TWI670892B - 二次電池用正極活性物質及其製造方法 - Google Patents
二次電池用正極活性物質及其製造方法 Download PDFInfo
- Publication number
- TWI670892B TWI670892B TW104130844A TW104130844A TWI670892B TW I670892 B TWI670892 B TW I670892B TW 104130844 A TW104130844 A TW 104130844A TW 104130844 A TW104130844 A TW 104130844A TW I670892 B TWI670892 B TW I670892B
- Authority
- TW
- Taiwan
- Prior art keywords
- oxide
- active material
- positive electrode
- mass
- water
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/32—Alkali metal silicates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本發明提供一種為了獲得高性能之鋰離子二次電池或鈉離子二次電池而可有效地抑制水分之吸附的二次電池用正極活性物質及其製造方法。即,本發明係於至少包含鐵或錳之式(A):LiFeaMnbMcPO4、式(B):Li2FedMneNfSiO4、或式(C):NaFegMnhQiPO4所表示之氧化物上,擔載水不溶性導電性碳材料及使水溶性碳材料碳化而成之碳而成的二次電池用正極活性物質。
Description
本發明係關於一種於氧化物一併擔載水不溶性導電性碳材料、及使水溶性碳材料碳化而成之碳而成的二次電池用正極活性物質及其製造方法。
業界正開發攜帶型電子機器、油電混合車、電動汽車等所使用之二次電池,尤其是鋰離子二次電池作為於室溫附近動作之最優異之二次電池而廣為人知。其中,Li(Fe,Mn)PO4或Li2(Fe,Mn)SiO4等含鋰之橄欖石型磷酸金屬鹽與LiCoO2等鋰過渡金屬氧化物相比,不會受到資源限制之較大影響,而且可發揮出較高之安全性,因此成為最適於獲得高輸出且大電容之鋰離子二次電池之正極材料。然而,該等化合物具有因結晶構造而難以充分提高導電性之性質,又,鋰離子之擴散性亦存在改善之餘地,因此先前以來進行了各種開發。
進而,關於不斷普及之鋰離子二次電池,已知有如下現象:若充電後長時間放置,則內部電阻緩慢上升,產生電池性能之劣化。其原因在於,製造時電池材料所含有之水分於反覆進行電池之充放電之過程中自材料脫離,因該水分與充滿電池之非水電解液LiPF6之化學反應而產生氟化氫。為了有效地抑制此種電池性能之劣化,亦已知減少二次電池所使用之正極活性物質之水分含量較有效(參照專利文獻1)。
其中,例如於專利文獻2中揭示有如下技術:於包含碳質物質前
驅物之原料混合物之焙燒處理後,於乾燥氛圍下進行粉碎處理或分級處理,藉此將該水分含量減少至一定值以下。又,於專利文獻3中,揭示有如下技術:利用濕式球磨機將特定之磷酸鋰化合物或矽酸鋰化合物等與導電性碳材料混合之後,進行機械化學處理,藉此獲得於表面均勻地沈積導電性碳材料而成之複合氧化物。
另一方面,由於鋰為稀少有價物質,故而亦開始對使用鈉來代替鋰離子二次電池之鈉離子二次電池等進行各種研究。
例如,於專利文獻4中,揭示有使用鐵鹽(malysite)型NaMnPO4之鈉二次電池用活性物質,又,於專利文獻5中,揭示有包含具有橄欖石型結構之磷酸過渡金屬鈉之正極活性物質,於任一文獻中均揭示獲得了高性能之鈉離子二次電池。
[專利文獻1]日本專利特開2013-152911號公報
[專利文獻2]日本專利特開2003-292309號公報
[專利文獻3]日本專利特開2010-218884號公報
[專利文獻4]日本專利特開2008-260666號公報
[專利文獻5]日本專利特開2011-34963號公報
然而,於上述任一文獻所記載之技術中,亦判明如下情況:二次電池用正極活性物質之表面未被碳源充分被覆而有部分表面露出,因此無法抑制水分之吸附導致水分含量提高,難以獲得循環特性等電池物性充分高之二次電池用正極活性物質。
因此,本發明之課題在於提供為了獲得高性能之鋰離子二次電池或鈉離子二次電池而可有效地抑制水分之吸附的二次電池用正極活
性物質及其製造方法。
因此,本發明者等人進行各種研究後發現,若為於特定之氧化物上,擔載導電性碳粉末及使水溶性碳材料碳化而成之碳而成的二次電池用正極活性物質,則源自複數個碳源之碳有效率地被覆氧化物表面而可有效地抑制水分之吸附,因此作為鋰離子或鈉離子可有效地承擔導電之二次電池用正極活性物質極為有用,從而完成了本發明。
即,本發明提供一種二次電池用正極活性物質,其係於至少包含鐵或錳之下述式(A)、(B)或(C):LiFeaMnbMcPO4‧‧‧(A)
(式(A)中,M表示Mg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd或Gd;a、b及c表示滿足0≦a≦1、0≦b≦1、0≦c≦0.2、及2a+2b+(M之價數)×c=2且滿足a+b≠0之數)
Li2FedMneNfSiO4‧‧‧(B)
(式(B)中,N表示Ni、Co、Al、Zn、V或Zr。d、e及f表示滿足0≦d≦1、0≦e≦1、及0≦f<1、2d+2e+(N之價數)×f=2且滿足d+e≠0之數)
NaFegMnhQiPO4‧‧‧(C)
(式(C)中,Q表示Mg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd或Gd;g、h及i表示滿足0≦g≦1、0≦h≦1、0≦i<1、及2g+2h+(Q之價數)×i=2且滿足g+h≠0之數)
所表示之氧化物上,擔載水不溶性導電性碳材料、及使水溶性碳材料碳化而成之碳而成。
又,本發明提供一種二次電池用正極活性物質之製造方法,該二次電池用正極活性物質係於至少包含鐵或錳之下述式(A)、(B)或(C):
LiFeaMnbMcPO4‧‧‧(A)
(式(A)中,M表示Mg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd或Gd;a、b及c表示滿足0≦a≦1、0≦b≦1、0≦c≦0.2、及2a+2b+(M之價數)×c=2且滿足a+b≠0之數)
Li2FedMneNfSiO4‧‧‧(B)
(式(B)中,N表示Ni、Co、Al、Zn、V或Zr。d、e及f表示滿足0≦d≦1、0≦e≦1、及0≦f<1、2d+2e+(N之價數)×f=2且滿足d+e≠0之數)
NaFegMnhQiPO4‧‧‧(C)
(式(C)中,Q表示Mg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd或Gd;g、h及i表示滿足0≦g≦1、0≦h≦1、0≦i<1、及2g+2h+(Q之價數)×i=2且滿足g+h≠0之數)
所表示之氧化物上,擔載水不溶性導電性碳材料及使水溶性碳材料碳化而成之碳而成,該二次電池用正極活性物質之製造方法具備:步驟(I),其係將含有鋰化合物或鈉化合物、磷酸化合物或矽酸化合物、以及至少包含鐵化合物或錳化合物之金屬鹽之漿料水供於水熱反應而獲得氧化物X;步驟(II),其係對所獲得之氧化物X添加水不溶性導電性碳材料並進行乾式混合而獲得複合體Y;以及步驟(III),其係對所獲得之複合體Y添加水溶性碳材料進行濕式混合,並焙燒。
根據本發明,藉由水不溶性導電性碳材料及使水溶性碳材料碳化而成之碳互補且有效地擔載於特定之氧化物而成,而於氧化物表面之一部分中,有效地抑制不存在碳而露出氧化物之情況,因此可獲得
有效地減少了氧化物表面之露出部之二次電池用正極活性物質。因此,由於該正極活性物質可有效地抑制水分之吸附,故而於使用其之鋰離子二次電池或鈉離子二次電池中,鋰離子或鈉離子有效地承擔導電,並且於各種使用環境下均可穩定地表現循環特性等優異之電池特性。
以下,對本發明進行詳細說明。
