TWI666318B - 在經轉形的微生物如巴斯德畢赤氏酵母中的多-複製策略用於多-次級單元的蛋白質如抗體之高效價且高純度生產技術 - Google Patents

在經轉形的微生物如巴斯德畢赤氏酵母中的多-複製策略用於多-次級單元的蛋白質如抗體之高效價且高純度生產技術 Download PDF

Info

Publication number
TWI666318B
TWI666318B TW101130127A TW101130127A TWI666318B TW I666318 B TWI666318 B TW I666318B TW 101130127 A TW101130127 A TW 101130127A TW 101130127 A TW101130127 A TW 101130127A TW I666318 B TWI666318 B TW I666318B
Authority
TW
Taiwan
Prior art keywords
antibody
desired antibody
pichia pastoris
sets
genes
Prior art date
Application number
TW101130127A
Other languages
English (en)
Other versions
TW201313899A (zh
Inventor
丹妮爾M 米歇爾
馬帝茲 李奧F 賈西亞
派翠西亞D 麥克尼爾
艾森W 歐加拉
麥梅特 伊南
約翰A 雷特漢
Original Assignee
美商艾爾德生物控股有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/466,795 external-priority patent/US11214610B2/en
Application filed by 美商艾爾德生物控股有限責任公司 filed Critical 美商艾爾德生物控股有限責任公司
Publication of TW201313899A publication Critical patent/TW201313899A/zh
Application granted granted Critical
Publication of TWI666318B publication Critical patent/TWI666318B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/036Fusion polypeptide containing a localisation/targetting motif targeting to the medium outside of the cell, e.g. type III secretion
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

揭露在經轉形的細胞中用於生產異源性多次級單元型蛋白質之方法。尤其,本揭露內容提供生產多次級單元型蛋白質之改進方法,該多次級單元型蛋白質包括可能會抑或可能不會被分泌出之抗體與其他多次級單元型蛋白質,該方法具有較高的產量及產生較少的非所欲副產物。在例示性實施例中,該經轉形的細胞係酵母,如嗜甲醇酵母及諸如巴斯德畢赤氏酵母(Pichia pastoris)。

