善缺陷區域的量測資料與針對缺陷區域所產生的該已修正參考資料之對應關係。
一用於分析微影光罩缺陷位置的方法還可包括下列步驟:通過最小化量測資料影像的結構元素之CD與該微影光罩的至少一缺陷位置之每一者的該參考影像之CD間之差異,以確定該至少一位置相關修正值。
最小化量測資料影像與參考影像的結構元素CD間之差異可在至少一缺陷位置周圍的該微影光罩區域內進行,其中該區域排除該至 少一缺陷位置,並且其中該區域大於該至少一缺陷位置。
從影像比較當中可排除具有一缺陷的該缺陷位置區域。這可能是有利的,因為在缺陷區域內已經存在設計偏差,並且該缺陷可能是影像比較的干擾。
最小化該量測資料影像與該參考影像的結構元素CD間之差異可包括,決定在該至少一缺陷位置周圍區域內的點擴散函數之參數,因此,該量測資料影像與該參考影像的結構元素的CD間之差異變得最小。
由於將描述該光罩製程的點擴散函數之參數設置為位置相關且針對每個缺陷位置單獨局部確定,所以最佳化每個缺陷的量測資料影像與該相關聯參考影像間之對應關係。如此,可精確檢測並精準修復一缺陷。
在說明的示範具體實施例中,決定該位置相關修正值乃是缺陷位置檢測程序內的第一步驟。
決定該至少一位置相關修正值可包括執行最小化該量測資料影像中該結構元素的CD與該參考影像中該結構元素的CD之間差異的一演算法。
若一缺陷位置太大以至於填充最大區域的程度達到量測資料影像結構元素的未受干擾CD判斷為不可能或出現疑問的程度,則使用缺陷位置旁邊的區域來最小化量測資料影像結構元素與參考影像結構元素之間的CD差異。例如通過影像記憶體內所儲存最大數量的影像點或像素,以決定該最大區域。在觀察規定的成像像差時,還可以通過用於分析微影光罩的設備之粒子束最大偏轉性,以進一步限制該最大區域。
根據本發明的方法可進一步包括下列步驟:決定該微影光罩之上至少一圖案元素及/或一標記的CD分佈。
該過程代表最小化該量測資料影像與該參考影像的結構元素之CD的替代方案。其需要在檢測該光罩的該(等)缺陷位置之前,量測一 光罩之上的CD分佈。另一方面,此替代方案允許在執行該缺陷標記的分析處理之前,確認該修正值的分佈。
此外,根據本發明的方法包括下列步驟:從該至少一圖案元素及/或該標記的CD分佈,決定該至少一位置相關修正值;及借助於該CD的已生成分佈,產生一已修正參考影像。
決定該至少一位置相關修正值可包括決定該點擴散函數的位置相關參數。
修正該參考資料可包括藉由使用該至少一位置相關修正值來修正該參考影像,以建立一已修正參考影像。
位置相關修正值可分析描述為二維函數。然而,這通常足以將光罩分成合適的區域,例如分成矩形和正方形,並且足以將該所定義區域內的修正值假定為恆定。舉例來說,可在分析光罩的缺陷位置之前,量測光罩之上的一圖案元素及/或一標記的關鍵尺寸分佈。因此可根據確定的CD分佈、哪個CD內的光罩區域,定義該位置相關修正值是恆定的。因此,例如計算出該光罩不同區域的修正值,並儲存在表格中。在光罩的缺陷位置檢測程序開始時,分別從表格中取出局部有效的一或多個修正值,並用此值修正該參考資料或該參考影像。
分析該缺陷位置可包括重疊該量測資料影像與該已修正參考影像,並識別該等重疊影像之間的差異。識別重疊影像之間的差異可包括通過從該量測資料影像減去該已修正參考影像,以產生一差異影像。重疊該量測資料影像與該已修正參考影像可進一步包括以像素方式來決定該至少一缺陷位置的至少一缺陷之區域。
分析該至少一缺陷位置可包括決定該至少一缺陷位置的至少一缺陷之輪廓。分析該至少一缺陷位置進一步可包括決定該至少一缺陷位置的至少一缺陷之修復形狀。
決定該輪廓可包括重疊該缺陷位置的參考資料與該缺陷位 置的該量測資料,並識別該已重疊參考資料與該量測資料之間的差異。識別該已重疊參考資料與該量測資料間之差異可包括通過從該量測資料影像減去該參考影像,以產生一差異影像。重疊該量測資料影像與該參考影像可進一步包括以像素方式(pixel-wise manner)來決定該至少一缺陷位置的至少一缺陷之一。修正該輪廓可包括以像素方式,使用該至少一位置相關修正值來修正該輪廓。
在此具體實施例中,該位置相關修正值並不套用於該參考資料,而是套用至該缺陷位置的輪廓或該缺陷的輪廓。
決定該至少一位置相關修正值可包括:定義該至少一缺陷位置的量測資料與該缺陷位置的參考資料間之品質數據(figure of merit);及通過變動該至少一缺陷位置的量測資料,以最小化該品質數據。
該品質數據可包括該量測資料的關鍵尺寸(CD)以及該參考資料的關鍵尺寸(CD),並且最小化該品質數據可包括將該量測資料的該CD調適成該參考資料的該CD。
該品質數據可包括一量測資料影像的至少一結構元素之CD與一參考資料影像的至少一結構元素之CD,並且最小化該品質數據可包括將該量測資料影像的至少一結構元素之CD調適成該參考資料影像的至少一結構元素之CD。
該品質數據可包括一量測資料影像的結構元素與該參考資料影像的結構元素間之一間隔(spacing),並且最小化該品質數據可包括最大化該量測資料影像的結構元素與該參考資料影像的結構元素之重疊。
該品質數據可包括一點擴散函數的參數,並且最小化該品質數據可包括改變該點擴散函數的等參數,如此該量測資料維持與該至少一缺陷位置四周一區域內的該參考資料的相對關係。
決定該至少一位置相關修正值可包括:最小化該至少一缺陷位置四周的微影光罩區域內之該品質數據,其中該區域排除該至少一缺陷 位置,並且其中該區域大於該至少一缺陷位置。
根據本發明的方法可進一步包括下列步驟:使用被決定用於該至少一缺陷的輪廓,或使用被用至少一位置相關修正值修正的一輪廓,以修復該缺陷位置的該至少一缺陷。修復該至少一缺陷位置的至少一缺陷可包括:沈積吸收及/或相移材料到該微影光罩的一基材上或在極紫外線(EUV)波長範圍內的一微影光罩之一包覆層上,及/或從該微影光罩的基材或從在極紫外線(EUV)波長範圍內的微影光罩之一包覆層來移除吸收及/或相移材料。修復該至少一缺陷位置的至少一缺陷可進一步包括在該缺陷位置上提供至少一粒子束與至少一前體氣體(precursor)。此外,該至少一粒子束可包括一電子束,並且該電子束不僅用於修復,也用於掃描該至少一缺陷位置。
根據不同態樣,一電腦程式包括指令,當該等指令由一電腦系統執行時,使得該電腦系統執行上面指定態樣的該等方法步驟。
再者,在不同示範具體實施例中,藉由如申請專利範圍第23項之設備來解決上述問題。在一具體實施例中,用於分析至少一微影光罩的缺陷位置之設備包括:(a)獲得構件,用於獲得該微影光罩的該至少一缺陷位置之量測資料;(b)決定構件,用於從該微影光罩的電腦輔助設計(CAD)資料決定該缺陷位置的參考資料;(c)修正構件,用於使用至少一位置相關修正值來修正該參考資料;及(d)分析構件,用於通過比對該量測資料與該已修正參考資料來分析該缺陷位置。
最後,在進一步示範具體實施例中,一種分析至少一缺陷位置的設備包括:(a)獲得構件,用於獲得該至少一缺陷位置之量測資料;(b)決定構件,用於從該微影光罩的電腦輔助設計(CAD)資料決定該缺陷位置的參考資料;(c)決定構件,從該量測資料與該參考資料決定該至少一缺陷位置的輪廓;(d)分析構件,通過使用至少一位置相關修正值來修正該輪廓以分析該缺陷位置。
200‧‧‧微影光罩
210‧‧‧基材
220‧‧‧圖案元素
225‧‧‧關鍵尺寸
230‧‧‧缺陷位置
240‧‧‧缺陷
250‧‧‧量測資料影像
260‧‧‧光邊界
300‧‧‧CAD資料
310‧‧‧黑色區域
320‧‧‧白色結構
325‧‧‧CD
400‧‧‧參考影像
420‧‧‧圖案元素
425‧‧‧CD
440‧‧‧圓角
460‧‧‧光邊界
500‧‧‧圖式
510‧‧‧劑量分佈
520‧‧‧臨界值
550‧‧‧偏置
610‧‧‧缺陷
700‧‧‧微影光罩
710‧‧‧基材
720‧‧‧圖案元素
725‧‧‧CD
730‧‧‧缺陷位置
740‧‧‧缺陷
750‧‧‧量測資料影像
760‧‧‧影像場
800‧‧‧已修正的參考影像
810‧‧‧基材
820‧‧‧圖案元素
825‧‧‧CD
900‧‧‧圖式
930‧‧‧輪廓
940‧‧‧外邊界
950‧‧‧影像區段
1000‧‧‧圖式
1030‧‧‧輪廓
1040‧‧‧外邊界
1100‧‧‧設備
