TWI686940B - 光學感測結構及其形成方法 - Google Patents

光學感測結構及其形成方法 Download PDF

Info

Publication number
TWI686940B
TWI686940B TW107138601A TW107138601A TWI686940B TW I686940 B TWI686940 B TW I686940B TW 107138601 A TW107138601 A TW 107138601A TW 107138601 A TW107138601 A TW 107138601A TW I686940 B TWI686940 B TW I686940B
Authority
TW
Taiwan
Prior art keywords
light
substrate
item
optical sensing
patent application
Prior art date
Application number
TW107138601A
Other languages
English (en)
Other versions
TW202018925A (zh
Inventor
李新輝
曾漢良
林學榮
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW107138601A priority Critical patent/TWI686940B/zh
Application granted granted Critical
Publication of TWI686940B publication Critical patent/TWI686940B/zh
Publication of TW202018925A publication Critical patent/TW202018925A/zh

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本發明實施例提供一種光學感測結構。此光學感測結構包括位於基板中的感測畫素陣列,其中上述感測畫素陣列包括複數個感測畫素、位於基板之上的光準直層、以及至少一導通孔,上述至少一導通孔由上述基板的第一表面延伸至相對的第二表面,其中上述至少一導通孔位於上述感測畫素陣列中,且不與上述感測畫素垂直重疊。