Description

在經轉形的微生物如巴斯德畢赤氏酵母中的多-複製策略用於多-次級單元的蛋白質 如抗體之高效價且高純度生產技術 相關申請案之揭露內容
本申請案主張於2012年8月19日提出申請及標題為“在經轉形的微生物如巴斯德畢赤氏酵母中的多-複製策略用於多次級單元型蛋白質如抗體之高效價且高純度生產技術”之美國申請案序號第61/525,307號(代理人案號67858.730200)的利益,及該申請案係於2012年5月8日提出申請及標題為“在經轉形的微生物如巴斯德畢赤氏酵母中的多次級單元型蛋白質如抗體之高純度生產技術”之美國申請案序號第13/466,795號(代理人案號75820.711001)的部分延續申請案,其中各者皆在此完整地併入本案以為參考資料。
本申請案包括一序列表,其係於2012年8月16日創建且檔案名稱為“67858o730201.txt”及檔案大小為43,651位元之一檔案及業已經由EFS-Web以ASCII格式提交,其在此完整地併入本案以為參考資料。
發明領域
本揭露內容總體上係有關於在經轉形的細胞中用於生產異源性蛋白質之方法。尤其,本揭露內容提供生產多次級單元型蛋白質的改進方法,該多次級單元型蛋白質包括可能會抑或可能不會被分泌出的抗體與其他多次級單元型蛋白質諸如荷爾蒙與受體,該方法具有較高的產量及產生較少的非所欲副產物。在例示性實施例中,該經轉形的細胞係酵母,諸如巴斯德畢赤氏酵母(Pichia pastoris) 或啤酒酵母(Saccharomyces cerevisiae)。
發明背景
習知的抗體係由二個相同輕鏈與二個相同重鏈所組成的四聚體蛋白質。很難或不可能從天然來源純化供多種用途所用之足量之一特定類型的純人類抗體。結果,生物科技與製藥公司轉而採用重組DNA式方法,來大規模地製備抗體。功能性抗體的生產作用一般不僅涉及二種多肽的合成作用,亦涉及數個轉譯後事件,包括N端分泌訊號序列的蛋白質分解性處理;將多肽適當摺疊與組裝成為四聚體;形成雙硫鍵;及典型包括一種特異性N-鍵結型醣化作用。所有這些事件皆發生在真核細胞分泌途徑,即真核細胞特有的一胞器複合體中。
該等複合蛋白質的重組合成作用係典型仰賴高等真核細胞的培養作用,而產生具生物活性的物質,亦經常使用所培養的哺乳類動物細胞。然而,哺乳類動物組織培養式生產系統導致顯著的額外費用,及併發與微生物發酵方法相關的問題。此外,由哺乳類動物細胞培養所衍生的產物可能需要額外的安全性測試,以確保不含有在所培養細胞或在培養所用的動物衍生性產物諸如血清中可能存在的哺乳類動物病原體(包括病毒)。
先前的研究工作已有助於確認巴斯德畢赤氏酵母係用於生產功能性抗體之具成本效益的平臺,該功能性抗體具有適用於研究、診斷及治療的潛在用途。參見專利 權共有的第7,935,340與7,927,863號美國專利,其中各者在此完整地併入本案以為參考資料。文獻中亦已知用於供表現重組型蛋白質的巴斯德畢赤氏酵母發酵作用之設計與最佳化方法,包括最佳化細胞密度、培養液體積、基質進料速率及各反應階段的長度。參見美國紐澤西州托托瓦(Totowa)的胡馬納出版社(Humana Press)出版及由Cregg,J.M.所編輯之“分子生物學方法(Methods in Molecular Biology)”乙書第389期的“畢赤氏酵母屬操作程序(Pichia Protocols)”第二版(2007年)第43-63頁之Zhang等人所著“分批進料與連續發酵作用之循理設計與最佳化”乙文。
雖然可從所培養的細胞產生重組型多次級單元型蛋白質,亦可能產生非所欲的副產物。例如,所培養的細胞除了可產生所欲的多次級單元型蛋白質之外,還產生游離單體、化學配比不正確的複合體或具有非所欲或異常的醣化作用之蛋白質。所欲的多次級單元型蛋白質之純化作用會增加生產成本,及純化作用中所涉及的步驟可能降低活性複合體的總產量。此外,即使在純化作用之後,非所欲的副產物之存在量可能令人擔心。例如,醣化副產物的存在量可能增加投藥後免疫反應之風險,而異常的複合體或聚集體可能降低特異性活性,亦可能具有潛在的免疫原性。
發明概要
本揭露內容提供用於多次級單元型蛋白質諸如 抗體、荷爾蒙與受體及其他多次級單元型複合體的重組生產作用之改進方法與物質組成物,該方法具有較高的產量。該等多元多肽可包含二或多個相同或不同的次級單元(即同聚合型或雜聚合型多肽。在例示性實施例中,使用在此所揭露的方法,可使得所分泌的多次級單元型蛋白質產量或其細胞內產量增加至少50%,增加至少100%或更多(相對於習用方法而言)。
本揭露內容亦提供用於抗體與其他多次級單元型蛋白質的重組生產作用之改進方法與物質組成物,該方法減少非所欲的副產物之產生。在例示性實施例中,非所欲的副產物可為一醣化蛋白質,諸如一醣化抗體重鏈;相較於初始豐度水平(相對於習用方法而言),使用在此所揭露之方法可將其相對豐度減少至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或降至檢測不出的水平。其相對豐度可能被降低之例示性的非所欲副產物,可包括其表觀分子量係不同於所欲的多次級單元型複合體之一或多種物種。例如,表觀分子量可能因化學配比、摺疊、複合體的組裝及/或醣化作用方面之差異而受到影響。例如,可使用尺寸排阻層析法及/或凝膠電泳來檢測該等非所欲的副產物,及其等的表觀分子量可高於或低於所欲的多次級單元型複合體。在例示性實施例中,可在還原條件下檢測非所欲的副產物。在其他例示性實施例中,可在非還原條件下檢測非所欲的副產物。
在例示性實施例中,本揭露內容亦提供用於抗體與其他多次級單元型複合體的重組生產作用之改進方法與物質組成物,該方法具有較高的產量。在例示性實施例中,使用在此所揭露的方法之產量可增加至少10%、至少20%、至少30%、至少40%、至少50%、至少100%或更多(相對於習用方法而言)。
在例示性實施例中,在其中可產生多次級單元型蛋白質之宿主細胞可為酵母,例如畢赤氏酵母屬中之物種,諸如巴斯德畢赤氏酵母或另一種嗜甲醇酵母;或酵母屬(Saccharomyces)中之物種諸如啤酒酵母(S.cerevisiae);或諸如裂殖酵母屬(Schizosaccharomyces)之另一種酵母(如粟酒裂殖酵母(S.pombe))。可用於本發明中之嗜甲醇酵母的其他實例包括安格斯畢赤氏酵母(Pichia angusta)(在技藝中亦稱為多形漢遜氏酵母(Hansenula polymorpha))、季也蒙畢赤氏酵母(Pichia guillermordii)、嗜甲醇畢赤氏酵母(Pichia methanolica)、因諾托畢赤氏酵母(Pichia inositovera)、緒方奈川氏酵母(Ogataea nitratoaversa)及波伊德氏假絲酵母(Candida boidnii)。
就一方面而言,本揭露內容提供用於辨識出一宿主細胞之改進方法,而該宿主細胞係以較高產量產生一所欲的抗體或其他所欲的多次級單元型複合體,該方法可包括:(a)提供一組的宿主細胞,該組細胞係包含至少二種宿主細胞,該等宿主細胞各包含供表現該多次級單元型複合體的次級單元(如該所欲抗體的輕鏈與重鏈)之基因;(b)在 容許表現多次級單元型複合體的條件下培養各宿主細胞,其中該至少二種宿主細胞中之基因係提供該所欲的多次級單元型複合體之至少一個次級單元的不同表現水平;(c)測量各宿主細胞所產生的多次級單元型複合體產量;及(d)在該組宿主細胞中辨識出產量高於另一宿主細胞之宿主細胞,及作為以較高產量產生一所欲的多次級單元型複合體之宿主細胞。
就另一方面而言,本揭露內容提供用於辨識出一宿主細胞之改進方法,而該宿主細胞係以較高純度產生一所欲的抗體或其他所欲的多次級單元型複合體,該方法可包括:(a)提供一組的宿主細胞,該組細胞係包含至少二種宿主細胞,該等宿主細胞各包含供表現該多次級單元型複合體的次級單元(如該所欲抗體的輕鏈與重鏈)之基因;(b)在容許表現多次級單元型複合體的條件下培養各宿主細胞,其中該至少二種宿主細胞中之基因係提供該所欲的多次級單元型複合體之至少一個次級單元的不同水平;(c)測量由各宿主細胞所產生的該多次級單元型複合體之純度;及(d)在該組宿主細胞中辨識出所產生的純度高於另一宿主細胞之宿主細胞,及作為以較高純度產生一所欲的多次級單元型複合體之宿主細胞。
宿主細胞可為一種真核細胞,諸如一酵母細胞,諸如一嗜甲醇酵母。諸如畢赤氏酵母屬中的一酵母。畢赤氏酵母屬中的例示性嗜甲醇酵母包括巴斯德畢赤氏酵母、安格斯畢赤氏酵母(Pichia angusta)、季也蒙畢赤氏酵母 (Pichia guillermordii)、嗜甲醇畢赤氏酵母(Pichia methanolica)及因諾托畢赤氏酵母(Pichia inositovera)。宿主細胞可藉由配對作用產生,如藉由配對二種單倍體酵母細胞,而該單倍體酵母細胞各含有一或多套之編碼該多次級單元型複合體的一次級單元之至少一基因。例如,可產生多種單倍體細胞,而該等單倍體細胞含有該多次級單元型複合體之已知、不同套數的一或多個次級單元,使得不同的單倍體細胞組合之間的配對作用可快速產生一組的二倍體細胞,該等二倍體細胞各含有預先選定套數之編碼多次級單元型複合體的各次級單元之基因。此外,可產生多種二倍體細胞,而該等二倍體細胞含有該多次級單元型複合體之已知、不同套數的一或多個次級單元,使得不同的二倍體細胞組合之間的配對作用可快速產生一組的四倍體細胞,該等四倍體細胞各含有預先選定套數之編碼多次級單元型複合體的各次級單元之基因。
在一較佳實施例中,畢赤氏酵母屬中的嗜甲醇酵母係巴斯德畢赤氏酵母。該宿主細胞可為二倍體或四倍體細胞。
編碼所欲多次級單元型複合體的該次級單元諸如該所欲抗體輕鏈及/或重鏈之該等基因中的至少一者,可在一誘導性或持續性啟動子之控制下表現,諸如CUP1(由培養基中的銅水平所誘導;參見Koller等人於2000年期刊“Yeast”第16期第651-656頁乙文)、四環黴素誘導性啟動子(參見如Staib等人於2008年1月期刊“Antimicrobial Agents And Chemotherapy”第146-156頁乙文)、硫胺素誘導性啟動子、AOX1、ICL1、甘油醛-3-磷酸去氫酶(GAP)、FLD1、ADH1、醇去氫酶II、GAL4、PHO3、PHO5與Pyk啟動子、由其所衍生的嵌合啟動子、酵母啟動子、哺乳類動物啟動子、昆蟲啟動子、植物啟動子、爬蟲類啟動子、兩棲動物啟動子、病毒啟動子及禽類啟動子。
編碼所欲多次級單元型複合體的該次級單元諸如該所欲抗體輕鏈及/或重鏈之該等基因中的至少一者,可在一誘導性或持續性啟動子之控制下表現,諸如CUP1、AOX1、ICL1、甘油醛-3-磷酸去氫酶(GAP)、FLD1、ADH1、醇去氫酶II、GAL4、PHO3、PHO5與Pyk啟動子、四環黴素誘導性啟動子、硫胺素誘導性啟動子、由其所衍生的嵌合啟動子、酵母啟動子、哺乳類動物啟動子、昆蟲啟動子、植物啟動子、爬蟲類啟動子、兩棲動物啟動子、病毒啟動子及禽類啟動子。
宿主細胞可將該所欲的多次級單元型複合體分泌至培養基中。任擇地或者另外地,可將該所欲的多次級單元型複合體留置在該宿主細胞中,而可自宿主細胞中分離出來。
該宿主細胞可為二倍體、四倍體細胞或為多倍體。
該方法可進一步包括從該宿主細胞或從培養基純化該多次級單元型複合體。
可從該宿主細胞之一細胞內組分、細胞質、核質 或一膜,純化該多次級單元型複合體。
所欲的多次級單元型複合體可包含一抗體,諸如一種單特異性或雙特異性抗體。該抗體可為以特異性方式與任一抗原結合之一抗體。
該多次級單元型複合體可包含一人類抗體或一人源化抗體或其片段。
該人源化抗體可源自小鼠、大鼠、兔、山羊、綿羊或牛。
該人源化抗體可源自兔。
該多次級單元型複合體可包含一種單價、二價或多價抗體。
可藉由蛋白A及/或蛋白G親和性,從該培養體中純化該抗體。
在該組細胞的至少一種真核細胞中供表現該多次級單元型複合體的一次級單元之至少一基因,可針對在該真核細胞中的表現作用進行最佳化作用。
該組細胞中的至少二種宿主細胞可包含不同套數之編碼該多次級單元型複合體的次級單元之一基因,如不同套數之編碼一所欲抗體重鏈及/或該所欲的抗體輕鏈之一基因。
該組細胞中的至少一宿主細胞可包含至少二套之編碼該多次級單元型複合體的一次級單元之一基因,如至少二套之編碼一所欲抗體重鏈及/或該所欲的抗體輕鏈之一基因。
該組細胞中的至少一宿主細胞可包含編碼該所欲的多次級單元型複合體之一次級單元(諸如一所欲抗體重鏈或一所欲抗體輕鏈)之一基因,而驅動其表現作用的啟動子,可能不同於在該組的不同宿主細胞中驅動對應基因表現作用之啟動子。
該組細胞中的至少一宿主細胞可包含一個多順反子基因,其所包含之一種以上的序列係編碼該所欲的多次級單元型複合體之一或多個次級單元。
該所欲的多次級單元型複合體可包含一所欲抗體,其可能以特異性方式與任一抗原結合。例示性的非限制性實例包括IL-6、TNF-α、CGRP、PCSK9或NGF。
該所欲的多次級單元型複合體可包含一種任一類型的抗體。例示性抗體類型包括任一哺乳類動物物種的抗體,如人類、小鼠、大鼠、兔、山羊、綿羊、牛等。該抗體較佳為一人類抗體或可能源自兔之一人化抗體。所欲的抗體可為一種單價、二價或多價抗體。
在該組細胞的至少一宿主細胞中用於表現所欲的多次級單元型複合體之一次級單元諸如一所欲抗體輕鏈及/或重鏈之該等基因中的至少一者,可針對在該宿主細胞中的表現作用進行最佳化作用(如藉由選擇較佳的密碼子及/或經由密碼子選擇而改變AT百分比)。
如一些實施例中之工作實例所示,藉由使用重鏈套數多於輕鏈、輕鏈套數多於重鏈或輕鏈與重鏈套數相同之供表現用的宿主細胞,而進一步最佳化該抗體的產量及/ 或純度。
可藉由測量該宿主細胞所產生之所欲的多次級單元型複合體之非醣化、包含在具有預期表觀流體力學半徑及/或表觀分子量(如藉由尺寸排阻層析法測量)之複合體中、包含在具有預期電泳遷移率(如藉由凝膠電泳諸如SDS-PAGE及選擇性地藉由西方墨點法檢測)之複合體中的部分,及/或藉由測量該多次級單元型複合體的特異性活性(如一所欲抗體與一標的之特異性結合作用),而評估該所欲的多次級單元型複合體諸如一所欲抗體之純度。
所欲的多次級單元型複合體可為一抗體,可藉由測定由該宿主細胞所產生之所欲抗體的量,及扣除任何醣化、包含在具有預期表觀分子量或流體力學半徑之複合體以外的抗體複合體中及/或未能與該所欲抗體之標的特異性結合之產物相關變異體,而評估該抗體的產量。
就另一方面而言,本揭露內容提供重組產生一所欲的多次級單元型複合體諸如一所欲抗體之一種方法,其包括:(a)提供一宿主細胞,其包含編碼該所欲抗體的輕鏈與重鏈之一基因,其中藉由此述之方法辨識出該宿主細胞係以較高產量及/或純度產生一所欲抗體之一宿主細胞;及(b)在容許表現該輕鏈與重鏈基因的條件下培養該宿主細胞。該方法可進一步包括該所欲抗體的純化作用。
就另一方面而言,本揭露內容提供重組產生一所欲的多次級單元型複合體諸如一所欲抗體之一種方法,其包括:(a)提供一宿主細胞,其包含編碼該所欲抗體的輕鏈 與重鏈之多套基因,該宿主細胞產生一所欲抗體之產量及/或純度,係高於僅含有單套之編碼該所欲抗體輕鏈與重鏈的基因之同基因型宿主細胞;及(b)在容許表現該輕鏈與重鏈基因的條件下培養該宿主細胞。該方法可進一步包括該所欲抗體的純化作用。
該等方法可進一步包括培養作用,該培養作用係使用於2012年5月8日提出申請及標題為“在經轉形的微生物如巴斯德畢赤氏酵母中之多次級單元型蛋白質如抗體之高純度生產技術”之專利權共有的美國申請案序號第13/466,795號(代理人案號75820.711001)中所述方法及/或條件之培養作用,該申請案在此完整地併入本案以為參考資料。例如,該培養作用可包括在培養體中快速添加乙醇,例如使得最終濃度約為1%重量/重量。
例如,揭露內容之一方面係提供生產一種多次級單元型複合體之一種方法,其包括:(a)提供包含一真核細胞之一培養體,該真核細胞包含多套之供表現該多次級單元型複合體的次級單元之基因;(b)在該培養體中快速添加乙醇;及(c)培養該培養體而產生該多次級單元型複合體。
相對於在未快速添加乙醇的情況下所進行的相同方法,快速添加乙醇可增進形成安定的雙硫鍵。
該多次級單元型複合體可含有一或多種多肽,而該多肽包含至少一個雙硫鍵。
該多次級單元型複合體可包含一抗體。
相對於在未快速添加乙醇的情況下所進行的相 同方法,該方法可減少一或多種產物相關變異體的相對豐度。
相對於在未快速添加乙醇的情況下所進行的相同方法,該方法可減少表觀分子量高於或低於該所欲的多次級單元型複合體之產物相關變異體的相對豐度,表觀分子量係例如藉由尺寸排阻層析法或凝膠電泳檢測。
相對於在未快速添加乙醇的情況下所進行的相同方法,該方法可減少化學配比異常的複合體之相對豐度。
相對於在未快速添加乙醇的情況下所進行的相同方法,該方法可減少具有異常的雙硫鍵之複合體的相對豐度。
相對於在未快速添加乙醇的情況下所進行的相同方法,該方法可減少具有較少的半胱胺酸類之複合體的相對豐度。
相對於在未快速添加乙醇的情況下所進行的相同方法,該方法可減少具有異常醣化作用之複合體的相對豐度。
該方法可調控重鏈間雙硫鍵之形成作用或安定性。
該方法可調控連接輕鏈與重鏈的雙硫鍵之形成作用或安定性。
相對於在未快速添加乙醇的情況下所進行的相同方法,該方法可減少一或多種產物相關變異體的相對豐度。
該產物相關變異體可包含H1L1、H2L1及H4L4產物相關變異體中之一或多者。
該方法增加該抗體的純度,相對於在未快速添加乙醇的情況下所進行的該方法而言。
步驟(b)可在步驟(c)前進行。
步驟(b)可在步驟(c)後進行。
步驟(b)可與步驟(c)同時進行。
步驟(b)可能導致該培養體中的乙醇濃度介於約0.01%與約4%(重量/體積)之間。
步驟(b)所造成之該培養體中的乙醇濃度可能介於約0.01%與約4%之間、介於約0.02%與約3.75%之間、介於約0.04%與約3.5%之間、介於約0.08%與約3.25%之間、介於約0.1%與約3%之間、介於約0.2%與約2.75%之間、介於約0.3%與約2.5%之間、介於約0.4%與約2.25%之間、介於約0.5%與約1.5%之間、介於約0.5%與約2%之間、介於約0.6%與約1.75%之間、介於約0.7%與約1.5%之間或介於約0.8%與約1.25%之間。
步驟(b)所造成之該培養體中的乙醇濃度可能至少約0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%、0.10%、0.2%、0.3%、0.4%、0.6%、0.6%、0.7%、0.8%或0.9%(重量/體積)。
步驟(b)所造成之該培養體中的乙醇濃度可能至多約4%、3.5%、3%、2.5%、2%、1.8%、1.6%、1.5%、1.4%、1.3%、1.2%、1.1%、1.0%、0.9%、0.8%、0.7%、0.6%、0.5%、 0.4%、0.35%、0.3%、0.25%、0.2%或0.15%(重量/體積)。
步驟(b)可包括在該培養體中添加乙醇;在該培養體中添加含有乙醇的一載劑;在一培養基或含有乙醇的載劑中添加該等細胞;或置換部分的培養基。
可在1至20分鐘之期間內,在培養基中快速添加乙醇。
步驟(c)可包括對於該等細胞供氧。
該供氧作用可包括攪拌該培養體。
該供氧作用可包括使該培養體與包含氧的氣體混合物接觸。
步驟(c)可包括在該培養體中添加包含一碳源之進料。
該進料可包含至少一種發酵性碳源。
該進料可包含葡萄糖、乙醇、檸檬酸鹽、山梨糖醇、木糖、海藻糖、阿拉伯糖、半乳糖、果糖、蜜二糖、乳糖、麥芽糖、鼠李糖、核糖、甘露糖、甘露糖醇及棉子糖中之一或多者。
該方法可進一步包括在步驟(c)期間將乙醇濃度維持在高設定點與低設定點之間。
該低設定點可為約0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%、0.10%、0.2%、0.3%、0.4%、0.6%、0.6%、0.7%、0.8%或0.9%(重量/體積)。
該高設定點可為約4%、3.5%、3%、2.5%、2%、 1.8%、1.6%、1.5%、1.4%、1.3%、1.2%、1.1%、1.0%、0.9%、0.8%、0.7%、0.6%、0.5%、0.4%、0.35%、0.3%、0.25%、0.2%或0.15%(重量/體積)。
該高設定點至多可為約1.5%、1.4%、1.3、1.2%或1.1%(重量/體積)。
該方法可進一步包括在步驟(c)期間將乙醇濃度維持在一設定點。
該設定點可為約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、01.%、01.1%、01.2%、01.3%、01.4%,或01.5%(重量/體積)。
步驟(c)可包括將該培養體中的乙醇濃度維持在約0.01%與約4%之間、約0.02%與約3.75%之間、約0.04%與約3.5%之間、約0.08%與約3.25%之間、約0.1%與約3%之間、約0.2%與約2.75%之間、約0.3%與約2.5%之間、約0.4%與約2.25%之間、約0.5%與約2%之間、約0.6%與約1.75%之間、約0.7%與約1.5%之間或約0.8%與約1.25%之間。
可藉由控制該等細胞的乙醇生產作用或藉由在該培養體中添加乙醇,而維持培養體中的乙醇濃度。
控制乙醇生產作用之步驟可包括控制下列之一或多者:葡萄糖濃度、氧氣可利用性、攪拌強度、氣體壓力、所供應的空氣或其他氣體混合物之流速、培養體黏度、培養體密度、所供應的空氣或其他氣體混合物中之氧濃度及溫度。
步驟(a)與步驟(b)之間相隔的時間可少於約72小 時、少於約48小時、少於約24小時、少於約12小時、少於約9小時、少於約6小時、少於約5小時、少於約4小時、少於約3小時、少於約90分鐘、少於約30分鐘、少於約5分鐘或少於約1分鐘。
步驟(b)與步驟(c)之間相隔的時間可少於約10小時、少於約9小時、少於約8小時、少於約7小時、少於約6小時、少於約5小時、少於約4小時、少於約3小時、少於約2小時、少於約90分鐘、少於約80分鐘、少於約70分鐘、少於約60分鐘、少於約50分鐘、少於約40分鐘、少於約30分鐘、少於約20分鐘、少於約10分鐘、少於約5分鐘或少於約1分鐘。
可在該培養作用中添加一碳源而產生步驟(a)的培養體,及培養該培養體直至該碳源耗盡為止。
該碳源可包含甘油、葡萄糖、乙醇、檸檬酸鹽、山梨糖醇、木糖、海藻糖、阿拉伯糖、半乳糖、果糖、蜜二糖、乳糖、麥芽糖、鼠李糖、核糖、甘露糖、甘露糖醇及棉子糖中之一或多者。
藉由檢測該等真核細胞代謝活性之降低,而測定碳源之耗盡。
可藉由檢測該等真核細胞耗氧量之降低,藉由檢測培養體的pH值之增加,藉由檢測濕細胞質量之穩定化,或藉由檢測培養體中的氨濃度之增加,而確定該等真核細胞代謝活性之降低。
可藉由檢測該培養體中的溶氧濃度之增加,而確 定該等真核細胞耗氧量之降低。
該等真核細胞可包括酵母細胞。
該酵母細胞可包括嗜甲醇酵母。
該嗜甲醇酵母可屬於畢赤氏酵母屬。
畢赤氏酵母屬中的該嗜甲醇酵母可能是巴斯德畢赤氏酵母。
畢赤氏酵母屬中的該嗜甲醇酵母可能選自由安格斯畢赤氏酵母(Pichia angusta)、季也蒙畢赤氏酵母(Pichia guillermordii)、嗜甲醇畢赤氏酵母(Pichia methanolica)及因諾托畢赤氏酵母(Pichia inositovera)所組成之群組。
可將用於表現該多次級單元型複合體之基因嵌入一或多個基因座中。
該等基因座中之至少一者可選自由pGAP基因座、3’AOX TT基因座;PpURA5;OCH1;AOX1;HIS4;GAP;pGAP;3’AOX TT;ARG;及HIS4 TT基因座所組成之群組。
編碼該多次級單元型複合體的次級單元之基因中的至少一者,可在一誘導性或持續性啟動子之控制下表現。
該誘導性啟動子可選自由AOX1啟動子、CUP1啟動子、四環黴素誘導性啟動子、硫胺素誘導性啟動子及FLD1啟動子所組成之群組。
編碼該多次級單元型複合體的次級單元之基因 中的至少一者,可在選自由下列所組成之群組的一啟動子之控制下表現:CUP1、AOX1、ICL1、甘油醛-3-磷酸去氫酶(GAP)、FLD1、ADH1、醇去氫酶II、GAL4、PHO3、PHO5與Pyk啟動子、四環黴素誘導性啟動子、硫胺素誘導性啟動子、由其所衍生的嵌合啟動子、酵母啟動子、哺乳類動物啟動子、昆蟲啟動子、植物啟動子、爬蟲類啟動子、兩棲動物啟動子、病毒啟動子及禽類啟動子。
該真核細胞可為二倍體、四倍體細胞或為多倍體。
該方法可進一步包括從該等真核細胞或從培養基純化該多次級單元型複合體。
可從該等真核細胞的一細胞內組分、細胞質、核質或一膜,純化該多次級單元型複合體。
該等真核細胞將該多次級單元型複合體分泌至培養基中。
可從該培養基中純化該多次級單元型複合體。
該多次級單元型複合體可包含一種單特異性或雙特異性抗體。
該多次級單元型複合體可包含一人類抗體或一人化抗體或其片段。
該人化抗體可源自小鼠、大鼠、兔、山羊、綿羊或牛。
該人化抗體可源自兔。
該多次級單元型複合體可包含一種單價、二價 或多價抗體。
可藉由蛋白A及/或蛋白G親和性,從該培養體中純化該抗體。
在該組細胞的至少一種真核細胞中表現該多次級單元型複合體的一次級單元之至少一基因,可針對在該真核細胞中的表現作用進行最佳化作用。
該多次級單元型複合體可包含一抗體,及可藉由測量由該真核細胞所產生及可能包含在具有預期表觀流體力學半徑之抗體複合體中、可能包含在具有預期分子量之抗體複合體中及/或與該抗體的一標的特異性結合之抗體部分,而評估該抗體的純度。
該多次級單元型複合體可包含一抗體,及可藉由測定由該真核細胞所產生的抗體量及扣除可能經異常糖化、包含在具有預期表觀流體力學半徑之複合體以外的抗體複合體中、包含在具有預期分子量之抗體複合體中及/或未能與該抗體的標的特異性結合的任一產物相關變異體,而評估該抗體產量。
可藉由非還原性SDS-PAGE,測定該抗體複合體的分子量。
該多次級單元型複合體可包含一抗體,該方法可進一步包括該抗體的純化作用。
該細胞培養所產生的上清液抗體效價可為至少100毫克/公升、至少150毫克/公升、至少200毫克/公升、至少250毫克/公升、至少300毫克/公升、介於100與300毫克/ 公升之間、介於100與500毫克/公升之間、介於100與1000毫克/公升之間、至少1000毫克/公升、至少1250毫克/公升、至少1500毫克/公升、至少約1750毫克/公升、至少約2000毫克/公升、至少約10000毫克/公升或更高。
該多次級單元型複合體的一或多個次級單元可由一套以上的基因來表現。
該多次級單元型複合體可包含一抗體,該抗體可由介於1至10套之間之編碼該抗體輕鏈的一基因表現,及由介於1至10套之間之編碼該抗體重鏈的一基因表現。
可將用於表現該多次級單元型複合體之基因嵌入該等細胞的基因體中。
用於表現該多次級單元型複合體之基因可能包含在一染色體外因子、質體或人工染色體上。
該等細胞所包含之供表現該抗體輕鏈之基因的套數,可能多於供表現該抗體重鏈之基因的套數。
在該等細胞中之編碼該抗體重鏈之基因的套數與編碼該抗體輕鏈之基因的套數可分別為:2與2、2與3、3與3、3與4、3與5、4與3、4與4,4與5、4與6、5與4、5與5、5與6或5與7。
在該等細胞中之編碼該抗體重鏈之基因的套數與編碼該抗體輕鏈之基因的套數可分別為:2與1、3與1、4與1、5與1、6與1、7與1、8與1、9與1、10與1、1與2、2與2、3與2、4與2、5與2、6與2、7與2、8與2、9與2、10與2、1與3、2與3、3與3、4與3、5與3、6與3、7與3、8與3、9與 3、10與3、1與4、2與4、3與4、4與4、5與4、6與4、7與4、8與4、9與4、10與4、1與5、2與5、3與5、4與5、5與5、6與5、7與5、8與5、9與5、10與5、1與6、2與6、3與6、4與6、5與6、6與6、7與6、8與6、9與6、10與6、1與7、2與7、3與7、4與7、5與7、6與7、7與7、8與7、9與7、10與7、1與8、2與8、3與8、4與8、5與8、6與8、7與8、8與8、9與8、10與8、1與9、2與9、3與9、4與9、5與9、6與9、7與9、8與9、9與9、10與9、1與10、2與10、3與10、4與10、5與10、6與10、7與10、8與10、9與10、10與10。
步驟(c)的培養體可在一生產培養基中生長。
該生產培養基可為一種基本培養基。
該基本培養基係缺少篩選劑。
該基本培養基係缺少預先形成的胺基酸或其他複合生物分子。
該生產培養基可為一種複合培養基。
該複合培養基可包含酵母萃取物、大豆蛋白腖類及其他植物腖類中之一或多者。
步驟(c)的培養體可生長達到高細胞密度。
該高細胞密度可為至少50克/公升。
該高細胞密度可為至少100克/公升。
該高細胞密度可為至少300克/公升。
該高細胞密度可為至少400克/公升。
該高細胞密度可為至少500克/公升。
該高細胞密度可為至少750克/公升。
酵母細胞可培養達到至少20次倍增,及在該至少20次倍增之後,仍維持該多次級單元型複合體的高水平表現作用。
步驟(c)的細胞可培養達到至少50次倍增,及在該至少50次倍增之後,仍維持該多次級單元型複合體的高水平表現作用。
步驟(c)的細胞可培養達到至少100次倍增,及在該至少100次倍增之後,仍維持該多次級單元型複合體的高水平表現作用。
該多次級單元型複合體的至少一個次級單元可包含一分泌訊號。
該多次級單元型複合體可包含一抗體。
本發明方法所產生的上清液抗體效價可為至少100毫克/公升、至少150毫克/公升、至少200毫克/公升、至少250毫克/公升、至少300毫克/公升、介於100與300毫克/公升之間、介於100與500毫克/公升之間、介於100與1000毫克/公升之間,或超過1000毫克/公升,如高達1200毫克/公升、高達10,000毫克/公升或更高。
就另一方面而言,本揭露內容提供藉由前述任一方法所辨識出之一宿主細胞,而作為以較高產量及/或純度產生一所欲多次級單元型複合體諸如一所欲抗體之一宿主細胞。該宿主細胞可為畢赤氏酵母屬中的一種二倍體或四倍體細胞,諸如巴斯德畢赤氏酵母細胞。就另一方面而言,本揭露內容提供由前述宿主細胞所衍生之一種二倍體 或四倍體酵母培養體。可將供表現該所欲的多次級單元型複合體的次級單元諸如一所欲抗體的輕鏈與重鏈之基因,嵌入該宿主細胞的基因體中。供表現該所欲的多次級單元型複合體的次級單元諸如一所欲抗體的輕鏈與重鏈之基因,可能包含在一染色體外因子、質體或人工染色體上。當所欲的多次級單元型複合體係一抗體時,該宿主細胞所包含之供表現輕鏈之基因的套數,可能多於供表現重鏈之基因的套數。在例示性實施例中,該宿主細胞可包含1至10套之編碼輕鏈的一基因與1至10套之編碼重鏈的一基因。在該宿主細胞中之編碼重鏈之基因的個別套數與編碼輕鏈之基因的個別套數可分別為:2與2、2與3、3與3、3與4、3與5、4與3、4與4、4與5、4與6、5與4、5與5、5與6或5與7。重鏈與輕鏈基因套數的其他例示性組合,係列舉於圖37中,其中列舉具有高達10套的重鏈及/或輕鏈基因之組合,包括具有下列標識符號之菌株:H2xL1、H3xL1、H4xL1、H5xL1、H6xL1、H7xL1、H8xL1、H9xL1、H10xL1、H1xL2、H2xL2、H3xL2、H4xL2、H5xL2、H6xL2、H7xL2、H8xL2、H9xL2、H10xL2、H1xL3、H2xL3、H3xL3、H4xL3、H5xL3、H6xL3、H7xL3、H8xL3、H9xL3、H10xL3、H1xL4、H2xL4、H3xL4、H4xL4、H5xL4、H6xL4、H7xL4、H8xL4、H9xL4、H10xL4、H1xL5、H2xL5、H3xL5、H4xL5、H5xL5、H6xL5、H7xL5、H8xL5、H9xL5、H10xL5、H1xL6、H2xL6、H3xL6、H4xL6、H5xL6、H6xL6、H7xL6、H8xL6、H9xL6、H10xL6、H1xL7、H2xL7、H3xL7、H4xL7、H5xL7、H6xL7、H7xL7、 H8xL7、H9xL7、H10xL7、H1xL8、H2xL8、H3xL8、H4xL8、H5xL8、H6xL8、H7xL8、H8xL8、H9xL8、H10xL8、H1xL9、H2xL9、H3xL9、H4xL9、H5xL9、H6xL9、H7xL9、H8xL9、H9xL9、H10xL9、H1xL10、H2xL10、H3xL10、H4xL10、H5xL10、H6xL10、H7xL10、H8xL10、H9xL10、H10xL10。例如,可將指定套數的重鏈與輕鏈基因串聯地嵌入單一基因座,或嵌入多個基因座(其中任一或所有者可含有一套以上)。選擇性地,各基因座所含有之經串聯嵌入的基因可能不超過三套或四套,從而促進在增殖及/或抗體生產期間之套數穩定性。