1102‧‧‧粒子槍
1105‧‧‧電子束
1107‧‧‧柱體
1110‧‧‧光束成形設備
1112‧‧‧柱體
1115‧‧‧掃描單元
1117‧‧‧量測點
1120‧‧‧偵測器
1140‧‧‧儲存容器
1142‧‧‧閥門
1144‧‧‧送氣裝置
1146‧‧‧噴嘴
1150‧‧‧儲存容器
1152‧‧‧閥門
1154‧‧‧送氣裝置
1156‧‧‧噴嘴
1160‧‧‧儲存容器
1162‧‧‧閥門
1164‧‧‧送氣裝置
1166‧‧‧噴嘴
1170‧‧‧泵浦系統
1175‧‧‧反應室
1180‧‧‧控制裝置
1185‧‧‧電腦系統
1187‧‧‧介面
1190‧‧‧監視器
1200‧‧‧流程圖
1300‧‧‧流程圖
以下將連同參考附圖的詳細說明來描述本發明的目前最佳示範具體實施例,其中:圖1顯示上半部影像例示微影光罩的掃描電子顯微鏡(SEM)影像之剖面,其中缺陷位置位於複數個圖案元素上方的延伸並且在左下部分內具有以矩形表示的一無缺陷參考區域;及下半部影像呈現該上半部影像的參考區域(由箭頭符號表示)疊加該上半部影像的微影光罩之缺陷位置。
圖2呈現具有一缺陷位置的微影光罩之SEM記錄剖面的平面圖;圖3呈現圖2內包括該缺陷位置的部分該微影光罩剖面之CAD資料平面圖;圖4顯示從圖3中該CAD資料合成的參考影像;圖5例示光罩製程的原理;圖6圖解呈現微影光罩的關鍵尺寸(CD)變化;圖7呈現來自光罩的剖面,例示具有缺少吸收材料形式缺陷的一缺陷位置;圖8顯示圖4中已經用位置相關修正值修正過的參考影像;圖9描述圖8的該已修正參考影像與圖2的該量測資料影像重疊;圖10描述圖4的該參考影像與圖2的該量測資料影像重疊;圖11顯示通過設備的圖解剖面,藉此可分析並修復微影光罩的缺陷位置;圖12描述根據本發明方法的第一具體實施例之流程圖;及圖13顯示根據本發明方法的第二示範具體實施例之流程圖。
以下更詳細解釋根據本發明方法及根據本發明設備的較佳具體實施例。這些實施例參考二元透射式微影光罩的不透明缺陷分析範例進行討論。然而,根據本發明的方法之應用以及根據本發明的設備之應用並不受限於二元透射式微影光罩。而是可用來分析任何反射式與透射式光罩。此外,本文所述的方法和本文所述的設備可用於檢測壓印微影的模板缺陷。此外,如果基材在缺陷位置附近具有至少一結構元素並且根據設計資料執行該缺陷位置的檢測,則根據本發明的設備和根據本發明的方法可用於分析基材上的缺陷。
圖2顯示微影光罩200的掃描電子顯微鏡(SEM)影像之剖面。光罩200包括一基材210和圖案元素220。光罩200可為任何透射式或反射式微影光罩。圖案元素220可包括吸收材料,例如鉻或鋁。或者,圖案元素220可包括相移材料,例如石英。圖案元素220進一步可能包括不僅將光化光的相位偏移一定義角度,而且還吸收規定百分比入射輻射的材料。舉例來說,鉬摻雜的氮氧化矽層表現出所述性質。
光罩200的圖案元素220具有關鍵尺寸(CD)225。關鍵尺寸描述與圖案元素220必須仍舊滿足規定規格的規定設定點值之最大橫向偏差。
微影光罩200進一步具有擁有一缺陷240的一缺陷位置230。在圖2例示的範例中,缺陷位置230與缺陷240具有相同尺寸。這是由於缺陷位置230大體上為矩形。為了分析目的,缺陷240已故意沈積在光罩200上,並且明顯不同於圖1所例示缺陷位置的外部輪廓。
缺陷位置230的缺陷240具有與微影光罩200的圖案元素220相同之材料成分。此外,圖2中範例內的缺陷位置230之高度大體上對應至圖案元素220的高度。若要套用本說明書所定義的方法來分析微影光罩200的一定義位置230,可不需要滿足這些條件。
在圖2例示的範例中,缺陷位置230與複數個圖案元素220相鄰。這在分析缺陷240時構成了額外的複雜性。然而,本申請案中所述的方法也可用於檢測僅與一圖案元素220(圖2中未例示)相鄰的孤立缺陷位置或缺陷位置。所討論的方法可用來分析任何材料成分與輪廓的缺陷位置230。
圖2例示的範例顯示過量吸收材料的缺陷。業界內將此缺陷稱為不透明缺陷。本申請案內呈現的方法也可用於分析缺少吸收材料的缺陷(業界內稱為明確缺陷)(圖2中未例示)。再者,所述方法也可用於分析一光罩基材(圖2未例示)的缺陷。
在圖2的範例中,一電子束掃描該缺陷位置230四周的一區域250(即圖2所示的成像場,或該已指示的成像區域),以獲得缺陷240的量測資料。以下也將區域250稱為量測資料影像250。類似於圖1的情況,該電子束沿著圖案元素220與缺陷位置230的邊界產生一光邊界260。該光邊界為一掃描電子顯微鏡(SEM)內該影像成形的結果。由於電子束的拓撲對比度,成像結構的邊緣或彎角都由光邊界加強。這也適用於可位於光罩200上用來找出缺陷位置230位置(圖2內未例示)的標記。
通過使用雷射光束(圖2未例示)掃描缺陷位置230,可獲得缺陷位置的量測資料。此外,可以用原子力顯微鏡(AFM)掃描缺陷位置230,以獲得缺陷位置230的量測資料(圖2未例示)。
圖3呈現圖2所示微影光罩200的部分剖面區域之CAD資料300。圖3透過黑色區域310例示光罩200的基材210。圖3內透過白色結構320呈現光罩200的圖案元素220。圖案元素320具有CD 325。CAD資料300不具有圖2的缺陷位置230或缺陷240。
圖4顯示從圖3中CAD資料300合成或「成像(rendered)」的一參考影像400。該合成處理將CAD資料300的該等結構元素或圖案元素320轉換成結構元素或圖案元素420,如同利用光罩生產過程在微影光罩200的基材210上生產那樣。圖案元素420具有圓角440,不同於圖案元素320。在圖4的參考影像400中,圖案元素420具有CD 425。此外,光邊界460加入參考影像400的圖案元素420中,以模擬使用電子束的成像過程。
圖5的圖式500圖解例示一光罩生產過程。運用該光罩製程,在光罩200的基材210上生成具有CAD資料300的規定關鍵尺寸(CD)CDD 325之圖案元素320。為此,一光阻層塗抹至光罩200的吸收層。然後使用電子束將該光阻層曝光。圖5的上半部影像呈現通過該電子束施加至該光阻層的劑量分佈510。劑量分佈510的臨界值520定義該光阻開始在光罩200的基材210上產生圖案元素220之劑量。在圖5例示的範例中,根據圖案元素320的設計,光罩200上的CDM 225小於CDD 325。根據設計圖案元素320的CDD 325與光罩200的圖案元素220之實際實現CDM 225間之差異如上述稱為偏置(bias)550。
通常使用點擴散函數(PSF)執行光罩生產過程的模擬。經常地,點擴散函數通過添加兩個高斯分佈來描述(參見在第一部分中指定的EP 2 983 193):
Figure 107106601-A0202-12-0014-1
其中γ表示相對於電子束中心的點之徑向位置,α表示入射電子束的半高全寬,β表示反向散射電子的半高全寬,η表示入射和反射輻射分佈的強度比。
若偏置550未在該光罩平面內旋轉對稱,則可選擇上述兩高斯分佈的重疊。本說明書中的第一等式(1)描述x方向內的偏置550,並且第二等式(1)可描述參考影像400中y方向內的偏置550。該兩軸較佳彼此垂直,不過並非絕對需要。x軸和y軸相對於參考影像的方位可用任意方式選擇。若需要,可以組合等式(1)的三或更多個函數,以考慮偏置550的不對稱性。
為了讓參考影像400能夠與量測資料影像250重疊,需要用偏置550修正參考影像400。以下將說明示範具體實施例,以說明如何實現 這一點。
針對從CAD資料300合成參考影像400,必須用足夠精準度來決定等式(1)的該點擴散函數中該高斯分佈之參數α、β和η,否則已合成參考影像400的結構元素420將具有與光罩200的結構元素220不同的偏置。偏置並未調整至光罩200的偏置550之參考影像的重疊會導致缺陷位置230的錯誤局部化以及微影光罩200的缺陷240之錯誤局部化。已經用此方式決定的該局部化為基礎之缺陷240的任何修復都會產生不佳的結果。