本發明中使用之氧化物至少包含鐵或錳,且由下述式(A)、(B)或(C):LiFeaMnbMcPO4‧‧‧(A)
(式(A)中,M表示Mg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd或Gd;a、b及c表示滿足0≦a≦1、0≦b≦1、0≦c≦0.2、及2a+2b+(M之價數)×c=2且滿足a+b≠0之數)
Li2FedMneNfSiO4‧‧‧(B)
(式(B)中,N表示Ni、Co、Al、Zn、V或Zr。d、e及f表示滿足0≦d≦1、0≦e≦1、0≦f<1、及2d+2e+(N之價數)×f=2且滿足d+e≠0之數)
NaFegMnhQiPO4‧‧‧(C)
(式(C)中,Q表示Mg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd或Gd;g、h及i表示滿足0≦g≦1、0≦h≦1、0≦i<1、及2g+2h+(Q之價數)×i=2且滿足g+h≠0之數)
中之任一式表示。
該等氧化物均具有橄欖石型結構,且至少包含鐵或錳。於使用上述式(A)或式(B)所表示之氧化物之情形時,獲得鋰離子電池用正極
活性物質,於使用上述式(C)所表示之氧化物之情形時,獲得鈉離子電池用正極活性物質。
上述式(A)所表示之氧化物係所謂至少包含作為過渡金屬之鐵(Fe)及錳(Mn)之橄欖石型磷酸過渡金屬鋰化合物。式(A)中,M表示Mg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd或Gd,較佳為Mg、Zr、Mo或Co。a為0≦a≦1,較佳為0.01≦a≦0.99,更佳為0.1≦a≦0.9。b為0≦b≦1,較佳為0.01≦b≦0.99,更佳為0.1≦b≦0.9。c為0≦c≦0.2,較佳為0≦c≦0.1。而且,該等a、b及c為滿足2a+2b+(M之價數)×c=2且滿足a+b≠0之數。作為上述式(A)所表示之橄欖石型磷酸過渡金屬鋰化合物,具體而言,例如可列舉:LiFe0.2Mn0.8PO4、LiFe0.9Mn0.1PO4、LiFe0.15Mn0.75Mg0.1PO4、LiFe0.19Mn0.75Zr0.03PO4等,其中較佳為LiFe0.2Mn0.8PO4。
上述式(B)所表示之氧化物係所謂至少包含作為過渡金屬之鐵(Fe)及錳(Mn)之橄欖石型矽酸過渡金屬鋰化合物。式(B)中,N表示Ni、Co、Al、Zn、V或Zr,較佳為Co、Al、Zn、V或Zr。d為0≦d≦1,較佳為0≦d<1,更佳為0.1≦d≦0.6。e為0≦d≦1,較佳為0≦e<1,更佳為0.1≦e≦0.6。f為0≦f<1,較佳為0<f<1,更佳為0.05≦f≦0.4。而且,該等d、e及f為滿足2d+2e+(N之價數)×f=2且滿足d+e≠0之數。作為上述式(B)所表示之橄欖石型矽酸過渡金屬鋰化合物,具體而言,例如可列舉:Li2Fe0.45Mn0.45Co0.1SiO4、Li2Fe0.36Mn0.54Al0.066SiO4、Li2Fe0.45Mn0.45Zn0.1SiO4、Li2Fe0.36Mn0.54V0.066SiO4、Li2Fe0.282Mn0.658Zr0.02SiO4等,其中較佳為Li2Fe0.282Mn0.658Zr0.02SiO4。
上述式(C)所表示之氧化物係所謂至少包含作為過渡金屬之鐵(Fe)及錳(Mn)之橄欖石型磷酸過渡金屬鈉化合物。式(C)中,Q表示Mg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd或Gd,較
佳為Mg、Zr、Mo或Co。g為0≦g≦1,較佳為0<g≦1。h為0≦h≦1,較佳為0.5≦h<1。i為0≦i<1,較佳為0≦i≦0.5,更佳為0≦i≦0.3。而且,該等g、h及i為滿足0≦g≦1、0≦h≦1、及0≦i<1、2g+2h+(Q之價數)×i=2且滿足g+h≠0之數。作為上述式(C)所表示之橄欖石型磷酸過渡金屬鈉化合物,具體而言,例如可列舉:NaFe0.2Mn0.8PO4、NaFe0.9Mn0.1PO4、NaFe0.15Mn0.7Mg0.15PO4、NaFe0.19Mn0.75Zr0.03PO4、NaFe0.19Mn0.75Mo0.03PO4、NaFe0.15Mn0.7Co0.15PO4等,其中較佳為NaFe0.2Mn0.8PO4。
本發明之二次電池用正極活性物質係於上述式(A)、(B)或(C)所表示之氧化物上,擔載水不溶性導電性碳材料、及使水溶性碳材料碳化而成之碳(源自水溶性碳材料之碳)而成。即,其係作為碳源之水不溶性導電性碳材料及水溶性碳材料共存而成,源自一碳源之碳被覆氧化物表面,而且於不存在該碳而露出氧化物表面之部位,有效地擔載源自另一碳源之碳而成。因此,由於係該等水不溶性導電性碳材料與使水溶性碳材料碳化而成之碳相互作用而有效地抑制上述氧化物表面之露出,並且牢固地擔載於氧化物之整個表面而成,故而可有效地防止本發明之二次電池用正極活性物質中之水分吸附。
上述式(A)、(B)或(C)所表示之氧化物所擔載之水不溶性導電性碳材料係於25℃之水100g中之溶解量以水不溶性導電性碳材料之碳原子換算量計未達0.4g之水不溶性之碳材料,且係即便不進行焙燒等其本身亦具有導電性之碳源。作為該水不溶性導電性碳材料,可列舉選自石墨、乙炔黑、科琴黑、煙囪黑、爐黑、燈黑、及熱碳黑中之1種或2種以上。其中,就減少吸附水分量之觀點而言,較佳為石墨。作為石墨,可為人造石墨(鱗片狀、塊狀、土狀、石墨烯)、天然石墨之任一者。
就有效地減少吸附水分量之觀點而言,可使用之水不溶性導電
性碳材料之BET比表面積較佳為1~750m2/g,更佳為3~500m2/g。又,就相同觀點而言,該水不溶性導電性碳材料之平均粒徑較佳為0.5~20μm,更佳為1.0~15μm。
與上述水不溶性導電性碳材料一併以經碳化之碳之形式擔載於式(A)、(B)或(C)所表示之氧化物上之所謂水溶性碳材料意指於25℃之水100g中,以水溶性碳材料之碳原子換算量計溶解0.4g以上、較佳為1.0g以上之碳材料,其作為被覆上述式(A)~(C)所表示之氧化物表面之碳源而發揮功能。作為該水溶性碳材料,例如可列舉選自糖類、多元醇、聚醚、及有機酸中之1種或2種以上。更具體而言,例如可列舉:葡萄糖、果糖、半乳糖、甘露糖等單糖類;麥芽糖、蔗糖、纖維雙糖等二糖類;澱粉、糊精等多糖類;乙二醇、1,2-丙二醇、二乙二醇、聚乙二醇、丁二醇、1,3-丙二醇、聚乙烯醇、甘油等多元醇或聚醚;檸檬酸、酒石酸、抗壞血酸等有機酸。其中,就提高於溶劑中之溶解性及分散性而作為碳材料有效地發揮功能之觀點而言,較佳為葡萄糖、果糖、蔗糖、糊精,更佳為葡萄糖。
關於水不溶性導電性碳材料及水溶性碳材料之碳原子換算量,水不溶性導電性碳材料及經碳化之水溶性碳材料以擔載於上述氧化物之碳之形式共存於本發明之二次電池用正極活性物質中。該水不溶性導電性碳材料及水溶性碳材料之碳原子換算量相當於該等水不溶性導電性碳材料及使水溶性碳材料碳化而成之碳之合計擔載量,於本發明之二次電池用正極活性物質中以合計表示較佳為1.0~20.0質量%,更佳為2.0~17.5質量%,進而較佳為3.0~15.0質量%。具體而言,關於水不溶性導電性碳材料及水溶性碳材料之碳原子換算量,若為氧化物係由上述式(A)或(C)表示之二次電池用正極活性物質,則較佳為1.0~15.0質量%,更佳為2.0~13.5質量%,進而較佳為3.0~12.0質量%,若為氧化物係由上述式(B)表示之二次電池用正極活性物質,則較佳
為2.0~20.0質量%,更佳為3.0~17.5質量%,進而較佳為4.0~15.0質量%。
又,水溶性碳材料之碳原子換算量、即水溶性碳材料碳化而成之碳之擔載量於本發明之二次電池用正極活性物質中較佳為0.5~17.0質量%,更佳為0.5~13.5質量%,進而較佳為0.5~10.0質量%。具體而言,關於水溶性碳材料之碳原子換算量,若為氧化物係由上述式(A)或(C)表示之二次電池用正極活性物質,則較佳為0.5~10.0質量%,更佳為0.5~9.0質量%,進而較佳為0.5~8.0質量%,若為氧化物係由上述式(B)表示之二次電池用正極活性物質,則較佳為0.75~17.0質量%,更佳為0.75~13.5質量%,進而較佳為0.75~10.0質量%。