培養作用通常涉及提供細胞一能量來源、氧及營養素。文獻中亦已知供表現重組型蛋白質的巴斯德畢赤氏酵母發酵作用之設計與最佳化方法,其包括將細胞密度、培養液體積、基質進料速率及各反應階段的長度最佳化。參見美國紐澤西州托托瓦(Totowa)的胡馬納出版社(Humana Press)出版及由Cregg,J.M.所編輯之“分子生物學方法(Methods in Molecular Biology)”乙書第389期的“畢赤氏酵母屬操作程序(Pichia Protocols)”第二版(2007年)第43-63頁之Zhang等人所著“分批進料與連續發酵作用之循理設計與最佳化”乙文。可供應該培養體含氧的氣體混合物,諸如增補或未增補氧之空氣。可在一培養基中培養酵母培養體,該培養基可為一種基本培養基,其中可能缺乏篩選劑及/或可能缺乏預先形成的胺基酸或其他複合生物分子。該培養基亦可為一種複合培養基(如含有酵母萃取物 及/或植物腖)。該培養基可包括一種氮源(如氯化甲胺、NH4SO4、酵母萃取物、大豆蛋白腖、其他植物腖類等)。例示性基本培養基包括基本右旋糖培養基(MD)(1.34%的酵母氮基(YNB)(不含胺基酸)、4×10-5%的生物素及2%的葡萄糖);經緩衝的基本甘油複合培養基(BMGY)(1%的酵母萃取物、2%的腖、1%的甘油、1.34%的YNB(不含胺基酸)、4×10-5%的生物素及100 mM磷酸鉀(pH6.0))。培養基可包括一或多種鹽類(諸如氯化鈉、鈣、鎂及磷酸鹽)、緩衝劑(諸如磷酸鉀、Tris或HEPES)、核苷(諸如腺核苷與胸腺嘧啶)、抗生素(如添加而用於抑制污染物之生長及/或用於維持一篩選標記)、微量元素及葡萄糖或另一能量來源。亦可包括任何增補與替換作用,而其適當濃度係嫻熟技藝者所知。
該培養體可生長達到高細胞密度,諸如至少50克/公升、至少100克/公升、至少300克/公升、至少400克/公升、至少500克/公升或至少700克/公升。該等培養密度係供說明用而非限制性,具一般技藝者即可判定適宜的培養密度。
酵母細胞可培養達到至少20次倍增,及在該至少20次倍增之後,仍維持該抗體的高水平表現作用。
酵母細胞可培養達到至少50次倍增,及在該至少50次倍增之後,仍維持該抗體的高水平表現作用。
酵母細胞可培養達到至少100次倍增,及在該至少100次倍增之後,仍維持該抗體的高水平表現作用。
就另一方面而言,本揭露內容提供一培養基, 其含有依據任一前述方法所產生之畢赤氏酵母屬之穩定的二倍體酵母培養體,其中該培養基所含有之該所欲抗體的表現水平可至少約50毫克/公升、100毫克/公升、500毫克/公升、750毫克/公升、1000毫克/公升、1250毫克/公升、1500毫克/公升、1750毫克/公升、2000毫克/公升或更高。該等產量數值係供說明用而非限制性。選擇性地,例如可使用同上Zhang等人(2007年)乙文中所述之方法與通用措施,將產量最佳化。例如,可藉由改變溫度、pH值、培養基組成物(如碳源、碳源濃度、二或多種碳源的混合物、氮源與濃度、鹽類與營養素的濃度包括KH2PO4、K2HPO4、MgSO4、硫酸鉀、檸檬酸鈉、硫酸鉀、檸檬酸鈉、微量金屬諸如氯化鈷、硫酸銅、碘化鈉、硫酸錳、鉬酸鈉、硼酸、氯化鋅、硫酸亞鐵、維生素諸如生物素、肌醇、硫胺素、腖、酵母萃取物、酪蛋白胺基酸、尿素、磷酸銨或其他銨離子、L-精胺酸-鹽酸鹽)、時間、培養體密度、加氧作用及影響產量的其他因子,而將產量最佳化。例如,在某些情況下,可能藉由將溫度維持在所欲的設定點,而增進所欲的多次級單元型複合體之產量、表現作用及/或純度,如該設定點係介於約15℃與約30℃之間,諸如介於約17℃與約25℃之間)。在無意受限於理論之情況下,假設控制溫度可能有助於細胞內運送通過摺疊及轉譯後處理途徑,及/或可減少細胞蛋白酶的活性。同樣地,在某些情況下,可能藉由將培養基的pH值維持在所欲的設定點,而增進所欲的多次級單元型複合體之產量、表現作用及/或純度,如該設定點係介 於pH 3至pH 8之間,諸如介於pH 4與pH 7之間。
就另一方面而言,本揭露內容提供含有穩定的二倍體巴斯德畢赤氏酵母培養體之一培養基,該培養體係由依據任一前述方法產生的一細胞所衍生,及該細胞表現該所欲抗體及釋入培養基中,其中該培養體中之該二倍體細胞的細胞密度可至少約50克/公升、100克/公升、300克/公升、400克/公升、500克/公升、700克/公升或更高。該等培養密度係供說明用而非限制性,具一般技藝者即可判定適宜的培養密度。
該抗體或其他多次級單元型蛋白質的至少一個次級單元可包含一分泌訊號,諸如S.雞溶菌酶(CLY)訊號肽;CLY-L8;啤酒酵母(S.cerevisiae)轉化酶(SUC2)訊號肽;MF-α(前原);MF-α(前)-apv;MF-α(前)-apv-SLEKR;MF-α(前原)-(EA)3;αF訊號肽;KILM1訊號肽;可阻抑型酸性磷酸酯酶(PHO1)訊號肽;黑麴菌(A.niger)GOX訊號肽;西方許旺氏酵母(Schwanniomyces occidentalis)葡萄糖澱粉酶基因(GAM1)訊號肽;不具有原-序列之人類血清白蛋白(HSA)訊號肽;具有原-序列之人類血清白蛋白(HSA)訊號肽;ISN訊號肽;IFN訊號肽;HGH訊號肽;植物血球凝集素(PHA);蠶溶菌酶;人類溶菌酶(LYZ1);第1型活化素受體;第II型活化素受體;巴斯德畢赤氏酵母免疫球蛋白結合蛋白(PpBiP);人類抗體3D6輕鏈引導序列;及其任一組合。
可藉由二個單倍體酵母細胞的配對作用而產生宿主細胞,該單倍體酵母細胞各含有一或多套之編碼該抗 體或其他多次級單元型蛋白質的一或多個次級單元之一基因。
圖式簡單說明
圖1係概述用於獲得單倍體菌株之一例示性方法,該菌株含有編碼一所欲抗體輕鏈及/或重鏈之基因的特別標定套數;及概述藉由單倍體菌株的配對作用而獲得一組的二倍體菌株,該等二倍體菌株係由特別標定套數的輕鏈與重鏈基因而表現所欲的抗體。
圖2係以圖示方式說明相較於H3xL3菌株之來自所篩選的二倍體菌株之相對總抗體產量,該等二倍體菌株含有遞增套數之編碼Ab-A的輕鏈與重鏈之基因。將H3xL3產量設為100%,相對總培養液的抗體效價一般隨著抗體總套數之增加而增加,依H3xL4、H3xL3、H4xL4、H4xL6、H5xL4、H5xL5及H5xL7之順序。
圖3係以圖示方式說明相較於H3xL3菌株之來自含有遞增套數之編碼Ab-B輕鏈與重鏈的基因之菌株之相對總培養液的抗體產量。將H3xL3抗體產量設為100%,相對總培養液的抗體效價大致隨著抗體套數之增加而增加,依H3xL3、H3xL4、H4xL3、H4xL5及H4xL6之順序。
圖4係以圖示方式說明相較於H3xL3菌株之來自含有遞增套數之編碼Ab-C輕鏈與重鏈的基因之菌株之相對總培養液的抗體產量。將H3xL3抗體產量設為100%,相對總培養液的抗體效價大致隨著抗體套數之增加而增加,依Ab-C-H3xL4、Ab-C-H4xL3、Ab-C-H4xL4、Ab-C-H4xL5、 Ab-C-H5xL5、Ab-C-H5xL4、Ab-C-H5xL6及Ab-C-H6xL5之順序。
圖5A-E顯示藉由HPLC測定之Ab-A的蛋白A捕擭洗提液之純度,Ab-A係由H4xL4與H4xL6菌株所產生。在15.5分鐘遷移之產物相關變異體的水平(藉由總積分面積的百分比測定),係減少超過5倍(從H4xL4中的8.81降至H4xL6中的1.58%)。
圖6A-E顯示藉由HPLC測定之Ab-B的蛋白A捕擭洗提液之純度,Ab-B係由H4xL3與H4xL5菌株所產生。在15.5分鐘遷移之產物相關變異體的水平(藉由總積分面積的百分比測定),係減少約59%(從H4xL3中的6.26%降至H4xL5中的2.54%)。
圖7A-E顯示藉由HPLC測定之Ab-C的蛋白A捕擭洗提液之純度,Ab-C係由HexL3與H5xL5菌株所產生。在15.2至16.1分鐘遷移之產物相關變異體的水平(藉由總積分面積的百分比測定),係減少約39%(從H3xL3中的6.55%降至H5xL中的54.00%)。
圖8顯示由H4xL4與H4xL6菌株所產生的Ab-A之經染色的SDS-PAGE凝膠。在來自輕鏈套數較多的菌株之製備物中,觀察到“低遷移率產物相關變異體”(如箭頭所示)之豐度較低。
圖9顯示經蛋白A純化的Ab-B之經染色的SDS-PAGE凝膠,Ab-B係由H4xL5與H4xL6菌株所產生。如同Ab-A,在來自輕鏈套數較多的菌株之製備物中,觀察到“低 遷移率產物相關變異體”(如箭頭所示)之豐度較低。
圖10顯示經蛋白A純化的Ab-C之經染色的SDS-PAGE凝膠,Ab-C係由H3xL3與H5xL5菌株所產生。如同Ab-A與Ab-B,在來自抗體鏈套數較多的菌株之製備物中,觀察到“低遷移率產物相關變異體”(如箭頭所示)之豐度較低。
圖11顯示辨識出該低遷移率產物相關變異體係與人類Fc相關之一醣化蛋白質(由其藉由凝集素管柱的選擇性富集作用及藉由抗Fc抗體的特異性識別作用所證明)。一抗體製備物(“加載物”)係與一凝集素樹脂結合及進行洗提(“凝集素洗提液”)。SDS-PAGE(圖11A)顯示低遷移率產物相關變異體藉由凝集素管柱而進行選擇性富集作用。使用一種抗HuFc抗體之西方墨點法(圖11B)檢測出該低遷移率產物相關變異體,表明其含有至少部分的人類Fc序列。該產物相關變異體在此稱作“醣化重鏈型變異體”。此外,相對於菌株H4xL3,來自菌株H4xL5的抗體製備物中之該產物相關變異體的量係明顯減少。
圖12A-D與13A-D顯示,藉由HPLC(滯留時間約15.5分鐘)所觀察到的一產物相關變異體係在凝集素管柱洗提液中進行選擇性富集,其表明醣化重鏈型變異體係該產物相關變異體的一組分。抗體Ab-B係從H4xL3與H4xL5菌株製備。
圖14顯示用於將Ab-A或Ab-B的一抗體重鏈序列標定嵌入pGAP基因座(基因座#1)中之一建構物的圖譜。
圖15顯示用於將Ab-A或Ab-B的一抗體輕鏈序列標定嵌入pGAP基因座(基因座#1)中之一建構物的圖譜。
圖16顯示用於將Ab-A或Ab-B的一抗體重鏈序列標定嵌入HIS4 TT基因座(基因座#2)中之一建構物的圖譜。
圖17顯示用於將Ab-A或Ab-B的一抗體輕鏈序列標定嵌入HIS4 TT基因座(基因座#2)中之一建構物的圖譜。
圖18顯示用於將Ab-C的一抗體重鏈序列標定嵌入AOX1 TT基因座(基因座#1)中之一建構物的圖譜。
圖19顯示用於將Ab-C的一抗體輕鏈序列標定嵌入AOX1 TT基因座(基因座#1)中之一建構物的圖譜。
圖20顯示用於將Ab-C的一抗體重鏈序列標定嵌入HIS4 TT基因座(基因座#2)中之一建構物的圖譜。
圖21顯示用於將Ab-C的一抗體輕鏈序列標定嵌入HIS4 TT基因座(基因座#2)中之一建構物的圖譜。
圖22說明嵌入單一基因座的抗體套數與可藉由南方墨點法檢測出的片段預期尺寸之間之關係。
圖23與24顯示南方墨點法,其係在經編碼Ab-A鏈的基因轉形之多種分離株中,分別用於檢測一抗體重鏈基因與輕鏈基因的套數。
圖25至27顯示南方墨點法,其係在藉由配對經轉形的單倍體菌株所產生之一組二倍體菌株中,用於確認存在於pGAP(圖25至26)與HIS4 TT(圖27)基因座之編碼 Ab-A重鏈與輕鏈的基因套數。
圖28A-B顯示南方墨點法,其係在經編碼Ab-B鏈的基因轉形之多種分離株中,分別用於檢測抗體重鏈基因與輕鏈基因的套數。
圖29至31顯示南方墨點法,其係在藉由配對經轉形的單倍體菌株所產生之一組二倍體菌株中,用於確認存在於pGAP(圖29至30)與HIS4 TT(圖31)基因座之編碼Ab-B重鏈與輕鏈的基因套數。
圖32至33顯示南方墨點法,其係在經編碼Ab-C鏈的基因轉形之多種分離株中,分別用於檢測抗體重鏈基因與輕鏈基因的套數。
圖34至36顯示南方墨點法,其係在藉由配對經轉形的單倍體菌株所產生之一組二倍體菌株中,用於確認存在於3’ AOX TT(圖34至35)與HIS4 TT(圖36)基因座之編碼Ab-C重鏈與輕鏈的基因套數。
圖37說明可依據本揭露內容的實施例使用之例示性、非限制性的輕鏈與重鏈基因套數組合。
圖38顯示編碼Ab-A輕鏈與重鏈的聚核苷酸序列及其等所編碼的多肽,以及其中所包含的CDR序列。
圖39顯示編碼Ab-B輕鏈與重鏈的聚核苷酸序列及其等所編碼的多肽,以及其中所包含的CDR序列。
圖40顯示編碼Ab-C輕鏈與重鏈的聚核苷酸序列及其等所編碼的多肽。
詳細說明
本揭露內容提供出宿主細胞之產生與辨識方法,該等宿主細胞能以較高產量產生所欲的異源性多次級單元型複合體及/或以較高純度產生所欲的異源性多次級單元型複合體。在一較佳實施例中,該異源性多次級單元型複合體係一抗體或抗體片段,諸如由二個重鏈次級單元與二個輕鏈次級單元所組成之一人化抗體。較佳的宿主細胞包括酵母,及特佳的酵母包括嗜甲醇酵母菌株,如巴斯德畢赤氏酵母、多形漢遜氏酵母(Hansenula polymorpha)(安格斯畢赤氏酵母(Pichia angusta))、季也蒙畢赤氏酵母(Pichia guillermordii)、嗜甲醇畢赤氏酵母(Pichia methanolica)、因諾托畢赤氏酵母(Pichia inositovera)及其他(如參見第4,812,405號、第4,818,700號、第4,929,555號、第5,736,383號、第5,955,349號、第5,888,768號及第6,258,559號美國專利,其中各者在此完整地併入本案以為參考資料)。可藉由技藝中所知的方法產生宿主細胞。例如,可藉由將所含有之個別次級單元基因的套數不同之細胞配對(較佳在配對之前得知套數),而產生一組二倍體或四倍體酵母細胞及其等含有不同的基因套數組合。
本案申請者意外地發現,培養體可維持編碼所欲多次級單元型複合體的基因之高且穩定的套數。工作實例顯示細胞維持高達六或七套之編碼抗體重鏈與輕鏈的基因。該等細胞可穩定表現所欲的抗體,甚至在相當長的培養時間之後亦然。此外,該等細胞甚至在相當長的培養時 間之後,仍可維持所欲的多次級單元型複合體之高產量及表現作用。
在一較佳實施例中,該宿主細胞可包含一套以上之編碼該異源性蛋白質次級單元的一或多個基因。例如,可將多套的次級單元基因串聯嵌入一或多個染色體基因座中。在用於生產該多次級單元型複合體的培養期間,所串聯嵌入的多套基因較佳保有穩定的套數。例如,在下文所述的實例中,在含有3或4套串聯嵌入的輕鏈與重鏈抗體基因之巴斯德畢赤氏酵母菌株中,基因套數大致維持穩定。
較佳將編碼該異源性蛋白質次級單元的一或多個基因嵌入一宿主細胞的一或多個染色體基因座中。可使用適合嵌入的任一染色體基因座,包括基因間序列、啟動子序列、編碼序列、終止序列、調控序列等。在巴斯德畢赤氏酵母中可供使用的例示性染色體基因座包括PpURA5、OCH1AOX1HIS4GAP。亦可將編碼基因嵌入一或多個隨機染色體基因座中,而非所標定的基因座。在較佳實施例中,染色體基因座係選自由pGAP基因座、3’AOXTT基因座及HIS4 TT基因座所組成之群組。在其他例示性實施例中,編碼異源性蛋白質次級單元的基因可包含在一或多種染色體外因子,例如在一或多種質體或人工染色體中。
在例示性實施例中,多次級單元型蛋白質可包含二、三、四、五、六個或更多個不相同的次級單元。此 外,各次級單元可在各多次級單元型蛋白質中出現一或多次。例如,該多次級單元型蛋白質可為一種多重特異性抗體,諸如包含二個不相同的輕鏈與二個不相同的重鏈之雙特異性抗體。可藉由將含有不同套數的個別次級單元基因之細胞配對,而快速產生一組二倍體或四倍體酵母細胞及其等含有不同的基因套數組合。然後可基於諸如相對於非所欲副產物之所欲多次級單元型蛋白質的產量或所欲多次級單元型蛋白質的純度之特性,評估由該組的各菌株所產生之抗體,而辨識出供進一步使用之一菌株。
該等次級單元可由單順反子基因、多順反子基因或其任一組合表現。各多順反子基因可包含多套的相同次級單元,或可包含一或多套各不同的次級單元。
可用於巴斯德畢赤氏酵母之例示性操作方法(包括培養、轉形及配對方法),係揭露於包括U.S.20080003643、U.S.20070298500及U.S.20060270045在內的公開申請案中,及揭露於美國紐澤西州托托瓦(Totowa)的胡馬納出版社(Humana Press)於1998年出版及由Higgins,D.R.與Cregg,J.M.所編輯之“分子生物學方法(Methods in Molecular Biology)”乙書之“畢赤氏酵母屬操作程序(Pichia Protocols)”及美國紐澤西州托托瓦的胡馬納出版社於2007年出版及由Cregg,J.M.所編輯之“分子生物學方法”乙書之“畢赤氏酵母屬操作程序”(第二版),其中各者在此完整地併入本案以為參考資料。
可使用的一例示性表現組合體係由與編碼一分 泌訊號的序列融合之甘油醛去氫酶基因(GAP基因)啟動子、接著是待表現基因的序列、接著是編碼來自巴斯德畢赤氏酵母醇氧化酶I基因(AOX1)的一種巴斯德畢赤氏酵母轉錄終止訊號之序列所組成。藉由篩選對於更高水平的吉歐黴素(Zeocin)具有抗性之轉形體,吉歐黴素抗性標記基因可提供富集菌株之一方式,而所富集的菌株係在一菌株中含有所嵌入的多套表現載體。同樣地,藉由篩選對於更高水平的建那黴素(Geneticin)或卡那黴素(Kanamycin)具有抗性之轉形體,G418或卡那黴素抗性標記基因可提供富集菌株之一方式,而所富集的菌株係在一菌株中含有所嵌入的多套表現載體。
可使用的宿主菌株包括營養缺陷型巴斯德畢赤氏酵母或其他畢赤氏酵母屬菌株,例如具有met1、lys3、ura3及ade1或其他營養缺陷性相關基因的突變作用之菌株。突變作用較佳無法以明顯的頻率產生逆突變體,及較佳為部分刪除型或甚至更佳為全刪除型突變體。較佳藉由將互補的營養缺陷型菌株配對,而產生原始營養型二倍體或四倍體菌株。
可如上文之“畢赤氏酵母屬操作程序(Pichia Protocols)”(1998年、2007年)所述,進行單倍體巴斯德畢赤氏酵母菌株的轉形作用及巴斯德畢赤氏酵母生殖週期的基因操作。
在轉形之前,可在與標的基因座(如GAP啟動子序列)同源的一區域內,藉由限制酶剪切作用而將各表現載 體直線化以引導載體嵌入宿主細胞中的標的基因座。然後可藉由電穿孔或其他方法,將各載體試樣個別轉形至所欲菌株的培養體中,及藉由篩選標記如抗生素抗性或營養缺陷性之互補,篩選成功轉形體。挑選分離株,在篩選條件下劃接種成單一菌落,然後在從各菌株萃取的基因體DNA上,藉由南方墨點法或PCR分析法檢視及確認編碼多次級單元型複合體(如一所欲抗體)的次級單元之基因套數。選擇性地,可藉由例如FACS、西方墨點法、菌落轉印法與免疫墨點法及技藝中所知的其他方式,確認所預期的次級單元基因產物之表現作用。選擇性地,對於單倍體分離株進行附加多次的轉形作用,以導入附加的異源性基因,如嵌入不同基因座之附加套的相同次級單元及/或多套的不同次級單元。然後將單倍體菌株配對,而產生可以合成該多蛋白複合體的二倍體菌株(或更高倍體的菌株)。可藉由南方墨點法、PCR及技藝中所知的其他檢測方式,確認所預期的各次級單元基因是否存在。當所欲的多蛋白複合體係一抗體時,亦可藉由菌落轉印法/免疫墨點法(Wung等人於期刊“Biotechniques”第21期第808-812頁(1996年)乙文及/或藉由FACS確認其表現作用。
選擇性地重複該轉形操作程序,以將一異源性基因標定嵌入第二基因座,該異源性基因可與標定嵌入第一基因座的基因相同或不同。當待嵌入第二基因座的建構物所編碼的一蛋白係與第一基因座所編碼的序列相同或高度相似時,可變化其序列,以降低非所欲地嵌入第一基因 座之可能性。例如,相對於待嵌入第一基因座之序列而言,待嵌入第二基因座之序列可在啟動子序列、終止序列、密碼子之使用方面有所差異,及/或具有其他可容許的序列差異。
為進行巴斯德畢赤氏酵母單倍體菌株之配對,可在配對平皿上將待雜交的各菌株貼印在一起。例如,可藉由將待配對的各菌株畫線接種在適合其生長的平皿上,及將配對夥伴畫線接種在第二平皿(該等平皿較佳為豐富培養基諸如YPD)上,而方便在相同時間進行多重配對。通常在30℃培養一或二天後,可將來自二個平皿的細胞以縱橫交錯方式複印接種至一配對平皿上,產生十字交叉格圖案,而各對菌株係共接種及有機會在一對原始接種線條的相交處配對。配對平皿然後進行培養(如在30℃),以刺激引發菌株之間的配對作用。在約二天後,可將配對平皿上的細胞畫線接種、片狀接種或複印接種至供篩選所欲的二倍體菌株之培養基上(如當經配對的菌株具有互補式自營作用時,可使用撤除成分型或基本培養基平皿)。可培養(如在30℃)該等平皿一段適宜時間(如約三天),以容許所欲的二倍體菌株之選擇性生長。可挑選所長出的菌落及畫線接種成為單一菌落,而分離與純化各二倍體菌株。
用於本發明的方法中之表現載體可進一步包括酵母特異性序列,其包括用於辨識經轉形的酵母菌株之一種可篩選性營養缺陷標記或藥物標記。可進一步使用一藥物標記,以擴增一酵母宿主細胞中的載體套數,如藉由在 升高的藥物濃度培養一細胞族群,從而篩選出表現較高的抗性基因水平之轉形體。
在一例示性實施例中,編碼該異源性蛋白質次級單元的一或多個基因可與一誘導性啟動子偶合。例示性的適宜啟動子包括醇氧化酶1基因啟動子、甲醛去氫酶基因(FLD;參見第2007/0298500號美國公開案)及技藝中所知的其他誘導性啟動子。當酵母在最常見的碳源諸如葡萄糖、甘油或乙醇中生長時,醇氧化酶1基因啟動子係受到緊密抑制,但是當在甲醇中生長時則被高度誘導(Tschopp等人於1987年乙文;頒證Stroman,D.W.等人之第4,855,231號美國專利案)。為生產外源蛋白質,菌株最初可在一抑制性碳源中生長,以產生生質,然後轉換使用甲醇作為唯一(或主要)的碳與能量來源而誘導該外源基因之表現。該調控系統的優點在於經由表現產物具有細胞毒性的外源基因轉形之巴斯德畢赤氏酵母菌株,可在抑制性條件下生長而獲得維持。
在另一例示性實施例中,異源基因中之一或多者可與一個受調控型啟動子偶合,其表現水平可在適當條件下向上調控。例示性的受調控型啟動子包括CUP1啟動子(由培養基中的銅水平所誘導)、四環黴素誘導性啟動子、硫胺素誘導性啟動子、AOX1啟動子及FLD1啟動子。
雖然本揭露內容大部分係說明抗體之生產作用,本文中所述之方法亦即可適用於其他多次級單元型複合體。在無意受限於理論之情況下,據信多次級單元型複合體的產量與純度可能受到次級單元的濃度與化學配比之 大幅影響,次級單元的濃度與化學配比則進而受到負責各次級單元生產作用的基因表現水平之影響。使用本文中所揭露的方法,即可提高包含二或更多個不同次級單元的任一重組型多次級單元型複合體之產量及/或純度。此外,本發明的方法並非受限於生產多蛋白複合體,其亦可適用於核糖核蛋(RNP)複合體,包括端粒酶、hnRNP、核糖體、snRNP、訊號辨識粒子、原核與真核生物RNaseP複合體及含有多個截然不同的蛋白及/或RNA次級單元之其他任何複合體。可藉由技藝中所知的方法產生表現該多次級單元型複合體之宿主細胞。例如,可藉由將含有不同套數的個別次級單元基因之細胞配對(較佳在配對之前得知套數),而產生一組二倍體或四倍體酵母細胞及其等含有不同的基因套數組合。
定義
需瞭解本發明不侷限於特定方法論、操作程序、細胞株、動物的物種或屬及所述試劑,因這些可能有所不同。亦應瞭解本文中所用的術語僅為了說明具體實施例之目的,及並非意欲限制本發明的範圍,本發明的範圍僅受到所附申請專利範圍之限制。
如本文中所用之單數形式的“一(a)”、”一(an)”及“該”係包括複數的所指對象,除非上下文顯然另有規定。因此,例如凡述及“一細胞”時,係包括該等細胞中之多者;而凡述及“該蛋白質”時,係包括一或多種蛋白質及嫻熟技藝者所熟知之等效物,及依此類推。本文中所用的 所有技術與科學用語的含義,係與具有本發明所屬技術的一般技能者通常理解的含義相同,除非顯然另有規定。
快速添加:在本揭露內容中,“快速添加”一般係指快速改變與所培養的細胞接觸(例如在一培養基中)之一物質(諸如乙醇)的濃度。例如,該物質可藉由單次添加、一次以上的連續添加及/或在一段時間內(如約1、2、3、4、5、6、7、8、9、10、15、20、25、30、40、50、60、90或120分鐘)輸注,而添加至所培養的細胞。亦可藉由置換部分或全部的培養基而添加該物質,例如藉由將細胞集中(使用離心作用、過濾作用、沉澱作用或其他方法),除去部分或所有的培養基,及添加該物質;或藉由在含有該物質的培養基中添加細胞。該物質可與一載劑(如培養基、水、鹽水等)摻合。例如,乙醇的快速添加作用可包括在培養基中添加純或濃縮的乙醇(如100%、95%、70%、50%、60%、40%、30%、20%等),所添加的乙醇量係足以產生所欲濃度。在另一實例中,可將細胞添加至含有乙醇的培養基中,如藉由將含有細胞的接種物添加至含有乙醇的培養基中。
快速添加濃度:在本揭露內容中,“快速添加濃度”一般係指因快速添加一物質(如乙醇)所產生的濃度。
配對勝任型酵母物種:在本發明中係意欲廣泛包括可在培養中生長的任何二倍體或四倍體酵母。該酵母物種可能以單倍體、二倍體或其他多倍體形式存在。在適當的條件下,一特定倍體的細胞可能以該形式增殖無限世代。二倍體細胞亦可產孢而形成單倍體細胞。序列配對可 經由二倍體菌株的進一步配對或融合而產生四倍體菌株。本發明設想單倍體酵母以及例如藉由配對或融合(如球形質體融合)所產生的二倍體或其他多倍體酵母細胞之用途。
在本發明的一實施例中,配對勝任型酵母係釀母菌科(Saccharomycetaceae)之一成員,其包括下列各屬:阿瑟麻屬(Arxiozyma)、類盤酵母屬(Ascobotryozyma)、固囊酵母屬(Citeromyces)、德巴利酵母屬(Debaryomyces)、德克酵母屬(Dekkera)、假囊酵母屬(Eremothecium)、伊薩酵母屬(Issatchenkia)、釀酒酵母屬(Kazachstania)、克魯維酵母屬(Kluyveromyces)、柯達菌屬(Kodamaea)、路德酵母屬(Lodderomyces)、管囊酵母屬(Pachysolen)、畢赤氏酵母屬(Pichia)、酵母屬(Saccharomyces)、子囊酵母屬(Saturnispora)、四盾酵母屬(Tetrapisispora)、有孢圓酵母屬(Torulaspora)、擬威爾酵母屬(Williopsis)及接合酵母屬(Zygosaccharomyces)。可能適用於本發明中之其他酵母類型包括耶鲁維亞酵母屬(Yarrowia)、紅冬孢酵母屬(Rhodosporidium)、假絲酵母屬(Candida)、漢遜氏酵母屬(Hansenula)、線黑粉(Filobasium)、鎖擲酵母屬(Sporidiobolus)、布勒擲孢酵母屬(Bullera)、白冬孢酵母屬(Leucosporidium)及線黑粉菌屬(Filobasidella)。
在本發明的一個較佳實施例中,配對勝任型酵母係畢赤氏酵母屬(Pichia)之一成員或為另一種嗜甲基菌株。在本發明的另一較佳實施例中,畢赤氏酵母屬(Pichia)中的配對勝任型酵母係下列物種之一:巴斯德畢赤氏酵母 (Pichia pastoris)、甲醇畢赤氏酵母(Pichia methanolica)及多形漢遜氏酵母(Hansenula polymorpha)(安格斯畢赤氏酵母(Pichia angusta))。在本發明的一個特佳實施例中,畢赤氏酵母屬(Pichia)中的配對勝任型酵母物種係巴斯德畢赤氏酵母。
單倍體酵母細胞:具有單套之其正常基因體(染色體)補體的各基因之一細胞。
多倍體酵母細胞:具有多套之其正常基因體(染色體)補體的各基因之一細胞。
二倍體酵母細胞:具有二套(對偶基因)之其正常基因體(染色體)補體的實質上每個基因之一細胞,其係典型藉由二個單倍體細胞的融合(配對)方法形成。
四倍體酵母細胞:具有四套(對偶基因)之其正常基因體(染色體)補體的實質上每個基因之一細胞,其係典型藉由二個二倍體細胞的融合(配對)方法形成。四倍體可帶有二個、三個、四個或更多個不同的表現組合體。可在釀酒酵母(S.cerevisiae)中,藉由選擇性配對同型接合的異宗配合a/a與α/α二倍體,而獲得該等四倍體;及在畢赤酵母屬(Pichia)中,藉由單倍體的連續配對,而獲得營養缺陷型二倍體。例如,一[甲硫胺酸 組胺酸]單倍體可與[腺嘌呤 組胺酸]單倍體配對,而獲得二倍體[組胺酸];及一[甲硫胺酸 精胺酸]單倍體可與[腺嘌呤 精胺酸]單倍體配對,而獲得二倍體[精胺酸];然後二倍體[組胺酸]x二倍體[精胺酸],而獲得四倍體原始營養型。嫻熟技藝者將瞭解所述之二倍體細 胞的益處與用途,亦可適用於四倍體細胞。
酵母配對作用:二個酵母細胞融合形成單一酵母細胞之過程。所融合的細胞可為單倍體細胞或更高倍體的細胞(如將二個二倍體細胞配對而產生一個四倍體細胞)。
減數分裂:二倍體酵母菌細胞進行減數分裂而形成四個單倍體孢子產物之過程。各孢子然後可萌發及形成無性生長的單倍體細胞株。
篩選標記:篩選標記係一基因或基因片段,其在例如經由一轉形事件而領受該基因的一細胞上賦予生長表現型(物理生長特徵)。該篩選標記容許該細胞在未領受該篩選標記基因的細胞無法生長之條件下,在一篩選性生長培養基中存活與生長。篩選標記基因一般分為數種類型,包括:正篩選標記基因,諸如賦予一細胞對於抗生素或其他藥物的抗性之一基因,或當二種溫度敏感性(“ts”)突變體交互雜交或將一種ts突變體轉形時賦予一細胞對於溫度抗性之一基因;負篩選標記基因,諸如一生物合成基因,其賦予一細胞在缺乏一特定營養素的培養基中生長之能力,及該營養素係不具有該生物合成基因的所有細胞所需者,或諸如使得不具野生型基因的細胞無法生長之一種誘變型生物合成基因之類。適宜的標記包括但不限於:ZEO、NEO(G418)、LYS3、MET1、MET3a、ADE1、ADE3、URA3之類。
嵌入:一基因元件(典型為一異源性基因元件)以共價方式與一生物體的染色體連接。
串聯嵌入:二或更多套的基因元件複製本嵌入一染色體中的鄰近位置。該二或更多套複製本不一定具有定向;如就所轉錄的基因而言,一些複製本之轉錄可能從華生股(Watson)股開始,而其他可能從克里克(Crick)股開始。
宿主細胞在本揭露內容的內文中,宿主細胞一詞係指含有一異源基因之一細胞(如一真核細胞及諸如一種畢赤氏酵母屬細胞)。例如,該異源基因可用於表現作用所欲的多次級單元型複合體之一次級單元;可為涉及蛋白質摺疊(如伴護蛋白)、表現作用或分泌作用之一基因;及/或為另一種所欲基因。可將異源基因嵌入真核細胞的基因體中,或將異源基因包含在染色體外因子諸如質體或人工染色體中。
表現載體:該等DNA載體含有促進操控外來蛋白在標的宿主細胞內的表現作用之元件。便利地,首先在一細菌宿主如大腸桿菌(E.coli)中進行序列操控作用及轉形用DNA的生產作用,及載體通常包括促進該等操控作用之序列,包括一個細菌性複製起點及適當的細菌性篩選標記。篩選標記係編碼經轉形的宿主細胞在一篩選性培養基中存活或生長所需的蛋白。宿主細胞若未經含有篩選基因的載體轉形,則無法在該培養基中存活。典型的篩選基因所編碼的蛋白係(a)賦予對於抗生素或其他毒素之抗性,(b)補充營養缺陷型之不足,或(c)供應無法從複合培養基取得的關鍵性營養素。酵母菌之例示性載體及轉形方法係述於 例如美國紐約州普萊恩維尤(Plainview)的冷泉港實驗室出版社(Cold Spring Harbor Laboratory Press)出版之Burke,D.、Dawson,D.及Stearns,T.(2000年)所著“酵母遺傳學方法:冷泉港實驗室課程手冊(Methods in yeast genetics:a Cold Spring Harbor Laboratory course manual)”,其在此完整地併入本案以為參考資料。
本發明的方法中所用之表現載體將進一步包括酵母菌特異性序列,其包括用於辨識經轉形的酵母菌株之一種可篩選性營養缺陷標記或藥物標記。藥物標記可進一步用於篩選一酵母宿主細胞中的載體擴增套數。
所感興趣的多肽編碼序列典型係以可操作方式與轉錄及轉譯調節序列連接,該轉錄及轉譯調節序列在酵母細胞中提供多肽的表現作用。該等載體組分可包括但不限於下列一或多者:一增強子元件、一啟動子及一轉錄終止序列。用於分泌多肽之序列亦可包括如訊號序列之類。酵母複製起點係選擇性的,其通常以表現載體形式嵌入酵母菌基因體中。