Description

光學感測結構及其形成方法
本發明係關於一種感測結構,特別是有關於一種光學感測結構及其形成方法。
現今的行動電子裝置(例如手機、平板電腦、筆記型電腦等)通常配備有使用者辨識系統,用以保護個人資料安全。由於每個人的指紋皆不同,因此指紋感測器是一種常見並可靠的使用者辨識系統。
市面上的指紋感測器常使用光學技術以感測使用者的指紋,這種基於光學技術的指紋感測器之光學元件可包括光準直器(light collimator)、分束器、聚焦鏡以及線性感測器等,其中使用準直器(collimator)來使入射到感測器的光線平行前進,以減少因光發散所導致之能量損失。
傳統上,必須在平面上拉長金屬導線,經過許多不同的結構層才能將指紋感測器連接至其他裝置,導致體積增加、訊號衰減、以及成本的提高。
雖然現有的光學指紋感測器大致符合需求,但並非各方面皆令人滿意,特別是提升高光學指紋感應器的光準直器與其他裝置的連接技術仍需進一步改善。
本發明實施例提供一種光學感測結構,上述光學感測結構包括位於基板中的感測畫素陣列,其中上述感測畫素陣列包括複數個感測畫素、位於基板之上的光準直層、以及至少一導通孔,上述至少一導通孔由上述基板的第一表面延伸至相對的第二表面,其中上述至少一導通孔位於上述感測畫素陣列中,且不與上述感測畫素垂直重疊。
本發明實施例另提供一種光學感測結構的形成方法,此方法包括在基板中形成至少一導通孔、在上述基板中形成感測畫素陣列,其中上述感測畫素陣列包括複數個感測畫素,且其中上述至少一導通孔位於上述感測畫素陣列中,且不與上述感測畫素垂直重疊、以及在上述基板之上形成光準直層。
本發明實施例的光學感測結構可應用於多種類型的光學指紋辨識系統,為讓本發明之上述目的、特徵及優點能更明顯易懂,下文特舉數個實施例,並配合所附圖式,作詳細說明如下。
10‧‧‧光學感測結構
90‧‧‧導電部件
100‧‧‧基板
100A‧‧‧頂表面
100B、102B‧‧‧底表面
100B'‧‧‧第二表面
102‧‧‧孔洞
102’‧‧‧貫孔
102S‧‧‧側壁
104‧‧‧晶種層
106‧‧‧導電層
108‧‧‧導孔
110‧‧‧導通孔
200‧‧‧感測畫素陣列
202‧‧‧感測畫素
300‧‧‧透光柱
400‧‧‧遮光層
500‧‧‧遮光蓋
600‧‧‧光準直層
以下將配合所附圖式詳述本揭露之實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本揭露的特徵。
第1-7、8A、8B、9、10圖係根據本發明的一些實施例,繪示出光學感測結構之製造方法的剖面示意圖。
以下的揭示內容提供許多不同的實施例或範例,以展示本揭露的不同部件。以下將揭示本說明書各部件及其排列方式之特定範例,用以簡化本揭露敘述。當然,這些特定範例並非用於限定本揭露。例如,若是本說明書以下的發明內容敘述了將形成第一部件於第二部件之上或上方,即表示其包括了所形成之第一及第二部件是直接接觸的實施例,亦包括了尚可將附加的部件形成於上述第一及第二部件之間,則第一及第二部件為未直接接觸的實施例。此外,本揭露說明中的各式範例可能使用重複的參照符號及/或用字。這些重複符號或用字的目的在於簡化與清晰,並非用以限定各式實施例及/或所述配置之間的關係。
再者,為了方便描述圖式中一元件或部件與另一(些)元件或部件的關係,可使用空間相對用語,例如「在...之下」、「下方」、「下部」、「上方」、「上部」及諸如此類用語。除了圖式所繪示之方位外,空間相對用語亦涵蓋使用或操作中之裝置的不同方位。當裝置被轉向不同方位時(例如,旋轉90度或者其他方位),則其中所使用的空間相對形容詞亦將依轉向後的方位來解釋。
在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含 「約」、「大約」、「大抵」之含義。
以下說明本發明實施例之光學感測裝置及其形成方法。然而,應理解的是,以下的實施例僅用於說明以特定方法製作及使用本發明實施例,並非用以侷限本發明的範圍。本領域具有通常知識者將可容易理解在其他實施例的範圍內可做各種的修改。再者,雖然下述的方法實施例是以特定順序進行說明,但其他方法實施例可以另一合乎邏輯的順序進行,且可包括少於或多於此處討論的步驟。
本發明實施例提供一種光學感測結構及其形成方法,特別是一種包括光準直層的光學感測結構,其利用位於光準直層下方的導通孔(through-substrate via,TSV)垂直導通堆疊的裝置,使訊號傳遞的方式由水平改成垂直傳輸。如此一來,可以增加裝置堆疊密度、縮小體積、以及提升電性能。此外,由於無須額外形成用於封裝的金屬導線、模製化合物(molding compound)、及封裝基板,可進一步縮減結構厚度,以及降低因熱膨脹係數不匹配所導致的缺陷。
此外,本發明實施例更進一步利用感測畫素陣列中未設置感測畫素的區域,將導通孔設置在感測畫素陣列中。有別於將導通孔設置在感測畫素陣列的外圍區域,將導通孔設置在感測畫素陣列中能更進一步縮小光學感測結構的體積,並提高基板利用率。
第1-7、8A、8B、9、10圖是根據本發明的一些實施例,繪示出用於形成第10圖之光學感測結構10的製程中之各個不同階段的製程剖面示意圖。