然而,對於使參考影像400與量測資料影像250重合的情況,用單個整體偏置(single global bias)500對參考影像400進行修正通常是不夠的。圖6顯示整個微影光罩200的平面圖。圖6的曲線610例示,在整個光罩面積之上,光罩200具有結構元素220的CD 225之系統性變化。在用「0」指定的線區域中,光罩200具有根據設計的圖案元素320之尺寸,即CDD=CDM。在圖6例示的範例中,光罩200下半部中的偏置550在往左下角方向以負號逐漸增加。在光罩200的右上角方向內,偏置550比在相反方向上增加得更強。偏置550在此方向內的增加額外具有正符號。圖6的數值指示以奈米為單位的CDM變化。光罩200之上CD的變化通常由光罩生產期間的一或多個不完美處理所引起。
除了圖6內光罩200的圖案元素220中CDM的相當系統性變化以外,該CDM還可能在光罩200(圖6內未例示)之上具有相當小面積的隨機變化。
為了改善參考影像400與量測資料影像250的對應性,確定局部或位置相關修正值,以考慮在針對光罩200上特定缺陷位置230的修正參考影像生產期間CDM的變化。
可以有兩方式有效決定位置相關修正值。首先如圖6內所示,可量測通過光罩200的該CD變化或更精準的該CDM變化。這可例如 使用SEM來完成。然後根據CDM的分佈確定位置相關修正值的分佈。該位置相關修正值可儲存在電腦系統的非揮發性記憶體內的一表格中。在針對特定缺陷位置230的分析處理開始時,從該表格中獲取對應的一或多個修正值,並且根據該修正值從參考影像400產生一已修正的參考影像。在討論的示範具體實施例中,該點擴散函數的該位置相關參數,即α(x,y)、β(x,y)和η(x,y),都為參考影像400的該位置相關修正值。參數α(x,y)、β(x,y)和η(x,y)的偏差δα(x,y)、δβ(x,y)和δη(x,y)來自生成參考影像400的平均值<α>、<β>和<η>,用來產生一已修正的參考影像。在替代具體實施例中,這些偏差用來確定一或多個位置相關修正值,如此修正從參考影像400以及量測資料影像250所決定的一缺陷位置230之輪廓。
如圖6所例示,該位置相關修正值通常在光罩200之上逐漸改變。為此,通常足以將光罩200分成其中該點擴散函數的參數可假定為恆定之區域,即α(x,y)->α(i)、β(x,y)->β(i)和η(x,y)->η(i)。此簡化降低產生一已修正參考影像或修正缺陷位置230的輪廓之複雜度。
在第二示範具體實施例中,藉由已經從參考影像400與量測資料影像250的最有可能對應關係確定的該修正值,可決定該位置相關修正值。為此,參考影像400的圖案元素420之CD 425與量測資料影像250的CD 225間之差異最小化。此最佳化處理針對等式(1)的點擴散函數提供局部參數α(i)、β(i)和η(i)。
圖7顯示微影光罩700的SEM記錄之剖面760或影像場760。光罩700包括一基材710和圖案元素720。圖案元素720具有一缺陷位置730,缺陷位置730包括缺少吸收材料的一缺陷740。
為了從一參考影像決定該位置相關或局部修正值,則選擇影像場760之內完全包圍缺陷位置730並且顯著大於缺陷位置730的一區域750。影像場760的區域750也稱為量測資料影像750。通過最小化局部量測資料影像750內光罩700的圖案元素720之CDM 725與該參考影像的CDD 425間之差異,可決定該參考影像的該局部修正值。在此最佳化處理中,未檢測缺陷位置730。缺陷位置730內含與光罩700中圖案元素720的預期佈局之偏差。缺陷740可影響CDM 725與該參考影像中該圖案元素的該CD比較期間之該最小化處理結果。
圖8呈現含一基材810、已修正圖案元素820與已修正CD 825的一已修正參考影像800。已修正參考影像800對應圖4內的參考影像400,其已經用指派給缺陷位置230的一局部修正值來修正。使用已修正參考影像800取代圖1給定的該參考區域,作為分析光罩200的缺陷位置230之比較標準。為此,已修正參考影像800重疊在量測資料影像250上。
圖9的圖式900顯示含微影光罩200的缺陷240之缺陷位置230的輪廓930。缺陷位置230或缺陷240的輪廓930為已修正參考影像800與量測資料影像250重疊之結果。在影像區段950內清晰界定出缺陷240的輪廓930之外邊界940。缺陷位置230的已確定輪廓930可直接用於修復缺陷位置230的缺陷240。若需要,可決定缺陷240的輪廓930之高度。例如使用原子力顯微鏡(AFM)可量測該缺陷的輪廓930之高度。
圖10的圖式1000呈現含微影光罩200的缺陷240之缺陷位置230的輪廓1030。在本說明書用於分析一缺陷230所討論該方法的第二示範具體實施例中,例示於圖10,缺陷位置230或缺陷240的輪廓1030為參考影像400與量測資料影像250重疊之結果。已經在第二步驟使用位置相關修正值來修正缺陷240的輪廓1030之外邊界1040。在此修正步驟之後,缺陷位置230的輪廓1030可用於修正缺陷位置230的缺陷240。類似於上面圖9範圍內的陳述,若需要,可決定缺陷240(圖10內未顯示)的已修正輪廓1030之高度。
利用蝕刻缺陷240的過多材料,可消除該缺陷240。這可例如用聚焦電子束誘導蝕刻(FEBIE)處理來執行。使用以電子束以及一或多個前體氣體執行之沈積處理,可修復缺陷位置730的缺少吸收材料之缺陷740。
圖11呈現通過可執行根據本發明方法的設備1100之剖面。圖11的裝置1100顯示一已修改(modified)的SEM 1100。該已修改SEM 1100包括當成基本組件的一粒子槍1102和一柱體(column)1107,其中配置電子光學設備或光束光學設備1110。電子槍1102產生電子束1105,並且電子或光束光學設備1110聚焦電子束1105並引導從柱體1112輸出至光罩200或700上,如此當成一光束成形設備1110。柱體1107進一步包括一掃描單元1115,其設計用來掃描光罩200、700的表面上之電子束1105。如此,掃描單元1115滿足光束引導設備1115的功能。通過掃描缺陷位置230、730之上的電子束1105,可獲得缺陷位置230、730的缺陷240、740之量測資料。
光罩200、700配置在物鏡台或樣品台1103上。如圖11中箭頭所示,樣品台1103可相對於SEM 1100的電子束1105,在三個空間方向上移動。
設備1100包括用於通過入射電子束1105偵測在測量點1117處產生的二次電子及/或背散射電子之偵測器1120。偵測器1120受到控制裝置1180的控制。此外,1100的控制裝置1180接收偵測器1120的量測資料。控制裝置1180可從該量測資料產生量測資料影像250,該量測資料影像呈現在監視器1190上。選擇性地及/或額外地,設備1100可具有柱體1107內在電子束1105四周環形排列的偵測器,用來偵測由光罩200、700(圖11未例示)反向散射的二次電子及/或電子。
再者,設備1100可包括在測量點1117的區域中提供低能離子之離子源,在缺陷位置230、730的量測處理、一蝕刻處理或一沈積處理期間,該低能離子防止光罩200、700或其表面累積形成負表面電荷(圖11內未例示)。借助於離子源,有可能以局部和受控的方式減小光罩200、700的負電荷,並因此抵消電子束1105的橫向空間解析度降低。
在執行局部蝕刻處理或沈積處理之前、期間以及之後,設備1100的電子束1105可另外用來分析缺陷位置230、730。
控制裝置1180包括一電腦系統1185。電腦系統1185包括一介面1187。電腦系統1185可透過此介面連接至一檢測工具(圖11未例示)。電腦系統1185可接收已經透過介面1187利用該檢測工具所量測的缺陷240、740之位置或座標。電腦系統1185或控制裝置1180可根據缺陷位置230、730之該已接收座標,以控制電子束1105。電腦系統1185可透過介面1187,進一步接收已經儲存在電腦系統1185的非揮發性記憶體(圖11內未例示)內之微影光罩200、700的CAD資料300。
電腦系統1185或控制裝置1180設計成使用掃描單元1115掃描光罩200、700之上的電子束1105。掃描單元1115控制已修改SEM 1100的柱體1107內之偏轉元件,這在圖11未例示。電腦系統1185或控制裝置1180進一步包括一設定單元,以便設定並控制已修改SEM 1000的許多參數。該設定單元可設定的參數可為例如:放大倍數、電子束1105的焦點、象散校正裝置(Stigmator)的一或多個設定值、電子束位移、電子源的位置及/或一或多個光闌(stops)(圖11未例示)。