雖然是選擇性的,在本發明的一實施例中,該多次級單元型複合體的一或多個次級單元係以可操作方式與一分泌序列連接或融合,該分泌序列係用於將所表現的多肽分泌至培養基中,其可促進該異源性多次級單元型複合體的回收與純化作用。甚至更佳地,該分泌序列將宿主細胞(如二倍體酵母細胞)的多肽分泌作用最佳化,諸如經由選擇較佳的密碼子及/或經由密碼子選擇而改變AT的百分 比。技藝中已知分泌效率及/或安定性可受到所選擇的分泌序列之影響,而供不同蛋白所用的最佳分泌序列也可能不同(參見如Koganesawa等人於2001年9月期刊“Protein Eng.”第14(9)期第705-10頁乙文,其在此完整地併入本案以為參考資料)。技藝中已知許多潛在適宜的分泌訊號,及及可試驗其等對於之一特定異源性多次級單元型複合體的產量及/或純度之效應。可能使用任一分泌序列,包括酵母與其他物種所分泌的蛋白質中所存在者以及基因工程分泌序列。可使用的例示性分泌序列包括:雞溶菌酶(CLY)訊號肽(MRSLLILVLCFLPLAALG(序列辨識編號:31))、CLY-L8(MRLLLLLLLLPLAALG(序列辨識編號:32))、啤酒酵母(S.cerevisiae)轉化酶(SUC2)訊號肽(MLLQAFLFLLAGFAAKISA(序列辨識編號:33))、MF-α(前原)(MRFPSIFTAVLFAASSALA-APVNTTTE-EGVSLEKR(序列辨識編號:34))、MF-α(前)-apv(MRFPSIFTAVLFAASSALA-APV(序列辨識編號:35))、MF-α(前)-apv-SLEKR(MRFPSIFTAVLFAASSALA-APVSLEKR(序列辨識編號:36))、MF-α(前原)-(EA)3(MRFPSIFTAVLFAASSALA-APVNTTTE-EGVSLEKR-EAEAEA(序列辨識編號:37))、αF訊號肽(MRFPSIFTAVLFAASSALA-APVNTTTE-DETAQIPAEAVIGYSDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKE-EGVSLEKR(序列辨識編號:38))、KILM1訊號肽(MTKPTQVLVRSVSILFFITLLHLVVALN DVAGPAETAPVSLLPR(序列辨識編號:39))、可阻抑型酸性磷酸酯酶(PHO1)訊號肽(MFSPILSLEIILALATLQSVF A(序列辨識編號:40))、黑麴菌(A.niger)GOX訊號肽(MQTLLVSSLVVSLAAALPHYIR(序列辨識編號:41))、西方許旺氏酵母(Schwanniomyces occidentalis)葡萄糖澱粉酶基因(GAM1)訊號肽(MIFLKLIKSIVIGLGLVSAIQA(序列辨識編號:42))、具有原-序列之人類血清白蛋白(HSA)訊號肽(MKWVTFISLLFLFSSAYSRGVFRR(序列辨識編號:43))、不具有原-序列之人類血清白蛋白(HSA)訊號肽(MKWVTFISLLFLFSSAYS(序列辨識編號:44))、ISN訊號肽(MALWMRLLPLLALLALWGPDPAAA(序列辨識編號:45))、IFN訊號肽(MKYTSYILAFQLCIVLGSLGCDLP(序列辨識編號:46))、HGH訊號肽(MAADSQTPWLLTFSLLCLLWPQEPGA(序列辨識編號:47))、植物血球凝集素(PHA)(MKKNRMMMMIWSVGVVWMLLLVGGSYG(序列辨識編號:48))、蠶溶菌酶(MQKLIIFALVVLCVGSEA(序列辨識編號:49))、人類溶菌酶(LYZ1)(MKALIVLGLVLLSVTVQG(序列辨識編號:50))、第1型活化素受體(MVDGVMILPVLIMIALPSPS(序列辨識編號:51))、第II型活化素受體(MGAAAKLAFAVFLISCSSG(序列辨識編號:52))、巴斯德畢赤氏酵母免疫球蛋白結合蛋白(PpBiP)(MLSLKPSWLTLAALMYAMLLVVVPFAKPVRA(序列辨識編號:53))及人類抗體3D6輕鏈引導序列(MDMRVPAQLLGLLLLWLPGAKC(序列辨識編號:54))。參見Hashimoto等人於1998年期刊“Protein Engineering”第11期第2號第75-77頁乙文;Oka等人於1999年11月期刊“Biosci Biotechnol Biochem.”第63(11)期第1977-83頁乙 文;Gellissen等人於2005年期刊“FEMS Yeast Research”第5期第1079-1096頁乙文;Ma等人於2005年12月期刊“Hepatology”第42(6)期第1355-63頁乙文;Raemaekers等人於2005年10月1日期刊“Eur J Biochem.”第265(1)期第394-403頁乙文;Koganesawa等人於2001年期刊“Protein Eng.”第14(9)期第705-710頁乙文;Daly等人於2006年4月期刊“Protein Expr Purif.”第46(2)期第456-67頁乙文;Damasceno等人於2007年期刊“Appl Microbiol Biotechnol”第74期第381-389頁乙文;及Felgenhauer等人於1990年8月25日期刊“Nucleic Acids Res.”第18(16)期第4927頁乙文,其中各者在此完整地併入本案以為參考資料)。在未以可操作方式與一分泌訊號連接或融合之情況下,亦可將多次級單元型複合體分泌至培養基中。例如,已證實當一些異源性多肽在巴斯德畢赤氏酵母中表現時,即使未與一分泌訊號連接或融合,亦被分泌至培養基中。此外,可使用技藝中所知的方法,從宿主細胞中純化該多次級單元型複合體(例如當複合體的分泌作用不良時,這可能是較佳方式)。
可從培養中回收含有所欲的多次級單元型複合體之培養基或細胞。選擇性地,可純化所分泌出的蛋白質。例如,可使用機械、化學、酵素及/或滲透方法(如用液態氮冷凍、使用均質機、去細胞壁作用、音波振動處理、與玻璃珠共同攪拌作用、使用清潔劑等),將包含所欲的多次級單元型複合體之細胞裂解。可使用技藝中所知的方法,將所欲的多次級單元型複合體濃縮、過濾、透析等。可基於 例如其分子質量(如尺寸排阻層析法)、等電點(如等電聚焦作用)、電泳遷移率(如凝膠電泳)、疏水性交互作用層析法(如HPLC)、電荷(如離子交換層析法)、親和性(如在一抗體的情況下與蛋白A、蛋白G及/或該所欲抗體與其結合的一抗原決定位之結合作用)及/或醣化狀態(如藉由凝集素結合親和性檢測),而純化所欲的多次級單元型複合體。可進行多個純化步驟,以獲得所欲的純度水平。在一例示性實施例中,所欲的多次級單元型複合體可包含一個免疫球蛋白固定域,及可使用蛋白A或蛋白G親和性、尺寸排阻層析法及缺乏與凝集素的結合作用(用以移除醣化形式)進行純化。選擇性地可添加蛋白酶抑制劑,諸如苯甲基磺醯化氟(PMSF),以抑制純化期間的蛋白分解性降解作用。
當核酸與另一核酸序列處於一功能性關係時,則該核酸係“以可操作方式連接”。例如,若訊號序列的DNA係以參與多肽分泌作用的蛋白前體形式表現,則訊號序列的DNA係以可操作方式與多肽的DNA連接;若一啟動子或增強子影響該序列的轉錄作用,則該啟動子或增強子係以可操作方式與編碼序列連接。一般而言,“以可操作方式連接”係指連接的DNA序列係相鄰的,及在分泌前導的情況係相鄰及位於同一讀框中。然而,增強子不一定要相鄰。連接作用係藉由在合宜的限制酶酶切位點之接合作用而完成,或任擇地經由嫻熟技藝者所熟悉的PCR/重組方法完成(美國加州卡爾斯巴德(Carlsbad)的英杰(Invitrogen)公司之Gateway®技術)。若不存在該等位點,則依據習用作法使用 合成的寡核苷酸轉接子或連接子。亦可藉由化學合成作用產生所欲的核酸(包括含有以可操作方式所連接的序列之核酸)。
啟動子係位於一結構基因(一般約100至1000鹼基對以內)的起始密碼子上游(5’)之未轉譯序列,其控制以可操作方式與其連接之特定核酸序列的轉錄作用與轉譯作用。啟動子分為數種類型:誘導性、持續性及可抑制性啟動子(其針對缺乏抑制子之情況回應而增加轉錄作用水平)。誘導性啟動子可針對培養條件的一些變化回應,如一營養素之存在與否或溫度之變化,而開始增加其等控制下的DNA之轉錄水平。
酵母啟動子片段亦可作為同源重組作用的位點,及將表現載體嵌入至酵母基因體中的相同位點;任擇地,使用一篩選標記作為同源重組作用的位點。畢赤酵母屬(Pichia)的轉形作用係述於Cregg等人(1985年)於期刊“Mol.Cell.Biol.”第5期第3376-3385頁乙文,其在此完整地併入本案以為參考資料。
來自畢赤氏酵母屬的適宜啟動子之實例包括CUP1(由培養基中的銅水平所誘導)、四環黴素誘導性啟動子、硫胺素誘導性啟動子、AOX1與啟動子(Cregg等人(1989年)於期刊“Mol.Cell.Biol.”第9期第1316-1323頁乙文);ICL1啟動子(Menendez等人(2003年)於期刊“Yeast”第20(13)期第1097-108頁乙文);甘油醛-3-磷酸去氫酶啟動子(GAP)(Waterham等人(1997年)於期刊“Gene”第186(1)期第37-44頁 乙文);及FLD1啟動子(Shen等人(1998年)於期刊“Gene”第216(1)期第93-102頁乙文)。GAP啟動子係一強力的持續性啟動子,而CUP1、AOX及FLD1啟動子係誘導性啟動子。前述各參考文獻在此完整地併入本案以為參考資料。
其他的酵母啟動子包括ADH1、醇去氫酶II、GAL4、PHO3、PHO5、Pyk及自其等所衍生的嵌合啟動子。此外,可在本發明中使用非酵母啟動子,諸如哺乳類動物、昆蟲、植物、爬蟲類、兩棲動物、病毒及禽類啟動子。在最典型的情況,啟動子將包含一個哺乳類動物啟動子(對於所表現基因而言可能是內源性),或將包含一個酵母或病毒啟動子,而在酵母系統中提供有效的轉錄作用。
可依重組方式產生所感興趣的多肽,不僅是直接重組,亦可與一異源多肽重組成為融合多肽,異源多肽如一訊號序列或在成熟蛋白或多肽N端具有特定酶切位點的其他多肽。一般而言,該訊號序列可為載體的一組分,或可為插入載體中之多肽編碼序列的一部分。所選擇的異源性訊號序列較佳係經由宿主細胞內可用的標準路徑辨識與處理者。已證實釀酒酵母(S.cerevisiae)α因子前原訊號可有效分泌來自巴斯德畢赤氏酵母的多種重組型蛋白。其他酵母菌訊號序列包括α配對因子訊號序列、轉化酶訊號序列及衍生自所分泌的其他酵母多肽之訊號序列。此外,該等訊號肽序列可經基因工程設計而在二倍體酵母菌表現系統中用於增強分泌作用。所感興趣的其他分泌訊號亦包括哺乳類動物訊號序列,其對於所分泌的蛋白而言可為異源 性,或對於所分泌的蛋白而言可為一固有序列。訊號序列包括前肽序列,及在一些情況下可包括原肽序列。技藝中已知該等訊號序列中的多者,包括在免疫球蛋白鏈上所發現的訊號序列,如K28前原毒素序列、PHA-E、FACE、人類MCP-1、人類血清白蛋白訊號序列、人類Ig重鏈、人類Ig輕鏈之類。如參見Hashimoto等人於期刊“Protein Eng”第11(2)期第75頁(1998年)乙文;及Kobayashi等人於期刊“Therapeutic Apheresis”第2(4)期第257頁(1998年)乙文,其中各者在此完整地併入本案以為參考資料。
可藉由在載體中插入一轉錄活化子序列,而增加轉錄作用。該等活化子係DNA的順式作用元件,通常約10至300鹼基對,其作用在啟動子上而增加其轉錄作用。轉錄增強子係相對地不具有定向與位置依賴性,已發現轉錄增強子位於轉錄單元的5’與3’,位於一內含子之內,以及位於編碼序列本身之內。可將增強子剪接至表現載體中之位於編碼序列的5’或3’的一位置,但較佳位於啟動子5’的一位點。
用於真核宿主細胞中的表現載體亦可含有用於終止轉錄作用及用於安定mRNA所需之序列。通常可在真核細胞或病毒DNA或cDNA的非轉譯區之轉譯終止密碼子的3’,取得該等序列。該等區所含有的核苷酸段係轉錄為mRNA非轉譯部分中之聚腺苷酸化片段形式。
採用標準接合技術或PCR/重組方法,建構含有上文所列的一或多種組分之適宜載體。將所分離的質體或 DNA片段按產生所需質體所欲之形式酶切、量身訂做及再接合,或經由重組方法產生。為分析及確認所建構質體中的序列正確,使用接合混合物來進行宿主細胞之轉形作用,及酌情藉由抗生素抗性(如安比西林(ampicillin)或吉歐黴素(Zeocin))篩選成功轉形體。製備來自該轉形體的質體,藉由限制內切酶酶切作用進行分析及/或定序。
可使用以att位點與重組酵素為基礎之重組方法,將DNA序列插入一載體中,而作為片段的限制酶切作用與接合作用之替代方案。該等方法例如述於Landy(1989年)於期刊“Ann.Rev.Biochem.”第58期第913-949頁乙文;及為嫻熟技藝者所知。該等方法所採用的分子間DNA重組作用,係藉由λ與大腸桿菌(E.coli)編碼的重組蛋白之混合物所媒介。重組作用發生在交互作用的DNA分子上之特異性附著(att)位點之間。有關att位點之說明請參見由Weisberg編輯之“Lambda II”乙書(美國紐約冷泉港之冷泉港實驗室出版公司於1983年出版)第211-250頁之Weisberg與Landy所著“噬菌體λ中之位點特異性重組作用(Site-Specific Recombination in Phage Lambda)”乙文。將側臨重組位點的DNA段交換,以使得在重組作用後,att位點係由各親代載體捐出之序列所組成的雜交序列。重組作用可發生在具任何拓撲的DNA之間。前述各參考文獻在此完整地併入本案以為參考資料。
可藉由將所感興趣的序列接合至一適當的載體中;經由使用特異性引子而產生含有att B位點之一PCR產 物;產生供選殖至含有att位點的適當載體中之cDNA庫之類,而在所感興趣的一序列中引入att位點。
單順反子與多順反子基因。單順反子基因係編碼一RNA,該RNA所含有的遺傳訊息僅轉譯成單一蛋白。多順反子基因係編碼一mRNA,而該mRNA所含有的遺傳訊息轉譯成超過一種的蛋白。多順反子基因所編碼的蛋白可具有相同或不同的序列或其組合。二順反子或雙順反子係指編碼二種蛋白之多順反子基因。多順反子基因選擇性地包括用於促進與端冠無關的轉譯起始作用之一或多個內部核醣體進入位點(IRES)元件,其所在的位置可驅動與mRNA分子5’端所結合的5’-端冠結構無關之下游蛋白質編碼區的轉譯作用。可使用任何已知的IRES序列(如病毒、真核或人工來源)。例如,可使用位於基因間區段(IGR)中的蟋蟀麻痺病毒IRES序列,如Thompson等人(2001年)於期刊“PNAS”第98期第12972-12977頁乙文中所述。選擇性地,藉由基因改變可增強IRES功能,如藉由使得eIF2激酶GCN2持續表現,或中斷二個被中斷的起始子tRNA基因(met)(同上)。
如本文中所用之摺疊一詞係指多肽與蛋白之三維結構,其中胺基酸殘基之間的交互作用發揮功用而穩定該結構。雖然非共價交互作用在結構的測定中非常重要,所感興趣的蛋白通常具有由二個半胱胺酸殘基所形成的分子內及/或分子間共價雙硫鍵。就天然存在的蛋白及多肽或其衍生物與變異體而言,正確的摺疊係典型產生最佳生物活性的配置方式,及可便利地藉由針對活性如配位體結合 作用、酵素活性等之分析法來監測。
在一些情況下,例如當所欲的產物係出於合成時,以生物活性為基礎的分析法之意義不大。該等分子的正確摺疊可能以物理性質、能量考量、模擬研究之類為基礎而測定。
可藉由引入編碼增進摺疊與雙硫鍵形成的一或多種酵素亦即摺疊酶、伴護蛋白等之序列,而進一步進行表現宿主的改質作用。使用如技藝中所知的載體、標記等,該等序列可持續性或誘導性地在酵母菌宿主細胞中表現。該序列所包括的轉錄調節元件係足以促成所欲的表現模式,及該序列較佳經由一種標定方法而安定地嵌入酵母基因體中。
例如,真核細胞PDI不僅是蛋白半胱胺酸氧化作用與雙硫鍵異構化作用的有效催化劑,並且展現伴護蛋白活性。PDI的共同表現作用可促進具有多個雙硫鍵的活性蛋白之生產作用。亦感興趣的是BIP(免疫球蛋白重鏈結合蛋白)、環親和素(cyclophilin)之類的表現作用。在本發明的一實施例中,可由配對作用所產生的酵母菌株表現多次級單元型複合體,其中單倍體親代菌株中之各者表現一獨特的摺疊酵素,如一菌株可能表現BIP,而另一菌株可能表現PDI或其組合。
“所欲蛋白質”或“標的蛋白質”係以可互換方式使用,及一般係指本文中所述之異源性多次級單元型蛋白質,諸如一人化抗體或其結合部分。
“抗體”一詞係意欲包括具有切合與辨識一抗原決定位的特定形狀之任何含有多肽鏈的分子結構,其中一或多種非共價結合交互作用使該分子結構與抗原決定位之間的複合體安定。原型抗體分子係免疫球蛋白,及來自所有來源如人類、囓齒動物、兔、牛、羊、豬、狗、其他哺乳類動物、雞、其他禽類等之所有類型的免疫球蛋白、IgG、IgM、IgA、IgE、IgD等,皆被視為“抗體”。如本發明,適用作為生產抗體的起始原料之較佳來源是兔子。已有眾多抗體編碼序列被描述過;及其他可藉由技藝中所熟知的方法產生。實例包括嵌合抗體、人類抗體與其他非人類哺乳類動物抗體、人化抗體、單鏈抗體諸如scFvs、駱駝抗體、奈米抗體、IgNAR(從鯊魚所衍生的單鏈抗體)、小模組免疫藥劑(SMIP)及抗體片段諸如Fabs、Fab’、F(ab’)2之類。參見Streltsov VA等人於2005年11月期刊“Protein Sci.”第14(11)期第2901-9頁及電子版為2005年9月30日之“鯊魚IgNAR抗體可變域之結構及早期發育同型之模擬研究(Structure of a shark IgNAR antibody variable domain and modeling of an early-developmental isotype)”乙文;Greenberg AS等人於1995年3月9日期刊“Nature”第374(6518)期第168-73頁之“在鯊魚中進行重排作用及廣泛體細胞多樣化作用的一個新抗原受器基因家族(A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks)”乙文;Nuttall SD等人於2001年8月期刊“Mol Immunol.”第38(4)期第313-26頁之“從鬚鯊分離出新的抗原 受器及作為用於展示蛋白環庫之一鷹架(Isolation of the new antigen receptor from wobbegong sharks,and use as a scaffold for the display of protein loop libraries)”乙文;Hamers-Casterman C等人於1993年6月3日期刊“Nature”第363(6428)期第446-8頁之“全無輕鏈之天然存在的抗體(Naturally occurring antibodies devoid of light chains)”乙文;Gill DS等人於2006年12月期刊“Curr Opin Biotechnol.”第17(6)期第653-8頁及電子版為2006年10月19日之“使用新穎蛋白鷹架所發現之生物藥物(Biopharmaceutical drug discovery using novel protein scaffolds)”乙文。前述各參考文獻在此完整地併入本案以為參考資料。
例如,可藉由基因工程產生抗體或抗原結合片段。在該技術中,如同其他方法,用所欲的抗原或免疫原將產生抗體的細胞致敏化。從產生抗體的細胞分離出之傳訊RNA,係作為使用PCR擴增反應生產cDNA之模板。藉由在表現載體中插入擴增的免疫球蛋白cDNA之適當部分,而產生一個載體庫,其中載體各含有保留初始抗原特異性的一個重鏈基因與一個輕鏈基因。藉由將重鏈基因庫與輕鏈基因庫組合而建構一組合庫。這產生了共同表現重鏈與輕鏈(類似於一抗體分子的Fab片段或抗原結合片段)之一個殖株庫。將帶有該等基因的載體共轉染至一宿主細胞中。當在經轉染的宿主中誘發抗體基因合成作用時,重鏈與輕鏈蛋白自組裝而產生活性抗體,及可用抗原或免疫原篩檢,而檢出該活性抗體。
所感興趣的抗體編碼序列包括該等藉由固有序列所編碼者,以及因著基因密碼簡併性而與所揭露的核酸在序列上不相同之核酸及其變異體。變異體多肽可包括胺基酸(aa)取代作用、添加作用或刪除作用。胺基酸取代作用可為保留性胺基酸取代作用,或為去除非必需胺基酸之取代作用,諸如改變一醣基化位點,或藉由取代或刪除非功能所必需的一或多個半胱胺酸殘基而盡量減少摺疊錯誤。可設計變異體,而使得保留或增強該蛋白之一特定區的生物活性(如一功能域、催化性胺基酸殘基等)。變異體亦包括本文中所揭露之多肽的片段,特別是生物活性片段及/或對應於功能域的片段。已知在試管中用於誘發所選殖基因的突變作用之技術。在本發明中亦包括經一般分子生物技術改質之多肽,從而增進其等對於蛋白分解性降解作用的抗性,或將溶解性質最佳化,或使其等更適合作為治療劑。
可藉由將來自一物種之產生抗體型細胞的輕鏈與重鏈變異區(VL與VH)與來自另一物種的輕鏈與重鏈固定區組合之重組方式,產生嵌合抗體。嵌合抗體典型採用囓齒動物或兔的變異區及人類的固定區,而使得產生主要是人類域之一抗體。該等嵌合抗體的生產作用係技藝中所熟知,及可藉由標準方式達成(如述於第5,624,659號美國專利,其在此完整地併入本案以為參考資料)。進一步設想本發明之嵌合抗體的人類固定區可選自IgG1、IgG2、IgG3、IgG4、IgG5、IgG6、IgG7、IgG8、IgG9、IgG10、IgG11、IgG12、IgG13、IgG14、IgG15、IgG16、IgG17、IgG18或IgG19 固定區。
人化抗體係經基因工程設計而含有甚至更多類似人類的免疫球蛋白域,及僅納入動物所衍生抗體的互補決定區。其可藉由仔細檢視單株抗體變異區之高度變異環的序列,及使其等與人類抗體鏈的結構擬合。這個方法雖然表面上看來複雜,但施行上是簡單的。如參見第6,187,287號美國專利,其在此完整地併入本案以為參考資料。人化抗體之方法先前曾述於所頒證之第7935340號美國專利,其揭露內容在此完整地併入本案以為參考資料。在一些情況下,需判定活性之維持是否需要附加的兔架構殘基。在一些情況下,人化抗體仍需要保留一些關鍵性兔架構殘基,以將親和性或活性之損失降至最低。在該等情況下,需要將人類胚系序列的一或多個架構胺基酸改回原有的兔胺基酸,方能具有所欲活性。該等改變係由實驗方式測定,而識別出哪些兔殘基係保留親和性與活性所需。
除了整體的免疫球蛋白(或其等的重組對應體)之外,可合成包含抗原決定位結合位點(如Fab’、F(ab’)2或其他片段)之免疫球蛋白片段。可採用重組型免疫球蛋白技術,而設計出“片段”或微小免疫球蛋白。例如,可藉由合成一個融合的可變輕鏈區與一個可變重鏈區,而產生用於本發明中的“Fv”免疫球蛋白。亦對於抗體組合物感興趣,如包含二種獨特的Fv特異性之雙鏈抗體。在本發明的另一實施例中,免疫球蛋白片段係涵蓋SMIP(小分子免疫藥劑)、駱駝抗體、奈米抗體及IgNAR。
免疫球蛋白及其片段可在轉譯後加以改質,如添加作用性基團諸如化學連接子;可檢測性基團諸如螢光染料、酵素、毒素、受質、生物發光物質、放射性物質、化學發光基團之類;或特異性結合基團諸如鏈黴抗生物素蛋白、抗生物素蛋白或生物素之類,皆可用於本發明的方法與組成物中。附加的作用性分子之實例係提供於下文中。
產物相關變異體:係存在於所欲產物的製備物及與所欲產物相關之所欲產物(如所欲的多次級單元型複合體)以外的一產物。例示性的產物相關變異體包括截斷型或延伸型肽;其醣化作用不同於所欲醣化作用之產物(如若所欲者係一種醣化產物,則任何醣化產物將被視為產物相關變異體);具有異常的化學配比、不當組裝、異常的二硫鍵、異常或不完整的摺疊作用、聚集作用、蛋白酶剪切作用或其他異常狀況之複合體。例示性產物相關變異體可能展現下列一或多項之改變:分子質量(如藉由尺寸排阻層析法檢測)、等電點(如藉由等電聚焦作用檢測)、電泳遷移率(如藉由凝膠電泳檢測)、磷酸化狀態(如藉由質譜法檢測)、荷質比(如藉由質譜法檢測)、蛋白分解片段之質量或一致性(如藉由質譜法或凝膠電泳檢測)、疏水性(如藉由HPLC檢測)、電荷(如藉由離子交換層析法檢測)、親和性(如在一抗體的情況下與蛋白A、蛋白G及/或該所欲抗體與所結合的一抗原決定位之結合作用)及醣化狀態(如藉由凝集素結合親和性檢測)。當所欲的蛋白質係一抗體時,產物相關變異體一詞可包括一種醣化重鏈型變異體及/或半抗體物種(如下 文所述)。
例示性產物相關變異體包括含有異常的雙硫鍵之變異體形式。例如,大部分的IgG1抗體分子係藉由總共16個鏈內與鏈間二硫橋鍵穩定,其等使得重鏈與輕鏈中的IgG域之摺疊作用穩定,而鏈間二硫橋鍵使得重鏈與輕鏈之間的連結作用穩定。其他的抗體類型同樣含有特徵性的穩定化鏈內與鏈間雙硫鍵。此外,一些抗體(包括在本文中所揭露的Ab-A與Ab-B)含有稱為非典型雙硫鍵之附加的雙硫鍵。因此,由於安定化的共價鍵結不存在及/或與附加的次級單元之雙硫鍵,異常的鏈間雙硫鍵可能造成異常複合體化學配比。此外,異常的雙硫鍵(不論是鏈間或鏈內)可能減少抗體的結構安定性,其可能造成活性降低、安定性降低、形成聚集體的傾向增加及/或免疫生成性增加。可按多種方式檢測出含有異常雙硫鍵之產物相關變異體,包括非還原變性SDS-PAGE、毛細管電泳、cIEX、質譜法(選擇性地用化學改質作用而在游離半胱胺酸中產生質量偏移)、尺寸排阻層析法、HPLC、光散射的變化及技藝中所知的其他任何適宜方法。如參見2002年“蛋白操作程序手冊(The Protein Protocols Handbook)”第五部第581-583頁,DOI:10.1385/1-59259-169-8:581。
半抗體、半抗體物種或H1L1係指一蛋白複合體,其包括單一抗體重鏈與單一抗體輕鏈,但缺少與第二抗體重鏈與抗體輕鏈的共價鍵結。在一些條件下,二個半抗體可能保持非共價方式的連結(其可能產生與全抗體類 似的行為,如藉由尺寸排阻層析法所測定的表觀分子量)。同樣地,H2L1係指包括二個抗體重鏈與單一抗體輕鏈之一蛋白複合體,但缺少與第二抗體輕鏈的共價鍵結;該等複合體亦可能以非共價方式與另一抗體輕鏈連結(及同樣地產生與全抗體類似的行為)。如同全抗體,半抗體物種與H2L1物種可在還原條件下解離成為個別的重鏈與輕鏈。可在非還原SDS-PAGE凝膠上檢測半抗體物種與H2L1物種,因該物種係在比全抗體低的表觀分子量遷移,如H1L1係在約全抗體表觀分子量的一半(如約75 kDa)遷移。
醣化重鏈型變異體係指有時存在於抗體製備物中及含有至少部分的Fc序列之醣化型產物相關變異體。醣化重鏈型變異體的特徵在於由SDS-PAGE觀察所得之電泳遷移率降低(相對於一正常重鏈而言)、凝集素的結合親和性、與一抗Fc抗體的結合作用及如藉由尺寸排阻層析法測定之含有醣化重鏈型變異體的抗體複合體之分子量顯然較高。參見於2011年8月31日提出申請之序號第61/525,307號美國暫准申請案(代理人案號67858.730200),其在此完整地併入本案以為參考資料。
“長時間穩定表現或表現一種所欲的分泌型異源性多肽之多倍體酵母”一詞,係指分泌該多肽至少數天至一個星期、更佳至少一個月、又更佳至少1至6個月及甚至更佳在閾值表現水平長達一年以上之一酵母培養體,所分泌的多肽係典型至少50至500毫克/公升(在培養約90小時後)及較佳實質上更高。
“分泌所欲量的重組型多肽之多倍體酵母培養體”一詞,係指穩定或長時間分泌至少50至500毫克/公升及最佳500至1000毫克/公升或更高之培養體。
若一聚核苷酸序列依據基因密碼的轉譯作用產生一多肽序列,則該聚核苷酸序列係“對應”於該多肽序列(亦即該聚核苷酸序列“編碼”該多肽序列);若一聚核苷酸序列與另一聚核苷酸序列編碼相同的多肽序列,則該二序列係彼此“對應”。
一DNA建構體的“異源”區或“異源”域係一較大型DNA分子內之一段可識別的DNA,及未發現其與自然存在之該較大型分子有所關聯。因此,當該異源區編碼一哺乳類動物基因時,該基因兩側的DNA在來源生物體的基因體中通常並非側臨該哺乳類動物基因體DNA。異源區之另一實例係一建構體,其中編碼序列本身並非自然中所存在者(如cDNA,其中該基因體編碼序列含有內含子或為具有不同於天然基因的密碼子之合成序列)。對偶基因變異或自然發生的突變事件並不產生本文中所界定之DNA異源區。
一“編碼序列”係(鑑於基因密碼)對應於或編碼一蛋白或胜肽序列之密碼子的同一讀框序列。若二個序列或其等的互補序列編碼相同的胺基酸序列,則該等編碼序列係彼此對應。連同適當的調節序列之一編碼序列可轉錄與轉譯成為多肽。聚腺苷酸化訊號與轉錄終止序列通常位於該編碼序列的3’側。“啟動子序列”係一DNA調節區,其可與細胞中的RNA聚合酶結合及起始下游(3’方向)編碼序 列的轉錄作用。啟動子序列典型含有用於與調節分子(如轉錄作用因子)結合的附加位點,該等調節分子會影響該編碼序列的轉錄作用。當RNA聚合酶與細胞中的啟動子序列結合及將編碼序列轉錄成為mRNA時,編碼序列係在啟動子序列的“控制下”或與啟動子“在操作上連接”,該mRNA然後進而轉譯成為該編碼序列所編碼之蛋白。
載體係用來將一外來物質諸如DNA、RNA或蛋白質引入一生物體或宿主細胞中。典型的載體包括重組型病毒(用於聚核苷酸)及脂質體(用於多肽)。“DNA載體”係諸如質體、噬菌體或黏接質體之一複製子,另一聚核苷酸段可連接其上,而導致所連接段之複製作用。“表現載體”係含有調節序列之一DNA載體,該調節序列引導一適當宿主細胞之多肽合成作用。這通常表示一啟動子與RNA聚合酶結合及起始mRNA的轉錄作用,以及核糖體結合位點與起始訊號引導mRNA轉譯成為多肽。將一聚核苷酸序列導入一表現載體之正確位點與正確讀框中,接著藉由該載體將一適當的宿主細胞轉形,使得能夠生產該聚核苷酸序列所編碼的多肽。
聚核苷酸序列的“擴增反應”係在試管中產生多套的特定核酸序列。經擴增的序列通常是DNA形式。在下列評論文獻中述及用於進行該擴增反應的多種技術,其中各者在此完整地併入本案以為參考資料:Van Brunt於1990年期刊“Bio/Technol.”第8(4)期第291-294頁乙文;及Gill與Ghaemi於2008年3月期刊“Nucleosides Nucleotides Nucleic Acids”第27(3)期第224-43頁乙文。聚合酶鏈反應或PCR係核酸擴增反應的原型,及在本文中所採用之PCR應視為其他適宜的擴增技術之示例。
現在已充分瞭解脊椎動物(包括哺乳類動物)之抗體的一般結構(Edelman,G.M.於期刊“Ann.N.Y.Acad.Sci.”第190期第5頁(1971年)乙文)。抗體係由分子量約23,000道爾頓的二個相同輕質多肽鏈(“輕鏈”)與分子量53,000至70,000的二個相同重鏈(“重鏈”)所組成。四個鏈係在“Y”構型中由雙硫鍵連接,其中重鏈係從“Y”構型的口開始托架在輕鏈上。”Y”構型的“分支”係示為Fab區;”Y”構型的主幹部分係示為FC區。胺基酸序列的定向係自“Y”構型頂部的N端至各鏈底部的C端。N端所具備的變異區係對於引發它的抗原具有特異性,及其長度約為100個胺基酸,在輕鏈與重鏈之間及抗體與抗體之間略有不同。
各鏈中的變異區係與一固定區連接,該固定區延伸至鏈的剩餘長度及在一特定類型的抗體中不隨著抗體特異性(亦即誘發它的抗原)而異。有五種主要的固定區類型,其等決定免疫球蛋白分子之類型(等對應於γ、μ、α、δ及ε(gamma、mu、alpha、delta或epsilon)重鏈固定區之IgG、IgM、IgA、IgD及IgE)。固定區或類型決定後續的抗體作用性功能,包括補體的活化作用(霍爾特、萊因哈特、溫斯頓(Holt,Rinehart,Winston)公司(1976年)出版之Kabat,E.A.所著“免疫學與免疫化學之結構概念(Structural Concepts in Immunology and Immunochemistry)”乙書第二版第413-436 頁)及其他細胞反應(W.B.桑德斯(W.B.Sanders)公司(1980年)出版之Andrews,D.W.等人所著“臨床免疫生物學(Clinical Immunobiology)”第1-18頁;Kohl,S.等人於期刊“Immunology”第48期第187頁(1983年)乙文);而可變區決定其所反應的抗原。將輕鏈分類為κ(kappa)或λ(lambda)。各重鏈類型可與κ或λ輕鏈配對。輕鏈與重鏈係彼此共價鍵結,及當藉由融合瘤或藉由B細胞產生免疫球蛋白時,二重鏈的“尾部”部分係藉由雙硫鍵而彼此共價鍵結。