再者,存在於二次電池用正極活性物質中之水不溶性導電性碳材料及水溶性碳材料之碳原子換算量之合計量可作為使用碳-硫分析裝置所測得之總碳量進行確認。又,水溶性碳材料之碳原子換算量可藉由自使用碳-硫分析裝置所測得之上述合計碳量中減去水不溶性導電性碳材料之添加量而確認。
關於本發明之二次電池用正極活性物質,就水不溶性導電性碳材料與使水溶性碳材料碳化而成之碳互補並且有效率地擔載於上述(A)、(B)或(C)所表示之氧化物之觀點而言,較佳為於包含該氧化物及水不溶性導電性碳材料之複合體以碳化而成之碳之形式擔載水溶性碳材料而成者,具體而言,較佳為於在氧化物擔載水不溶性導電性碳材料而成之複合體上,擔載使水溶性碳材料碳化而成之碳而成者。
具體而言,上述水不溶性導電性碳材料較佳為與藉由水熱反應所獲得之氧化物乾式混合而擔載於氧化物而成者,更佳為與氧化物預混合之後,一面施加壓縮力及剪切力一面混合而擔載於氧化物而成者。即,包含上述氧化物及水不溶性導電性碳材料之複合體較佳為水不溶性導電性碳材料與作為水熱反應物之氧化物之乾式混合物。再
者,藉由焙燒水不溶性導電性碳材料而擔載於氧化物而成者係以包含氧化物及水不溶性導電性碳材料之複合體之形式獲得。又,該乾式混合時,亦可區別於下述濕式混合時所添加之水溶性碳材料而視需要輔助性地添加水溶性碳材料。此時獲得之複合體包含氧化物及水不溶性導電性碳材料以及水溶性碳材料。
關於以經碳化之碳之形式擔載於包含上述氧化物及水不溶性導電性碳材料之複合體之水溶性碳材料,就於該複合體中,於不存在水不溶性導電性碳材料而露出氧化物表面之部位進而有效地擔載碳之觀點而言,較佳為以藉由與上述複合體濕式混合之後,進行焙燒使之碳化而成之碳之形式擔載於氧化物而成者。即,本發明之二次電池用正極活性物質較佳為水溶性碳材料與包含氧化物及水不溶性導電性碳材料之複合體之濕式混合物的焙燒物。藉由用以將該水溶性碳材料碳化之焙燒,可恢復因乾式混合等而降低之氧化物及水不溶性導電性碳材料兩者之結晶性,因此可有效地提高所獲得之正極活性物質之導電性。再者,進行濕式混合時所使用之水溶性碳材料可為與上述乾式混合時視需要輔助性地使用之水溶性碳材料相同種類者,亦可為不同種類者。
更具體而言,本發明之二次電池用正極活性物質較佳為藉由具備以下步驟之製造方法所獲得者:步驟(I),其係將含有鋰化合物或鈉化合物、磷酸化合物或矽酸化合物、以及至少包含鐵化合物或錳化合物之金屬鹽之漿料水供於水熱反應而獲得氧化物X;步驟(II),其係對所獲得之氧化物X添加水不溶性導電性碳材料並進行乾式混合而獲得複合體Y;以及步驟(III),其係對所獲得之複合體Y添加水溶性碳材料進行濕式混合,並焙燒。
步驟(I)係將含有鋰化合物或鈉化合物、磷酸化合物或矽酸化合
物、以及至少包含鐵化合物或錳化合物之金屬鹽之漿料水供於水熱反應而獲得氧化物X之步驟。
作為可使用之鋰化合物或鈉化合物,可列舉:氫氧化物(例如LiOH‧H2O、NaOH)、碳酸化物、硫酸化物、乙酸化物。其中,較佳為氫氧化物。
漿料水中之鋰化合物或矽酸化合物之含量相對於水100質量份較佳為5~50質量份,更佳為7~45質量份。更具體而言,於步驟(I)中使用磷酸化合物之情形時,漿料水中之鋰化合物或鈉化合物之含量相對於水100質量份較佳為5~50質量份,更佳為10~45質量份。又,於使用矽酸化合物之情形時,漿料水中之矽酸化合物之含量相對於水100質量份較佳為5~40質量份,更佳為7~35質量份。
就提高漿料水所含有之各成分之分散性,並且將所獲得之正極活性物質之粒子微細化而謀求電池物性之提高之觀點而言,步驟(I)較佳為具備:步驟(Ia),其係對包含鋰化合物或鈉化合物之混合物A1混合磷酸化合物或矽酸化合物而獲得混合物A2;以及步驟(Ib),其係將對所獲得之混合物A2添加至少包含鐵化合物或錳化合物之金屬鹽並混合而獲得之漿料水X供於水熱反應而獲得氧化物X。
於步驟(I)或(Ia)中,較佳為於對混合物A1混合磷酸化合物或矽酸化合物之前預先攪拌混合物A1。該混合物A1之攪拌時間較佳為1~15分鐘,更佳為3~10分鐘。又,混合物A1之溫度較佳為20~90℃,更佳為20~70℃。
作為步驟(I)或(Ia)中使用之磷酸化合物,可列舉:正磷酸(H3PO4、磷酸)、偏磷酸、焦磷酸、三磷酸、四磷酸、磷酸銨、磷酸氫銨等。其中,較佳為使用磷酸,較佳為以70~90質量%濃度之水溶液之形式使用。於該步驟(I)或(Ia)中,對混合物A1混合磷酸時,較佳為一面攪拌混合物A1一面滴加磷酸。藉由對混合物A1滴加磷酸而逐次
少量地添加,而於混合物A1中良好地進行反應,上述(A)~(C)所表示之氧化物X之前驅物一面於漿料中均勻地分散一面被生成,亦可有效地抑制該氧化物之前驅物無謂地凝聚。
磷酸向上述混合物A1之滴加速度較佳為15~50mL/min,更佳為20~45mL/min,進而較佳為28~40mL/min。又,一面滴加磷酸一面攪拌混合物A1之時間較佳為0.5~24小時,更佳為3~12小時。進而,一面滴加磷酸一面攪拌混合物A1之速度較佳為200~700rpm,更佳為250~600rpm,進而較佳為300~500rpm。
再者,於攪拌混合物A1時,較佳為進而冷卻至混合物A1之沸點溫度以下。具體而言,較佳為冷卻至80℃以下,更佳為冷卻至20~60℃。
作為步驟(I)或(Ia)中使用之矽酸化合物,只要為具有反應性之氧化矽化合物,則無特別限定,可列舉非晶質氧化矽、Na4SiO4(例如Na4SiO4‧H2O)等。
混合磷酸化合物或矽酸化合物後之混合物A2較佳為相對於磷酸或矽酸1莫耳含有鋰或鈉2.0~4.0莫耳,更佳為含有2.0~3.1莫耳,為了成為如此之量,只要使用上述鋰化合物或鈉化合物、及磷酸化合物或矽酸化合物即可。更具體而言,於步驟(I)中使用磷酸化合物之情形時,混合磷酸化合物後之混合物A2較佳為相對於磷酸1莫耳含有鋰或鈉2.7~3.3莫耳,更佳為含有2.8~3.1莫耳,於步驟(I)中使用矽酸化合物之情形時,混合矽酸化合物後之混合物A2較佳為相對於矽酸1莫耳含有鋰2.0~4.0莫耳,更佳為含有2.0~3.0莫耳。
藉由對混合磷酸化合物或矽酸化合物後之混合物A2吹送氮氣,而使該混合物A2之反應完成,從而於混合物A2中生成上述(A)~(C)所表示之氧化物之前驅物。若吹送氮氣,則可於使混合物A2中之溶氧濃度減少之狀態下進行反應,又,亦有效地減少了所獲得之含有氧化物
之前驅物之混合物中之溶氧濃度,因此可抑制下一步驟中添加之鐵化合物或錳化合物等之氧化。於該混合物A2中,上述(A)~(C)所表示之氧化物之前驅物係以微細之分散粒子之形式存在。該氧化物之前驅物例如於上述式(A)所表示之氧化物之情形時係以磷酸三鋰(Li3PO4)之形式獲得。
吹送氮氣時之壓力較佳為0.1~0.2MPa,更佳為0.1~0.15MPa。又,混合磷酸化合物或矽酸化合物後之混合物A2之溫度較佳為20~80℃,更佳為20~60℃。例如於上述式(A)所表示之氧化物之情形時,反應時間較佳為5~60分鐘,更佳為15~45分鐘。
又,吹送氮氣時,就使反應良好地進行之觀點而言,較佳為攪拌混合磷酸化合物或矽酸化合物後之混合物A2。此時之攪拌速度較佳為200~700rpm,更佳為250~600rpm。
又,就更有效地抑制氧化物之前驅物之分散粒子表面之氧化、謀求分散粒子之微細化之觀點而言,較佳為將混合磷酸化合物或矽酸化合物後之混合物A2中之溶氧濃度設為0.5mg/L以下,更佳為設為0.2mg/L以下。
於步驟(I)或(Ib)中,繼而將含有所獲得之氧化物之前驅物、及至少包含鐵化合物或錳化合物之金屬鹽之漿料水供於水熱反應而獲得氧化物X。較佳為將所獲得之氧化物之前驅物以混合物之形式直接使用,且對其添加至少包含鐵化合物或錳化合物之金屬鹽而製成漿料水X。藉此,可簡化步驟且獲得上述(A)~(C)所表示之氧化物,並且能夠製成極其微細之粒子,可獲得非常有用之二次電池用正極活性物質。
作為可使用之鐵化合物,可列舉乙酸鐵、硝酸鐵、硫酸鐵等。該等可單獨使用1種,亦可將2種以上組合而使用。其中,就提高電池特性之觀點而言,較佳為硫酸鐵。