電腦系統1185可利用合成或成像(rendering)CAD資料300,以決定來自CAD資料300的參考資料或參考影像400。電腦系統1185可進一步確認該參考資料或參考影像400的一位置相關修正值。電腦系統1185可從該位置相關修正值以及該參考資料或參考影像400,產生已修正的參考資料或一已修正參考影像800。此外,電腦系統1185設計成利用重疊已修正參考影像800與量測資料影像250,確認缺陷240的輪廓930。缺陷240、740可根據已確認輪廓930來修復。電腦系統1185也可從參考影像400和量測資料影像250,決定缺陷位置230或缺陷240的輪廓1030。此外,設備1100的電腦系統1185可使用一或多個位置相關修正值來修正已決定的輪廓1030。
若需要,可確定缺陷240、740的修復形狀。針對輪廓930或已修正輪廓1030,至此確定其高度分布(height profile)。該高度分布可如上述使用AFM來量測。針對此目的,該已修改SEM可內含一或多個AFM(圖11未例示)。修復形狀指示出電子束1105作用在缺陷240、740的一位置之時間長度、次數以及時間間隔。修復形狀額外包含關於缺陷240、740個別位置上所提供一或多種蝕刻氣體或一或多種沈積氣體的氣流率之資訊。
電腦系統1185可使用該修復形狀來控制該活化粒子或電子束1105,以及用於該缺陷修復的許多氣體成份之氣流率。這表示電腦系統1185可控制修復形狀的設計。在替代具體實施例中,修復形狀的設計實現於設備1100之外(圖11內未例示)。
用於分析缺陷位置230、730的設備1100也可用來修正或修復缺陷240和740。為此,設備1100較佳包括複數個不同的儲存容器,用來儲存不同氣體或前體氣體。在圖11的示範設備1100例示三個容器1140、1150和1160。然而,設備1100也可只有兩個或三個以上的儲存容器1140、1150、1160,以處理光罩200和700。
第一儲存容器1140儲存前體(precursor)氣體或沈積氣體,其可用來協同已修改SEM 1100的電子束1105,將吸收材料沈積在光罩700的清晰缺陷740上。舉例來說,第一儲存容器1140可具有羰基金屬(metal carbonyl),例如六羰基鉬(Mo(CO)6)或六羰基鉻(Cr(CO)6)形式的前體氣體。
第二儲存容器1150內含第一蝕刻氣體。舉例來說,第二儲存容器1050可內含二氟化氙(XeF2)或含氯蝕刻氣體,例如亞硝酰氯(NOCl),硝酰氯(NO2Cl)或硝酸氯(ClNO3)。
圖11所例示範例中的第三儲存容器1160儲存可加入第二儲存容器1150中該蝕刻氣體的氣體。第三儲存容器1160內的該氣體可包括例如水蒸氣(H2O)或過氧化氫(H2O2)。
每一儲存容器1140、1150、1160都配置有自己的閥門1142、1152、1162,以控制每時間單位所提供的氣體粒子數量,或在要修復的光 罩200、700表面上電子束1105要入射位置1117上之氣流率。閥門1142、1152、1162可設計成氣流或質流控制器的形式。
此外,三個儲存容器1140、1150、1160都具有專屬送氣裝置1144、1154和1164,其末端為噴嘴1146、1156和1166,靠近光罩200、700上電子束1105的入射點1117。在藉由圖11中範例所例示的設備1100內,閥門1142、1152、1162安裝在儲存容器1140、1150、1160附近。在替代具體實施例中,閥門1142、1152、1162可配置在對應噴嘴1146、1156、1166(圖11未顯示)附近。每一儲存容器1140、1150、1160都可具有用於個別溫度設定與控制的專屬元件。該溫度設定幫助冷卻與加熱每一儲存的前體材料。此外,送氣裝置1144、1154、1164可同樣具有設定與監控反應位置1117上所提供氣體溫度的專屬元件(圖11同樣未顯示)。
圖11的設備1100具有一泵浦系統1170,以產生並維持反應室1175內所需的真空。在執行一局部電子束誘導蝕刻處理之前,反應室1175具有在高真空範圍(<10-6mbar)的下端範圍內之殘餘氣體壓力。
此外,設備1100可包括一吸入(suction)式提取設備(圖11內未顯示)。該吸入式提取設備與泵浦系統1170結合,使得在蝕刻氣體或沈積氣體分解期間產生並且非局部化學反應所需的碎片(fragments)或成份基本上可在起點上從設備1100的反應室或真空室1175中提取出來。因為不需要的氣體成份會在擴散並進入之前,會從設備1100的真空室1175出來通過電子束1105的入射點1117局部泵送到光罩200、700上,而藉由引發局部化學蝕刻反應大幅防止真空室1175受到污染。
圖12呈現根據本發明的第一具體實施例之用於分析微影光罩200、700的一缺陷位置230、730之流程圖1200。該方法從步驟1210開始。在步驟1220,獲得微影光罩200、700的一缺陷位置230、730之量測資料。通過掃描缺陷位置230、730之上設備1100的電子束1105,可獲得該量測資料。設備1100或電腦系統1185可從檢測工具接收缺陷位置230、730的位置或座標。
在下一步驟1230,從微影光罩200、700的電腦輔助設計(CAD)資料300決定參考資料或一參考影像400。此步驟可由設備1100的電腦系統1185來執行。文中所需的CAD資料可儲存在電腦系統1185的非揮發係記憶體內。另外,電腦系統1185可透過連接1187從外部來源接收CAD資料300。
在步驟1240,使用至少一位置相關修正值來修正該參考資料或考影像400。此步驟同樣可由設備1100的電腦系統1185來執行。藉由設備1100的電子束1105可決定該位置相關修正值,其中由控制裝置1180或該電腦系統控制設備1100。
其次,在步驟1250,通過比對將該量測資料或量測資料影像250與該已修正參考資料或已修正參考影像800,以分析缺陷位置230、730。該分析程序提供缺陷位置230的輪廓930。此步驟同樣可由設備1100的電腦系統1185來執行。該方法終止於步驟1260。
最後,圖13顯示根據本發明的第二示範具體實施例之用於分析微影光罩200、700的一缺陷位置230、730之流程圖1300。該方法從步驟1310開始。兩步驟1320和1330都與圖12中的兩步驟1220和1230一致。
在步驟1240,從該參考資料或參考影像400與該量測資料或量測資料影像250產生缺陷位置230的輪廓1030。此步驟同樣可由設備1100的電腦系統1185來執行。
其次,在步驟1350,通過使用一或多個修正值來修正至少一缺陷位置230的輪廓1030,以執行分析。可如圖12範圍內的解釋來決定該位置相關修正值。之後,該方法終止於步驟1360。
在不脫離本發明精神或必要特性的情況下,可以其他特定形式來體現本發明。應將所述具體實施例各方面僅視為解說性而非限制性。因此,本發明的範疇如隨附申請專利範圍所示而非如前述說明所示。所有落在申請專利範圍之等效意義及範圍內的變更應視為落在申請專利範圍的範疇內。
900‧‧‧圖式
930‧‧‧輪廓
940‧‧‧外邊界
950‧‧‧影像區段

Claims (22)

  1. 一種用於分析微影光罩(200、700)的至少一缺陷位置(230、730)之方法,其中該方法包括下列步驟:a 獲得該微影光罩(200、700)的至少一缺陷位置(230、730)之量測資料;b 從該微影光罩(200、700)的電腦輔助設計(CAD)資料(300)來決定該缺陷位置(230、730)的參考資料,其中決定參考資料包括:藉由考慮在一光罩製程期間電腦輔助設計資料(300)所經歷的該參考影像(400)系統性變化,從該電腦輔助設計資料(300)合成一參考影像(400);c 使用至少一位置相關修正值來修正該參考資料;及d 通過比對該量測資料與該已修正參考資料來分析該缺陷位置(230、730)。