“變異區”或“VR”之用詞係指一抗體之各對輕鏈與重鏈內直接涉及抗體與抗原結合作用之域。各重鏈在一端有一個可變域(VH)及接著數個固定域。各輕鏈在一端有一個可變域(VL)及在另一端有一個固定域;輕鏈的固定域係與重鏈的第一個固定域對齊,而輕鏈的可變域係與重鏈的可變域對齊。
“互補決定區”、“高度變異區”或“CDR”等詞係指在一抗體的輕鏈或重鏈變異區中所發現之一或多個高度變異區或互補決定區(CDR)(參見美國馬里蘭州貝塞斯達(Bethesda)國家衛生研究院(1987年)出版之Kabat,E.A.等人之“具免疫益處之蛋白質序列(Sequences of Proteins of Immunological Interest)”)。該等用詞係包括如Kabat等人所界定之高度變異區(美國衛生與公眾服務部(Department of Health and Human Services)於1983年出版之Kabat,E.A.等人之“具免疫益處之蛋白質序列”)或抗體的三維結構中之高度變異環(Chothia與Lesk於期刊“J Mol.Biol.”第196期第 901-917頁(1987年)乙文)。各鏈中的CDR係藉由架構區而維持在鄰近處,及與其他鏈的CDR有助於形成抗原結合位點。在CDR內,有被述為選擇性決定區(SDR)之所選出的胺基酸,其等代表CDR在抗體-抗原交互作用中所用的關鍵接觸殘基(Kashmiri,S.於期刊“Methods”第36期第25-34頁(2005年)乙文)。
“架構區”或“FR”之用詞係指在一抗體的輕鏈與重鏈變異區內之一或多個架構區(參見美國馬里蘭州貝塞斯達(Bethesda)國家衛生研究院(1987年)出版之Kabat,E.A.等人之“具免疫益處之蛋白質序列”)。該等用詞包括在一抗體的輕鏈與重鏈變異區內之CDR之間所插入的該等胺基酸序列區。
“穩定的套數”一詞,係指一宿主細胞在一段較長的時間(諸如至少一天、至少一個星期或至少一個月或更長)或在較多的增殖世代數目(如至少30、40、50、75、100、200、500或1000世代或更多)實質上維持一基因(諸如一抗體鏈基因)的套數。例如,在一特定的時間點或世代數目,培養體中的至少50%及較佳地至少70%、75%、85%、90%、95%或更多的細胞可維持與起始細胞相同的基因套數。在一較佳實施例中,該宿主細胞含有穩定套數之所欲多次級單元型複合體(如抗體)的各次級單元。
“穩定表現”一詞係指一宿主細胞在一段較長的時間(諸如至少一天、至少一個星期或至少一個月或更長)或在較多的增殖世代數目(如至少30、40、50、75、100、 200、500或1000世代或更多)維持相近的一基因或蛋白質(諸如一抗體)的表現水平。例如,在一特定的時間點或世代數目,該基因或蛋白質的生產速率或產量可為初始生產速率之至少50%及較佳至少70%、75%、85%、90%、95%或更高。在一較佳實施例中,該宿主細胞係穩定表現所欲的多次級單元型複合體(如抗體)。
實例
提出下列實例係為了提供該等具一般技藝者完整的揭露內容及說明如何製作與使用本發明,而並非意欲限制本發明之範圍。就所用數值(如量、溫度、濃度等)而言,已努力確保準確性,但應容許一些實驗誤差與偏差。除非另有說明,份係重量份,分子量係平均分子量,溫度係以攝氏度數為單位;及壓力係大氣壓力或接近大氣壓力。
第1例
藉由改變重鏈與輕鏈基因的套數而增加抗體產量
該實例表明在巴斯德畢赤氏酵母中,藉由改變重鏈與輕鏈基因的套數,可大幅增加所產生的重組型抗體之產量。尤其,該實例顯示本發明的方法容許標定型配對作用,而產生該等菌株。產生一組二倍體巴斯德畢赤氏酵母菌株,該等菌株各表現具有不同的重鏈與輕鏈基因套數之人化抗體,及進行試驗而找出抗體產量較高之基因套數組合。圖1提供用於有效率地產生該組二倍體菌株之方法概述(詳細方法係如下文第4例所述)。簡言之,在與一分泌訊號融合的一啟動子之控制下,用編碼重鏈或輕鏈基因之基 因將單倍體菌株轉形。為直接嵌入巴斯德畢赤氏酵母基因體內的一特定基因座,在所標定的基因座之同源序列內,將質體直線化。在該實例中,將建構物嵌入pGAP、3’AOX TT及HIS4 TT基因座,雖然亦可使用其他基因座。藉由南方墨點法辨識出含有所串聯嵌入的多套抗體鏈基因之轉形體,及篩選含有所界定的輕鏈或重鏈基因套數之單倍體菌株供進一步使用。選擇性地,將附加的相同抗體鏈基因套數嵌入該單倍體菌株的第二基因座中。藉由該等單倍體菌株的配對作用而有效率地產生二倍體菌株,該二倍體菌株係以不同的組合含有所界定的輕鏈與重鏈基因數目。在配對之後,藉由南方墨點法驗證二倍體菌株的基因套數。
使用該等方法,產生含有編碼三種人化抗體即Ab-A、Ab-B與Ab-C的重鏈與輕鏈基因之二倍體巴斯德畢赤氏酵母菌株。抗體多肽與聚核苷酸序列係示於圖38(Ab-A)、圖39(Ab-B)及圖40(Ab-C)。Ab-A、Ab-B及Ab-C係自三種不同的兔抗體所衍生之人化抗體。Ab-C所具有特異性之抗原係不同於Ab-A與Ab-B。
二倍體菌株係概述於下列第1、2及3表中。各菌株識別碼的前綴字首係指所產生的抗體,而H與L後的數字係分別指所嵌入的重鏈與輕鏈基因之套數。例如,菌株代號Ab-A-H3xL4係指表現Ab-A及含有三套重鏈基因與四套輕鏈基因之一菌株。標示為pGAP、3’AOX TT及HIS4 TT之欄係指嵌入各個基因座的基因套數。將各基因座列出二次,以反映嵌入同源染色體(源自各親代單倍體菌株者)之作用。
在第5例所述之促成抗體產生與分泌作用的條件下,在生物反應器中培養所挑選的二倍體菌株。各抗體鏈係在GAP啟動子之控制下,其表現作用係在將部分葡萄糖轉化為乙醇之條件(供氧量低)下,藉由從甘油碳源轉換為葡萄糖碳源而向上調控。各抗體鏈基因與一分泌序列之同一讀框的融合作用,使得所表現的抗體分泌至培養基中。生長約90小時(T90)後採集培養基,及藉由第6例所述之高效能液相層析法(HPLC)測定抗體產量。
所篩選之表現Ab-A的菌株在T90的相對抗體產量,係示於下列第1表的最右欄,及以圖示方式說明於圖2。使用H3xL3菌株作為參考,及將其表現作用產量設為100%。全培養液抗體效價一般依Ab-A-H3xL4、Ab-A-H3xL3、Ab-A-H4xL4、Ab-A-H4xL6、Ab-A-H5xL4、Ab-A-H5xL5及Ab-A-H5xL7之順序,隨著抗體套數之增加而增加。所有三種Ab-A-H5菌株的產量皆比二種Ab-A-H4菌株高,Ab-A-H4菌株的產量又比二種Ab-A-H3菌株高。就一指定的重鏈套數而言,總產量亦隨著輕鏈套數之增加而增加,例外情況在於H3xL4的產量約比H3xL3的產量低13%。
從表現Ab-B的菌株獲得相近的產量結果,其係示於下列第2表的最右欄,及以圖示方式說明於圖3。使用H3xL3菌株作為參考,及將其表現作用產量設為100%。如同Ab-A,Ab-B的產量一般依Ab-B-H3xL3、Ab-B-H3xL4、Ab-B-H4xL3、Ab-B-H4xL5及Ab-B-H4xL6之順序,隨著抗體套數之增加而增加。所有三種Ab-B-H4菌株的產量皆比二 種Ab-B-H3菌株高。
同樣地,抗體Ab-C的產量一般也隨著抗體套數之增加而增加,如下列第3表的最右欄所示,及以圖示方式說明於圖4。抗體產量一般依Ab-C-H3xL4、Ab-C-H4xL3、Ab-C-H4xL4、Ab-C-H4xL5、Ab-C-H5xL5、Ab-C-H5xL4、Ab-C-H5xL6及Ab-C-H6xL5之順序,隨著抗體套數之增加而增加。在具有5套或更多套重鏈的菌株之間,其產量之增加較為溫和。此外,相對於Ab-C-H6xL5與Ab-C-H5xL6菌株,Ab-C-H6xL6菌株的產量大幅減少,使得該菌株的產量與Ab-C-H4xL4菌株相若。
NT:未在生物反應器中進行試驗
NT:未進行試驗
該等結果顯示,可藉由改變重鏈與輕鏈基因的套數,而大幅增加三種不同抗體的產量。此外,該等結果顯示,藉由將含有所界定的重鏈基因套數之單倍體菌株與含有所界定的輕鏈基因套數之單倍體菌株配對,可產生含有不同(所界定)的重鏈與輕鏈基因套數之一組菌株。在所示的菌株中,產量可增加一倍以上(如比較圖2的菌株H3xL4與H5xL7)。雖然在該實例中並未包括基因套數較少的菌株,預期相較於該等菌株的改善幅度會更大。此外,若將基因的套數進一步增加超過所舉例者,則可能獲得進一步的改善;雖然當套數超過一最佳數值時,產量可能減少。
第2例
藉由改變重鏈與輕鏈基因的套數而增加抗體純度
該實例表明在巴斯德畢赤氏酵母中,因改變輕鏈與重鏈基因的套數,而大幅增加所產生的重組型抗體之純度。藉由將含有所界定的重鏈基因套數之單倍體菌株與含有所界定的輕鏈基因套數之單倍體菌株配對,而產生含有不同(所界定)的重鏈與輕鏈基因套數之菌株。在所比較的菌株中,非所欲副產物的總產量減少約20%。此外,在所比較的菌株中,顯示含量最豐富的單種副產物之產量減少高達約82%。
使用第6例所述之方法,藉由蛋白A純化作用而從培養基純化分泌型抗體,及接著進行HPLC,而測定抗體純度。將試樣維持在預期可以保存所組裝的抗體複合體之天然條件下,而針對影響所組裝的複合體之異常狀態(諸如不正確的化學配比、不當組裝、聚集作用、蛋白酶剪切作用及其他異常狀態)進行檢測。藉由測量在對應於預期抗體(滯留時間約16.7分鐘)之峰所觀察到的總訊號比例,而測定總體純度。顯示來自Ab-A-H4xL4菌株(圖5A及其放大圖為圖5B)與Ab-A-H4xL6菌株(圖5C及其放大圖為圖5D)之Ab-A製備物的例示性HPLC軌跡。量化各軌跡之4個區域的總檢測訊號,該4個區域係對應於主要尖峰前的洗提作用(滯留時間為0至14.6分鐘)、主要產物變異體的尖峰(滯留時間為15.5分鐘)、預期抗體的尖峰(滯留時間為16.7分鐘)及預期抗體尖峰之後的洗提作用(18至22分鐘)(圖5E)。來自Ab-A-H4 xL4的抗體製備物純度約為83.7%,而來自Ab-A-H4xL6菌株的抗體製備物純度約為87.0%。經由該措施,藉由增加輕鏈基因的套數,而使得雜質的總體水平減少約20%(從16.3%降至13%)。藉由增加輕鏈基因的套數,主要產物變異體尖峰(滯留時間為15.5分鐘)的豐度從8.81%顯著減少為1.58%(減少82%)。
藉由HPLC分析Ab-B製備物,而獲得類似的結果。顯示來自Ab-B-H4xL3菌株(圖6A及其放大圖為圖6B)與Ab-B-H4xL5菌株(圖6C及其放大圖為圖6D)之抗體製備物的例示性HPLC軌跡。來自Ab-B-H4xL3的抗體製備物純度約為90.05%,而來自Ab-B-H4xL5菌株的抗體製備物純度約為92.18%。經由該措施,藉由增加輕鏈基因的套數,而將雜質水平減少約21%(從約10%降至約7.8%)。如同Ab-A,主要產物變異體的尖峰之滯留時間約為15.5分鐘。藉由增加輕鏈基因的套數,該主要變異體的豐度減少約59%(從6.26%降至2.54%)(圖6E)。
亦藉由HPLC,分析Ab-C製備物的純度。顯示來自Ab-C-H3xL3菌株(圖7A及其放大圖為圖7B)與Ab-C-H5xL5菌株(圖7C及其放大圖為圖7D)之抗體製備物的例示性HPLC軌跡。主要產物變異體的尖峰之滯留時間為15.2至16.1分鐘。藉由增加輕鏈與重鏈基因的套數,該主要變異體的豐度減少約39%(從6.55%降至4.00%)(圖7E)。
亦在蛋白質凝膠上顯現Ab-A(圖8)、Ab-B(圖9) 及Ab-C(圖10)製備物中的產物變異體。因為試樣經歷變性與還原條件,該方法可檢測出影響個別抗體鏈的組成之異常狀況,但不能預期該方法可檢測出其他類型的異常狀況(諸如複合體具有不當的化學配比、聚集作用、蛋白酶剪切作用、不當的二硫鍵或其他組裝錯誤)。抗體係藉由第7例所述之蛋白A親和性層析法進行純化,然後藉由SDS-PAGE解析及藉由考馬斯(Coomassie)藍染色作用進行染色。正如預期,主要條帶係對應於所預期的重鏈與輕鏈分子量(在圖8中藉由標示為“參考”及加載一種純的參考抗體之電泳道而確認)。在各試樣中即可觀察到單一的主要產物相關變異體(在圖8、9及10中經箭頭標示為“低遷移率產物相關變異體”)。相對於重鏈,低遷移率產物相關變異體具有較低的電泳遷移率。在輕鏈套數較高的菌株之抗體製備物中,該產物相關變異體的量明顯減少,尤其在相較於Ab-A-H4xL4菌株之來自Ab-A-H4xL6菌株的Ab-A製備物(圖8)中、在相較於Ab-B-H4xL5菌株之來自Ab-B-H4xL6菌株的Ab-B製備物(圖9)中及在相較於Ab-C-H3xL3菌株之來自Ab-C-H5xL5菌株的Ab-C製備物中。
因此,就三種不同的抗體而言,檢測雜質的兩種互補方法(HPLC與SDS-PAGE)皆表明,增加抗體輕鏈的套數會導致抗體純度提高。進一步的實驗(述於下文第3例)顯示,一種醣化重鏈變異體(“醣化重鏈型變異體”)係藉由該二種方法所檢測出的主要產物相關變異體之一組分。
第3例
藉由改變重鏈與輕鏈基因的套數而減少醣化重鏈變異體之生產作用
本實例針對前述實例之重組型抗體製備物中所觀察到豐度最高的產物相關變異體,進行特性分析。更詳細地,顯示該產物相關變異體係至少含有部分的人類Fc之一種醣化多肽(“醣化重鏈型變異體”)。結果顯示在輕鏈基因套數增加的菌株中,醣化重鏈型變異體的生產作用降低。因醣蛋白的免疫原性可能比無醣化形式更高,操控宿主細胞而減少其等的生產作用可能特別有利於一些預定用途。
藉由與一種含凝集素樹脂的特異性結合作用,而證實前述實例中所述之低遷移率產物相關變異體係一種醣蛋白。醣蛋白係從二種Ab-B製備物(來自H4xL5與H4xL3菌株)純化而得,及使用第8例所述之方法,藉由SDS-PAGE與西方墨點法進行分析。圖11A顯示藉由SDS-PAGE與考馬斯(Coomassie)藍染色作用,分析所加載物質(左側格之“加載物”)與凝集素管柱洗提液(右側格之“凝集素洗提液)。在凝集素管柱洗提液中檢測出三個主要條帶:低遷移率產物相關變異體(箭頭)、輕鏈多肽及重鏈多肽。相較於所加載物質(圖11A之左側格),低遷移率產物相關變異體(如箭頭所示)係大幅地富集在凝集素管柱洗提液(圖11A之右側格)中。該等結果顯示該低遷移率產物相關變異體係一種醣蛋白。此外,輕鏈與重鏈多肽的共純化作用強烈地表明,該低遷移率產物相關變異體係在物裡上與該等多肽連結。圖11B顯示 藉由使用與辣根過氧化酶結合的一種抗人類Fc抗體(1:10,000的山羊抗人類FC-HRP)之西方墨點法,進一步進行所加載物質(左側格之“加載物”)與凝集素管柱洗提液(右側格之“凝集素洗提液”)的特性分析。如預期,該抗體特異性地結合人類重鏈多肽中所含有的Fc序列(圖11B之下方條帶)。以特異性方式檢測出低遷移率產物相關變異體(圖11B之箭頭),表明其至少含有該重鏈的部分Fc序列。此外,來自低遷移率產物相關變異體的西方墨點訊號,係大幅地富集在凝集素管柱洗提液中,而確認經凝集素富集的條帶與含Fc的條帶係相同的。因此,吾等得出結論認為,該低遷移率產物相關變異體係含有該重鏈的至少Fc部分之一種醣蛋白,其可能與含有輕鏈與重鏈的一複合體連結,及其在此稱作“醣化重鏈型變異體”。
結果亦顯示相對於Ab-B-H4xL3,來自Ab-B-H4xL5菌株的製備物中之醣化重鏈型變異體的相對豐度減少。在考馬斯(Coomassie)染色凝膠上,比較從各菌株製備之經蛋白A純化的抗體(圖11A之左側格)及H4xL5製備物中的醣化重鏈型變異體之豐度明顯減少。與這些結果一致地,相對於凝集素管柱洗提液中的H4xL3製備物,H4xL5製備物中的醣化重鏈型變異體之豐度亦明顯減少(圖11A之右側格)。當用一種抗HuFc抗體檢測醣化重鏈型變異體時,觀察到相同的結果(圖11B)。該等結果表明可藉由改變抗體鏈基因的套數,而調控醣化重鏈型變異體的生產作用。
然後使用下文第8例所述之方法,藉由HPLC分 析經凝集素純化的Ab-B製備物。在凝集素純化作用之前,主峰係對應於來自H4xL3(圖12A及其放大圖為圖12B)與H4x L5(圖13A及其放大圖為圖13B)菌株的製備物之預期抗體(滯留時間約16.7分鐘)。在這兩種製備物中,所觀察到豐度最高的產物相關變異體之滯留時間約為15.5分鐘。在凝集素純化作用之後,該產物相關變異體經大幅富集,而成為來自H4xL3(圖12C及其放大圖為圖12D)與H4xL5(圖13C及其放大圖為圖13D)菌株之製備物中的主要部分。因為其係大幅富集在凝集素管柱洗提液中,吾等得出結論認為使用還原性蛋白凝膠所觀察的醣化重鏈形式,係滯留時間為15.5分鐘的產物相關變異體之一組分。
在圖12與圖13中之預期尖峰與醣化重鏈型尖峰所含有的總質量分率,係示於下列第4表。在凝集素純化作用之前比較抗體製備物(“加載物”欄),而提供抗體純度與醣化重鏈形式盛行率之量化評估。H4xL5製備物中的醣化重鏈形式之相對豐度(2.7%),係不及H4xL3製備物(6%)中的一半。
總而言之,該等結果表明,可藉由改變重鏈與輕鏈基因的套數,而改變醣化重鏈的比例。因此,當需要時,藉由操控輕鏈與重鏈基因的套數可降低醣化抗體之生產作用,及其可藉由所篩選的單倍體菌株之直接配對作用而達成。
第4例
用於產生含有不同的抗體基因套數之細胞組之方法
該實例說明用於生產一組經轉形的酵母細胞之方法,該等酵母細胞包含不同套數之編碼一異源性多次級單元型蛋白質的各次級單元之基因,及將該等經轉形的細胞配對而產生一組二倍體細胞,該等二倍體細胞表現來自不同基因套數的多次級單元型蛋白質。產生菌株之方法係 概述於圖1。
建構用於表現重鏈與輕鏈之巴斯德畢赤氏酵母表現載體。
輕鏈與重鏈段係經商業合成及亞選殖至一個pGAP表現載體中(圖14、15、18及20)。該pGAP表現載體使用GAP啟動子來驅動免疫球蛋白鏈的表現作用。此外,該載體含有共同元件,諸如一個細菌複製起點與供抗生素抗性所用的表現組合體。就Ab-A與Ab-B而言,GAP啟動子序列(約500長度鹼基對)係用於標定嵌入該基因座的嵌入作用。該載體包括一套的卡那黴素抗性基因,其賦予巴斯德畢赤氏酵母對於抗生素G418之抗性。就Ab-C而言,AOX1轉錄終止子序列(約350長度鹼基對)係用於標定嵌入該基因座的嵌入作用。該載體包括一套的Shble基因,其賦予對於抗生素ZeocinTM(腐草黴素)之抗性。G418與ZeocinTM提供篩選菌株之方式,所篩選的菌株含有嵌入其等的基因體中之所欲的表現載體。最後,就Ab-A、Ab-B及Ab-C而言,用於第二回合嵌入作用之載體係包括在HIS4轉錄終止子周邊之660鹼基對的巴斯德畢赤氏酵母基因體序列,HIS4轉錄終止子係用於標定嵌入該基因座的嵌入作用(圖13、14、16及17)。就Ab-A與Ab-B而言,用於第二回合轉形作用之載體包括一套Shble基因。就Ab-C而言,用於第二回合轉形作用之載體包括一套卡那黴素抗性基因。
將表現載體轉形進入巴斯德畢赤氏酵母的單倍體met1與lys3宿主菌株中之轉形作用
藉由遵循來自“畢赤氏酵母屬操作程序”第二版(美國紐澤西州托托瓦(Totowa)的胡馬納出版社(Humana Press)於2007年出版及由Cregg,J.M.所編輯之“分子生物學方法”乙書)的一改良操作程序之電穿孔作用,將巴斯德畢赤氏酵母細胞轉形。經轉形的菌株係衍生自JC231(離胺酸-)或JC239(甲硫胺酸-)。就各宿主菌株而言,在3毫升的YPD(1%酵母萃取物、2%蛋白腖、2%右旋糖)培養中接種一巴斯德畢赤氏酵母菌落,及讓其在30℃及振盪下生長過夜。然後使用該等培養體來接種位於2公升湯姆森(Thomson)搖瓶中的400毫升YPD培養,及起始OD600為0.01。當OD600達到1.0至2.0時,採集細胞及再懸浮於100毫升之含有0.2M HEPES(pH 8.0)與0.025M DTT的YPD培養基中。在30℃培養細胞30分鐘,及使用1M冷的山梨糖醇將體積提高至400毫升。在400毫升的1M冷的山梨糖醇中清洗細胞一次,接著在30毫升之冷的山梨糖醇中清洗三次,然後再懸浮於最終體積為1毫升之1M冷的山梨糖醇中。
就在GAP啟動子中嵌入Ab-A或Ab-B之較佳嵌入作用而言,在轉形之前,使用AvrII限制內切酶,將GAP啟動子序列內的各載體(圖14至15)直線化,以引導將該載體嵌入巴斯德畢赤氏酵母基因體的GAP啟動子基因座中。就在AOX1轉錄終止子中嵌入Ab-C之較佳嵌入作用而言,使用BsiWI(用於重鏈)或PvuII(用於輕鏈),將3’AOX TT序列內的各載體(圖18至19)直線化。就Ab-A與Ab-B而言,在含有G418的YPDS(1%酵母萃取物、2%蛋白腖、2%右旋糖、2% 瓊脂、1M山梨糖醇)瓊脂平皿上篩選成功轉形體。就Ab-C而言,則在含有ZeocinTM的YPDS瓊脂平皿上篩選成功轉形體。這稱為第一基因座嵌入作用。就Ab-A與Ab-C而言,使用螢光啟動型細胞分選技術(FACS)來富集含有較高的重鏈或輕鏈套數之殖株。簡言之,在約5毫升的PBS中刮取轉形平皿的細胞。使用對於重鏈或輕鏈具有特異性的螢光檢測抗體,將細胞染色。即使所感興趣的基因係與分泌訊號融合,藉由FACS可檢測出陽性細胞,這顯然是由於一些蛋白質在細胞表面的至少暫態滯留。分選前20至40%的染色細胞,及用於接種25毫升的BYED(3%的酵母萃取物、4%的無水右旋糖、1.34%的酵母氮基、0.004%的生物素及100 mM的磷酸鉀)搖瓶培養體。在30℃及振盪下生長過夜後,將細胞採集、染色及使用FACS富集第二次。在含有G418(用於Ab-A)或ZeocinTM(用於Ab-C)的YPD平皿上,將前10至20%的染色細胞劃線接種為單一菌落。對於Ab-B則省略FACS富集分析法。
將串聯嵌入所標定的基因座之建構物套數改變(如圖22所說明)。藉由南方墨點分析,測定單倍體菌株之重鏈與輕鏈基因的套數。簡言之,使用剪切嵌入位點的側臨序列之一限制酶,而將基因體DNA酶切;藉由瓊脂糖凝膠電泳解析;轉印至一膜;及藉由嵌入序列所組成的探針進行雜交。酶切片段尺寸係隨著所嵌入的套數而線性增加(參見圖22)。若嵌入作用前之基因體酶切片段的尺寸為Y,及所嵌入序列的長度為X,則嵌入N套後的片段尺寸將為Y+ NX。使用該關係式,可由所檢測片段的長度測定每個轉形體的套數。
然後將具有所欲套數的單倍體菌株配對,及在BYNB(1.34%的酵母氮基、2.5%的瓊脂、2%的右旋糖、0.1M磷酸鉀及pH 6.0)瓊脂平皿上,就其等在同時缺少二種營養缺陷型標記(即離胺酸與甲硫胺酸)的情況下之生長能力進行篩選。然後藉由南方墨點法分析所產生的二倍體殖株,以確認重鏈與輕鏈基因的套數。表現全長式單株抗體的二倍體殖株然後在含有4%酵母萃取物的1毫升BSM之深孔式平皿生長48小時,而進一步進行特性分析(基礎鹽類培養基、10克/公升的檸檬酸鈉二水合物、36.4克/公升的磷酸二氫銨、18.2克/公升的硫酸鉀、12.8克/公升的磷酸二氫鉀、3.7克/公升的硫酸鎂七水合物、40克/公升的右旋糖、40克/公升的酵母萃取物、4.35毫升/公升的PTM1溶液及pH 6.0)。然後使用生物薄膜干涉技術的蛋白A生物感測器(弗泰生物(ForteBio)公司之八位組(Octet)系統),量化上清液中的抗體濃度。
為嵌入第二基因座中,依據上述操作程序,使用含有預定的重鏈或輕鏈套數之單倍體菌株,製備供轉形用的勝任細胞。就嵌入HIS4 TT基因座的較佳嵌入作用而言,使用Sca1限制內切酶,將HIS4 TT嵌入序列內的各表現載體(圖16至17與圖20至21)直線化,以引導嵌入該基因座中。就Ab-A與Ab-B而言,在含有ZeocinTM的YPDS瓊脂平皿上篩選成功轉形體。就Ab-C而言,在含有G418的YPDS瓊 脂平皿上篩選成功轉形體。使用南方墨點法,測定嵌入HIS4 TT基因座之重鏈與輕鏈基因的套數。將單倍體菌株配對,及如上述篩選二倍體菌株。進行最終的南方墨點分析,來確認嵌入各基因座之重鏈與輕鏈基因的套數。使用蛋白A生物感測器來監測表現作用(弗泰生物(ForteBio)公司之八位組(Octet)系統),而篩選一植株。
南方墨點法
藉由南方墨點分析,測定單倍體菌株之重鏈與輕鏈基因的套數。從YPD瓊脂平皿篩選單一菌落,及用於接種3毫升的YPD培養體。培養體在30℃及振盪下培養過夜直至飽和為止。遵循製造商的操作程序,使用MasterPure酵母DNA純化套組(愛琵森特(Epicentre)公司),從1.8毫升的各培養體中萃取基因體DNA。就pGAP基因座而言,用ClaI酶切1微克的DNA,及在0.8%的TAE瓊脂糖凝膠上分離。在電泳之後,該凝膠用變性緩衝液(0.5M氫氧化鈉、1.5M氯化鈉)處理45分鐘,及用中和緩衝液(pH 7.2的0.5M Tris-HCl、1.5M氯化鈉、1 mM EDTA)處理30分鐘。藉由毛細管作用將DNA轉移至帶正電荷的尼龍膜(伯樂(BioRad)公司)上,及使用紫外線連結儀固定。使用對應pGAP序列之一種經長葉毛地黃配質(DIG)標記的DNA探針,該膜在41℃進行雜交作用過夜。在高度嚴格條件下清洗該膜,及使用DIG High Prime標示與檢測套組(羅氏應用科學(Roche Applied Science)公司)進行檢測。藉由使該膜暴露於X光片,而使得雜交條帶可視化。
遵循經部分修改的上述步驟,使用南方墨點法,測定嵌入3’AOX TT或HIS4 TT基因座之重鏈與輕鏈基因的套數。就AOX1轉錄終止子基因座而言,在基因體DNA的酶切作用中使用Hind III限制內切酶,及在雜交作用中使用對應3’AOX TT序列之一種經DIG標記的探針。就HIS4 TT基因座而言,在基因體DNA的酶切作用中使用SspI限制內切酶用,及在雜交作用中使用對應HIS4 TT序列之一種經DIG標記的探針。
使用前述方法,獲得含有不同的個別次級單元套數之一組轉形體,例如標示為H3、H4、H5及H6及分別含有三、四、五及六套的抗體重鏈之菌株,及標示為L3至L7及分別含有三至七套的抗體輕鏈之菌株。然後將該等轉形體配對,而獲得含有不同的輕鏈與重鏈基因套數之二倍體,及選擇性地藉由南方墨點法再次確認基因套數。由此產生含有已知、不同的輕鏈與重鏈基因套數之二倍體細胞。選擇性地,使用生物薄膜干涉技術的蛋白A生物感測器來監測表現作用(弗泰生物(ForteBio)公司之八位組(Octet)系統),而篩選表現所感興趣的抗體之一殖株。通常將所產生的單倍體及/或二倍體菌株製成冷凍庫存,及增殖轉形體以供評估產量、生產速率及成熟抗體的純度之用。
產生一組巴斯德畢赤氏酵母菌株及該等菌株含有不同套數之編碼Ab-A輕鏈與重鏈的基因
使用上述方法,產生用於表現Ab-A及含有不同的輕鏈與重鏈基因套數之一組巴斯德畢赤氏酵母菌株。總 共產生13種二倍體菌株,及其等含有2至5套重鏈基因及2至7套輕鏈基因。最初,產生含有所界定的輕鏈與重鏈基因套數之單倍體菌株(各單倍體菌株係離胺酸-或甲硫胺酸-),然後藉由該等單倍體菌株之間的配對作用,而產生含有已知套數的輕鏈與重鏈基因之二倍體原始營養型菌株。各表現組合體係由下列所組成:與編碼一分泌訊號的一序列融合之甘油醛去氫酶基因(GAP基因)啟動子;接著是待表現基因的序列;接著是編碼來自巴斯德畢赤氏酵母醇氧化酶I基因(AOX1)的一種巴斯德畢赤氏酵母轉錄終止訊號之序列本身或與HIS4 TT序列之組合(如圖14至21中所說明)。
含有嵌入pGAP基因座中之編碼Ab-A重鏈的一基因之轉形體,係經指定識別碼為Hc47至Hc60。用剪切側臨pGAP基因座的位點之一限制酶,進行純化基因體DNA的酶切作用,及如上述使用南方墨點法(使用一種經標記的pGAP序列)來測定各菌株中所嵌入的套數(圖23)。第1道與最右側二道含有經標記的DNA階梯(片段尺寸係書寫於墨點的左側邊緣)。第2至15道係分別對應於菌株Hc47至Hc60。在墨點右側邊緣的標示A至C,係指來自分別含有1至3套的嵌入序列之一菌株的片段預期尺寸。在菌株Hc58與Hc51中所檢測出的片段顯示,該等菌株分別含有2套與3套重鏈基因。挑選菌株Hc58與Hc51進行配對。
同樣地,產生一組巴斯德畢赤氏酵母菌株,該等菌株含有編碼Ab-A輕鏈及亦嵌入pGAP基因座的一基因之不同的基因體套數。該等菌株係經指定識別碼為Lc1至 Lc27。用剪切側臨pGAP基因座的位點之一限制酶,進行純化基因體DNA的酶切作用,及使用南方墨點法(使用一種經標記的pGAP序列)來測定各菌株中所嵌入的套數(圖24)。第1與22道含有一種經標記的DNA階梯(片段尺寸係書寫於墨點的左側邊緣)。第2至21道及第23至29道係分別對應於菌株Lc1至Lc27。在墨點右側邊緣的標示A至F,係指來自分別含有1至5套及5套以上的嵌入序列之一菌株的片段預期尺寸。在菌株Lc17、Lc7及Lc27中所檢測出的片段顯示,該等菌株分別含有2、3及4套輕鏈基因。挑選菌株Lc17、Lc7及Lc27進行配對。
為進一步增加該組可供利用的重鏈與輕鏈基因套數,而在第二基因座中嵌入附加的基因套數。因此,所嵌入之一特定基因的總套數,係由來自二個嵌入基因座的套數加總而得。更詳細地,在已含有嵌入pGAP基因座中的3套Ab-A重鏈基因之一菌株中,又在HIS4 TT基因座中嵌入附加套數之編碼Ab-A重鏈的一基因,從而導入1或2套的附加重鏈基因,及總共達到4或5套。同樣地,在已含有嵌入pGAP基因座中的3套Ab-A輕鏈基因之一菌株中,又在HIS4 TT基因座中嵌入附加套數之編碼Ab-A輕鏈的一基因,從而導入1至4套的附加輕鏈基因,及總共達到4至7套。
然後藉由將含有重鏈與輕鏈基因的菌株配對,而產生二倍體菌株。總共產生13種的不同菌株,該等菌株含有2至5套重鏈基因及2至7套輕鏈基因。就各二倍體菌株而言,重鏈與輕鏈基因的套數係由菌株識別碼顯示(如 Ab-B-H4xL5係指4套重鏈基因與5套輕鏈基因),及表現該等基因的基因座係如上述第1表中所示。
藉由配對作用產生各二倍體菌株的多個分離株,及在挑選特定分離株進行進一步分析之前,藉由南方墨點法驗證套數。圖25顯示pGAP基因座的南方墨點法,以確認Ab-A-H3xL3、Ab-A-H3xL4、Ab-A-H2xL3及Ab-A-H2xL2菌株之候選菌株的基因套數(分別為第2至6道、第7至11道、第12至15道及第16至19道),及星號係指經挑選供進一步使用的候選菌株。第1道含有一種經標記的DNA階梯(片段尺寸係書寫於墨點的左側邊緣)。在墨點右側邊緣的標示A、C及E係指來自分別含有2至4套輕鏈基因之一菌株的片段預期尺寸,及標示B與D係指來自分別含有2或3套重鏈基因之一菌株的片段預期尺寸。圖26係針對第1表所示的菌株分離株,顯示用於驗證在pGAP基因座的基因套數之南方墨點法,及星號係指經挑選供進一步使用之分離株。在墨點右側邊緣的標示A、C及E係指分別含有1至3套重鏈基因之一菌株的片段預期尺寸,及標示B與D係指分別含有2或3套輕鏈基因之一菌株的片段預期尺寸。同樣地,圖27係針對預期含有嵌入該基因座(如第1表所示)的抗體基因之該等菌株,顯示用於驗證在HIS4 TT基因座的基因套數之南方墨點法。在墨點右側邊緣的標示A係指含有一內源性HIS4 TT基因座之一片段的預期尺寸,標示B、D、F及G係指分別含有1至4套輕鏈基因之一菌株的片段預期尺寸,及標示C與E係指分別含有1或2套重鏈基因之一菌株的片段預期尺寸。
產生一組巴斯德畢赤氏酵母菌株及該等菌株含有不同套數之編碼Ab-B輕鏈與重鏈的基因
使用針對Ab-A所述之實質相同的方法,產生含有編碼Ab-B重鏈與輕鏈的基因之單倍體菌株(標定pGAP基因座)。南方墨點法(一種pGAP序列探針)確定菌株Hc3與Hc4分別含有2與3套的Ab-B重鏈基因(圖28A),及株Lc5、Lc11、Lc12及Lc9分別含有2至5套的Ab-B輕鏈基因(圖28B)。在圖28A中,在墨點右側的標示A、C、E及G係指分別含有嵌入pGAP基因座中之0至3套的Ab-B重鏈基因之片段預期尺寸,及在圖28B中,在墨點左側的標示A、B、D、F、H及I係指分別含有嵌入pGAP基因座中之0至5套的Ab-B輕鏈基因之片段預期尺寸。星號係指經挑選供進一步配對用之單倍體菌株。
為進一步增加該組可供利用的重鏈基因套數,在已含有嵌入pGAP基因座中的3套Ab-B重鏈基因之一菌株中,將附加套數之編碼Ab-B重鏈之一基因嵌入HIS4 TT基因座中,從而導入1或2套的附加重鏈基因,及總共達到4或5套。同樣地,在已含有嵌入pGAP基因座中的3套Ab-B輕鏈基因之一菌株中,將附加套數之編碼Ab-B輕鏈之一基因嵌入HIS4 TT基因座中,從而導入1至4套的附加輕鏈基因,及總共達到4至7套。