首先請參考第1圖,在一些實施例中,提供一基板100,其具有孔洞102。在一實施例中,上述基板100可為矽基板、矽鍺(silicon germanium,SiGe)基板、化合物半導體(compound semiconductor)基板、塊體半導體(bulk semiconductor)基板、絕緣體上覆半導體(semiconductor-on-insulator,SOI)基板或類似基板,其可為摻雜(例如,使用p-型或n-型摻質(dopant))或未摻雜的。一般而言,絕緣體上覆半導體基板包括形成於絕緣體上的半導體材料的膜層。舉例來說,此絕緣層可為,埋藏氧化物(buried oxide,BOX)層、氧化矽(silicon oxide)層、或類似層。提供上述絕緣層於基板上,通常是矽(silicon)或玻璃(glass)基板。亦可使用其他基板,例如多層(multi-layered)或梯度(gradient)基板。在一些實施例中,半導體基板之半導體材料可包括含矽(silicon,Si)或鍺(germanium,Ge)的元素半導體;包括碳化矽(silicon carbide)、砷化鎵(gallium arsenic)、磷化鎵(gallium phosphide)、磷化銦(indium phosphide)、砷化銦(indium arsenide)或銻化銦(indium antimonide)的化合物(compound)半導體;包括SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP、或GaInAsP的合金半導體;或上述之組合。
在一些實施例中,基板100可包含各種隔離部件(未繪示),用以定義主動區,並電性隔離基板100之中/之上的主動區元件。在一些實施例中,隔離部件包含淺溝槽隔離(shallow trench isolation,STI)部件、局部矽氧化(local oxidation of silicon,LOCOS)部件、其他合適的隔離部件、或上述之組合。
繼續參考第1圖,上述孔洞102位於將於後形成的感測畫素陣列200(請參考第5圖)的預定區,且將在後續製程中成為導通孔110(請參考第9圖),以將光學感測裝置10與其他裝置連接。上述孔洞102自基板100之頂表面100A朝向基板100之底表面100B延伸,但並未延伸至底表面100B。雖然在所繪示的實施例中,基板100具有三個孔洞102,但本發明實施例不限於此,上述基板100可以依實際設計需求而具有更多或更少數量的孔洞102,例如1個孔洞102。在一些實施例中,孔洞102之側壁102S可以與孔洞102之底表面102B夾一角度θ,上述角度θ在約90度至130度的範圍。舉例來說,上述角度θ可以為90度(即,孔洞102具有垂直的側壁)、或可以為92度(即,孔洞102具有傾斜的側壁)。在一些實施例中,孔洞102的深度在約25微米至約300微米,例如約100微米。在一些實施例中,孔洞102的直徑在約10微米至約150微米,舉例來說,為約50微米。在一些實施例中,孔洞102的深寬比(aspect ratio)在約1至20的範圍。可藉由適當的製程形成上述孔洞102,例如微影和蝕刻製程。
請參考第2圖,根據一些實施例,可在孔洞102的側壁102S和底表面102B上,以及在基板100之頂表面100A上順應地形成晶種層104。上述晶種層104可用於在後續製程(例如,電鍍(electrode plating)製程)中形成導電層106(如第3圖所示)。在一些實施例中,上述晶種層104之材料可以是導電材料,例如銅、鎢、鋁、類似材料、或上述之組合,且可以藉由化學氣相沉積(chemical vapor deposition,CVD)製程、原子層 沉積(atomic layer deposition,ALD)製程、物理沉積(physical vapor deposition,PVD)製程、其他合適的製程、或前述之組合來形成上述晶種層104。在一些實施例中,藉由上述方法所形成之晶種層104之厚度在約0.1微米至3微米。
請參考第3圖,根據一些實施例,在形成上述晶種層104之後,可以藉由電鍍製程在孔洞102內和基板100之頂表面100A上形成導電層106。在後續製程中,上述孔洞102、晶種層104、以及導電層106將共同構成導孔108(如第4圖所示)。在一些實施例中,上述導電層106可以包含金屬或其他合適的導電材料,例如:鎢、銅、鎳、鋁、多晶矽或前述之組合。
第4圖繪示出上述導孔108的形成。在一些實施例中,對基板100的頂表面100A進行第一平坦化製程,以去除孔洞102外過量的晶種層104和導電層106,並暴露基板100的頂表面100A。在一些實施例中,第一平坦化製程可以包括化學機械研磨(chemical mechanical polishing,CMP)製程、研磨(grinding)製程、蝕刻製程、其他合適的製程、或前述之組合。
請參考第5圖,在一些實施例中,在基板100中形成感測畫素陣列200,且上述感測畫素陣列200具有複數個感測畫素202。在一些實施例中,基板100可包含各種裝置元件。此些裝置元件並未繪示以求簡化及清晰。這些裝置元件可以包括電晶體、二極體、其他合適元件或上述之組合。舉例來說,電晶體可為金屬氧化物半導體場效電晶體(metal oxide semiconductor field effect transistor,MOSFET)、互補式金屬氧化物半導體(complementary metal oxide semiconductor,CMOS) 電晶體、雙極性接面電晶體(bipolar junction transistors,BJT)、高壓電晶體、高頻電晶體、p-通道及/或n-通道場效電晶體(PFETs/NFETs)等等。
在一些實施例中,上述基板100可以包括各種導電元件(例如:導線或導孔)(未繪示)。舉例來說,上述導電元件可由鋁(Aluminum)、銅(Copper)、鎢(Tungsten)、其他適當之導電材料、上述之合金、或上述之組合所形成。