  2. 一種用於分析微影光罩(200、700)的至少一缺陷位置(230、730)之方法,其中該方法包括下列步驟:a 獲得該微影光罩(200、700)的至少一缺陷位置(200、730)之量測資料;b 從該微影光罩(200、700)的電腦輔助設計(CAD)資料(300)來決定該缺陷位置(230、730)的參考資料,其中決定參考資料包括:藉由考慮在一光罩製程期間電腦輔助設計資料(300)所經歷的該參考影像(400)系統性變化,從該電腦輔助設計資料(300)合成一參考影像(400);c 從該量測資料及該參考資料來決定該至少一缺陷位置(230、730)的一輪廓(1030);及d通過使用至少一位置相關修正值來修正該至少一缺陷位置(230、730)的該輪廓(1030),以分析該缺陷位置(230、730)。
  3. 如申請專利範圍第1或2項之方法,其中獲得該微影光罩(200、700)的至少一缺陷位置(230、730)之量測資料包括:使用一電子束(1005)掃描該至少一缺陷位置(230、730)。
  4. 如前述申請專利範圍第1或2項方法,進一步包括下列步驟:從該量測資料產生一量測資料影像(250)。
  5. 如前述申請專利範圍第1或2項之方法,其中決定參考資料包括:從包括該微影光罩(200、700)的至少一缺陷位置(230、730)之電腦輔助設計資料(300)來擷取一區段(section)。
  6. 如申請專利範圍第1或2項之方法,其中合成該參考影像(400)進一步包括:產生該參考影像(400)內的至少一結構元素(420)的一光邊界(460)。
  7. 如申請專利範圍第1或2項之方法,其中該至少一結構元素(420)包括來自下列的一元素:該微影光罩(200、700)的一圖案元素(220、720)、該微影光罩(200、700)的一標記、與該微影光罩(200、700)的至少一缺陷位置(230、730)之一缺陷(240、740)。
  8. 如申請專利範圍第1或2項之方法,其中合成該參考影像(400)進一步包括:決定在一光罩製程期間描述該微影光罩(200、700)的曝光製程的一點擴散函數之參數。
  9. 如申請專利範圍第1或2項之方法,其中該至少一位置相關修正值係考慮該量測資料的一關鍵尺寸(CD)(225)與該缺陷位置(230、730)處的該 電腦輔助設計資料(300)之間的差異。
  10. 如申請專利範圍第4項之方法進一步包括下列步驟:針對該微影光罩(200、700)的至少一缺陷位置(230、730)的每一者,藉由最小化該量測資料影像(250)的結構元素(220)之關鍵尺寸(225)與該參考影像(400)的結構元素(420)之關鍵尺寸(425)間之差異,以決定該至少一位置相關修正值。
  11. 如申請專利範圍第10項之方法,其中最小化該量測資料影像(250)的結構元素(220)之關鍵尺寸(225)與該參考影像(400)的結構元素(420)之關鍵尺寸(425)間之差異進行於在該至少一缺陷位置(230、730)周圍的微影光罩(200、700)的一區域(250、750)內,其中該區域(250、750)排除該至少一缺陷位置(230、730),並且其中該區域(250、750)大於該至少一缺陷位置(230、730)。
  12. 如申請專利範圍第10項之方法,其中最小化該量測資料影像(250)的結構元素(220)之關鍵尺寸(225)與該參考影像(400)的結構元素(420)之關鍵尺寸(425)間之該差異包括:決定在該至少一缺陷位置(230、730)周圍的區域(250、750)內的點擴散函數之該等參數,使得該量測資料影像(250)與該參考影像(400)的該等結構元素關鍵尺寸間之的差異變得最小。
  13. 如申請專利範圍第10項之方法,其中決定該至少一位置相關修正值包括:執行最小化該量測資料影像(25)的結構元素(220)的關鍵尺寸(225)與該參考影像(400)的結構元素(420)的關鍵尺寸(425)間之差異的一演算法。
  14. 如申請專利範圍第10項之方法,進一步包括下列步驟:決定該微影光罩(200、700)之上至少一圖案元素(220)及/或一標記的關鍵尺寸(225)之分佈。
  15. 如申請專利範圍第14項之方法,進一步包括下列步驟:從該至少一圖案元素(220)及/或該標記的關鍵尺寸(225)之分佈,決定至少一位置相關修正值,並且借助於該關鍵尺寸(225)的已生成分佈,產生一已修正參考影像(800)。
  16. 如申請專利範圍第1或2項之方法,其中修正該參考資料包括:藉由使用該至少一位置相關修正值來修正該參考影像(400),以形成一已修正參考影像(800)。
  17. 如申請專利範圍第1項之方法,其中分析該至少一缺陷位置(230、730)包括:決定該至少一缺陷位置(230)的至少一缺陷(240)之一輪廓(930)。
  18. 如申請專利範圍第17項之方法,其中決定該輪廓(930)包括:重疊該缺陷位置(230、730)的已修正參考資料與該缺陷位置(230、730)的量測資料,並識別出該已重疊已修正參考資料與該量測資料之間的差異。
  19. 如申請專利範圍第2項之方法,其中決定該輪廓(1030)包括:重疊該缺陷位置(230、730)的參考資料與該缺陷位置(230、730)的量測資料,並識別出該已重疊參考資料與該量測資料之間的差異。
  20. 一種電腦程式,其包括指令,當該等指令由一電腦系統執行時,使得 該電腦系統(1085)執行如申請專利範圍第1至19項中任一項之該等方法步驟。
  21. 一種用於分析微影光罩(200、700)的至少一缺陷位置(230、730)之設備(1100),其包括;a 獲得構件,用於獲得該微影光罩(200、700)的至少一缺陷位置(230、730)之量測資料;b 決定構件,用於從該微影光罩(200、700)的電腦輔助設計(CAD)資料(300)決定該缺陷位置(230、730)的參考資料,其中決定參考資料包括:藉由考慮在一光罩製程期間電腦輔助設計資料(300)所經歷的該參考影像(400)系統性變化,從該電腦輔助設計資料(300)合成一參考影像(400);c 修正構件,用於使用至少一位置相關修正值來修正該參考資料;及d 分析構件,用於通過比對該量測資料與已修正之該參考資料來分析該缺陷位置(230、730)。
  22. 一種用於分析微影光罩(200、700)的至少一缺陷位置(230、730)之設備(1100),其包括;a 獲得構件,用於獲得該微影光罩(200、700)的至少一缺陷位置(230、730)之量測資料;b 決定構件,用於從該微影光罩(200、700)的電腦輔助設計(CAD)資料(300)決定該缺陷位置(230、730)的參考資料,其中決定參考資料包括:藉由考慮在一光罩製程期間電腦輔助設計資料(300)所經歷的該參考影像(400)系統性變化,從該電腦輔助設計資料(300)合成一參考影像(400); c 決定構件,用於從該量測資料以及該參考資料決定該至少一缺陷位置(230、730)的一輪廓(1030);及d 分析構件,用於通過使用至少一位置相關修正值來修正該輪廓(1030)以分析該缺陷位置(230、730)。
TW107106601A 2017-03-09 2018-02-27 分析光罩的缺陷位置的方法與裝置 TWI688985B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017203879.9A DE102017203879B4 (de) 2017-03-09 2017-03-09 Verfahren zum Analysieren einer defekten Stelle einer photolithographischen Maske
DE102017203879.9 2017-03-09
??102017203879.9 2017-03-09

Publications (2)

Publication Number Publication Date
TW201841192A TW201841192A (zh) 2018-11-16
TWI688985B true TWI688985B (zh) 2020-03-21

Family

ID=61911513