然後藉由將含有重鏈與輕鏈基因的菌株配對,而產生二倍體菌株。總共產生含有2至5套重鏈基因及2至7套輕鏈基因之14種不同菌株。就各二倍體菌株而言,重鏈 與輕鏈基因的套數係由菌株識別碼顯示(如H4xL5係指4套的重鏈基因與5套輕鏈基因),及表現該等基因的基因座係如上述第2表中所示。藉由圖29至30(pGAP探針)及圖31(HIS4 TT探針)所示的南方墨點法,再次確認二倍體菌株中的基因套數。產生各二倍體菌株的多個分離株,及圖29至31中的星號係指經挑選供進一步配對用之分離株。在圖29中,在墨點右側的標示A、C及E係指分別含有嵌入pGAP基因座中的1至3套Ab-B重鏈基因之片段預期尺寸,及標示B、D、F及G係指分別含有嵌入pGAP基因座中的2至5套Ab-B輕鏈基因之片段預期尺寸。在圖30中,在墨點右側的標示A、B、C及E係指分別含有嵌入pGAP基因座中之0至3套的Ab-B重鏈基因之片段預期尺寸,及標示A與D係指分別含有嵌入pGAP基因座中之0與3套的Ab-B輕鏈基因之片段預期尺寸。在圖31中,標示A、C及E係指分別含有嵌入HIS4 TT基因座中的0至2套Ab-B重鏈基因之片段預期尺寸,及標示A,B、D、F及G係指分別含有嵌入HIS4 TT基因座中的0至4套Ab-B輕鏈基因之片段預期尺寸。
產生一組巴斯德畢赤氏酵母菌株及該等菌株含有不同套數之編碼Ab-C輕鏈與重鏈的基因
使用供Ab-A與Ab-B用之實質相同的方法,產生用於表現含有不同套數的輕鏈與重鏈基因之Ab-C之一組巴斯德畢赤氏酵母菌株。南方墨點法(一種3’AOXTT序列探針)確定單倍體菌株Hc19、Hc25、Hc13及Hc17分別含有1、2、3及4套Ab-C重鏈基因(圖32),及菌株Lc7、Lc6、Lc11、Lc19、 Lc15及Lc17分別含有1至6套Ab-C輕鏈基因(圖33)。在圖32中,在墨點右側的標示A、B、C及D係指分別含有嵌入AOX1轉錄終止子基因座中的1至4套Ab-C重鏈基因之片段預期尺寸。在圖33中,在墨點右側的標示A、B、C、D、E及F係指分別含有嵌入AOX1轉錄終止子基因座中的1至6套Ab-C輕鏈基因之片段預期尺寸。星號係指經挑選供進一步配對用之單倍體。
為進一步增加該組可供利用的重鏈與輕鏈基因套數,而在第二基因座中嵌入附加的基因套。因此,所嵌入之一特定基因的總套數,係由來自二個嵌入基因座的套數加總而得。更詳細地,在已含有嵌入AOX1轉錄終止子基因座中的3或4套Ab-C重鏈基因之一菌株中,將附加套數之編碼Ab-C重鏈的一基因嵌入HIS4 TT基因座中,從而導入1或2套的附加重鏈基因,及總共達到5或6套。同樣地,在已含有嵌入AOX1轉錄終止子基因座中的3或4套Ab-C輕鏈基因之一菌株中,將附加套數之編碼Ab-C輕鏈的一基因嵌入HIS4 TT基因座中,從而導入2套的附加輕鏈基因,及總共達到5或6套。
然後藉由將含有重鏈與輕鏈基因的單倍體配對,而產生二倍體菌株。產生含有3至6套重鏈基因與3至6套輕鏈基因之總共9種不同菌株。就各二倍體菌株而言,重鏈與輕鏈基因的套數係由菌株識別碼顯示(如Ab-C-H4xL5係指4套的重鏈基因與5套輕鏈基因),及表現該等基因的基因座係如上述第3表中所示。藉由圖34至35(3’AOXTT探針) 與圖36(HIS4 TT探針)中所示的南方墨點法,再次確認二倍體菌株中的基因套數。產生各二倍體菌株的多個分離株,及圖34至36中的星號係指經挑選供進一步配對用之分離株。在圖34中,在墨點右側的標示B與D係指分別含有嵌入AOX1轉錄終止子基因座中的3或4套Ab-C重鏈基因之片段預期尺寸,及標示A、C及E係指分別含有嵌入AOX1轉錄終止子基因座中的3至5套Ab-C輕鏈基因之片段預期尺寸。在圖35中,在墨點右側的標示A、C及E係指分別含有嵌入AOX1轉錄終止子基因座中的2至4套Ab-C重鏈基因之片段預期尺寸,及標示B與D係指分別含有嵌入AOX1轉錄終止子基因座中的3與4套Ab-C輕鏈基因之片段預期尺寸。在圖36中,標示A係指含有嵌入HIS4 TT基因座中的零套Ab-C重鏈或輕鏈基因之片段預期尺寸,標示B係指含有嵌入HIS4 TT基因座中的2套Ab-C輕鏈基因之片段預期尺寸,及標示C係指含有嵌入HIS4 TT基因座中的2套的Ab-C重鏈基因之片段預期尺寸。
使用一種略微不同的方法,建構Ab-C-H3xL3表現菌株。在轉形之前,使用AvrII,將pGAP序列中的各表現載體(圖18至19)直線化,以引導該載體嵌入GAP啟動子基因座中。然後藉由電穿孔作用及接著藉由來自“畢赤氏酵母屬操作程序”(第二版)(美國紐澤西州托托瓦的胡馬納出版社於2007年出版及由Cregg,J.M.所編輯之“分子生物學方法”乙書)的一種改良操作程序,分別用直線化重鏈或輕鏈載體進行單倍體巴斯德畢赤氏酵母JC231(離胺酸-)或JC239 (甲硫胺酸-)細胞的個別轉形作用。在含有ZeocinTM的YPDS瓊脂平皿上,篩選成功轉形體。為產生表現全長式Ab-C之二倍體殖株庫,將單倍體轉形體菌落匯集、混合在一起及塗抹在配對培養基瓊脂平皿上。其等在30℃培養24小時。然後刮取配對平皿上的細胞及劃線在BYNB瓊脂平皿上,而篩選二倍體殖株。藉由一種菌落轉印法/免疫墨點法(Wung 等人於期刊“Biotechniques”第21期第808-812頁(1996年)乙文),評估各二倍體殖株表現全長式抗體之能力。簡言之,藉由用一硝化纖維素膜接觸平皿,而將該等殖株所產生的分泌型抗體轉印至該膜上。在該等濾紙上進行使用一山羊抗人類F(ab’)2HRP(辣根過氧化酶)檢測抗體之西方墨點操作程序。使用化學發光檢測作用,使得表現較高水平的Ab-C之菌落在膜上可視化。挑選該等菌落中的很大一部分,及置入含有300微升BYPD(1%酵母氮基、2%蛋白腖、2%葡萄糖、pH 6的0.1M磷酸鉀及50微克/毫升的ZeocinTM)之96深孔式平皿中。在恆定的振盪作用下,讓培養體在30℃生長60小時。藉由一種標準的酵素連結免疫吸附分析法(ELISA),分析所產生的上清液。由此,篩選Ab-C表現作用高之單一的二倍體殖株。隨後遵循上述方法,在最終的殖株上進行南方墨點分析,而測定重鏈與輕鏈基因的套數。
第5例
在生物反應器中用於表現抗體之方法
該實例述及在生物反應器中用於產生抗體之方法,及該等抗體係供進一步特性分析或用途之用。
首先使用包含下列營養素(重量/體積%)的培養基:3%的酵母菌萃取液、4%的無水右旋葡萄糖、1.34%的YNB、0.004%的生物素及100 mM的磷酸鉀,使用該研究細胞庫擴增接種體。為生產供發酵槽所用的接種體,在30℃與300 rpm的振盪式培養箱中擴增該細胞庫約24小時。然後將10%接種體添加至作業容積為2.5公升的拉弗斯(Labfors)容器中,該容器中含有1公升的無菌生長培養基。該生長培養基係由下列營養素所組成:18.2克/公升的硫酸鉀、36.4克/公升的磷酸二氫銨、12.8克/公升的磷酸氫二鉀、3.72克/公升的七水合硫酸鎂、10克/公升的二水合檸檬酸鈉、40克/公升的甘油、30克/公升的酵母菌萃取液、4.35毫升/公升的PTM1微量金屬及2041.67毫升/公升的消泡劑。PTM1微量金屬溶液係由下列組分所組成:6克/公升的五水合硫酸銅、0.08克/公升的碘化鈉、3克/公升的硫酸錳水合物、0.2克/公升的二水合鉬酸鈉、0.02克/公升的硼酸、0.5克/公升的氯化鈷、20克/公升的氯化鋅、65克/公升的七水合硫酸亞鐵、0.2克/公升的生物素及5毫升/公升的硫酸。
生物反應器的製程控制參數之設定如下:攪拌作用為1000 rpm,氣流為每分鐘1.35標準公升,溫度為28℃及使用氫氧化銨將pH值控制在6。並未提供氧氣之補充。
讓發酵培養體生長約12至16小時直至如溶氧激增所示之初始甘油耗盡為止。在溶氧激增後,讓培養體飢餓約3小時。在該飢餓期間之後,在反應器中快速添加乙醇,使得乙醇達到1%(重量/體積)。讓發酵培養體達到平衡 達15至30分鐘。在快速添加乙醇之30分鐘後,開始添加進料及設定在1毫升/分鐘的恆定速率達40分鐘,然後使用乙醇感測探針(雷文生物科技(Raven Biotech)公司),藉由乙醇感測器控制進料幫浦,而在剩餘的操作期間將乙醇濃度維持在1%。進料係由下列組分所組成:50克/公升的酵母菌萃取液、500克/公升的右旋葡萄糖、3克/公升的七水合硫酸鎂及12毫升/公升的PTM1微量金屬。選擇性地,亦在進料中添加二水合檸檬酸鈉(0.5克/公升)。總發酵時間約為90小時。
然後使用裝有一蛋白A親和性管柱之分析級高壓液相層析法(HPLC),測定抗體產量。使用一純化抗體試樣,藉由將HPLC尖峰中的280奈米吸光度(A280)積分,而測定一標準曲線。
第6例
藉由HPLC測定抗體產量與純度之方法
使用尺寸排阻高壓液相層析法(SE-HPLC),而分析經蛋白A純化的抗體製備物之純度。簡言之,使用具有紫外線檢測儀器的安捷倫(Agilent)(美國加州聖塔克拉拉(Santa Clara))1200系列HPLC。就試樣分離作用而言,使用與東曹生物科學(Tosoh Bioscience)公司(美國賓州普魯士王市(King of Prussia))的TSKgel Guard SWx1 6x40 mM連接之TSKgel GS3000SWx1 7.8x300 mM管柱。使用pH 6.5的100 mM磷酸鈉、200 mM氯化鈉作為移動相,而等度模式中的流速為0.5毫升/分鐘,及監測紫外線215奈米的吸光度。在 注入試樣之前,該管柱進行平衡,直到達到穩定的基線為止。使用移動相將試樣濃度稀釋為1毫克/毫升,及注入體積為30微升。為監測管柱性能,使用伯樂(BioRad)公司(美國加州赫丘里斯(Hercules))凝膠過濾標準品。
第7例
藉由蛋白A親和性之抗體純化方法
進行蛋白A純化作用,而分析巴斯德畢赤氏酵母所表現抗體的特徵。簡言之,使用相同體積的平衡緩衝液(pH 6的20 mM組胺酸),稀釋來自所採集的發酵培養液之約20毫升的0.2 μ淨化上清液。然後從該稀釋的培養液中,取出20毫升加載至一個預平衡的1毫升HiTrap MabSelect Sure管柱(美國紐澤西州皮斯卡特維(Piscataway)的GE公司)中。隨後使用30倍管柱體積的平衡緩衝液,清洗該管柱。使用達到100%洗提緩衝液(pH 3.0的100 mM檸檬酸)之一種階段梯度,洗提與管柱結合的抗體。收集1毫升的分液,及立即用100微升之pH 8.0的2M Tris緩衝液加以中和。藉由測量280奈米的吸光度而判定分液是否含有蛋白質,及將含有蛋白質的分液匯集。
第8例
藉由SDS-PAGE、西方墨點法及凝集素管柱純化作用進行雜質的特徵分析之方法
SE-HPLC容許吾等進行產物相關變異體之定量分析,該產物相關變異體係藉由不同菌株中之輕鏈相對於重鏈的表現比例調控。為分析該產物相關變異體的性質特 徵,吾等進行西方墨點分析及進行使用一親和性凝集素管柱之純化作用。簡言之,為進行西方墨點分析,在具有NuPAGE還原劑(美國加州卡爾斯巴德(Carlsbad)的英杰(Invitrogen)公司)的LDS試樣加載緩衝液中製備5微克試樣,及於70℃加熱10分鐘。然後在4至12%的BisTris梯度凝膠上加載4微克當量的試樣,及藉由使用MES電泳緩衝液(美國加州卡爾斯巴德的英杰(Invitrogen)公司)之電泳進行分離。然後使用一種I-Blot(美國加州卡爾斯巴德(Carlsbad)的英杰(Invitrogen)公司),將凝膠中所分離的蛋白轉印到一硝化纖維素膜上,及使用一種阻斷液(位於DPBS-T[含有0.1%妥文(Tween)-20的DPBS溶液(美國加州卡爾斯巴德的英杰(Invitrogen)公司)]中的10%乳粉溶液)阻斷60分鐘。然後使用在阻斷液中的稀釋度為1:10,000之一種羊抗人類FC過氧化酶結合抗體(美國賓州西葛羅夫(West Grove)的傑克森免疫研究實驗室(Jackson Immunoresearch Laboratories)有限公司),探測該經阻斷的膜達30分鐘。該墨點然後在DPBS 0.1%妥文(Tween)溶液中清洗5分鐘,及總共清洗4次。為進行顯影,使用ECL先進化學發光試劑(美國紐澤西州皮斯卡特維(Piscataway)的安瑪西亞(Amersham)公司/GE公司),及用CCD相機(美國加州聖塔克拉拉(Santa Clara)的阿爾發創新技術(Alpha Innotech)公司/細胞生物科學(Cell Biosciences)公司)捕捉影像。
為進一步分析產物相關變異體之特徵,吾等使用瓊脂糖結合型雪花草(Galanthus nivalis)凝集素(美國加 州柏嶺甘(Burlingame)的載體實驗室(Vector Laboratories)有限公司)。雪花草凝集素係與含甘露糖的蛋白質結合之一種小分子量蛋白,及其結合作用不需要鈣++或錳++。為進行結合作用,藉由再懸浮作用-離心作用,用14毫升的DBS清洗2毫升的樹脂四次。在清洗後,將小珠再懸浮而使得在DPBS中的最終漿液濃度為50%,及在含有1.5至4毫克蛋白質之經蛋白A純化的抗體試樣中添加400微升。在連續的混合作用下,瓊脂糖結合型凝集素在室溫與抗體一起培養2.5小時。在培養結束時,將試樣離心,收集上清液及標示為“流動通過”。將小珠轉移至一個空的伯樂(Bio-Rad)滴式管柱(美國加州赫丘里斯(Hercules)),及使用DPBS藉由重力清洗。清洗作用總共使用6毫升,每次使用0.5毫升,及監測280奈米吸光度。使用0.2M甲基-α-D-吡喃甘露糖苷,洗提結合型蛋白。然後藉由SDS-PAGE、使用一種抗人類Fc特異性試劑的西方墨點法及SE-HPLC,分析試樣、加載物及所洗提出的蛋白。依據製造商的使用說明書,使用NuPAGE® MES SDS電泳緩衝液與NuPAGE® LDS試樣緩衝液(皆來自美國加州卡爾斯巴德的英杰(Invitrogen)公司),使用含有4%至12%的聚丙烯醯胺梯度之預製的聚丙烯醯胺凝膠(NuPAGE® Bis-Tris凝膠),進行SDS-PAGE。在加載之前,依據製造商的使用說明書,使用NuPAGE®試樣還原劑(美國加州卡爾斯巴德的英杰(Invitrogen)公司),將試樣還原。
本發明所述各種實施例之上述說明,並非意欲窮舉或將本發明侷限於所揭露的確切形式。在此係為了說 明之目的而陳述本發明的特定實施例及用於本發明的實例,嫻熟相關技藝者所認出之各種等效改質作用,在本發明的範圍內皆屬可能。本文所提供關於本發明的教導可應用在上述實例以外的其他目的。
可用特別述於前述說明與實例中的該等方式以外之其他方式,實施本發明。鑑於上述教導,可能進行本發明的眾多改質作用與變化,及其等因此係位於所附申請專利範圍的範疇之內。
鑑於上述詳細說明,可在本發明進行該等與其他改變。一般而言,在下列申請專利範圍中,所用詞語不應被解釋將本發明侷限於說明書與申請專利範圍中所揭露的特定實施例。因此,本發明並非受限於揭露內容,本發明的範圍完全由下列申請專利範圍所決定。
與用於獲得抗原特異性B細胞殖株種群的方法相關之特定教導,係揭露於2006年5月19日提出申請之第60/801,412號美國暫准專利申請案中,其揭露內容在此完整地併入本案以為參考資料。
與兔衍生型單株抗體的人化作用及用以維持抗原結合親和性之較佳的序列改質作用相關之特定教導,係揭露於第PCT/US2008/064421號國際申請案中,其係對應於2008年5月21日提出申請及標題為“新穎兔抗體人化作用方法與人化兔抗體”之第WO/2008/144757號國際公開案,其揭露內容在此完整地併入本案以為參考資料。
與使用配對勝任型酵母菌及對應方法產生抗體 或其片段相關之特定教導,係揭露於2006年5月8日提出申請之第11/429,053號美國專利申請案(美國專利申請公開案US 2006/0270045)中,其揭露內容在此完整地併入本案以為參考資料。
在本發明背景、概要、詳細說明及實例中所引述各文獻的完整揭露內容(包括專利、專利申請案、期刊文章、摘要、手冊、書籍或其他揭露內容),係在此完整地併入本案以為參考資料。
圖1係概述用於獲得單倍體菌株之一例示性方法,該菌株含有編碼一所欲抗體輕鏈及/或重鏈之基因的特別標定套數;及概述藉由單倍體菌株的配對作用而獲得一組的二倍體菌株,該等二倍體菌株係由特別標定套數的輕鏈與重鏈基因而表現所欲的抗體。
圖2係以圖示方式說明相較於H3xL3菌株之來自所篩選的二倍體菌株之相對總抗體產量,該等二倍體菌株含有遞增套數之編碼Ab-A的輕鏈與重鏈之基因。將H3xL3產量設為100%,相對總培養液的抗體效價一般隨著抗體總套數之增加而增加,依H3xL4、H3xL3、H4xL4、H4xL6、H5xL4、H5xL5及H5xL7之順序。
圖3係以圖示方式說明相較於H3xL3菌株之來自含有遞增套數之編碼Ab-B輕鏈與重鏈的基因之菌株之相對總培養液的抗體產量。將H3xL3抗體產量設為100%,相對總培養液的抗體效價大致隨著抗體套數之增加而增加,依 H3xL3、H3xL4、H4xL3、H4xL5及H4xL6之順序。
圖4係以圖示方式說明相較於H3xL3菌株之來自含有遞增套數之編碼Ab-C輕鏈與重鏈的基因之菌株之相對總培養液的抗體產量。將H3xL3抗體產量設為100%,相對總培養液的抗體效價大致隨著抗體套數之增加而增加,依Ab-C-H3xL4、Ab-C-H4xL3、Ab-C-H4xL4、Ab-C-H4xL5、Ab-C-H5xL5、Ab-C-H5xL4、Ab-C-H5xL6及Ab-C-H6xL5之順序。
圖5A-E顯示藉由HPLC測定之Ab-A的蛋白A捕擭洗提液之純度,Ab-A係由H4xL4與H4xL6菌株所產生。在15.5分鐘遷移之產物相關變異體的水平(藉由總積分面積的百分比測定),係減少超過5倍(從H4xL4中的8.81降至H4xL6中的1.58%)。
圖6A-E顯示藉由HPLC測定之Ab-B的蛋白A捕擭洗提液之純度,Ab-B係由H4xL3與H4xL5菌株所產生。在15.5分鐘遷移之產物相關變異體的水平(藉由總積分面積的百分比測定),係減少約59%(從H4xL3中的6.26%降至H4xL5中的2.54%)。
圖7A-E顯示藉由HPLC測定之Ab-C的蛋白A捕擭洗提液之純度,Ab-C係由HexL3與H5xL5菌株所產生。在15.2至16.1分鐘遷移之產物相關變異體的水平(藉由總積分面積的百分比測定),係減少約39%(從H3xL3中的6.55%降至H5xL中的54.00%)。
圖8顯示由H4xL4與H4xL6菌株所產生的Ab-A之經染 色的SDS-PAGE凝膠。在來自輕鏈套數較多的菌株之製備物中,觀察到“低遷移率產物相關變異體”(如箭頭所示)之豐度較低。
圖9顯示經蛋白A純化的Ab-B之經染色的SDS-PAGE凝膠,Ab-B係由H4xL5與H4xL6菌株所產生。如同Ab-A,在來自輕鏈套數較多的菌株之製備物中,觀察到“低遷移率產物相關變異體”(如箭頭所示)之豐度較低。
圖10顯示經蛋白A純化的Ab-C之經染色的SDS-PAGE凝膠,Ab-C係由H3xL3與H5xL5菌株所產生。如同Ab-A與Ab-B,在來自抗體鏈套數較多的菌株之製備物中,觀察到“低遷移率產物相關變異體”(如箭頭所示)之豐度較低。
圖11顯示辨識出該低遷移率產物相關變異體係與人類Fc相關之一醣化蛋白質(由其藉由凝集素管柱的選擇性富集作用及藉由抗Fc抗體的特異性識別作用所證明)。一抗體製備物(“加載物”)係與一凝集素樹脂結合及進行洗提(“凝集素洗提液”)。SDS-PAGE(圖11A)顯示低遷移率產物相關變異體藉由凝集素管柱而進行選擇性富集作用。使用一種抗HuFc抗體之西方墨點法(圖11B)檢測出該低遷移率產物相關變異體,表明其含有至少部分的人類Fc序列。該產物相關變異體在此稱作“醣化重鏈型變異體”。此外,相對於菌株H4xL3,來自菌株H4xL5的抗體製備物中之該產物相關變異體的量係明顯減少。
圖12A-D與13A-D顯示,藉由HPLC(滯留時間約15.5分鐘)所觀察到的一產物相關變異體係在凝集素管柱洗提液 中進行選擇性富集,其表明醣化重鏈型變異體係該產物相關變異體的一組分。抗體Ab-B係從H4xL3與H4xL5菌株製備。
圖14顯示用於將Ab-A或Ab-B的一抗體重鏈序列標定嵌入pGAP基因座(基因座#1)中之一建構物的圖譜。
圖15顯示用於將Ab-A或Ab-B的一抗體輕鏈序列標定嵌入pGAP基因座(基因座#1)中之一建構物的圖譜。
圖16顯示用於將Ab-A或Ab-B的一抗體重鏈序列標定嵌入HIS4 TT基因座(基因座#2)中之一建構物的圖譜。
圖17顯示用於將Ab-A或Ab-B的一抗體輕鏈序列標定嵌入HIS4 TT基因座(基因座#2)中之一建構物的圖譜。
圖18顯示用於將Ab-C的一抗體重鏈序列標定嵌入AOX1 TT基因座(基因座#1)中之一建構物的圖譜。
圖19顯示用於將Ab-C的一抗體輕鏈序列標定嵌入AOX1 TT基因座(基因座#1)中之一建構物的圖譜。
圖20顯示用於將Ab-C的一抗體重鏈序列標定嵌入HIS4 TT基因座(基因座#2)中之一建構物的圖譜。
圖21顯示用於將Ab-C的一抗體輕鏈序列標定嵌入HIS4 TT基因座(基因座#2)中之一建構物的圖譜。
圖22說明嵌入單一基因座的抗體套數與可藉由南方墨點法檢測出的片段預期尺寸之間之關係。
圖23與24顯示南方墨點法,其係在經編碼Ab-A鏈的基因轉形之多種分離株中,分別用於檢測一抗體重鏈基因與輕鏈基因的套數。
圖25至27顯示南方墨點法,其係在藉由配對經轉形的單倍體菌株所產生之一組二倍體菌株中,用於確認存在於pGAP(圖25至26)與HIS4 TT(圖27)基因座之編碼Ab-A重鏈與輕鏈的基因套數。
圖28A-B顯示南方墨點法,其係在經編碼Ab-B鏈的基因轉形之多種分離株中,分別用於檢測抗體重鏈基因與輕鏈基因的套數。
圖29至31顯示南方墨點法,其係在藉由配對經轉形的單倍體菌株所產生之一組二倍體菌株中,用於確認存在於pGAP(圖29至30)與HIS4 TT(圖31)基因座之編碼Ab-B重鏈與輕鏈的基因套數。
圖32至33顯示南方墨點法,其係在經編碼Ab-C鏈的基因轉形之多種分離株中,分別用於檢測抗體重鏈基因與輕鏈基因的套數。
圖34至36顯示南方墨點法,其係在藉由配對經轉形的單倍體菌株所產生之一組二倍體菌株中,用於確認存在於3’ AOX TT(圖34至35)與HIS4 TT(圖36)基因座之編碼Ab-C重鏈與輕鏈的基因套數。
圖37說明可依據本揭露內容的實施例使用之例示性、非限制性的輕鏈與重鏈基因套數組合。
圖38顯示編碼Ab-A輕鏈與重鏈的聚核苷酸序列及其等所編碼的多肽,以及其中所包含的CDR序列。
圖39顯示編碼Ab-B輕鏈與重鏈的聚核苷酸序列及其等所編碼的多肽,以及其中所包含的CDR序列。
圖40顯示編碼Ab-C輕鏈與重鏈的聚核苷酸序列及其等所編碼的多肽。
<110> 艾爾德生物控股有限責任公司(ALDERBIO HOLDINGS LLC)
<120> 在經轉形的微生物如巴斯德畢赤氏酵母中的多-複製策略用於多-次級單元的 蛋白質如抗體之高效價且高純度生產技術
<130> 67858.730201
<150> 61/525,307
<151> 2011年8月19日
<150> 13/466,795
<151> 2012年5月8日
<160> 54
<170> 專利申請軟體3.5版
<210> 1
<211> 441
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 1
<210> 2
<211> 111
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 2
<210> 3
<211> 5
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 3
<210> 4
<211> 16
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 4
<210> 5
<211> 333
<212> DNA
<213> 人工
<220>
<223> 人化抗體序列
<400> 5
<210> 6
<211> 1326
<212> DNA
<213> 人工
<220>
<223> 人化抗體序列
<400> 6
<210> 7
<211> 219
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 7
<210> 8
<211> 113
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 8
<210> 9
<211> 13
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 9
<210> 10
<211> 7
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 10
<210> 11
<211> 13
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 11
<210> 12
<211> 339
<212> DNA
<213> 人工
<220>
<223> 人化抗體序列
<400> 12
<210> 13
<211> 660
<212> DNA
<213> 人工
<220>
<223> 人化抗體序列
<400> 13
<210> 14
<211> 441
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 14
<210> 15
<211> 111
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 15
<210> 16
<211> 5
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 16
<210> 17
<211> 15
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 17
<210> 18
<211> 333
<212> DNA
<213> 人工
<220>
<223> 人化抗體序列
<400> 18
<210> 19
<211> 1326
<212> DNA
<213> 人工
<220>
<223> 人化抗體序列
<400> 19
<210> 20
<211> 219
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 20
<210> 21
<211> 113
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 21
<210> 22
<211> 13
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 22
<210> 23
<211> 7
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 23
<210> 24
<211> 13
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 24
<210> 25
<211> 339
<212> DNA
<213> 人工
<220>
<223> 人化抗體序列
<400> 25
<210> 26
<211> 660
<212> DNA
<213> 人工
<220>
<223> 人化抗體序列
<400> 26
<210> 27
<211> 1350
<212> DNA
<213> 人工
<220>
<223> 人化抗體序列
<400> 27
<210> 28
<211> 450
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 28
<210> 29
<211> 651
<212> DNA
<213> 人工
<220>
<223> 人化抗體序列
<400> 29
<210> 30
<211> 217
<212> PRT
<213> 人工
<220>
<223> 人化抗體序列
<400> 30
<210> 31
<211> 18
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 31
<210> 32
<211> 16
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 32
<210> 33
<211> 19
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 33
<210> 34
<211> 35
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 34
<210> 35
<211> 22
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 35
<210> 36
<211> 27
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 36
<210> 37
<211> 41
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 37
<210> 38
<211> 85
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 38
<210> 39
<211> 44
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 39
<210> 40
<211> 22
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 40
<210> 41
<211> 22
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 41
<210> 42
<211> 22
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 42
<210> 43
<211> 24
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 43
<210> 44
<211> 18
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 44
<210> 45
<211> 24
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 45
<210> 46
<211> 24
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 46
<210> 47
<211> 26
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 47
<210> 48
<211> 27
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 48
<210> 49
<211> 18
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 49
<210> 50
<211> 18
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 50
<210> 51
<211> 20
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 51
<210> 52
<211> 19
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 52
<210> 53
<211> 31
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 53
<210> 54
<211> 22
<212> PRT
<213> 人工
<220>
<223> 分泌訊號肽
<400> 54