作為可使用之錳化合物,可列舉乙酸錳、硝酸錳、硫酸錳等。該等可單獨使用1種,亦可將2種以上組合而使用。其中,就提高電池特性之觀點而言,較佳為硫酸錳。
於使用鐵化合物及錳化合物兩者作為金屬鹽之情形時,該等鐵化合物及錳化合物之使用莫耳比(鐵化合物:錳化合物)較佳為99:1~1:99,更佳為90:10~10:90。又,該等鐵化合物及錳化合物之合計添加量相對於漿料水X中所含有之Li3PO4 1莫耳較佳為0.99~1.01莫耳,更佳為0.995~1.005莫耳。
進而,亦可視需要使用除鐵化合物及錳化合物以外之金屬(M、N或Q)鹽作為金屬鹽。金屬(M、N或Q)鹽中之M、N及Q與上述式(A)~(C)中之M、N及Q含義相同,作為該金屬鹽,可使用硫酸鹽、鹵素化合物、有機酸鹽、及該等之水合物等。該等可單獨使用1種,亦可使用2種以上。其中,就提高電池物性之觀點而言,更佳為使用硫酸鹽。
於使用該等金屬(M、N或Q)鹽之情形時,鐵化合物、錳化合物、及金屬(M、N或Q)鹽之合計添加量相對於上述步驟(I)中所獲得之混合物中之磷酸或矽酸1莫耳較佳為0.99~1.01莫耳,更佳為0.995~1.005莫耳。
關於供於水熱反應時所使用之水之使用量,就使用之金屬鹽之溶解性、攪拌之容易性、及合成效率等觀點而言,相對於漿料水X中所含有之磷酸根或矽酸根離子1莫耳較佳為10~50莫耳,更佳為12.5~45莫耳。更具體而言,於漿料水X中所含有之離子為磷酸根離子之情形時,供於水熱反應時所使用之水之使用量較佳為10~30莫耳,更佳為12.5~25莫耳。又,於漿料水X中所含有之離子為矽酸根離子之情形時,供於水熱反應時所使用之水之使用量較佳為10~50莫耳,更佳為12.5~45莫耳。
於步驟(I)或(Ib)中,鐵化合物、錳化合物及金屬(M、N或Q)鹽之添加順序並無特別限制。又,亦可與添加該等金屬鹽一併地視需要添加抗氧化劑。作為該抗氧化劑,可使用亞硫酸鈉(Na2SO3)、二硫亞磺酸鈉(Na2S2O4)、氨水等。就防止因過剩地添加而使上述式(A)~(C)所表示之氧化物之生成受到抑制之觀點而言,抗氧化劑之添加量相對於鐵化合物、錳化合物及視需要使用之金屬(M、N或Q)鹽之合計1莫耳較佳為0.01~1莫耳,更佳為0.03~0.5莫耳。
藉由添加鐵化合物、錳化合物及視需要使用之金屬(M、N或Q)鹽或抗氧化劑所獲得之漿料水X中之氧化物之前驅物之含量較佳為10~50質量%,更佳為15~45質量%,進而較佳為20~40質量%。
步驟(I)或(Ib)中之水熱反應只要為100℃以上即可,較佳為130~180℃。水熱反應較佳為於耐壓容器中進行,於130~180℃下進行反應之情形時,此時之壓力較佳為0.3~0.9MPa,於140~160℃下進行反應之情形時,壓力較佳為0.3~0.6MPa。水熱反應時間較佳為0.1~48小時,進而較佳為0.2~24小時。
所獲得之氧化物X為上述式(A)~(C)所表示之氧化物,可藉由過濾後利用水洗淨並進行乾燥而將其單離。再者,乾燥方法係使用冷凍乾燥、真空乾燥。
就效率良好地擔載共存而成之碳而有效地減少吸附水分量之觀點而言,所獲得之氧化物X之BET比表面積較佳為5~40m2/g,更佳為5~20m2/g。若氧化物X之BET比表面積未達5m2/g,則有二次電池用正極活性物質之一次粒子過大而導致電池特性降低之虞。又,若BET比表面積超過40m2/g,則有二次電池用正極活性物質之吸附水分量增大而對電池特性造成影響之虞。
步驟(II)係對步驟(I)中所獲得之氧化物X添加水不溶性導電性碳材料之後進行乾式混合而獲得複合體Y之步驟。除了水不溶性導電性
碳材料以外,亦可進而添加輔助之水溶性碳材料,於該情形時,該等之添加順序並無特別限制。水不溶性導電性碳材料之添加量例如相對於氧化物X 100質量份較佳為0.5~24.2質量份,更佳為1.5~20.5質量份,進而較佳為2.6~17.0質量份。具體而言,關於水不溶性導電性碳材料之添加量,若為氧化物係由上述式(A)或(C)表示之二次電池用正極活性物質,則較佳為0.5~17.0質量份,更佳為1.5~14.9質量份,進而較佳為2.6~13.0質量份,若為氧化物係由上述式(B)表示之二次電池用正極活性物質,則較佳為1.3~23.8質量份,更佳為2.3~20.1質量份,進而較佳為3.4~16.6質量份。
又,於該步驟(II)中併用水不溶性導電性碳材料及水溶性碳材料之情形時,水不溶性導電性碳材料之添加量與水溶性碳材料之添加量之碳原子換算量之質量比(水不溶性導電性碳材料:水溶性碳材料)較佳為100:2~3:100,更佳為100:10~10:100。
作為步驟(II)中之乾式混合,較佳為通常之利用球磨機之混合,更佳為利用能夠自轉公轉之行星式球磨機之混合。進而,就使水不溶性導電性碳材料、及視需要併用之水溶性碳材料緻密且均勻地分散於上述式(A)~(C)所表示之氧化物表面上、以碳化而成之碳之形式有效地擔載的觀點而言,進而較佳為一面施加壓縮力及剪切力一面混合複合體Y而製成複合體Y'。一面施加壓縮力及剪切力一面混合之處理較佳為於具備葉輪之密閉容器中進行。就提高所獲得之正極活性物質之敲緊密度(tap density)、而且減少BET比表面積而有效地減少吸附水分量之觀點而言,該葉輪之周速度較佳為25~40m/s,更佳為27~40m/s。又,混合時間較佳為5~90分鐘,更佳為10~80分鐘。
再者,所謂葉輪之周速度係指旋轉式攪拌葉片(葉輪)之最外端部之速度,可藉由下述式(1)表示,又,進行一面施加壓縮力及剪切力一面混合之處理之時間亦可以葉輪之周速度越慢則越長之方式根據葉
輪之周速度而變動。
葉輪之周速度(m/s)=葉輪之半徑(m)×2×π×轉數(rpm)÷60‧‧‧(1)
於步驟(II)中,進行上述一面施加壓縮力及剪切力一面混合之處理時之處理時間及/或葉輪之周速度需根據投入至容器之複合體Y之量而適當調整。而且,藉由使容器運轉,能夠進行於葉輪與容器內壁之間對該等混合物施加壓縮力及剪切力並且將其混合之處理,使水不溶性導電性碳材料、及視需要輔助性地併用之水溶性碳材料緻密且均勻地分散於上述式(A)~(C)所表示之氧化物表面上,而可獲得如下所述般亦與進而於步驟(III)中添加之水溶性碳材料相互作用而能夠有效地減少吸附水分量之二次電池正極活性物質。
例如,於在具備以周速度25~40m/s旋轉之葉輪之密閉容器內進行6~90分鐘之上述混合處理之情形時,投入至容器之複合體Y之量相對於有效容器(相當於具備葉輪之密閉容器中能夠收容複合體Y之部位的容器)1cm3較佳為0.1~0.7g,更佳為0.15~0.4g。
作為具備可容易地進行此種一面施加壓縮力及剪切力一面混合之處理之密閉容器之裝置,可列舉高速剪切研磨機、葉片型混練機等,具體而言,例如可較佳地使用微粒子複合化裝置Nobilta(Hosokawa Micron公司製造)。
作為上述混合之處理條件,處理溫度較佳為5~80℃,更佳為10~50℃。作為處理氛圍,並無特別限定,較佳為惰性氣體氛圍下、或還原氣體氛圍下。
步驟(III)係對步驟(I)中所獲得添加水溶性碳材料進行濕式混合,並焙燒之步驟。藉此,可有效地抑制上述(A)~(C)所表示之氧化物X之表面之露出,並且使水不溶性導電性碳材料及使水溶性碳材料碳化而成之碳一併牢固地擔載於該氧化物X。
就將使水溶性碳材料碳化而成之碳有效地擔載於不存在水不溶性導電性碳材料之氧化物X之表面、且保持充分之充放電電容的觀點而言,步驟(III)中之水溶性碳材料之添加量相對於複合體Y(或於上述步驟(II)中進而進行上述一面施加壓縮力及剪切力一面混合之處理之情形時為複合體Y',以下同樣)100質量份較佳為1.0~55.0質量份,更佳為1.0~40.0質量份,進而較佳為1.0~30.0質量份。
於步驟(III)中,就進而將使水溶性碳材料碳化而成之碳良好地擔載於氧化物表面之觀點而言,較佳為與水溶性碳材料一併添加水。水之添加量相對於複合體Y(或複合體Y')100質量份較佳為30~300質量份,更佳為50~250質量份,進而較佳為75~200質量份。藉由該水,於步驟(II)中輔助性地添加水溶性碳材料之情形時,可使擔載於複合體Y(或複合體Y')而成之輔助性地添加之水溶性碳材料溶解,發揮與步驟(III)中添加之水溶性碳材料相同之作用。