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107106601A TWI688985B (zh) 2017-03-09 2018-02-27 分析光罩的缺陷位置的方法與裝置

Country Status (6)

Country Link
US (1) US11150552B2 (zh)
KR (1) KR102270496B1 (zh)
CN (1) CN110622067B (zh)
DE (1) DE102017203879B4 (zh)
TW (1) TWI688985B (zh)
WO (1) WO2018162316A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3543791A1 (en) * 2018-03-23 2019-09-25 ASML Netherlands B.V. Method of metrology and associated apparatuses
US10957035B2 (en) * 2018-11-30 2021-03-23 Kla Corporation Defect classification by fitting optical signals to a point-spread function
DE102018221304A1 (de) * 2018-12-10 2019-12-24 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zum Bestimmen einer Prozessauflösung eines Teilchenstrahl-induzierten Bearbeitungsprozesses eines Elements für die Fotolithographie
DE102019131440B3 (de) * 2019-11-21 2021-05-27 Volume Graphics Gmbh Computerimplementiertes Verfahren zur Segmentierung von Messdaten aus einer Messung eines Objekts
US20220099593A1 (en) * 2020-09-25 2022-03-31 Utica Leaseco, Llc Methods and systems for reducing defects
DE102021115736B4 (de) 2021-06-17 2024-05-29 Carl Zeiss Smt Gmbh Verfahren und Vorrichtung zum Teilchenstrahl-induzierten Bearbeiten eines Defekts einer Photomaske für die Mikrolithographie
KR20240008353A (ko) * 2021-07-28 2024-01-18 주식회사 히타치하이테크 검사 장치, 검사 방법
US11727556B2 (en) 2021-09-29 2023-08-15 KLA Corp. Defect detection for multi-die masks
DE102022118920A1 (de) * 2022-07-28 2024-02-08 Carl Zeiss Smt Gmbh Verfahren, Lithographiemaske, Verwendung einer Lithographiemaske und Bearbeitungsanordnung
DE102023105762A1 (de) 2023-03-08 2024-03-21 Carl Zeiss Smt Gmbh Verfahren und Computerprogrammprodukt zur Identifizierung von Fehlern auf fotolithografischen Masken

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030104288A1 (en) * 2002-12-10 2003-06-05 Numerical Technologies, Inc. Reference image generation from subject image for photolithography mask analysis
TW200939283A (en) * 2005-03-03 2009-09-16 Ebara Corp Mapping projection type electron beam apparatus and defects inspection system using such apparatus
US20100002930A1 (en) * 2005-01-05 2010-01-07 Hiroyoshi Miyano Apparatus for examining pattern defects, a method thereof, and a computer-readable recording medium having recorded therein a program thereof
US20120098953A1 (en) * 2009-07-17 2012-04-26 Go Kotaki Scanning electron microscope device and pattern dimension measuring method using same
CN105652589A (zh) * 2003-07-03 2016-06-08 恪纳腾技术公司 使用设计者意图数据检查晶片和掩模版的方法和系统
TW201627655A (zh) * 2014-10-22 2016-08-01 克萊譚克公司 自動化圖案保真度量測計劃生成

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320505A (ja) * 1996-03-29 1997-12-12 Hitachi Ltd 電子線式検査方法及びその装置並びに半導体の製造方法及びその製造ライン
US5849440A (en) 1996-07-02 1998-12-15 Motorola, Inc. Process for producing and inspecting a lithographic reticle and fabricating semiconductor devices using same
US5916716A (en) 1997-03-13 1999-06-29 International Business Machines Corporation Emulation methodology for critical dimension control in E-Beam lithography
DE59800938D1 (de) 1998-04-20 2001-08-02 Lss Life Support Systems Ag Zo Beschleunigungs-schutzanzug
AU3815200A (en) 1999-04-01 2000-10-23 Sigma-C Gmbh Method for correcting image faults
US7133549B2 (en) 1999-04-05 2006-11-07 Applied Materials, Inc. Local bias map using line width measurements
US6322935B1 (en) * 2000-02-28 2001-11-27 Metron Technology Method and apparatus for repairing an alternating phase shift mask
US6904164B2 (en) * 2000-05-18 2005-06-07 Jeol Ltd. Method of inspecting accuracy in stitching pattern elements
JP2002071331A (ja) 2000-08-25 2002-03-08 Seiko Instruments Inc 電子ビーム露光用マスク欠陥検査方法及び装置
KR100610441B1 (ko) * 2001-03-20 2006-08-08 뉴메리컬 테크날러지즈 인코퍼레이티드 마스크 결함 인쇄적성 분석을 제공하는 시스템과 방법
US6627362B2 (en) * 2001-10-30 2003-09-30 Intel Corporation Photolithographic mask fabrication
US7190823B2 (en) 2002-03-17 2007-03-13 United Microelectronics Corp. Overlay vernier pattern for measuring multi-layer overlay alignment accuracy and method for measuring the same
DE10233205B4 (de) 2002-07-17 2006-06-08 Infineon Technologies Ag Verfahren zur Korrektur von lokalen Loading-Effekten beim Ätzen von Photomasken
DE60321525D1 (de) * 2002-10-28 2008-07-24 Asml Netherlands Bv Verfahren, Inspektionssystem, Rechnerprogramm und Referenzsubstrat zum Erkennen von Maskenfehlern
DE10258371B4 (de) * 2002-12-12 2004-12-16 Infineon Technologies Ag Verfahren zur Inspektion von periodischen Gitterstrukturen auf Lithographiemasken
JP2005037166A (ja) * 2003-07-16 2005-02-10 Semiconductor Leading Edge Technologies Inc マスク欠陥検査装置及びマスク欠陥検査方法
JP2005215400A (ja) * 2004-01-30 2005-08-11 Toppan Printing Co Ltd フォトマスクの外観検査方法
JP3967327B2 (ja) * 2004-02-02 2007-08-29 株式会社東芝 マスク欠陥検査方法
JP2005331250A (ja) * 2004-05-18 2005-12-02 Toppan Printing Co Ltd フォトマスクの外観検査方法
JP2006250845A (ja) 2005-03-14 2006-09-21 Topcon Corp パターン欠陥検査方法とその装置
ATE439334T1 (de) * 2006-03-20 2009-08-15 Schott Ag Transparente, farblose lithium-aluminosilikat- glaskeramikplatte mit blickdichter, farbiger unterseitenbeschichtung
KR100762245B1 (ko) * 2006-09-29 2007-10-01 주식회사 하이닉스반도체 포토마스크의 패턴 결함 수정 방법
US20100086212A1 (en) * 2007-01-29 2010-04-08 Peter Daniel Buck Method and System for Dispositioning Defects in a Photomask
JP2008233343A (ja) * 2007-03-19 2008-10-02 Advanced Mask Inspection Technology Kk 試料検査装置、補正画像生成方法及びプログラム
JP4914296B2 (ja) * 2007-06-26 2012-04-11 大日本スクリーン製造株式会社 露光パターンデータ検査装置、方法およびプログラム
DE102007052052B4 (de) * 2007-10-31 2016-02-04 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Verfahren zum Erkennen von Wiederholungsdefekten in Lithographiemasken auf der Grundlage von Testsubstraten, die unter veränderlichen Bedingungen belichtet werden
JP5305641B2 (ja) * 2007-11-21 2013-10-02 株式会社ニューフレアテクノロジー パターン検査装置及びパターン検査方法
DE102008019341B4 (de) * 2008-04-15 2020-09-24 Carl Zeiss Smt Gmbh Verfahren zur Analyse von Masken für die Photolithographie
JP2010079113A (ja) * 2008-09-28 2010-04-08 Hoya Corp フォトマスクの製造方法及びフォトマスク
JP5695924B2 (ja) * 2010-02-01 2015-04-08 株式会社ニューフレアテクノロジー 欠陥推定装置および欠陥推定方法並びに検査装置および検査方法
JP5556274B2 (ja) * 2010-03-17 2014-07-23 凸版印刷株式会社 パターン評価方法及びパターン評価装置
DE102010025033B4 (de) * 2010-06-23 2021-02-11 Carl Zeiss Smt Gmbh Verfahren zur Defekterkennung und Reparatur von EUV-Masken
US9721754B2 (en) * 2011-04-26 2017-08-01 Carl Zeiss Smt Gmbh Method and apparatus for processing a substrate with a focused particle beam
DE102011079382B4 (de) * 2011-07-19 2020-11-12 Carl Zeiss Smt Gmbh Verfahren und Vorrichtung zum Analysieren und zum Beseitigen eines Defekts einer EUV Maske
JP2013176788A (ja) * 2012-02-28 2013-09-09 Olympus Corp レーザ加工装置、レーザ加工方法およびレーザ加工プログラム
JP5832345B2 (ja) * 2012-03-22 2015-12-16 株式会社ニューフレアテクノロジー 検査装置および検査方法
CN103365073B (zh) * 2012-04-10 2015-07-01 中国科学院微电子研究所 极紫外光刻掩模缺陷检测系统
US9466100B2 (en) * 2012-06-06 2016-10-11 Kla-Tencor Corporation Focus monitoring method using asymmetry embedded imaging target
DE102013203995B4 (de) 2013-03-08 2020-03-12 Carl Zeiss Smt Gmbh Verfahren zum Schützen eines Substrats während einer Bearbeitung mit einem Teilchenstrahl
US9494854B2 (en) * 2013-03-14 2016-11-15 Kla-Tencor Corporation Technique for repairing an EUV photo-mask
JP6043662B2 (ja) 2013-03-18 2016-12-14 株式会社ニューフレアテクノロジー 検査方法および検査装置
DE102013225936B4 (de) * 2013-12-13 2021-02-18 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zum Korrelieren von Abbildungen einer photolithographischen Maske
JP6307367B2 (ja) * 2014-06-26 2018-04-04 株式会社ニューフレアテクノロジー マスク検査装置、マスク評価方法及びマスク評価システム
US9964850B2 (en) * 2014-07-31 2018-05-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method to mitigate defect printability for ID pattern
EP2983193B1 (en) 2014-08-05 2021-10-20 Aselta Nanographics Method for determining the parameters of an ic manufacturing process model
JP6386898B2 (ja) * 2014-12-15 2018-09-05 株式会社ニューフレアテクノロジー 検査方法および検査装置
JP6513951B2 (ja) * 2015-01-08 2019-05-15 株式会社ニューフレアテクノロジー 検査方法
JP6543070B2 (ja) * 2015-04-01 2019-07-10 株式会社ニューフレアテクノロジー 検査方法および検査装置
JP6640482B2 (ja) * 2015-07-31 2020-02-05 株式会社ニューフレアテクノロジー パターン検査装置及びパターン検査方法
KR101850871B1 (ko) * 2015-08-26 2018-04-23 주식회사 디알텍 방사선 영상의 처리방법 및 방사선 촬영시스템
JP6633918B2 (ja) * 2016-01-18 2020-01-22 株式会社ニューフレアテクノロジー パターン検査装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030104288A1 (en) * 2002-12-10 2003-06-05 Numerical Technologies, Inc. Reference image generation from subject image for photolithography mask analysis
CN105652589A (zh) * 2003-07-03 2016-06-08 恪纳腾技术公司 使用设计者意图数据检查晶片和掩模版的方法和系统
US20100002930A1 (en) * 2005-01-05 2010-01-07 Hiroyoshi Miyano Apparatus for examining pattern defects, a method thereof, and a computer-readable recording medium having recorded therein a program thereof
TW200939283A (en) * 2005-03-03 2009-09-16 Ebara Corp Mapping projection type electron beam apparatus and defects inspection system using such apparatus
US20120098953A1 (en) * 2009-07-17 2012-04-26 Go Kotaki Scanning electron microscope device and pattern dimension measuring method using same
TW201627655A (zh) * 2014-10-22 2016-08-01 克萊譚克公司 自動化圖案保真度量測計劃生成

Also Published As

Publication number Publication date
DE102017203879B4 (de) 2023-06-07
DE102017203879A1 (de) 2018-09-13
KR102270496B1 (ko) 2021-06-30
US11150552B2 (en) 2021-10-19
US20200004138A1 (en) 2020-01-02
CN110622067B (zh) 2023-05-16
KR20190120364A (ko) 2019-10-23
WO2018162316A1 (en) 2018-09-13
TW201841192A (zh) 2018-11-16
CN110622067A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
TWI688985B (zh) 分析光罩的缺陷位置的方法與裝置
JP6342436B2 (ja) Euvフォトマスクの欠陥を解析かつ除去する方法及び装置
US9990737B2 (en) Apparatus and method for correlating images of a photolithographic mask
TWI688821B (zh) 用於補償光罩坯料之缺陷的方法與裝置
US20230109566A1 (en) Method and apparatus for setting a side wall angle of a pattern element of a photolithographic mask
KR102561038B1 (ko) 포토리소그래피 마스크를 수리하기 위한 장치 및 방법
US11079674B2 (en) Method and apparatus for ascertaining a repair shape for processing a defect of a photolithographic mask
US20230152685A1 (en) Method and apparatus for repairing a defect of a lithographic mask
US20240036456A1 (en) Method for electron beam-induced processing of a defect of a microlithographic photomask
US20230081844A1 (en) Method for particle beam-induced processing of a defect of a microlithographic photomask
TWI839822B (zh) 以粒子束誘發處理微影光罩缺陷之方法
TW202414111A (zh) 用於微影光罩之缺陷的電子束誘發處理的方法
WO2024023165A1 (en) Method, lithography mask, use of a lithography mask, and processing arrangement
TW202419965A (zh) 方法、微影光罩、微影光罩的使用以及製程配置
TW202316196A (zh) 以粒子束誘發處理微影光罩缺陷的方法與裝置