Claims (16)

  1. 一種辨識出一種二倍體巴斯德畢赤氏酵母(Pichia pastoris)宿主細胞之方法,該宿主細胞與另一種二倍體巴斯德畢赤氏酵母宿主細胞相比係以較高之純度產生一種所欲抗體,該方法包括:(a)提供一組二倍體巴斯德畢赤氏酵母宿主細胞,該組包括至少二種二倍體巴斯德畢赤氏酵母宿主細胞,其係各包含不同套數(numbers of copies)之供表現該所欲抗體的多個次級單元之多個基因中的一或多者,其中該供表現該所欲抗體的多個次級單元之多個基因包含編碼該所欲抗體之輕鏈與重鏈之多個基因;(b)培養各該等二倍體巴斯德畢赤氏酵母宿主細胞來表現該所欲抗體;(c)測量各該等二倍體巴斯德畢赤氏酵母宿主細胞所產生的所欲抗體之純度;及(d)在該組產生該所欲抗體之二倍體巴斯德畢赤氏酵母宿主細胞中,辨識出一種二倍體巴斯德畢赤氏酵母宿主細胞,其與另一種二倍體巴斯德畢赤氏酵母宿主細胞相比係以較高之純度產生該所欲抗體。
  2. 如請求項1之方法,其中該組二倍體巴斯德畢赤氏酵母宿主細胞包括一種二倍體巴斯德畢赤氏酵母細胞之異源族群(heterogenous population),其中該二倍體巴斯德畢赤氏酵母細胞之異源族群包括彼此含有不同套數組合之該編碼該所欲抗體的多個次級單元之多個基因之細胞,及彼此含有相同套數組合之該編碼該所欲抗體的多個次級單元之多個基因之巴斯德畢赤氏酵母細胞。
  3. 如請求項1之方法,其中在該等宿主細胞中編碼該所欲抗體之重鏈的基因之套數與編碼該所欲抗體之輕鏈的基因之套數分別為:2與1、3與1、4與1、5與1、6與1、7與1、8與1、9與1、10與1、1與2、2與2、3與2、4與2、5與2、6與2、7與2、8與2、9與2、10與2、1與3、2與3、3與3、4與3、5與3、6與3、7與3、8與3、9與3、10與3、1與4、2與4、3與4、4與4、5與4、6與4、7與4、8與4、9與4、10與4、1與5、2與5、3與5、4與5、5與5、6與5、7與5、8與5、9與5、10與5、1與6、2與6、3與6、4與6、5與6、6與6、7與6、8與6、9與6、10與6、1與7、2與7、3與7、4與7、5與7、6與7、7與7、8與7、9與7、10與7、1與8、2與8、3與8、4與8、5與8、6與8、7與8、8與8、9與8、10與8、1與9、2與9、3與9、4與9、5與9、6與9、7與9、8與9、9與9、10與9、1與10、2與10、3與10、4與10、5與10、6與10、7與10、8與10、9與10、或10與10。
  4. 如請求項1之方法,其中:(i)該組二倍體巴斯德畢赤氏酵母宿主細胞所包括的細胞係表現高達15套之編碼該所欲抗體的各基因,及代表各次級單元相對於其他次級單元之實質上所有可能的套數組合;(ii)該組二倍體巴斯德畢赤氏酵母宿主細胞所包括的細胞係表現高達12套之編碼該所欲抗體的各基因,及代表各次級單元相對於其他次級單元之實質上所有可能的套數組合;(iii)該組二倍體巴斯德畢赤氏酵母宿主細胞所包括的細胞係表現高達10套之編碼該所欲抗體的各基因,及代表各次級單元相對於其他次級單元之實質上所有可能的套數組合;(iv)該組二倍體巴斯德畢赤氏酵母宿主細胞所包括的細胞係表現高達8套之編碼該所欲抗體的各基因,及代表各次級單元相對於其他次級單元之實質上所有可能的套數組合;或(v)該組二倍體巴斯德畢赤氏酵母宿主細胞所包括的細胞係表現高達6套之編碼該所欲抗體的各基因,及代表各次級單元相對於其他次級單元之實質上所有可能的套數組合。
  5. 如請求項1之方法,其中該純度係藉由測量一或多種醣化抗體鏈的相對比例而測定,且選擇性地其中該一或多種醣化抗體鏈係包括一醣化抗體重鏈型變異體。
  6. 如請求項1之方法,其中:(i)該組二倍體巴斯德畢赤氏酵母宿主細胞係由單倍體巴斯德畢赤氏酵母細胞的配對或融合產生,該等單倍體巴斯德畢赤氏酵母細胞含有不同套數之編碼該所欲抗體的一或多個次級單元之多個基因,使得該配對所產生的二倍體巴斯德畢赤氏酵母細胞含有不同套數之該編碼該所欲抗體的多個次級單元之多個基因;或(ii)該組二倍體巴斯德畢赤氏酵母宿主細胞係由單倍體巴斯德畢赤氏酵母細胞的配對或融合產生,該等單倍體巴斯德畢赤氏酵母細胞含有不同套數之編碼該所欲抗體的一或多個次級單元之多個基因,使得該配對所產生的二倍體巴斯德畢赤氏酵母細胞含有不同套數之該編碼該所欲抗體的多個次級單元之多個基因,且其中該供表現該所欲抗體的多個次級單元之多個基因係嵌入該等單倍體巴斯德畢赤氏酵母細胞的基因體中。
  7. 如請求項1之方法,其中所辨識出的該二倍體巴斯德畢赤氏酵母宿主細胞係用於產生一種生產培養體。
  8. 如請求項1之方法,其中該供表現該所欲抗體的多個次級單元之多個基因係嵌入該等二倍體巴斯德畢赤氏酵母宿主細胞的基因體中。
  9. 如請求項8之方法,其中該供表現該所欲抗體的多個次級單元之多個基因係嵌入選自由pGAP、3’ AOX TT、PpURA5、OCH1、AOX1、HIS4、GAP、ARG及HIS4 TT基因座所組成之群組之一或多個基因座中。
  10. 如請求項1之方法,其中:(i)該編碼該所欲抗體的多個次級單元之多個基因中之至少一者係在一誘導性或持續性啟動子之控制下表現;(ii)該編碼該所欲抗體的多個次級單元之多個基因中之至少一者係在一誘導性或持續性啟動子之控制下表現,其中該誘導性啟動子係選自由GAP、CUP1、AOX1及FLD1啟動子所組成之群組;(iii)該編碼該所欲抗體的多個次級單元之多個基因中之至少一者係在一誘導性或持續性啟動子之控制下表現,其中該編碼該所欲抗體的多個次級單元之多個基因中之至少一者係在選自由下列所組成之群組之一啟動子控制下表現:AOX1、ICL1、甘油醛-3-磷酸去氫酶(GAP)、FLD1、ADH1、醇去氫酶II、GAL4、PHO3、PHO5與Pyk啟動子、由其所衍生的嵌合啟動子、酵母啟動子、哺乳類動物啟動子、昆蟲啟動子、植物啟動子、爬蟲類啟動子、兩棲動物啟動子、病毒啟動子及禽類啟動子;(iv)該所欲抗體係從該等二倍體巴斯德畢赤氏酵母細胞純化;(v)該所欲抗體從該等二倍體巴斯德畢赤氏酵母宿主細胞之一細胞內組分、細胞質、核質或一膜純化;(vi)該二倍體巴斯德畢赤氏酵母宿主細胞將該所欲抗體分泌至培養基中;(vii)該所欲抗體係一種單特異性或雙特異性抗體;(viii)至少二種二倍體巴斯德畢赤氏酵母宿主細胞係包含不同套數之編碼該所欲抗體的一次級單元之一基因;(ix)該組中的至少一種二倍體巴斯德畢赤氏酵母宿主細胞係包含編碼該所欲抗體的至少一個次級單元之一基因,其中驅動其表現的啟動子係不同於在該組中的不同二倍體巴斯德畢赤氏酵母宿主細胞中驅動對應基因表現之啟動子;(x)該組中的至少一種二倍體巴斯德畢赤氏酵母宿主細胞係包含一個多順反子基因,其包含一種以上之編碼該所欲抗體的一次級單元的序列;(xi)該所欲抗體係與IL-6、TNF-α、CGRP、PCSK9或NGF特異性結合;(xii)該所欲抗體係包含一人類抗體或一人化抗體或其片段;(xiii)該所欲抗體係包含一人化抗體或其片段,且該人化抗體係源自小鼠、大鼠、兔、山羊、綿羊或牛;(xiv)該所欲抗體係包含一種單價、二價或多價抗體;(xv)在該組中的至少一種二倍體巴斯德畢赤氏酵母宿主細胞中供表現該所欲抗體的一次級單元之多個基因中的至少一者係針對在該二倍體巴斯德畢赤氏酵母宿主細胞中的表現進行最佳化作用;或(xvi)該所欲抗體係經醣化,且該所欲抗體的純度係藉由測量該二倍體巴斯德畢赤氏酵母宿主細胞所產生之非醣化、包含在具有預期表觀流體力學半徑之抗體複合體中、及/或與該所欲抗體的一標的特異性結合之該所欲抗體之部分來評估。
  11. 如請求項1之方法,其中:(i)該編碼該所欲抗體之多個基因的套數係穩定達20世代;(ii)該編碼該所欲抗體之多個基因的套數係穩定達50世代;(iii)該編碼該所欲抗體之多個基因的套數係穩定達100世代;(iv)該編碼該所欲抗體之多個基因的套數係穩定達500世代;(v)該編碼該所欲抗體之多個基因的套數係穩定達1000世代;(vi)編碼該所欲抗體的至少一個次級單元之多套基因係嵌入二或更多個基因座中;(vii)編碼該所欲抗體的至少一個次級單元之多套基因係嵌入三或更多個基因座中;(viii)編碼該所欲抗體的至少一個次級單元之多套基因係嵌入二、三或更多個基因座中,其中各基因座含有不超過5套之一指定次級單元;(ix)編碼該所欲抗體的至少一個次級單元之多套基因係嵌入二、三或更多個基因座中,其中各基因座含有不超過4套之一指定次級單元;或(x)編碼該所欲抗體的至少一個次級單元之多套基因係嵌入二、三或更多個基因座中,其中各基因座含有不超過3套之一指定次級單元。
  12. 如請求項1之方法,進一步包含從被辨識為以較高純度產生所欲抗體之二倍體巴斯德畢赤氏酵母宿主細胞之二倍體巴斯德畢赤氏酵母宿主細胞重組地產生該所欲抗體,其中該二倍體巴斯德畢赤氏酵母宿主細胞(i)包含編碼該所欲抗體的各次級單元之一或多個基因;或(ii)包含介於2套與10套之間之編碼該所欲抗體的各次級單元之一基因,其中該方法包含:(a)提供該二倍體巴斯德畢赤氏酵母宿主細胞;及(b)培養該二倍體巴斯德畢赤氏酵母宿主細胞來表現該等基因。
  13. 如請求項12之方法,其中該二倍體巴斯德畢赤氏酵母宿主細胞包含編碼該所欲抗體的各次級單元之一或多個基因,且其係藉由如請求項1之方法被辨識為一種以較高純度產生所欲抗體之二倍體巴斯德畢赤氏酵母宿主細胞,且其中:(i)該方法進一步包括該所欲抗體的純化;或(ii)該二倍體巴斯德畢赤氏酵母宿主細胞所產生的抗體效價係至少100毫克/公升、至少150毫克/公升、至少200毫克/公升、至少250毫克/公升、至少300毫克/公升、介於100與1000毫克/公升之間、至少1000毫克/公升、至少1250毫克/公升、至少1500毫克/公升、至少1750毫克/公升、至少2000毫克/公升、或高於2000毫克/公升。
  14. 如請求項12之方法,其中該二倍體巴斯德畢赤氏酵母宿主細胞係藉由二種親代細胞的配對或融合而產生,其中各親代細胞包含一或多套之至少一編碼該所欲抗體的一次級單元之基因;選擇性地其中各編碼該所欲抗體的一次級單元之二種不同基因中之各者之至少一套係嵌入該二倍體巴斯德畢赤氏酵母宿主細胞之二個同源染色體的相同基因座中。
  15. 如請求項14之方法,其中:(i)供表現該所欲抗體之多個基因中的至少一者係嵌入該二倍體巴斯德畢赤氏酵母宿主細胞的基因體中;(ii)供表現該所欲抗體之多個基因中的至少一者係包含在一或多種染色體外因子、質體或人工染色體上;(iii)該二倍體巴斯德畢赤氏酵母宿主細胞所包含之供表現該所欲抗體輕鏈之基因的套數係多於供表現該所欲抗體重鏈之基因的套數;(iv)該二倍體巴斯德畢赤氏酵母宿主細胞所包含之供表現該所欲抗體重鏈之基因的套數係多於供表現該所欲抗體輕鏈之基因的套數;(v)該二倍體巴斯德畢赤氏酵母宿主細胞所包含之供表現該所欲抗體輕鏈之基因的套數係與供表現該所欲抗體重鏈之基因的套數相同;或(vi)在該二倍體巴斯德畢赤氏酵母宿主細胞中,編碼該所欲抗體重鏈之基因的套數與編碼該所欲抗體輕鏈之基因的套數係分別為:2與2、2與3、3與3、3與4、3與5、4與3、4與4、4與5、4與6、5與4、5與5、5與6、或5與7。
  16. 如請求項12之方法,其中該二倍體巴斯德畢赤氏酵母宿主細胞包含介於2套與10套之間之編碼該所欲抗體的各次級單元之一基因,其中該二倍體巴斯德畢赤氏酵母宿主細胞係藉由二種親代細胞的配對或融合產生,其中各親代細胞包含一或多套之編碼該所欲抗體的一或多個次級單元之多個基因,且其中該重組產生一所欲抗體之方法進一步選擇性地包括下列一或多者:(i)各編碼該所欲抗體的一次級單元之二種不同基因中之各者之至少一套係嵌入該二倍體巴斯德畢赤氏酵母宿主細胞之二個同源染色體的相同基因座中;(ii)該供表現該所欲抗體的多個次級單元之多個基因中的至少一者係嵌入選自由pGAP基因座與HIS4TT基因座所組成之群組之一或多個基因座中;(iii)該編碼該所欲抗體之多個基因中的至少一者係在一誘導性或持續性啟動子之控制下表現;(iv)該編碼該所欲抗體之多個基因中的至少一者係在一誘導性或持續性啟動子之控制下表現,其中該誘導性啟動子係選自由GAP、AOX1、CUP1及FLD1啟動子所組成之群組;(v)編碼該抗體輕鏈及/或重鏈之該等基因中的至少一者係在選自由下列所組成之群組之一啟動子控制下表現:AOX1、ICL1、甘油醛-3-磷酸去氫酶(GAP)、FLD1、ADH1、醇去氫酶II、GAL4、PHO3、PHO5與Pyk啟動子、由其所衍生的嵌合啟動子、酵母啟動子、哺乳類動物啟動子、昆蟲啟動子、植物啟動子、爬蟲類啟動子、兩棲動物啟動子、病毒啟動子及禽類啟動子;(vi)該二倍體巴斯德畢赤氏酵母宿主細胞將該所欲抗體分泌至培養基中;(vii)該二倍體巴斯德畢赤氏酵母宿主細胞所產生的所欲抗體係一種單特異性或雙特異性抗體;(viii)該二倍體巴斯德畢赤氏酵母宿主細胞所產生的所欲抗體係與IL-6、TNF-α、CGRP、PCSK9或NGF特異性結合;(ix)該二倍體巴斯德畢赤氏酵母宿主細胞所產生的所欲抗體係一人化抗體或其片段,其係選擇性地與IL-6、TNF-α、CGRP、PCSK9或NGF特異性結合;(x)該二倍體巴斯德畢赤氏酵母宿主細胞所產生的所欲抗體係源自兔之人化抗體;(xi)該二倍體巴斯德畢赤氏酵母宿主細胞所產生的所欲抗體係一種單價、二價或多價抗體;(xii)編碼該所欲抗體的一次級單元之一基因的多套中之至少一者係針對在該二倍體巴斯德畢赤氏酵母宿主細胞中的表現進行最佳化作用;(xiii)編碼該所欲抗體輕鏈之一基因的套數係大於或等於編碼該所欲抗體重鏈之一基因的套數;(xiv)該方法所產生之該所欲抗體之純度係高於使用一含有單套之編碼該所欲抗體的一次級單元之各基因之菌株的方法;(xv)該方法所產生之該所欲抗體之純度係高於使用一含有單套之編碼該所欲抗體的一次級單元之各基因之菌株的方法,其中該純度係藉由測量醣化重鏈及/或輕鏈多肽的質量佔重鏈及/或輕鏈多肽總質量之百分比而測定;及(xvi)該所欲抗體之至少一個次級單元係包含一分泌訊號,選擇性地其中該分泌訊號係包含選自由下列所組成之群組之一種多肽:雞溶菌酶(CLY)訊號肽;CLY-L8;啤酒酵母(S.cerevisiae)轉化酶(SUC2)訊號肽;MF-α(前原);MF-α(前)-apv;MF-α(前)-apv-SLEKR;MF-α(前原)-(EA)3;αF訊號肽;KILM1訊號肽;可阻抑型酸性磷酸酯酶(PHO1)訊號肽;黑麴菌(A.niger)GOX訊號肽;西方許旺氏酵母(Schwanniomyces occidentalis)葡萄糖澱粉酶基因(GAM1)訊號肽;具有原-序列之人類血清白蛋白(HSA)訊號肽;不具有原-序列之人類血清白蛋白(HSA)訊號肽;ISN訊號肽;IFN訊號肽;HGH訊號肽;植物血球凝集素(PHA);蠶溶菌酶;人類溶菌酶(LYZ1);第1型活化素受體;第H型活化素受體;巴斯德畢赤氏酵母免疫球蛋白結合蛋白(PpBiP);人類抗體3D6輕鏈引導序列;及其任一組合。
TW101130127A 2011-08-19 2012-08-20 在經轉形的微生物如巴斯德畢赤氏酵母中的多-複製策略用於多-次級單元的蛋白質如抗體之高效價且高純度生產技術 TWI666318B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161525307P 2011-08-19 2011-08-19
US61/525,307 2011-08-19
US13/466,795 US11214610B2 (en) 2010-12-01 2012-05-08 High-purity production of multi-subunit proteins such as antibodies in transformed microbes such as Pichia pastoris
US13/466,795 2012-05-08