繼續參考第5圖,上述導孔108位於感測畫素陣列200中,但不與上述感測畫素202垂直重疊。在一些實施例中,上述感測畫素202可與訊號處理電路(signal process circuitry)(未繪示)連接。在一些實施例中,感測畫素陣列200所具有之感測畫素202的數量取決於光學感測區的面積大小。每個感測畫素202可包含一或多個光偵測器(photodetector)。在一些實施例中,光偵測器可包含光電二極體,其中光電二極體可包含P型半導體層、本質層(intrinsic layer)、以及N型半導體層之三層結構的光電材料(photoelectric material),本質層吸收光以產生出激子(exciton),並且激子會在P型半導體層及N型半導體層的接面分成電子與電洞,進而產生電流訊號。在其他實施例中,光偵測器可也包含電荷耦合元件(charged coupling device,CCD)感測器、互補式金屬氧化物半導體(complimentary metal-oxide-semiconductor,CMOS)影像感測器、主動感測器、被動感測器、其他適合的感測器、或上述之組合。在一些實施例中,感測畫素202可藉由光偵測器將接收到的光訊號轉換成電子訊號,並透過訊號處理電路處理上述電子訊號。
在一些實施例中,如第5圖所示,在剖面示意圖中,感測畫素陣列200中的感測畫素202位於基板100的頂表面100A,且與上述導孔108錯開設置。值得注意的是,在第5圖所繪示之感測畫素陣列200的數量與排列方式僅為例示性的,本發明實施例並不以此為限,感測畫素202可為任何行列數目之陣列或其他的排列方式。
這種將導孔108與感測畫素202錯開且不垂直重疊的設置方式,可以充分利用感測畫素陣列中未設置感測畫素的區域,使將於後續製程中形成的導通孔設置在感測畫素陣列中。有別於將導通孔設置在感測畫素陣列的外圍區域,將導通孔設置在感測畫素陣列中能更進一步縮小光學感測結構的體積,並提高基板利用率。
請參考第6圖,形成設置於感測畫素陣列200之上並對應感測畫素202的複數個透光柱300。在一些實施例中,可先於基板100上毯覆性地形成透光材料層(未繪示),以覆蓋感測畫素陣列200。在一些實施例中,上述透光材料層可以包含透光材料,其對於在300奈米至1200奈米波長範圍下的光穿透率大於90%,從而允許部分入射光線穿過透光材料層而抵達感測畫素202。
在一些實施例中,上述透光材料層可以包含光固化材料(UV-curable material)、熱固化材料(thermosetting material)、或上述之組合。舉例來說,透光材料可包含例如聚甲基丙烯酸甲酯(poly(methyl methacrylate,PMMA)、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚萘二甲酸乙 二醇酯(polyethylene naphthalate,PEN)聚碳酸酯(Polycarbonate,PC)、全氟環丁基(perfluorocyclobutyl,PFCB)聚合物、聚亞醯胺(Polyimide,PI)、壓克力樹酯、環氧樹脂(Epoxy resins)、聚丙烯(Polypropylene,PP)、聚乙烯(polyethylene,PE)、聚苯乙烯(Polystyrene,PS)、聚氯乙烯(Polyvinyl chloride,PVC)、其他適當之材料、或上述之組合。可以使用旋轉塗佈法(spin-coating)、鑄模(casting)、棒狀塗佈(bar coating)、刮刀塗佈(blade coating)、滾筒塗佈(roller coating)、線棒塗佈(wire bar coating)、浸漬塗佈(dip coating)、化學氣相沉積法(CVD)、其他適合之方法、或上述之組合,以於基板100上沉積上述透光材料層。在一些實施例中,藉由上述方法所形成之透光材料層之厚度在約10至約300微米的範圍,例如可為100微米。在其他實施例中,透光材料層之厚度在約100至約500微米的範圍,例如可為300微米。
接著,選擇性移除形成於基板100上的透光材料層,如第6圖所示。在一些實施例中,由於上述透光柱300對應設置於感測畫素202之上,故而在剖面示意圖中,上述透光柱300及上述導孔108亦為不垂直重疊的,換句話說,上述透光柱300及上述導孔108為錯開設置的。在一些實施例中,對應設置於感測畫素202之上的透光柱300可保護感測畫素202,並減少或避免感測畫素202於製程中受到污染及/或損害,進而影響光學感測結構10的靈敏度。在一些實施例中,每一個透光柱300對應地設置於每一個感測畫素202之上,如第6圖所示。在其他實施例中,至少一個透光柱300覆蓋兩個以上之感測畫素 202(未繪示)。在一些實施例中,在上視圖中,上述透光柱300可以為圓形、矩形、多邊形、任何形狀、或前述之組合,並且排列成陣列(未繪示)。
在一些實施例中,可使用圖案化製程以選擇性去除上述透光材料層,以形成上述透光柱300。在其中上述透光材料層為非光阻材料的一些實施例中,圖案化製程可包含微影製程與蝕刻製程。微影製程可包含例如:光阻塗佈(例如旋轉塗佈)、軟烤、曝光圖案、曝光後烘烤、光阻顯影、清洗及乾燥(例如硬烤)、其他適當的製程、或上述之組合。蝕刻製程可包含例如:濕式蝕刻製程、乾式蝕刻製程(例如,反應離子蝕刻(reactive ion etching,RIE)、電漿蝕刻、離子研磨)、其他適合的製程、或上述之組合。
在其他實施例中,上述透光材料層可以是光阻材料,在此情況下,可藉由微影製程來圖案化上述透光材料層,以直接形成圖案化的透光柱300,而不需要額外經過蝕刻製程。上述微影製程類似於上述所提及的微影製程,故於此不再贅述。
在一些實施例中,藉由上述方法所形成之透光柱300之厚度在約10至約300微米的範圍,例如可為100微米。在其他實施例中,透光柱300之厚度在約100至約500微米的範圍,例如可為300微米。
接著,請參照第7圖,形成遮光層400於基板100上,並且填充於上述的複數個透光柱300之間。在一些實施例中,遮光層400可以包括光阻(例如:黑光阻或其他適當之非透明 的光阻)、油墨(例如:黑色油墨或其他適當之非透明的油墨)、模製化合物(molding compound,例如:黑色模製化合物或其他適當之非透明的模製化合物)、防焊材料(solder mask,例如:黑色防焊材料或其他適當之非透明的防焊材料)、其他合適的材料或上述之組合。
在一些實施例中,遮光層400可以是光固化材料、熱固化材料或上述之組合。在上述實施例中,可將遮光材料(未繪示)設置於基板100之上,且填充於複數個透光柱300之間,接著進行固化製程以固化上述遮光材料,以形成遮光層400。舉例而言,上述固化製程可為光固化製程、熱固化製程或上述組合。
在另一些實施例中,上述遮光層400可以包括金屬材料。在上述遮光層400包括金屬材料的一些實施例中,可藉由在形成上述透光柱300之前,先在基板100上沉積包含金屬材料的晶種層(未繪示),接著將上述晶種層圖案化,以露出基板100上的感測畫素202,同時保留位於導孔108上的晶種層。在上視圖中,上述圖案化晶種層與感測畫素202的形狀為互補(未繪示)。在形成上述透光柱300之後,進行電鍍製程,以形成填充於複數個透光柱300之間的遮光層400,如第7圖所示。在一些實施例中,藉由電鍍製程或其他適合的製程所產生的遮光層400之厚度可以高於、相等於、或低於上述透光柱300。在一些實施例中,遮光層400可包含銅(Copper)、鎳(Nickel)、其他適合的金屬材料、或前述之組合。
此外,在上述遮光層400包括金屬材料的一些實施 例中,可以額外形成遮光蓋500於遮光層400之上。在這類實施例中,上述遮光蓋500例如可包含樹脂遮光材料,其對於在300奈米至1200奈米波長範圍下的光穿透率小於1%。遮光材料可以包含光固化材料、熱固化材料、或上述之組合。在一些實施例中,於遮光層400上所形成的遮光蓋500可避免感測畫素202接收到不需要的光線,並可防止入射光學感測結構10之光線所產生之串音(crosstalk),進而提升光學感測結構10的效能。
在一些實施例中,可藉由旋轉塗佈法(spin-coating)、化學氣相沉積法(CVD)、其他適當之方法、或上述之組合將遮光蓋的材料形成於遮光層400上,並進行固化製程(例如,光固化製程、熱固化製程或上述組合),以固化遮光材料,接著可以進行圖案化製程,以形成在遮光層400之上的遮光蓋500。上述經過圖案化製程之遮光蓋500僅覆蓋於遮光層400之上,而不會覆蓋透光柱300。在一些實施例中,藉由上述方法所形成之遮光蓋500之厚度在約0奈米至約500奈米的範圍,例如可為100奈米。在其他實施例中,遮光蓋500之厚度在約10奈米至約500奈米的範圍,例如可為200奈米。
在一些實施例中,上述遮光蓋的材料可以包含非透明的碳黑、油墨、模製化合物、防焊材料、其他適當之材料、或上述之組合。在此情況下,上述的圖案化製程可包含微影製程與蝕刻製程。此處的微影製程與蝕刻製程可類似於前述關於第6圖中使用為非光阻材料來形成透光柱的實施例,故於此不再贅述。
在其他實施例中,上述遮光蓋的材料可以包含非 透明的光阻材料。在此情況下,類似於先前關於第6圖中使用光阻材料來形成透光柱的實施例,可以直接圖案化上述遮光蓋的材料以在遮光層400上形成遮光蓋500,而不需要額外經過蝕刻製程。
在一些實施例中,在形成遮光蓋500於遮光層400之上之前,可執行平坦化製程(例如化學機械研磨(CMP)製程)以平坦化遮光層400,使得遮光層400與透光柱300之頂面齊平。接著,於上述實施例中,形成於經過平坦化製程之遮光層400之上的遮光蓋500之頂面將會略高於透光柱300之頂面,即如第8A圖所繪示。舉例來說,遮光層400之上的遮光蓋500之頂面將會略高於透光柱300之頂面約10奈米。
在其他實施例中,可藉由控制電鍍製程的時間,使得形成於圖案化晶種層之上的遮光層400之頂面略低於透光柱300之頂面(例如遮光層400之頂面略低於透光柱300之頂面約10奈米至約10微米),並且形成遮光蓋500於此遮光層400與透光柱300之頂面之上,使得此遮光蓋500之頂面略高於透光柱300之頂面(例如遮光蓋500之頂面略高於透光柱300之頂面約為10奈米),接著可執行平坦化製程(例如化學機械研磨(CMP)製程)以平坦化遮光蓋500,使得遮光蓋500與透光柱300之頂面齊平,即如第8B圖所繪示。
根據本發明之一些實施例中,設置於上述感測畫素202上的透光柱300、填充在上述透光柱之間的遮光層400、以及對應設置於遮光層400上的遮光蓋500(如果有的話)之組合共同構成一光準直層600。此光準直層的功能在於準直 (collimate)光線,以減少因光發散所導致之能量損失。在一些實施例中,光準直層上方可包含其他光學元件,例如:彩色濾光片(color filter)、玻璃、透鏡等(未繪示)。在一些實施例中,入射的光線透過光準直層600上方的光學元件經過光準直層600導入至感測畫素202。其中,透光柱300的深寬比(aspect ratio)在2至30的範圍,例如可為5、10、15、或20。若透光柱700太高(即深寬比太大),則透光柱300容易變形或倒塌,而導致製程難度提高,相對地也將提高製程成本。若透光柱300太寬(即深寬比太小),則容易接收到不必要的入射光,難以達到準直效果,因而降低光學感測結構10的靈敏度。
在一些實施例中,光準直層上方可包含設置於光準直層之上的蓋板層(未繪示)。蓋板層可為硬質透光材料,例如:鋁矽酸鹽玻璃(calcium aluminosilicate glass)、鈉鈣玻璃(soda lime glass)、藍寶石(sapphire)、透明聚合物、或其他適合的材料,使得至少部分的入射光線能夠穿透而到達感測畫素202,並且此硬質蓋板能夠保護在其之下的光學感測結構10及其他元件。
後續以第8B圖之結構來繼續用於形成光學感測結構10的製程的說明,但應可理解,亦可以使用第7圖或第8A圖之結構來形成光學感測結構10。接下來請參考第9圖,在一些實施例中,對基板100的底表面100B進行背面薄化(backside thinning)製程,以形成貫穿基板100的導通孔110。上述導通孔110具有從基板100的第一表面100A(亦稱為頂表面100A)延伸至基板100之相對的第二表面100B’的貫孔102’。此外,晶種層 104位於貫孔102’內,且介於基板100及填充在貫孔102’中的導電層106之間。在一些實施例中,進行上述背面薄化製程直到露出上述導電層106,以去除位於導電層106下方的一部份之晶種層104,如第9圖所示。在另一些實施例中,進行背面薄化製程直到露出上述晶種層104,因此一部分之晶種層104位於導電層106下方(未繪示)。上述貫孔102’、晶種層104、以及導電層106之組合共同構成導通孔110。上述導通孔110之底表面與基板100之第二表面100B’齊平。
請參考第10圖,在一些實施例中,在進行上述第二平坦化製程之後,可以在基板100的第二表面100B’上形成導電部件90,上述導電部件90與相應導通孔110連接,以形成光學感測結構10。可藉由導通孔110透過上述導電部件90將光學感測結構10與其他裝置電連接。上述導電部件90可以包括導電墊、導電凸塊、導電柱、或上述之組合,且可以由鋁(Al)、銅(Cu)、鎢(W)、其他適當之導電材料、上述之合金、或上述之組合所形成。
在第10圖所示的實施例中,光學感測結構10包括位於基板100中的感測畫素陣列200、位於基板之上的光準直層600、以及由基板100之第一表面100A延伸至相對的第二表面100B’的導通孔110。上述感測畫素陣列200包括複數個感測畫素202。上述導通孔110位於上述感測畫素陣列200中,且不與上述感測畫素202垂直重疊。此種將導通孔110設置在感測畫素陣列200中而非感測畫素陣列200外圍的配置,能更進一步縮小光學感測結構10的體積,並提高基板利用率。此外,雖然第10 圖中將導通孔110及感測畫素202繪示為彼此鄰接,但本發明實施例並不限於此。舉例來說,導通孔110及感測畫素202可以是沒有彼此鄰接的,例如導通孔110的寬度可以小於相鄰感測畫素202之間的間距。
在本實施例中,上述光學感測結構10更包括導電部件90。上述導電部件90位於基板100的第二表面100B’上,且相應地連接至上述導通孔110。上述導電部件90包括導電墊、導電凸塊、導電柱、或上述之組合。
在本發明實施例中,上述導通孔110包括貫孔102’、填充於上述貫孔102’內的導電層106、以及設置在上述貫孔102’內,且介於上述導電層106及基板100之間的晶種層104。
在本發明實施例中,上述光準直層600包括對應設置於感測畫素202之上的複數個透光柱300、以及位於基板100之尚且填充於上述透光柱300之間的遮光層400。上述透光柱300可保護感測畫素202,並減少或避免感測畫素202於製程中受到污染及/或損害,進而影響光學感測結構10的靈敏度。上述透光柱300由透明材料所形成,且上述透明材料在300奈米至1200奈米波長範圍下的光穿透率大於90%。
根據上述實施例,在形成具有光準直層的光學感測結構時,可以利用位於光準直層下方的導通孔(through-substrate via,TSV)垂直導通堆疊的裝置,使訊號傳遞的方式由水平改成垂直傳輸。有別於傳統上在平面上拉長金屬導線,經過許多不同的結構層才能將指紋感測器連接至其他裝置的方式,使用導通孔來垂直導通堆疊的裝置可以增加裝置堆 疊密度、縮小體積、以及縮短傳導路徑,以進一步提升電性能。此外,由於無須額外形成用於封裝的金屬導線、模製化合物(molding compound)、及封裝基板,可進一步縮減結構厚度,以及降低因熱膨脹係數不匹配所導致的缺陷。
此外,本發明實施例更進一步利用感測畫素陣列中未設置感測畫素的區域,將導通孔設置在感測畫素陣列中。有別於將導通孔設置在感測畫素陣列的外圍區域,將導通孔設置在感測畫素陣列中能更進一步縮小光學感測結構的體積,並提高基板利用率。
值得注意的是,雖然此處所討論的範例所揭露的例示性實施方式係有關於指紋感測裝置,但本發明所提供之技術也可應用至其他型態的感測器,而不僅止於應用在偵測指紋的感測器裝置。舉例來說,亦可應用至生物感測器(biosensor)、醫學相關以及輻射研究等領域(例如,心跳、血氧等)的感測裝置中,並不侷限於上述實施例所揭露的範圍。
以上概略說明了本揭露數個實施例的特徵,使所屬技術領域內具有通常知識者對於本揭露可更為容易理解。任何所屬技術領域內具有通常知識者應瞭解到本說明書可輕易作為其他結構或製程的變更或設計基礎,以進行相同於本揭露實施例的目的及/或獲得相同的優點。任何所屬技術領域內具有通常知識者亦可理解與上述等同的結構或製程並未脫離本揭露之精神及保護範圍內,且可在不脫離本揭露之精神及範圍內,當可作更動、替代與潤飾。
10‧‧‧光學感測結構
90‧‧‧導電部件
100‧‧‧基板
100A‧‧‧頂表面(又稱為第一表面)
100B'‧‧‧第二表面
102’‧‧‧貫孔
104‧‧‧晶種層
106‧‧‧導電層
110‧‧‧導通孔
200‧‧‧感測畫素陣列
202‧‧‧感測畫素
300‧‧‧透光柱
400‧‧‧遮光層
500‧‧‧遮光蓋
600‧‧‧光準直層

Claims (20)

  1. 一種光學感測結構,包括:一感測畫素陣列,位於一基板中,其中該感測畫素陣列包括複數個感測畫素;一光準直層,位於該基板之上;以及至少一導通孔,由該基板的一第一表面延伸至相對的一第二表面,其中該至少一導通孔位於該感測畫素陣列中,且不與該些感測畫素垂直重疊。
  2. 如申請專利範圍第1項所述之光學感測結構,更包括至少一導電部件,位於該第二表面上且相應地連接於該至少一導通孔。
  3. 如申請專利範圍第2項所述之光學感測結構,其中該至少一導電部件包括導電墊、導電凸塊、導電柱、或上述之組合。
  4. 如申請專利範圍第1項所述之光學感測結構,其中該至少一導通孔包括:一貫孔;一導電層,填充於該貫孔內;以及一晶種層,設置於該貫孔內,且介於該導電層與該基板之間。
  5. 如申請專利範圍第1項所述之光學感測結構,其中該光準直層包括:複數個透光柱,對應設置於該感測畫素陣列之該些感測畫素之上;以及 一遮光層,位於該基板之上且填充於該些透光柱之間。
  6. 如申請專利範圍第5項所述之光學感測結構,其中該些透光柱由一透明材料所形成,並且該透明材料在300奈米至1200奈米波長範圍下的光穿透率大於90%。
  7. 如申請專利範圍第5項所述之光學感測結構,其中該些遮光層由光阻、油墨、模製化合物、防焊材料或上述之組合所形成。
  8. 如申請專利範圍第5項所述之光學感測結構,其中該些遮光層包括金屬材料。
  9. 如申請專利範圍第5項所述之光學感測結構,其中該光準直層更包括一遮光蓋,位於該遮光層之上。
  10. 如申請專利範圍第9項所述之光學感測結構,其中該遮光蓋為一樹脂遮光蓋,並且該樹脂遮光蓋在300奈米至1200奈米波長範圍下的光穿透率小於1%。
  11. 一種光學感測結構的形成方法,包括:在一基板中形成至少一導通孔;在該基板中形成一感測畫素陣列,其中該感測畫素陣列包括複數個感測畫素,且其中該至少一導通孔位於該感測畫素陣列中,且不與該些感測畫素垂直重疊;以及在該基板之上形成一光準直層。
  12. 如申請專利範圍第11項所述之光學感測結構的形成方法,更包括形成至少一導電部件,且該至少一導電部件與相應該至少一導通孔電性連接。
  13. 如申請專利範圍第12項所述之光學感測結構的形成方 法,其中該至少一導電部件包括導電墊、導電凸塊、導電柱、或上述之組合。
  14. 如申請專利範圍第11項所述之光學感測結構的形成方法,其中該至少一導通孔包括:一貫孔;一導電層,填充於該貫孔內;以及一晶種層,設置於該貫孔內,且介於該導電層與該基板之間。
  15. 如申請專利範圍第11項所述之光學感測結構的形成方法,其中形成該至少一導通孔的步驟包括,對該基板之底表面實施一平坦化製程,去除一部分該基板,以露出該至少一導通孔之底表面。
  16. 如申請專利範圍第11項所述之光學感測結構的形成方法,其中該光準直層包括:複數個透光柱,對應設置於該感測畫素陣列之該些感測畫素之上;以及一遮光層,位於該基板之上且填充於該些透光柱之間。
  17. 如申請專利範圍第16項所述之光學感測結構的形成方法,其中該些透光柱由一透明材料所形成,並且該透明材料在300奈米至1200奈米波長範圍下的光穿透率大於90%。
  18. 如申請專利範圍第16項所述之光學感測結構的形成方法,其中該些遮光層由光阻、油墨、模製化合物、防焊材料或上述之組合所形成。
  19. 如申請專利範圍第16項所述之光學感測結構的形成方法,其中該些遮光層包括金屬材料。
  20. 如申請專利範圍第16項所述之光學感測結構的形成方法,更包括於該遮光層之上設置一遮光蓋,其中該遮光蓋為一樹脂遮光蓋,並且該樹脂遮光蓋在300奈米至1200波長範圍下的光穿透率小於1%。
TW107138601A 2018-10-31 2018-10-31 光學感測結構及其形成方法 TWI686940B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107138601A TWI686940B (zh) 2018-10-31 2018-10-31 光學感測結構及其形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107138601A TWI686940B (zh) 2018-10-31 2018-10-31 光學感測結構及其形成方法

Publications (2)

Publication Number Publication Date
TWI686940B true TWI686940B (zh) 2020-03-01
TW202018925A TW202018925A (zh) 2020-05-16

Family

ID=70767113

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107138601A TWI686940B (zh) 2018-10-31 2018-10-31 光學感測結構及其形成方法

Country Status (1)

Country Link
TW (1) TWI686940B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI777742B (zh) * 2021-05-18 2022-09-11 友達光電股份有限公司 指紋辨識裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200834044A (en) * 2007-02-01 2008-08-16 Epson Imaging Devices Corp Display device
TW201135896A (en) * 2010-04-05 2011-10-16 Taiwan Semiconductor Mfg Semiconductor device package with through silicon vias
TW201337014A (zh) * 2012-03-09 2013-09-16 Univ Chang Gung 摻雜ⅲa族元素之氧化鎂鋅濺鍍靶材之製備方法
TW201812356A (zh) * 2016-09-06 2018-04-01 日月光半導體製造股份有限公司 光學裝置及其製造方法
US20180278869A1 (en) * 2013-01-31 2018-09-27 Apple Inc. Image Sensor Having Full Well Capacity Beyond Photodiode Capacity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200834044A (en) * 2007-02-01 2008-08-16 Epson Imaging Devices Corp Display device
TW201135896A (en) * 2010-04-05 2011-10-16 Taiwan Semiconductor Mfg Semiconductor device package with through silicon vias
TW201337014A (zh) * 2012-03-09 2013-09-16 Univ Chang Gung 摻雜ⅲa族元素之氧化鎂鋅濺鍍靶材之製備方法
US20180278869A1 (en) * 2013-01-31 2018-09-27 Apple Inc. Image Sensor Having Full Well Capacity Beyond Photodiode Capacity
TW201812356A (zh) * 2016-09-06 2018-04-01 日月光半導體製造股份有限公司 光學裝置及其製造方法

Also Published As

Publication number Publication date
TW202018925A (zh) 2020-05-16

Similar Documents

Publication Publication Date Title
CN210349840U (zh) 光学传感器
TWI765170B (zh) 光學感測器、光學感測系統及其製造方法
US9525001B2 (en) Semiconductor device and manufacturing method thereof
TWI646671B (zh) 晶片封裝體及其製造方法
US10522580B2 (en) Structure and formation method of light-sensing device
KR102456271B1 (ko) 후면 정렬 마크가 있는 bsi 칩
CN108122935A (zh) 图像传感器集成芯片及其形成方法
TWI791938B (zh) 光學感測器、光學感測系統以及光學感測器的製造方法
US10651218B1 (en) Optical sensor structure and method for forming the same
US10935805B2 (en) Optical sensor and method for forming the same
US9247116B2 (en) Image sensor device with light guiding structure
TWI686940B (zh) 光學感測結構及其形成方法
JP2016031993A (ja) 固体撮像装置及びカメラ
TWI697949B (zh) 半導體裝置及其形成方法
CN111199167B (zh) 光学感测结构及其形成方法
TW202011083A (zh) 光學感應器及其形成方法
TWI713231B (zh) 半導體裝置及其形成方法
TWI749927B (zh) 低折射率柵格結構及其形成方法
US10770602B1 (en) Optical sensor and method for forming the same
US11482552B2 (en) Semiconductor devices and methods for forming the same
TWI712959B (zh) 光學感測器及其形成方法
CN110970449B (zh) 光学感测器及其形成方法
TWI706573B (zh) 半導體裝置、其製造方法以及使用其之生物辨識設備
US20240120357A1 (en) Image sensor
CN112699866A (zh) 半导体装置及其形成方法