作為步驟(III)中之濕式混合方法,並無特別限制,可藉由常規方法進行。向複合體Y(或複合體Y')添加水溶性碳材料後進行混合時之溫度較佳為5~80℃,更佳為7~70℃。所獲得之混合物較佳為於焙燒前之期間進行乾燥。作為乾燥方法,可列舉噴霧乾燥、真空乾燥、冷凍乾燥等。
於步驟(III)中,對上述濕式混合中所獲得之混合物進行焙燒。焙燒較佳為於還原氛圍或惰性氛圍中進行。就提高水不溶性導電性碳材料之結晶性而提高導電性之觀點、及使水溶性碳材料更有效地碳化之觀點而言,焙燒溫度較佳為500~800℃,更佳為600~770℃,進而較佳為650~750℃。又,焙燒時間較佳為設為10分鐘~3小時,更佳為設為30分鐘~1.5小時即可。
本發明之二次電池用正極活性物質將上述水不溶性導電性碳材料及使水溶性碳材料碳化而成之碳一併擔載於上述氧化物而協同地作
用,可有效地減少二次電池用正極活性物質中之吸附水分量。具體而言,關於本發明之二次電池用正極活性物質之吸附水分量,若為氧化物由上述式(A)或(C)表示之二次電池用正極活性物質,則於二次電池用正極活性物質中較佳為850ppm以下,更佳為700ppm以下,若為氧化物由上述式(B)表示之二次電池用正極活性物質,則較佳為2900ppm以下,更佳為2500ppm以下。再者,關於該吸附水分量,於溫度20℃及相對濕度50%下吸附水分直至達到平衡,且升溫至溫度150℃並保持20分鐘,其後進而升溫至溫度250℃並保持20分鐘,此時,將自150℃再次開始升溫之時刻設為起點,將結束250℃下之恆溫狀態之時刻設為終點,作為於起點至終點期間揮發之水分量而測得之值即該吸附水分量,假設二次電池用正極活性物質之吸附水分量與上述於起點至終點期間揮發之水分量同量,將該揮發之水分量之測定值設為二次電池用正極活性物質之吸附水分量。
如此,本發明之二次電池用正極活性物質不易吸附水分,因此製造環境無需嚴格之乾燥條件而可有效地減少吸附水分量,關於所獲得之鋰離子二次電池及鈉離子二次電池之兩者,於各種使用環境下均能夠穩定地表現優異之電池特性。
再者,於溫度20℃及相對濕度50%下吸附水分直至達到平衡,且升溫至溫度150℃並保持20分鐘,其後進而升溫至溫度250℃並保持20分鐘時,將自150℃再次開始升溫之時刻設為起點、將結束250℃下之恆溫狀態之時刻設為終點的於起點至終點期間揮發之水分量例如可使用卡氏水分計進行測定。
又,就有效地減少吸附水分量之觀點而言,本發明之二次電池用正極活性物質之敲緊密度較佳為0.5~1.6g/cm3,更佳為0.8~1.6g/cm3。
進而,就有效地減少吸附水分量之觀點而言,本發明之二次電
池用正極活性物質之BET比表面積較佳為5~21m2/g,更佳為7~20m2/g。
作為可應用包含本發明之二次電池用正極活性物質之二次電池用正極之二次電池,只要為將正極、負極、電解液及隔離膜設為必需構成者,則無特別限定。
此處,關於負極,只要可於充電時吸藏鋰離子或鈉離子且於放電時釋放鋰離子或鈉離子,則其材料構成並無特別限定,可使用公知之材料構成。例如為鋰金屬、鈉金屬、石墨或非晶質碳等碳材料等。而且,較佳為使用可電化學性地吸藏、釋放鋰離子或鈉離子之嵌入材料(intercalate material)所形成之電極、尤其是碳材料。
電解液係於有機溶劑中溶解有支持電解質者。有機溶劑只要為通常鋰離子二次電池或鈉離子二次電池之電解液所使用之有機溶劑,則無特別限定,例如可使用碳酸酯類、鹵化烴、醚類、酮類、腈類、內酯類、氧雜環戊烷化合物等。
支持電解質之種類並無特別限定,於鋰離子二次電池之情形時,較佳為選自LiPF6、LiBF4、LiClO4、LiAsF6中之無機鹽、該無機鹽之衍生物、選自LiSO3CF3、LiC(SO3CF3)2、LiN(SO3CF3)2、LiN(SO2C2F5)2及LiN(SO2CF3)(SO2C4F9)中之有機鹽、以及該有機鹽之衍生物之至少1種。又,於鈉離子二次電池之情形時,較佳為選自NaPF6、NaBF4、NaClO4及NaAsF6中之無機鹽、該無機鹽之衍生物、選自NaSO3CF3、NaC(SO3CF3)2及NaN(SO3CF3)2、NaN(SO2C2F5)2及NaN(SO2CF3)(SO2C4F9)中之有機鹽、以及該有機鹽之衍生物之至少1種。
隔離膜發揮將正極與負極電性絕緣而保持電解液之作用。例如,使用多孔性合成樹脂膜、尤其是聚烯烴系高分子(聚乙烯、聚丙烯)之多孔膜即可。
以下,基於實施例對本發明進行具體說明,但本發明並不限定於該等實施例。
[實施例1-1]
將LiOH‧H2O 4.9kg、及水11.7kg混合而獲得漿料水。繼而,將所獲得之漿料水一面保持為25℃之溫度一面以速度400rpm攪拌30分鐘,並且以35mL/min滴加70%之磷酸水溶液5.09kg而獲得混合物A1。該混合漿料液之pH值為10.0,且相對於氫氧化鋰1莫耳含有0.33莫耳之磷酸。
其次,對所獲得之混合物A1以速度400rpm攪拌30分鐘並且吹送氮氣而完成混合物A1之反應(溶氧濃度0.5Mg/L)。繼而,對混合物A121.7kg添加FeSO4‧7H2O 1.63kg、MnSO4‧H2O 5.60kg,進而添加Na2SO3 0.0468kg並以速度400rpm攪拌、混合而獲得混合物A2。此時,所添加之FeSO4‧7H2O與MnSO4‧H2O之莫耳比(FeSO4‧7H2O:MnSO4‧H2O)為20:80。
繼而,將混合物A2投入至設置於蒸氣加熱式高壓釜內之合成容器。投入後,使用藉由隔膜分離裝置對水(溶氧濃度未達0.5mg/L)加熱而獲得之飽和蒸氣,於170℃下一面攪拌1小時一面加熱。高壓釜內之壓力為0.8MPa。將所生成之結晶過濾,繼而利用水洗淨。將洗淨後之結晶於60℃、1Torr之條件下真空乾燥,獲得氧化物X1(粉末,式(A)所表示之化學組成:LiFe0.2Mn0.8PO4)。
將所獲得之氧化物X1分取100g,藉由球磨機對其乾式混合石墨4g(高純度石墨粉末,日本石墨工業股份有限公司製造,BET比表面積5m2/g,平均粒徑6.1μm,以活性物質中之碳原子換算量計相當於3.8質量%)。對於所獲得之複合體Y1,使用Nobilta(Hosokawa Micron公司製造,NOB130)以40m/s(6000rpm)進行5分鐘之混合處理而獲得複合
體Y1'(粉末)。
將所獲得之複合體Y1'分取10g,對其添加葡萄糖0.25g(以活性物質中之碳原子換算量計相當於1.0質量%)及水10mL並混合,於80℃下進行12小時之乾燥,於還原氛圍下以700℃焙燒11小時,從而獲得於氧化物X1上擔載石墨及源自葡萄糖之碳而成之鋰離子二次電池用正極活性物質(LiFe0.2Mn0.8PO4,碳量=4.8質量%)。
[實施例1-2]
除將對複合體Y1'所添加之葡萄糖設為0.5g(以活性物質中之碳原子換算量計相當於2.0質量%)以外,以與實施例1-1相同之方法獲得鋰離子二次電池用正極活性物質(LiFe0.2Mn0.8PO4,碳量=5.8質量%)。
[實施例1-3]
除將對複合體Y1'所添加之葡萄糖設為0.75g(以活性物質中之碳原子換算量計相當於2.9質量%)以外,以與實施例1-1相同之方法獲得鋰離子二次電池用正極活性物質(LiFe0.2Mn0.8PO4,碳量=6.7質量%)。
[實施例1-4]
除將對複合體Y1'所添加之葡萄糖設為1.25g(以活性物質中之碳原子換算量計相當於4.8質量%)以外,以與實施例1-1相同之方法獲得鋰離子二次電池用正極活性物質(LiFe0.2Mn0.8PO4,碳量=8.6質量%)。
[實施例1-5]
除將FeSO4‧7H2O設為7.34kg,將MnSO4‧H2O設為0.7kg以外,以與實施例1-1相同之方法獲得氧化物X2(粉末,式(A)所表示之化學組成:LiFe0.9Mn0.1PO4),其後混合石墨4g(以活性物質中之碳原子換算量計相當於3.8質量%)而獲得複合體Y2及複合體Y2',繼而添加葡萄糖0.25g(以活性物質中之碳原子換算量計相當於1.0質量%),獲
得擔載石墨及源自葡萄糖之碳而成之鋰離子二次電池用正極活性物質(LiFe0.9Mn0.1PO4,碳量=4.8質量%)。
[比較例1-1]
除不對複合體Y2'添加葡萄糖以外,以與實施例1-5相同之方法獲得鋰離子二次電池用正極活性物質(LiFe0.9Mn0.1PO4,碳量=3.8質量%)。
[實施例2-1]
對LiOH‧H2O 0.428kg、Na4SiO4‧nH2O 1.40kg混合超純水3.75L而獲得漿料水。對該漿料水添加FeSO4‧7H2O 0.39kg、MnSO4‧5H2O 0.79kg、及Zr(SO4)2‧4H2O 0.053kg並混合。繼而,將所獲得之混合液投入至高壓釜,於150℃下進行12小時水熱反應。高壓釜之壓力為0.4MPa。將所生成之結晶過濾,繼而相對於結晶1質量份利用12質量份之水洗淨。將洗淨後之結晶於-50℃下冷凍乾燥12小時而獲得氧化物X3(粉末,式(B)所表示之化學組成:Li2Fe0.28Mn0.66Zr0.03SiO4)。
將所獲得之氧化物X3分取213.9g,藉由球磨機與石墨16.1g(以活性物質中之碳原子換算量計相當於7.0質量%)一併乾式混合。對於所獲得之複合體Y3,使用Nobilta(Hosokawa Micron公司製造,NOB130)以40m/s(6000rpm)進行5分鐘之混合處理而獲得複合體Y3'(粉末)。將所獲得之複合體Y3'分取5g,對其添加葡萄糖0.125g(以活性物質中之碳原子換算量計相當於1.0質量%)及水10mL並混合,於80℃下進行12小時之乾燥,於還原氛圍下以650℃焙燒1小時,從而獲得於氧化物X3擔載石墨及源自葡萄糖之碳而成之鋰離子二次電池用正極活性物質(Li2Fe0.28Mn0.66Zr0.03SiO4,碳量=8.0質量%)。
[實施例2-2]
除將對複合體Y3'所添加之葡萄糖設為0.25g(以活性物質中之碳
原子換算量計相當於2.0質量%)以外,以與實施例2-1相同之方法獲得鋰離子二次電池用正極活性物質(Li2Fe0.28Mn0.66Zr0.03SiO4,碳量=9.0質量%)。
[實施例2-3]
除將對複合體Y3'所添加之葡萄糖設為0.375g(以活性物質中之碳原子換算量計相當於2.9質量%)以外,以與實施例2-1相同之方法獲得鋰離子二次電池用正極活性物質(Li2Fe0.28Mn0.66Zr0.03SiO4,碳量=9.9質量%)。
[實施例2-4]
除將對複合體Y3'所添加之葡萄糖設為0.875g(以活性物質中之碳原子換算量計相當於6.8質量%)以外,以與實施例2-1相同之方法獲得鋰離子二次電池用正極活性物質(Li2Fe0.28Mn0.66Zr0.03SiO4,碳量=13.8質量%)。
[比較例2-1]
除不對複合體Y3'添加葡萄糖以外,以與實施例2-1相同之方法獲得鋰離子二次電池用正極活性物質(Li2Fe0.28Mn0.66Zr0.03SiO4,碳量=7.0質量%)。
[實施例3-1]
將NaOH 0.60kg與水9.0L混合而獲得溶液。繼而,將所獲得之溶液一面保持為25℃之溫度一面攪拌5分鐘,並且以35mL/min滴加85%之磷酸水溶液0.577kg,繼而,以400rpm之速度攪拌12小時,藉此獲得含有混合物A4之漿料。該漿料相對於磷1莫耳含有3.00莫耳之鈉。對於所獲得之漿料,吹送氮氣而將溶氧濃度調整為0.5mg/L之後,添加FeSO4‧7H2O 0.139kg、MnSO4‧5H2O 0.964kg、MgSO4‧7H2O 0.124kg。繼而,將所獲得之混合液投入至經氮氣沖洗過之高壓釜,於200℃下進行3小時水熱反應。高壓釜內之壓力為1.4MPa。將
所生成之結晶過濾,繼而相對於結晶1質量份利用12質量份之水洗淨。將洗淨後之結晶於-50℃下冷凍乾燥12小時而獲得氧化物X4(粉末,式(C)所表示之化學組成:NaFe0.1Mn0.8Mg0.1PO4)。
將所獲得之氧化物X4分取153.6g,藉由球磨機與石墨6.4g(以活性物質中之碳原子換算量計相當於4質量%)一併乾式混合。對於所獲得之複合體Y4,使用Nobilta(Hosokawa Micron公司製造,NOB130)以40m/s(6000rpm)進行5分鐘之混合處理而獲得複合體Y4'(粉末)。將所獲得之複合體Y4'分取5g,對其添加葡萄糖0.125g(以活性物質中之碳原子換算量計相當於1.0質量%)及水10mL並混合,於80℃下進行12小時乾燥,於還原氛圍下以700℃焙燒1小時,從而獲得於氧化物X4擔載石墨及源自葡萄糖之碳而成之鈉離子二次電池用正極活性物質(NaFe0.1Mn0.8Mg0.1PO4,碳量=5.0質量%)。
[實施例3-2]
除將對複合體Y4'所添加之葡萄糖設為0.25g(以活性物質中之碳原子換算量計相當於2.0質量%)以外,以與實施例3-1相同之方法獲得鈉離子二次電池用正極活性物質(NaFe0.1Mn0.8Mg0.1PO4,碳量=6.0質量%)。
[實施例3-3]
除將對複合體Y4'所添加之葡萄糖設為0.375g(以活性物質中之碳原子換算量計相當於2.9質量%)以外,以與實施例3-1相同之方法獲得鈉離子二次電池用正極活性物質(NaFe0.1Mn0.8Mg0.1PO4,碳量=6.9質量%)。
[實施例3-4]
除將對複合體Y4'所添加之葡萄糖設為0.92g(以活性物質中之碳原子換算量計相當於6.8質量%)以外,以與實施例3-1相同之方法獲得鈉離子二次電池用正極活性物質(NaFe0.1Mn0.8Mg0.1PO4,碳量=10.8
質量%)。
[比較例3-1]
除不對複合體Y4'添加葡萄糖以外,以與實施例3-1相同之方法獲得鈉離子二次電池用正極活性物質(NaFe0.1Mn0.8Mg0.1PO4,碳量=4.0質量%)。
《吸附水分量之測定》
實施例1-1~3-4及比較例1-1~3-1中所獲得之各正極活性物質之吸附水分量係依據下述方法進行測定。
對於正極活性物質(複合體粒子),於溫度20℃、相對濕度50%之環境靜置1日而吸附水分直至達到平衡,且升溫至溫度150℃並保持20分鐘,其後進而升溫至溫度250℃並保持20分鐘,此時,將自150℃再次開始升溫之時刻設為起點,將結束250℃下之恆溫狀態之時刻設為終點,對起點至終點期間揮發之水分量,利用卡氏水分計(MKC-610,京都電子工業股份有限公司製造)進行測定,並作為正極活性物質中之吸附水分量求出。
將結果示於表1。
《使用二次電池之充放電特性之評價》
使用實施例1-1~3-4及比較例1-1~3-1中所獲得之正極活性物質製作鋰離子二次電池或鈉離子二次電池之正極。具體而言,將所獲得之正極活性物質、科琴黑、聚偏二氟乙烯以質量比75:20:5之調配比率混合,且對其添加N-甲基-2-吡咯啶酮並充分混練,從而製備正極漿料。使用塗敷機將正極漿料塗佈至厚度20μm之包含鋁箔之集電體,且於80℃下進行12小時之真空乾燥。
其後,沖切成14mm之圓盤狀並使用手壓機以16MPa壓製2分鐘而製成正極。
繼而,使用上述正極組成硬幣型二次電池。負極係使用沖切成15mm之鋰箔。電解液係使用於將碳酸乙二酯及碳酸甲酯乙酯以體積比1:1之比率混合而成之混合溶劑以1mol/L濃度溶解有LiPF6(鋰離子二次電池之情形)或NaPF6(鈉離子二次電池之情形)者。隔離膜係使用聚丙烯等高分子多孔膜等公知者。將該等電池零件於露點為-50℃以下之氛圍下藉由常規方法併入收容,製造硬幣型二次電池(CR-2032)。
使用所製造之二次電池進行充放電試驗。於鋰離子電池之情形時,將充電條件設為電流1CA(330mA/g)、電壓4.5V之定電流定電壓充電,將放電條件設為1CA(330mA/g)、終止電壓1.5V之定電流放電,而求出1CA下之放電電容。於鈉離子電池之情形時,將充電條件設為電流1CA(154mA/g)、電壓4.5V之定電流定電壓充電,將放電條件設為1CA(154mA/g)、終止電壓2.0V之定電流放電,而求出1CA下之放電電容。進而,於相同之充放電條件下,反覆循環50次而進行試
驗,利用下述式(2)求出電容保持率(%)。再者,充放電試驗均於30℃下進行。
電容保持率(%)=(50次循環後之放電電容)/(1次循環後之放電電容)×100‧‧‧(2)
將結果示於表2。
根據上述結果可知,與比較例之正極活性物質相比,實施例之正極活性物質可確實地減少吸附水分量,並且於所獲得之電池中亦可發揮優異之性能。
Claims (8)
- 一種二次電池用正極活性物質,其係於至少包含鐵或錳之下述式(A)、(B)或(C):LiFeaMnbMcPO4‧‧‧(A)(式(A)中,M表示Mg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd或Gd;a、b及c表示滿足0≦a≦1、0≦b≦1、0≦c≦0.2、及2a+2b+(M之價數)×c=2且滿足a+b≠0之數)Li2FedMneNfSiO4‧‧‧(B)(式(B)中,N表示Ni、Co、Al、Zn、V或Zr;d、e及f表示滿足0≦d≦1、0≦e≦1、及0≦f<1、2d+2e+(N之價數)×f=2且滿足d+e≠0之數)NaFegMnhQiPO4‧‧‧(C)(式(C)中,Q表示Mg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd或Gd;g、h及i表示滿足0≦g≦1、0≦h≦1、0≦i<1、及2g+2h+(Q之價數)×i=2且滿足g+h≠0之數)所表示之氧化物上,擔載石墨、及源自葡萄糖之碳而成,氧化物由上述式(A)或(C)表示時,石墨及葡萄糖之碳原子換算量合計為3.0~12.0質量%,且源自葡萄糖之碳量為0.5~8.0質量%,氧化物由上述式(B)表示時,石墨及葡萄糖之碳原子換算量合計為4.0~15.0質量%,且源自葡萄糖之碳量為0.75~10.0質量%。
- 如請求項1之二次電池用正極活性物質,其中包含氧化物及石墨之複合體係石墨與作為水熱反應物之氧化物之乾式混合物。
- 如請求項1或2之二次電池用正極活性物質,其係葡萄糖與包含氧化物及石墨之複合體之濕式混合物之焙燒物。
- 一種二次電池用正極活性物質之製造方法,該二次電池用正極活性物質係於至少包含鐵或錳之下述式(A)、(B)或(C):LiFeaMnbMcPO4‧‧‧(A)(式(A)中,M表示Mg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd或Gd;a、b及c表示滿足0≦a≦1、0≦b≦1、0≦c≦0.2、及2a+2b+(M之價數)×c=2且滿足a+b≠0之數)Li2FedMneNfSiO4‧‧‧(B)(式(B)中,N表示Ni、Co、Al、Zn、V或Zr;d、e及f表示滿足0≦d≦1、0≦e≦1、及0≦f<1、2d+2e+(N之價數)×f=2且滿足d+e≠0之數)NaFegMnhQiPO4‧‧‧(C)(式(C)中,Q表示Mg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd或Gd;g、h及i表示滿足0≦g≦1、0≦h≦1、0≦i<1、及2g+2h+(Q之價數)×i=2且滿足g+h≠0之數)所表示之氧化物上,擔載石墨、及源自葡萄糖之碳而成,氧化物由上述式(A)或(C)表示時,石墨及葡萄糖之碳原子換算量合計為3.0~12.0質量%,且源自葡萄糖之碳量為0.5~8.0質量%,氧化物由上述式(B)表示時,石墨及葡萄糖之碳原子換算量合計為4.0~15.0質量%,且源自葡萄糖之碳量為0.75~10.0質量%者,該製造方法包括:步驟(I),其係將含有鋰化合物或鈉化合物、磷酸化合物或矽酸化合物、以及至少包含鐵化合物或錳化合物之金屬鹽之漿料水供於水熱反應而獲得氧化物X;步驟(II),其係對所獲得之氧化物X添加石墨並進行乾式混合而獲得複合體Y;以及步驟(III),其係對所獲得之複合體Y添加葡萄糖進行濕式混合,並於500~800℃下焙燒。
- 如請求項4之二次電池用正極活性物質之製造方法,其中於步驟(II)中與石墨一併添加葡萄糖。
- 如請求項4或5之二次電池用正極活性物質之製造方法,其中步驟(III)中之葡萄糖之添加量相對於複合體Y 100質量份為1.0~55.0質量份。
- 如請求項4或5之二次電池用正極活性物質之製造方法,其中步驟(II)中之乾式混合係將氧化物與石墨預混合,繼而一面施加壓縮力及剪切力一面混合。
- 如請求項6之二次電池用正極活性物質之製造方法,其中步驟(II)中之乾式混合係將氧化物與石墨預混合,繼而一面施加壓縮力及剪切力一面混合。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015060578 | 2015-03-24 | ||
JP2015-060578 | 2015-03-24 | ||
JP2015-178161 | 2015-09-10 | ||
JP2015178161A JP6042513B2 (ja) | 2015-03-24 | 2015-09-10 | 二次電池用正極活物質及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201635619A TW201635619A (zh) | 2016-10-01 |
TWI670892B true TWI670892B (zh) | 2019-09-01 |
Family
ID=57131969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104130844A TWI670892B (zh) | 2015-03-24 | 2015-09-17 | 二次電池用正極活性物質及其製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10601042B2 (zh) |
EP (1) | EP3276711B1 (zh) |
JP (1) | JP6042513B2 (zh) |
CN (1) | CN107408695B (zh) |
TW (1) | TWI670892B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024128295A1 (ja) * | 2022-12-16 | 2024-06-20 | 日本電気硝子株式会社 | 蓄電デバイス用正極材料の製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014063244A1 (en) * | 2012-10-22 | 2014-05-01 | HYDRO-QUéBEC | Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material |
JP2014191873A (ja) * | 2013-03-26 | 2014-10-06 | Taiheiyo Cement Corp | 二次電池用正極材料の製造方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4187524B2 (ja) | 2002-01-31 | 2008-11-26 | 日本化学工業株式会社 | リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池 |
JP5213213B2 (ja) * | 2006-11-27 | 2013-06-19 | 日立マクセル株式会社 | 電気化学素子用活物質、その製造方法、および電気化学素子 |
JP2008260666A (ja) | 2007-04-13 | 2008-10-30 | Kyushu Univ | ナトリウム二次電池用活物質およびその製造方法 |
JP5436896B2 (ja) | 2009-03-17 | 2014-03-05 | 日本化学工業株式会社 | リチウムリン系複合酸化物炭素複合体、その製造方法、リチウム二次電池用正極活物質及びリチウム二次電池 |
DE102009020832A1 (de) * | 2009-05-11 | 2010-11-25 | Süd-Chemie AG | Verbundmaterial enthaltend ein gemischtes Lithium-Metalloxid |
US20110008233A1 (en) | 2009-07-10 | 2011-01-13 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material |
JP2011181486A (ja) | 2009-08-28 | 2011-09-15 | Equos Research Co Ltd | 二次電池用電解液の評価方法 |
JP5672432B2 (ja) | 2010-03-12 | 2015-02-18 | 株式会社エクォス・リサーチ | 二次電池用正極 |
KR20120039472A (ko) | 2010-10-15 | 2012-04-25 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 축전 장치용 정극 활물질의 제작 방법 |
US9236611B2 (en) | 2011-07-04 | 2016-01-12 | Shoei Chemical Inc. | Cathode material for lithium ion secondary battery, cathode member, lithium ion secondary battery, and production method for said cathode material |
CA2754372A1 (en) | 2011-10-04 | 2013-04-04 | Hydro-Quebec | Positive-electrode material for lithium-ion secondary battery and method of producing same |
JP6292739B2 (ja) | 2012-01-26 | 2018-03-14 | Jx金属株式会社 | リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 |
WO2013128936A1 (ja) * | 2012-02-28 | 2013-09-06 | 株式会社豊田自動織機 | 活物質複合体及びその製造方法、非水電解質二次電池用正極活物質、並びに非水電解質二次電池 |
JP5478693B2 (ja) * | 2012-03-23 | 2014-04-23 | 太平洋セメント株式会社 | 二次電池用正極活物質及びその製造方法 |
WO2014134969A1 (zh) | 2013-03-04 | 2014-09-12 | 中国科学院苏州纳米技术与纳米仿生研究所 | 多孔磷酸锰锂-碳复合材料、其制备方法及应用 |
CN103545522A (zh) | 2013-07-10 | 2014-01-29 | 江苏华东锂电技术研究院有限公司 | 锂离子电池正极活性材料的制备方法 |
KR102277906B1 (ko) * | 2013-11-28 | 2021-07-15 | 삼성전자주식회사 | 양극 활물질, 이를 포함하는 이차전지, 및 이의 제조방법 |
US9203090B2 (en) * | 2014-01-13 | 2015-12-01 | The Gillette Company | Method of making a cathode slurry and a cathode |
-
2015
- 2015-09-10 JP JP2015178161A patent/JP6042513B2/ja active Active
- 2015-09-17 EP EP15886442.1A patent/EP3276711B1/en active Active
- 2015-09-17 CN CN201580078111.7A patent/CN107408695B/zh active Active
- 2015-09-17 US US15/560,749 patent/US10601042B2/en active Active
- 2015-09-17 TW TW104130844A patent/TWI670892B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014063244A1 (en) * | 2012-10-22 | 2014-05-01 | HYDRO-QUéBEC | Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material |
JP2014191873A (ja) * | 2013-03-26 | 2014-10-06 | Taiheiyo Cement Corp | 二次電池用正極材料の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3276711A1 (en) | 2018-01-31 |
EP3276711B1 (en) | 2020-11-11 |
JP2016181496A (ja) | 2016-10-13 |
TW201635619A (zh) | 2016-10-01 |
CN107408695B (zh) | 2020-11-13 |
JP6042513B2 (ja) | 2016-12-14 |
US10601042B2 (en) | 2020-03-24 |
US20180083280A1 (en) | 2018-03-22 |
EP3276711A4 (en) | 2018-08-08 |
CN107408695A (zh) | 2017-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6357193B2 (ja) | ポリアニオン系正極活物質及びその製造方法 | |
JP6042515B2 (ja) | 二次電池用正極活物質及びその製造方法 | |
JP5478693B2 (ja) | 二次電池用正極活物質及びその製造方法 | |
JP6101771B1 (ja) | ナトリウムイオン電池用正極活物質及びその製造方法 | |
JP6042514B2 (ja) | 二次電池用正極活物質及びその製造方法 | |
JP6042511B2 (ja) | 二次電池用正極活物質及びその製造方法 | |
JP6023295B2 (ja) | 二次電池用正極活物質及びその製造方法 | |
US11646405B2 (en) | Positive electrode active substance for secondary cell and method for producing same | |
JP2022174094A (ja) | 非水系電解質二次電池用正極活物質の製造方法、及び、成形体 | |
TWI676592B (zh) | 二次電池用正極活性物質及其製造方法 | |
WO2016143171A1 (ja) | 二次電池用正極活物質及びその製造方法 | |
JP2016072029A (ja) | リチウム二次電池用正極材料 | |
KR102385969B1 (ko) | 이차전지용 양극 활물질 및 그 제조방법 | |
TWI670892B (zh) | 二次電池用正極活性物質及其製造方法 | |
JP6307127B2 (ja) | リン酸リチウム系正極活物質の製造方法 | |
JP6205895B2 (ja) | オリビン型ケイ酸遷移金属リチウム化合物およびその製造方法 | |
JP7159588B2 (ja) | 非水系電解質二次電池用正極活物質の製造方法、及び、成形体 | |
KR102336781B1 (ko) | 이차전지용 양극 활물질 및 그 제조방법 | |
JP5798606B2 (ja) | リン酸マンガンリチウム正極活物質の製造方法 | |
JP5688126B2 (ja) | リン酸マンガンリチウム正極活物質の製造方法 |