Publications (2)

Publication Number Publication Date
TW201313899A TW201313899A (zh) 2013-04-01
TWI666318B true TWI666318B (zh) 2019-07-21

Family

ID=48802355

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101130127A TWI666318B (zh) 2011-08-19 2012-08-20 在經轉形的微生物如巴斯德畢赤氏酵母中的多-複製策略用於多-次級單元的蛋白質如抗體之高效價且高純度生產技術

Country Status (14)

Country Link
EP (1) EP2744903B1 (zh)
JP (1) JP6138788B2 (zh)
KR (1) KR101978534B1 (zh)
CN (1) CN103890178A (zh)
AR (1) AR087612A1 (zh)
AU (1) AU2012299035B2 (zh)
BR (1) BR112014003841B1 (zh)
CA (1) CA2845579C (zh)
DK (1) DK2744903T3 (zh)
IL (1) IL230978B (zh)
MX (1) MX355890B (zh)
SG (2) SG10201609752YA (zh)
TW (1) TWI666318B (zh)
WO (1) WO2013028635A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10138294B2 (en) * 2013-03-15 2018-11-27 Alderbio Holdings Llc Temperature shift for high yield expression of polypeptides in yeast and other transformed cells
EP2970865B1 (en) * 2013-03-15 2020-09-02 Alder Biopharmaceuticals, Inc. Antibody purification and purity monitoring
US10202630B2 (en) 2013-03-15 2019-02-12 Alderbio Holdings Llc Temperature shift for high yield expression of polypeptides in yeast and other transformed cells
JP6206873B2 (ja) * 2013-09-30 2017-10-04 国立研究開発法人農業・食品産業技術総合研究機構 ニワトリリゾチーム由来の分泌シグナルペプチドを用いたブタリゾチームの製造方法
US10556945B2 (en) 2014-03-21 2020-02-11 Teva Pharmaceuticals International Gmbh Antagonist antibodies directed against calcitonin gene-related peptide and methods using same
UA123759C2 (uk) 2014-03-21 2021-06-02 Тева Фармасьютікалз Інтернешнл Гмбх Застосування моноклонального антитіла, яке інгібує шлях пов'язаного з геном кальциноніну пептиду (cgrp), для лікування або зниження частоти випадків мігренозного головного болю у суб'єкта
US10392434B2 (en) 2016-09-23 2019-08-27 Teva Pharmaceuticals International Gmbh Treating refractory migraine
EP4202035A1 (en) 2021-12-22 2023-06-28 Gelita AG Improved expression of peptides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060270045A1 (en) * 2003-10-22 2006-11-30 Keck Graduate Institute Methods of synthesizing heteromultimeric polypeptides in yeast using a haploid mating strategy

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855231A (en) 1984-10-30 1989-08-08 Phillips Petroleum Company Regulatory region for heterologous gene expression in yeast
US4818700A (en) 1985-10-25 1989-04-04 Phillips Petroleum Company Pichia pastoris argininosuccinate lyase gene and uses thereof
US4812405A (en) 1986-02-18 1989-03-14 Phillips Petroleum Company Double auxotrophic mutants of Pichia pastoris and methods for preparation
US4929555A (en) 1987-10-19 1990-05-29 Phillips Petroleum Company Pichia transformation
WO1994021293A1 (en) 1993-03-19 1994-09-29 Duke University Method of treatment of tumors with an antibody binding to tenascin
AU3272695A (en) 1994-08-12 1996-03-07 Immunomedics Inc. Immunoconjugates and humanized antibodies specific for b-cell lymphoma and leukemia cells
US5955349A (en) 1996-08-26 1999-09-21 Zymogenetics, Inc. Compositions and methods for producing heterologous polypeptides in Pichia methanolica
US5736383A (en) 1996-08-26 1998-04-07 Zymogenetics, Inc. Preparation of Pichia methanolica auxotrophic mutants
US6730499B1 (en) 1998-07-03 2004-05-04 Research Corporation Technologies, Inc. Promoter for the Pichia pastoris formaldehyde dehydrogenase gene FLD1
WO2000023579A1 (en) 1998-10-22 2000-04-27 The Regents Of The University Of California Functionally assembled antigen-specific intact recombinant antibody and a method for production thereof
US6258559B1 (en) 1999-03-22 2001-07-10 Zymogenetics, Inc. Method for producing proteins in transformed Pichia
US6406863B1 (en) * 2000-06-23 2002-06-18 Genetastix Corporation High throughput generation and screening of fully human antibody repertoire in yeast
WO2008063302A2 (en) 2006-10-10 2008-05-29 Keck Graduate Institute Novel p. pastoris pastoris promoters, and the use thereof to direct expression of proteins in yeast, preferably using a haploid mating strategy
EP2162469A4 (en) 2007-05-21 2012-08-01 Alderbio Holdings Llc NEW METHODS OF HUMANIZING RABBIT ANTIBODIES AND HUMANIZED RABBIT ANTIBODIES
HUE043782T2 (hu) 2007-05-21 2019-09-30 Alderbio Holdings Llc IL-6 elleni antitestek és alkalmazásuk
US11214610B2 (en) 2010-12-01 2022-01-04 H. Lundbeck A/S High-purity production of multi-subunit proteins such as antibodies in transformed microbes such as Pichia pastoris

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060270045A1 (en) * 2003-10-22 2006-11-30 Keck Graduate Institute Methods of synthesizing heteromultimeric polypeptides in yeast using a haploid mating strategy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
2005年02月,On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells,Biotechnol Prog. 2005 Jan-Feb;21(1):122-33.
年02月,On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells,Biotechnol Prog. 2005 Jan-Feb;21(1):122-33. *

Also Published As

Publication number Publication date
MX2014001951A (es) 2016-02-05
IL230978B (en) 2018-08-30
AR087612A1 (es) 2014-04-03
JP6138788B2 (ja) 2017-05-31
WO2013028635A9 (en) 2013-09-26
EP2744903B1 (en) 2018-10-10
MX355890B (es) 2018-05-03
AU2012299035A1 (en) 2014-03-13
BR112014003841B1 (pt) 2022-02-15
NZ621199A (en) 2016-07-29
CA2845579C (en) 2020-03-24
WO2013028635A1 (en) 2013-02-28
BR112014003841A2 (pt) 2017-03-14
CA2845579A1 (en) 2013-02-28
CN103890178A (zh) 2014-06-25
JP2014525247A (ja) 2014-09-29
AU2012299035B2 (en) 2017-11-02
NZ721102A (en) 2020-01-31
KR20140057613A (ko) 2014-05-13
SG2014011878A (en) 2014-04-28
SG10201609752YA (en) 2017-01-27
DK2744903T3 (en) 2019-01-28
EP2744903A4 (en) 2014-12-31
IL230978A0 (en) 2014-03-31
EP2744903A1 (en) 2014-06-25
KR101978534B1 (ko) 2019-08-28
TW201313899A (zh) 2013-04-01

Similar Documents

Publication Publication Date Title
US11447540B2 (en) Pichia pastoris yeast cultures comprising reduced antibody-associated variants
TWI666318B (zh) 在經轉形的微生物如巴斯德畢赤氏酵母中的多-複製策略用於多-次級單元的蛋白質如抗體之高效價且高純度生產技術
US11225667B2 (en) Multi-copy strategy for high-titer and high-purity production of multi-subunit proteins such as antibodies in transformed microbes such as Pichia pastoris
US20190390239A1 (en) Temperature shift for high yield expression of polypeptides in yeast and other transformed cells
WO2012161956A9 (en) High-purity production of multi-subunit proteins such as antibodies in transformed microbes such as pichia pastoris
NZ621199B2 (en) Multi-copy strategy for high-titer and high-purity production of multi-subunit proteins such as antibodies in transformed microbes such as pichia pastoris
NZ721102B2 (en) Multi-copy strategy for high-titer and high-purity production of multi-subunit proteins such as antibodies in transformed microbes such as pichia pastoris
NZ711400B2 (en) Temperature shift for high yield expression of polypeptides in yeast and other transformed cells
AU2012259225A1 (en) High-purity production of multi-subunit proteins such as antibodies in transformed microbes such as Pichia pastoris

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees