TWI665340B - 電鍍製程的檢測方法 - Google Patents

電鍍製程的檢測方法 Download PDF

Info

Publication number
TWI665340B
TWI665340B TW106135675A TW106135675A TWI665340B TW I665340 B TWI665340 B TW I665340B TW 106135675 A TW106135675 A TW 106135675A TW 106135675 A TW106135675 A TW 106135675A TW I665340 B TWI665340 B TW I665340B
Authority
TW
Taiwan
Prior art keywords
electrolyte solution
detection device
plating
probe
solution
Prior art date
Application number
TW106135675A
Other languages
English (en)
Other versions
TW201905245A (zh
Inventor
黃永昌
卓瑞木
潘建勳
林群智
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201905245A publication Critical patent/TW201905245A/zh
Application granted granted Critical
Publication of TWI665340B publication Critical patent/TWI665340B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/18Electrophoretic coating characterised by the process using modulated, pulsed, or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

提供電鍍製程的檢測方法,此檢測方法包含將基底浸入電解質溶液中以實施電鍍製程,電解質溶液包含添加劑。此檢測方法也包含將檢測裝置浸入電解質溶液中。此檢測方法更包含將第一交流電(AC)或直流電(DC)施加於檢測裝置以檢測添加劑的濃度。此外,檢測方法包含將第二交流電和第二直流電的組合施加於檢測裝置以檢驗電解質溶液,檢測出在電解質溶液中的雜質。此檢測方法也包含以另一電解質溶液取代含有雜質的電解質溶液。

Description

電鍍製程的檢測方法
本發明實施例是關於半導體裝置製造技術,特別是有關於電鍍製程的檢測方法。
半導體裝置用於多種電子應用中,例如個人電腦、行動電話、數位相機及其他電子設備。半導體產業藉由不斷地縮減最小部件(feature)的尺寸,而持續改善了各種電子元件(例如電晶體、二極體、電阻器、電容器等)的積體(integration)密度,這使得更多的元件可以被整合至指定的面積內。在一些應用中,這些較小的電子元件也需要更小的封裝,其相較於過去的封裝,使用較少面積。
在製造半導體裝置期間,在半導體晶圓上使用各種製程步驟以製造積體電路。舉例來說,這些製程包含電鍍製程,電鍍製程在半導體晶圓上沉積導電層,藉此形成積體電路。通常而言,電鍍製程包含將帶正電荷的離子(例如金屬離子)沉積或電鍍到帶負電荷的基底(例如半導體晶圓)上,帶負電荷的基底作為電子來源。結果,先將晶種(seed)層(或金屬層)沉積在半導體晶圓上,以提供跨過表面的電路徑。然後將電流施加於晶種層,藉此以合適的金屬(例如銅、鋁或其他合適的材料)電鍍半導體晶圓表面。
電鍍裝置或系統係用於實施電鍍製程。舉例來 說,電鍍裝置包含電解槽、容器(或在電解槽中)以及在容器中的陽極。要被電鍍的帶負電荷的基底與容器中的電鍍溶液接觸,以便在基底上沉積導電層。然而,電鍍溶液中的各種變化可能會降低電鍍的品質。因此,電鍍溶液需要保持乾淨且化學成分在特定的範圍內。
雖然對於電鍍製程已經創造出許多改良,但它們仍未在各方面皆徹底的符合要求。因此,期望提供解決方案以改善電鍍製程的品質,藉此提高半導體裝置的電性效能和可靠性。
根據一些實施例,提供電鍍製程的檢測方法。此檢測方法包含將基底浸入電解質溶液中以實施電鍍製程,其中電解質溶液包含添加劑,將檢測裝置浸入電解質溶液中,對檢測裝置施加第一交流電(AC)或直流電(DC)以檢測添加劑的濃度,對檢測裝置施加第二交流電和第二直流電的組合以檢驗電解質溶液,其中檢測出在電解質溶液中的雜質,以及用另一電解質溶液取代含有雜質的電解質溶液。
根據一些實施例,提供電鍍製程的檢測方法。此檢測方法包含將第一探針浸入電化學電鍍裝置中的第一電解質溶液,將交流電(AC)和直流電(DC)一起施加於第一探針以檢驗第一電解質溶液,其中檢測出在第一電解質溶液中的雜質,從第一電解質溶液中移出第一探針,以第二電解質溶液取代含有雜質的第一電解質溶液,將第一探針浸入第二電解質溶液中,以及將交流電和直流電一起施加於第一探針以檢 驗第二電解質溶液。
根據一些實施例,提供電鍍製程的檢測方法。此檢測方法包含將基底浸入第一電鍍溶液中以實施電鍍製程,將檢測裝置浸入第一電鍍溶液,將交流電(AC)和直流電(DC)同時施加於檢測裝置,使得第一電鍍溶液中的檢測裝置接收第一輸出訊號,以及將第一輸出訊號與校準資料進行比對,以鑑定第一電鍍溶液中的雜質。
100‧‧‧半導體基底
110、120、140‧‧‧介電層
130、190‧‧‧導電部件
150‧‧‧通孔
160‧‧‧溝槽
170‧‧‧導電層
175‧‧‧電鍍製程
180‧‧‧平坦化製程
190‧‧‧導電部件
200‧‧‧電化學電鍍裝置
210‧‧‧電鍍槽
215‧‧‧泵
220‧‧‧儲存槽
230‧‧‧支架組合件
240‧‧‧基底
250‧‧‧陽極
260‧‧‧電源供應器
270、270’‧‧‧電解質溶液
280A‧‧‧促進劑
280B‧‧‧抑制劑
280C‧‧‧整平劑
290、290’‧‧‧檢測裝置
300‧‧‧探針
310‧‧‧雜質
320‧‧‧輸入電流
330A、330B、330C‧‧‧輸出電流
340A、340B、340C、340D、340E、340F‧‧‧校準曲線
350A、350B、350C‧‧‧濃度
θx‧‧‧相角
藉由以下的詳細描述配合所附圖式,可以更加理解本發明實施例的內容。需強調的是,根據產業上的標準慣例,許多部件(feature)並未按照比例繪製。事實上,為了能清楚地討論,各種部件的尺寸可能被任意地增加或減少。
第1A-1C圖是根據一些實施例,說明形成半導體裝置結構之製造過程中各個階段的剖面示意圖。
第2A-2D圖是根據一些實施例,說明電鍍製程中各個階段的剖面示意圖。
第3圖是根據一些實施例,說明電鍍製程中各個階段的其中之一的剖面示意圖。
第4圖是根據一些實施例,說明電鍍製程中各個階段的其中之一的剖面示意圖。
第5A圖是根據一些實施例,繪示檢測裝置之輸入電流的關係圖。
第5B圖是根據一些實施例,繪示檢測裝置之輸出訊號的關係圖。
第5C圖是根據一些實施例,繪示檢測裝置之輸出訊號的放大關係圖。
第5D圖是根據一些實施例,繪示校準資料的關係圖。
第5E圖是根據一些實施例,繪示檢測裝置之輸出訊號的放大關係圖。
第6圖是根據一些實施例,繪示檢測裝置之輸入電流的關係圖。
第7圖是根據一些實施例,繪示檢測裝置之輸入電流的關係圖。
以下內容提供了很多不同的實施例或範例,用於實施本發明實施例的不同部件。組件和配置的具體範例描述如下,以簡化本發明實施例。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例來說,敘述中若提及第一部件形成於第二部件之上,可能包含第一和第二部件直接接觸的實施例,也可能包含額外的部件形成於第一和第二部件之間,使得第一和第二部件不直接接觸的實施例。此外,本發明實施例在不同範例中可重複使用參考數字及/或字母,此重複是為了簡化和清楚之目的,並非指定所討論的不同實施例及/或組態之間的關係。
再者,空間上相關的措辭,例如「在......之下」、「在......下方」、「下方的」、「在......上方」、「上方的」和其他類似的用語可用於此,以方便描述如圖所示之一元件或部件與其他元件或部件之間的關係。此空間上相關 的措辭意欲包含除圖式描繪之方向外,使用或操作中的裝置之不同方向。裝置可以其他方向定位(旋轉90度或其他定位方向),且在此使用的空間相關描述可同樣依此解讀。
以下描述本發明的一些實施例。在這些實施例中描述的階段之前、期間及/或之後可以提供額外的操作。對於不同的實施例,可以替換或消除在此描述的一些階段。對於不同的實施例,可以替換或消除在此描述的一些部件(features),且可以增加額外的部件。雖然在此討論的一些實施例按照特定順序實施操作,但可以採用其他的邏輯順序實施這些操作。
第1A-1C圖是根據一些實施例,說明形成半導體裝置結構之製造過程中各個階段的剖面示意圖。如第1A圖所示,提供半導體基底100。半導體基底100可以包含矽、鍺、化合物半導體(例如矽鍺(silicon germanium)、砷化鎵(gallium arsenide)或碳化矽(silicon carbide))或其他合適的半導體材料。在一些實施例中,半導體基底100包含絕緣體上的半導體(semiconductor-on-insulator,SOI)基底。
在一些實施例中,在半導體基底100中及/或上方形成各種裝置元件。為了簡化和清楚的目的,圖式中並未繪示裝置元件。各種裝置元件的範例包含電晶體、二極體、其他合適的元件和前述之組合。
在一些實施例中,在半導體基底100上方形成互連(interconnection)結構(將在之後更詳細描述)。在半導體基底100上方經由互連結構將各種裝置元件互相連接,以形成積 體電路裝置。互連結構包含多個介電層,其含有層間介電(interlayer dielectric,ILD)層和一或多層金屬間介電(inter-metal dielectric,IMD)層。互連結構也包含多個導電部件形成在層間介電(ILD)層和金屬間介電(IMD)層中。導電部件可以包含導電線、導電導孔(vias)及/或導電接觸件(contacts)。
更具體地說,如第1A圖所示,在半導體基底100上方沉積介電層110。介電層110可以作為層間介電(ILD)層或金屬間介電(IMD)層。介電層110覆蓋形成在半導體基底100中及/或上方的裝置元件。在一些實施例中,介電層110包含或由低介電常數(low dielectric constant,low-k)材料、氧化矽(silicon oxide)、氮氧化矽(silicon oxynitride)、一或更多其他合適的材料或前述之組合製成。在介電層110中形成多個導電部件(未繪示)並與裝置元件電性連接。
如第1A圖所示,在介電層110上方沉積介電層120。介電層120可以作為金屬間介電(IMD)層。在介電層120中形成多個導電部件。在第1A圖中繪示導電部件130作為範例。導電部件130可以是導電線或其他合適的導電部件。導電部件130可以是單鑲嵌(single damascene)結構或雙鑲嵌(dual damascene)結構。導電部件130經由介電層110中的導電部件電性連接至裝置元件。
如第1A圖所示,在介電層120上方沉積介電層140。介電層140作為互連結構的金屬間介電(IMD)層。介電層140覆蓋導電部件130。
之後,在介電層140上方實施一或多個蝕刻製程 (例如乾式蝕刻製程及/或濕式蝕刻製程)。結果,形成多個通孔(via holes)和溝槽。在第1A圖中繪示介電層140中的通孔150和溝槽160作為範例。
根據一些實施例,如第1B圖所示,導電層170沉積在介電層140上方並填充通孔150和溝槽160。在一些實施例中,在介電層140上方實施電鍍製程175以沉積導電層170。電鍍製程175將會在之後更詳細描述。在一些實施例中,導電層170包含或由銅(Cu)、鋁(Al)、鎢(W)、鈦(Ti)、鈷(Co)、鎳(Ni)、金(Au)、鉑(Pt)、一或多個其他合適的材料或前述之組合製成。
雖然第1B圖繪示導電層170為單層,但本發明實施例不限於此。導電層170可以是包含導電子層(sub-layers)的多層結構。舉例來說,導電子層包含金屬填充層、晶種層、擴散阻障(diffusion barrier)層、一或多層其他合適的層或前述之組合。為了簡化和清楚的目的,在圖式中未繪示導電子層。
在一些實施例中,在導電層170上方實施平坦化製程180(例如化學機械研磨(chemical mechanical polishing)製程或其他合適的製程)。將導電層170薄化直到暴露出導電層140。結果,如第1C圖所示,在通孔150和溝槽160中之導電層170的剩餘部分形成多個導電部件190在導電層140中。在通孔150和溝槽160中的導電部件190可以分別是導電導孔(via)和導電線。
接下來,在介電層140和導電部件190上方形成一 或多層介電層和多個導電部件,以繼續形成互連結構。舉例來說,在一些實施例中,重複第1A-1C圖所示的操作一或多次,以繼續形成互連結構。
根據一些實施例,電鍍製程175(或電化學電鍍(electrochemical plating,ECP)製程)包含將第1A圖所示的結構浸泡在電解質溶液中。電解質溶液包含用於沉積導電層170的電解質。在一些實施例中,電解質溶液更包含一或多個添加劑,其可以幫助控制電鍍特性。添加劑的範例包含促進劑(accelerators)、抑制劑(Suppressors)、整平劑(levelers)、一或多種其他合適的添加劑及前述之組合。然而,本發明實施例不限於此。
促進劑和抑制劑係用於控制電鍍製程175的電鍍速率。舉例來說,在電鍍製程175期間,促進劑可以增加在通孔150或溝槽160之底部的沉積速率。另一方面,在電鍍製程175期間,抑制劑可以減緩在通孔150或溝槽160之側壁的沉積速率。這樣可以確保孔洞(void)或空缺(vacancy)不會在通孔150和溝槽160內的導電層170中形成(亦即,導電部件190大抵上是無孔洞的)。結果,可以防止電阻電容(resistance capacitance,RC)延遲時間(delay time)增加,進而增加電路效能。
整平劑係用於提供整平效果而給予導電層170平滑表面。舉例來說,避免導電層170在通孔150或溝槽160較厚,並且避免導電層170在通孔150或溝槽160周圍較薄。結果,改善了導電層170的均勻度。
電解質溶液中的改變及/或化學汙染可能會降低電鍍的品質和效能。舉例來說,在一些情況下,在電鍍製程175之前、期間及/或之後,一或多個汙染物可能混入電解質溶液中。電解質溶液中的汙染物可能包含一或多種的油及/或清潔劑。油及/或清潔劑可能是從電鍍裝置或系統的任何部分中漏出或噴出。結果,添加劑(例如促進劑)可能會因為清潔劑(例如H2O2)而失去功能。另外,在導電層170和介電層140之間的鍵結或黏著可能會因為油而減少。結果,在平坦化製程180期間,導電層170可能被拉動然後剝離。
在一些情況下,在電鍍製程175期間,添加劑可能會分解。結果,可能會在電解質溶液中形成一或多個副產物(by-products)。分解的添加劑可能失去添加劑的功能。電鍍製程的品質會受到負面影響,舉例來說,在通孔150和溝槽160內的導電層170中可能會形成孔洞。
根據一些實施例,使用電解質檢測和分析方法藉由電解質分析系統即時檢測和監控電解質溶液的化學組成和電解質溶液濃度。電解質分析系統使用伏安法(voltammetry)測量技術。伏安法測量技術藉由交流電(alternating current,AC)及/或直流電(direct current,DC)伏安法分析,使用電極(例如金屬探針)浸泡在電解質溶液中來測量無機成分和有機添加劑之電解質的濃度。因此,可以確保電解質溶液的化學組成在特定濃度範圍內。
第2A-2D圖是根據一些實施例,說明電鍍製程的各個階段的剖面示意圖。在第2A-2D中繪示電化學電鍍裝置 200(或電鍍裝置)作為範例,但本發明實施例並不限於此。本發明實施例可應用於其他合適的電化學電鍍設備。
根據一些實施例,如第2A圖所示,電化學電鍍裝置200包含電鍍槽(plating bath)210、泵(pump)215、儲存槽(reservoir)220、支架組合件(holder assembly)230、陽極(anode)250和電源供應器260。電化學電鍍裝置200可以包含一或多個額外的元件,為了簡化和清楚的目的,在圖式中未繪示。
在電鍍槽210中製備和提供電解質溶液270(或電鍍溶液)。電解質溶液270包含用於沉積導電層的電解質。舉例來說,電解質溶液270可以包含硫酸銅(CuSO4)、氯化氫(HCl)和水(H2O)。然而,本發明實施例不限於此。電解質溶液270可以包含其他合適的材料。在一些實施例中,電解質溶液270更包含一或多種添加劑。在第2A圖繪示促進劑280A、抑制劑280B和整平劑280C作為示範,且本發明實施例不限於此。
在一些實施例中,促進劑280A包含或由聚二硫二丙烷磺酸鈉(bis(sodiumsulfopropyl)disulfide,SPS)、3-巰基-1-丙磺酸(3-mercapto-1-propanesulfonic acid,MPS)、1-丙磺酸(1-propane sulfonic acid)、3-(乙氧基-硫側氧甲基)-硫醇鈉鹽(3-(ethoxy-thioxomethyl)-thiol sodium salt,OPX)、一或多種其他合適的材料或前述之組合製成。在一些實施例中,抑制劑280B包含或由聚環氧乙烷(polyethylene oxide,PEO)、聚環氧丙烷(polypropylene oxide,PPO)、聚乙二醇(polyethylene glycol,PEG)、聚丙二醇(polypropylene glycol,PPG)、一或 多種其他合適的材料或前述之組合製成。在一些實施例中,整平劑280C包含或由硫脲(thiourea)、苯并三唑(benzotriazole,BTA)、聚乙烯吡咯烷酮(poly(vinyl pyrrolidone,PVP)、一或多種其他合適的材料或前述之組合製成。
藉由泵215將電解質溶液270連續地供給到電鍍槽210。電解質溶液270可以從電鍍槽210溢流(overflow)至儲存槽220。然後,儲存槽220中的電解質溶液270藉由泵215回到電鍍槽210。在儲存槽220中的電解質溶液270回到電鍍槽210之前,可以先將電解質溶液270過濾或不過濾。
如第2A圖所示,電源供應器260(例如直流電源供應器)與電鍍槽210中的陽極250和支架組合件230電性耦接(coupled)。將基底240(例如第1A圖所示的結構)安裝到支架組合件230。然後將基底240放置在電鍍槽210中以浸泡於電解質溶液270中。為了電源供應器260提供負輸出(negative output)至基底240,並且提供正輸出(positive output)至陽極250,以實施電鍍製程(例如第1B圖所示的電鍍製程175)。
在電鍍製程期間,電解質溶液270向上流到基底240的中心,然後徑向地(radially)向外並跨過基底240。基底240上的電化學反應(例如Cu2++2e-→Cu)在其上產生導電層(例如銅)的沉積。本發明實施例可應用於其他合適的電化學反應,以及其他導電材料的沉積。
根據一些實施例,如第2B圖所示,將檢測裝置290(或電解質分析系統)部分地放置在電解質溶液270中。檢測 裝置290係用於檢測和監控電解質溶液270的化學組成和電解質溶液濃度。檢測裝置290可以是即時分析儀(real-time analyzer,RTA)。
更具體來說,檢測裝置290可用於檢測和監控促進劑280A、抑制劑280B及/或整平劑280C的濃度。當促進劑280A、抑制劑280B及/或整平劑280C的濃度降低時,在電解質溶液270中加入更多添加劑。可以根據檢測裝置290的檢測結果微調(fine-tuned)電解質溶液270的濃度。因此,可以確保電解質溶液270的化學組成保持在特定濃度內,以良好控制電鍍特性。
舉例來說,電源供應器(未繪示)與檢測裝置290耦接。將直流電或交流電輸入檢測裝置290,以檢測添加劑(亦即促進劑280A、抑制劑280B和整平劑280C中的一個)的濃度。由於檢測裝置290一次可以檢測促進劑280A、抑制劑280B和整平劑280C中的一個,只有直流電或交流電輸入到檢測裝置290。可以使用不同的交流電或直流電來檢測促進劑280A、抑制劑280B和整平劑280C。
在一些實施例中,施加到檢測裝置290用來檢測添加劑的交流電(AC)電流在約100mA至約5A的範圍內。在一些實施例中,施加到檢測裝置290用來檢測添加劑的交流電(AC)頻率在約10Hz至約4000Hz的範圍內。在一些實施例中,施加到檢測裝置290用來檢測添加劑的直流電(DC)電壓在約-10V至約+10V的範圍內。應注意的是,這些範圍只是範例,本發明實施例並不限於此。
檢測裝置290包含一或多個金屬探針用來檢測。金屬探針可以包含或由鉑(Pt)、一或多種其他合適的材料或前述之組合製成。在第2B圖繪示一個探針300作為示範,但本發明實施例不限於此。雖然第2B圖繪示在電鍍製程期間,將探針300浸泡在儲存槽220中的電解質溶液270中,但本發明實施例不限於此。在一些其他的實施例中,在電鍍製程之前及/或之後,將探針300浸泡在電解質溶液270中。可以在電鍍製程之前、期間及/或之後,將探針300浸泡在電解槽210中的電解質溶液270中。
根據一些實施例,檢測裝置290的探針300也可用來檢測和監控一或多種雜質的濃度。更具體地說,將探針300浸泡在電解質溶液270中,以檢驗汙染物及/或監控副產物的濃度。在一些實施例中,如第2C圖所示,在電鍍製程期間,電解質溶液270同時與探針300和基底240直接接觸。在一些其他的實施例中,電解質溶液270與探針300和基底240中的一個直接接觸,但與探針300和基底240中的另一個分開。
根據一些實施例,如第2C圖所示,電解質溶液270中有雜質310。應注意的是,第2C圖繪示的雜質310只是一個範例,本發明實施例並不限於此。雜質310可以包含一或多個汙染物及/或一或多個副產物。
在電解質溶液270中的汙染物可能包含一或多種的油及/或清潔劑。清潔劑(或清潔溶液)可能是用於清洗基底240。清潔劑可包含或由H2O2、一或多個其他材料或前述之組合製成。在電鍍製程之前、期間及/或之後,油及/或清潔劑可 能從電化學電鍍裝置200(或包含電化學電鍍裝置200之電化學電鍍系統)的任何部分或元件漏出或噴出到電解槽210或儲存槽220內。由於促進劑280A、抑制劑280B及/或整平劑280C在電鍍製程期間可能會分解,在電解質溶液270中可能會形成副產物。
電解質溶液電源供應器(未繪示)提供交流電和直流電兩者(例如第二諧波(harmonic)交流電和直流電)至檢測裝置290,以檢驗電解質溶液270中的雜質310。在電解質溶液270中可以引發氧化反應,結果,根據從電解質溶液270到檢測裝置290的反饋(feedback)或回應(responses)可以鑑定雜質310的種類和濃度。可以在相同階段或不同階段檢測和鑑定電解質溶液270中的汙染物和副產物。
在一些實施例中,將交流電和直流電同時輸入檢測裝置290以檢驗雜質310,並且只將交流電或直流電輸入檢測裝置290以檢驗添加劑。檢驗雜質310的方法將會在之後更詳細描述。
在一些實施例中,施加到檢測裝置290用來檢測雜質310的交流電(AC)電流在約1E-6A至約5A的範圍內。在一些實施例中,用來檢測雜質310之交流電流可以小於、大抵上等於或大於用來檢測添加劑之交流電流。
在一些實施例中,施加到檢測裝置290用來檢測雜質310的交流電(AC)頻率在約5Hz至約3E+6Hz的範圍內。用來檢測雜質310的交流電(AC)頻率可以小於、大抵上等於或大於用來檢測添加劑的交流電頻率。
在一些實施例中,施加到檢測裝置290用來檢測雜質310的直流電(DC)電壓在約-5V至約10V的範圍內。在一些實施例中,用來檢測雜質310的直流電(DC)電壓可以小於、大抵上等於或大於用來檢測添加劑的直流電壓。應注意的是,這些關於交流電和直流電的範圍只是範例,本發明實施例並不限於此。
在一些實施例中,藉由探針300檢驗電解質溶液270約10至約40分鐘。換句話說,將探針300浸泡在電解質溶液270中約10至約40分鐘,以檢測一或多個添加劑、汙染物和副產物。將探針300浸泡在電解質溶液270中約4至約10分鐘,以檢測汙染物及/或副產物。在一些實施例中,用於檢測汙染物及/或副產物的時間與用於檢測添加劑的時間不同(例如前者時間較短),但本發明實施例不限於此。應注意的是,這些時間範圍只是範例,本發明實施例並不限於此。
在一些實施例中,藉由檢測裝置290的探針300檢驗電解質溶液270約20至約300分鐘。約20至約300分鐘探針300可以檢測出添加劑、汙染物和副產物。舉例來說,在一些實施例中,將探針300浸入電解質溶液270中,以檢測電解質溶液270中的添加劑、汙染物和副產物的每一個。之後,將探針300從電解質溶液270中移出(如第2A圖所示)。在約20至約300分鐘之後,再次將探針300浸入電解質溶液270中,以檢測添加劑、汙染物和副產物的每一個(如第2B或2C圖所示)。在多個電鍍製程期間和之間,可以重複這些步驟一或多次。
添加劑、汙染物和副產物的檢測順序不受限制。 探針300可以先檢驗添加劑,然後檢驗汙染物和副產物。因此,先將交流電和直流電兩者施加到檢測裝置290,然後只將交流電或直流電施加到檢測裝置290。或者,探針300可以先檢驗汙染物及/或副產物,然後檢驗添加劑。因此,只先將交流電或直流電施加到檢測裝置290,然後將交流電和直流電兩者施加到檢測裝置290。
在一些實施例中,多個基底(例如基底240)藉由支架組合件230依次固定住並傳送到電化學電鍍裝置200中。電化學電鍍裝置200在每一個基底上實施電鍍製程。舉例來說,將第2A圖繪示的基底240從電化學電鍍裝置200移出,並且將另一個基底240傳送到電化學電鍍裝置200中,如第2C或2D圖所示。在多個基底的電鍍製程期間及/或之間,可將探針300浸泡在電解質溶液270中。
如第2C和2D圖所示,當在電解質溶液270中檢測到雜質310及/或雜質310的濃度大於預定濃度時,以新的電解質溶液270’置換電解質溶液270。在從電解質溶液270中移出檢測裝置290之後,以電解質溶液270’置換電解質溶液270。電解質溶液270’與在第2A圖所示之原本的電解質溶液270具有大抵上相同的組成,如先前實施例的說明,因此不重複說明。電解質溶液270’比第2C圖所示的電解質溶液270更乾淨。電解質溶液270’大抵上不含雜質310。
在一些實施例中,將探針300浸入電解質溶液270中一或多次。在探針300檢測一或多次之後,可以使用電解質溶液270’置換電解質溶液270。類似地,在一些實施例中,將 探針300浸入電解質溶液270’(類似第2B圖繪式的示意圖)一或多次。在藉由探針300檢測一或多次之後,後續可以用另一個新的電解質溶液置換電解質溶液270’。結果,電化學電鍍裝置200可以在多個基底上實施具有更好品質的電鍍製程。因此,使用電化學電鍍裝置200所沉積的導電層170之電性效能和可靠性顯著地提升。
可以對本發明實施例進行許多變化及/或修改。舉例來說,探針300的檢測位置不受限制。第3圖是根據一些實施例,說明電鍍製程的各個階段其中之一的剖面示意圖。第3圖所示的電化學電鍍裝置200大抵上與第2A-2D圖所示的電化學電鍍裝置200相同或相似。在一些實施例中,先前的實施例中說明的材料、方法及/或好處也可應用於第3圖所示的實施例中,因此不重複敘述。
根據一些實施例,如第3圖所示,將檢測裝置290的探針300插入電鍍槽210中的電解質溶液270中。在電鍍製程之後及/或之前,實施探針300的檢驗或檢測。因此,如第3圖所示,在電化學電鍍裝置200中沒有基板240。或者,可以藉由支架組合件230固定住基板240,但基板240不放在電鍍槽210中。
然而,本發明實施例不限於此。在一些其他的實施例中,在基底240上方實施電鍍製程期間,將探針300浸泡在電鍍槽240中的電解質溶液270中。在電鍍槽210中探針300的檢測不會中斷電鍍槽210中的電鍍製程。
可以對本發明實施例進行許多變化及/或修改。舉 例來說,可以使用各種探針檢驗電解質溶液270。第4圖是根據一些實施例,說明電鍍製程的各個階段其中之一的剖面示意圖。第4圖繪示之電化學電鍍裝置200大抵上與第2A-2D圖繪示之電化學電鍍裝置200相同或相似。在一些實施例中,前述實施例說明的材料、方法及/或好處也可應用於第4圖所示的實施例,因此不重複敘述。
根據一些實施例,如第4圖所示,在電化學電鍍裝置200中有多個檢測裝置290和290’。檢測裝置290’大抵上與檢測裝置290相同或相似,因此不重複敘述。將檢測裝置290’插入電鍍槽210中,並且將檢測裝置290插入儲存槽220中。
在一些實施例中,檢測裝置290和290’分別用於檢測添加劑(例如促進劑280A、抑制劑280B及/或整平劑280C)和雜質310(例如汙染物和副產物)。相較於檢測裝置290’,檢測裝置290可以浸泡在電解質溶液270中更長時間。換句話說,在檢測裝置290從電解質溶液270移出之前,可以將檢測裝置290’從電解質溶液270移出。可以對本發明實施例進行許多變化及/或修改。在一些其他的實施例中,檢測裝置290和290’分別用於檢測汙染物和副產物。
在一些實施例中,在相同階段中(例如在相同電鍍製程中)一起使用檢測裝置290和290’。因此,在相同電鍍製程期間,將交流電和直流電同時輸入檢測裝置290以檢驗雜質310,並將交流電或直流電輸入檢測裝置290’以檢驗添加劑。然而,本發明實施例不限於此。在一些其他的實施例中,在不同階段中(例如不同電鍍製程)分開使用檢測裝置290和 290’。
如上所述,將交流電和直流電一起施加到檢測裝置290(及/或檢測裝置290’),以檢驗在電解質溶液270(或電解質溶液270’)中的雜質310。如第5A圖所示,施加到檢測裝置290的輸入電流320週期性地反轉方向。由於週期非常小,輸入電流320具有V形或倒轉的(inversed)V形之主波形。第5A圖繪示的輸入電流320是作為範例,本發明實施例並不限於此。
在電解質溶液270或270’中的每一個檢測之後,檢測裝置290從電解質溶液270或270’收到回應。根據一些實施例,如第5B圖所示,在多個檢測之後得到輸出訊號330A、330B和330C。輸出訊號330A、330B和330C可稱為輸出曲線或輸出資料。在一些實施例中,輸出訊號330A、330B和330C為輸出電流及/或電壓。在一些實施例中,輸出訊號330A、330B和330C在相角(phase angle)θx具有最大差異或變化。相角θx可以在從約0°至約360°的範圍內。第5C圖繪示在相角θx周圍部分的輸出訊號330A、330B和330C的放大圖。
根據一些實施例,將交流電和直流電的組合施加於檢測裝置290,可以得到電解質溶液270中的雜質310之明顯且可靠的回應,如第5B或5C圖所示。另一方面,只將交流電或直流電施加於檢測裝置290,可能不會收到電解質溶液270中的雜質310之有用的回應。在一些情況下,如果交流電和直流電的組合不在前述交流電流、交流電頻率和直流電壓的範圍內,檢測裝置290可能不會收到電解質溶液270中的雜質310之明顯的回應。
根據一些實施例,如第5D圖所示,提供之校準資料包含校準曲線340A、340B、340C、340D、340E和340F。校準資料可用於分析和鑑定雜質310的種類和濃度。舉例來說,校準曲線340A可以是基準線(base line),其代表大抵上沒有雜質310。在一些實施例中,校準曲線340B、340C、340D、340E和340F代表雜質310的不同濃度。舉例來說,相較於校準曲線340C、340D、340E和340F,校準曲線340B可以代表雜質310的較低濃度。在一些其他的實施例中,校準曲線340B、340C、340D、340E和340F代表各種雜質的不同濃度。
根據一些實施例,在電鍍製程之前實施多項實驗或測試,以建立校準資料。更具體地說,在一些實施例中,在實施電鍍製程之前,將檢測裝置290的探針300浸泡在乾淨的電解質溶液270中。將交流電和直流電的組合(例如第5A圖所示的輸入電流320)施加於檢測裝置290。結果,檢測裝置290從乾淨的電解質溶液270接收到輸出訊號或資料。可以檢測乾淨的電解質溶液270多次,以得到平均輸出訊號。(平均)輸出訊號建立校準資料的基準線(例如校準曲線340A)。
在一些實施例中,將檢測裝置290的探針300浸泡在含有雜質310(或不同雜質)的各種電解質溶液中。每一個電解質溶液具有不同濃度的雜質310。將交流電和直流電的組合(例如第5A圖所示的輸入電流320)施加於檢測裝置290。結果,檢測裝置290從含有雜質310的電解質溶液接收到多個輸出訊號。可以檢測含有雜質310的電解質溶液多次,以得到每一個電解質溶液的平均輸出訊號。每一個電解質溶液的(平均) 輸出訊號建立校準資料的不同校準曲線(例如校準曲線340B、340C、340D、340E和340F)。
根據一些實施例,將電鍍製程期間或之間得到的輸出訊號與校準資料進行比對。舉例來說,在一些實施例中,將第5B或5C圖所示之產生的輸出訊號330A與第5D圖所示的校準資料進行比對。結果,如第5E圖所示,在相角θx的輸出訊號330A大抵上與在相角θx的校準訊號340A匹配。這樣可以鑑定出藉由檢測裝置290檢驗的電解質溶液270具有濃度350A的雜質310。當校準曲線340A為基準線時,表示電解質溶液270是乾淨的且大抵上不含雜質310。因此,還不需要更換電解質溶液270。
在一些實施例中,將第5B或5C圖所示之產生的輸出訊號330B與第5D圖所示的校準資料進行比對。結果,如第5E圖所示,在相角θx的輸出訊號330B大抵上與在相角θx的校準資料曲線340B重疊。這樣可以鑑定出藉由檢測裝置290檢驗的電解質溶液270具有濃度350B的雜質310。舉例來說,雜質310的濃度350B可以在從約5%至約10%的範圍內。
在一些實施例中,校準曲線340B代表在電解質溶液270中的副產物的濃度。如果濃度350B大於或等於副產物的預定濃度,這說明電解質溶液270變得不夠乾淨。因此,將會以乾淨的電解質溶液置換電解質溶液270,以保持電鍍製程的高品質。
在一些實施例中,將第5B或5C圖所示之產生的輸出訊號330C與第5D圖所示的校準資料進行比對。結果,如第 5E圖所示,在相角θx的輸出訊號330C大抵上與在相角θx的校準資料曲線340D重疊。這樣可以鑑定出藉由檢測裝置290檢驗的電解質溶液270具有濃度350C的雜質310。
在一些實施例中,校準曲線340B和校準曲線340D代表在電解質溶液270中的不同副產物的濃度。由於在相角θx的輸出訊號330C大抵上與在相角θx的校準資料曲線340D重疊,這樣可以鑑定出藉由檢測裝置290檢驗的電解質溶液270含有濃度350C的特定副產物。
可以對本發明實施例進行許多變化及/或修改。舉例來說,前述的實施例提供一種檢測方法,此檢測方法將輸出曲線與校準曲線進行比對,但本發明實施例不限於此。在一些其他的實施例中,計算校準曲線、將校準曲線量化並轉換成校準表,校準表直接顯示各種雜質的濃度之數值。為了分析電解質溶液270中雜質310的種類和濃度,也可以計算輸出曲線,然後與校準表進行比對。如果電解質溶液270中有任何汙染物及/或副產物,這樣可以鑑定並找出副產物的濃度。
當電解質溶液270中有任何汙染物時,移除在電鍍槽210和儲存槽220中的電解質溶液270。將另一個較先前的電解質溶液270乾淨的電解質溶液270’加入電鍍槽210和儲存槽220中。當電解質溶液270中的副產物太多或超出預定的濃度時,以乾淨的電解質溶液270’更新並取代電鍍槽210和儲存槽220中原本的電解質溶液270。因此,提升了電鍍製程的品質。
可以對本發明實施例進行許多變化及/或修改。舉 例來說,交流電和直流電的組合不限於第5A圖所示的輸入電流320。在一些實施例中,如第6圖所示,輸入電流320的主波形為正弦(sine)波。輸入電流320的主波形可以是升正弦(raised sine)波或反正弦(inverse sine)波。在一些實施例中,如第7圖所示,輸入電流320的主波形是平且筆直的波。輸入電流320的主波形可以是正波(positive wave)或負波(negative wave)。在一些其他的實施例中,輸入電流320的主波形為升餘弦(raised cosine)波、反餘弦(inverse cosine)波、方形(square)曲線、其他合適的曲線或前述之組合。
在一些實施例中,本發明實施例描述之電鍍製程的檢測方法係用於形成半導體裝置的互連結構,如第1A-1C圖所示。然而,本發明實施例不限於此。在一些其他的實施例中,本發明實施例描述之電鍍製程的檢測方法可用於形成任何合適的導電結構。本發明實施例不限於此,且可應用於任何合適的技術世代之生產製程。各種技術世代包含28奈米(nanometer,nm)節點(node)、20奈米節點、16奈米節點、10奈米節點、7奈米節點、5奈米節點或其他合適的節點。
本發明實施例提供在電鍍製程期間或之間,檢驗電解質溶液的檢測方法,以用於製造半導體裝置的電解質溶液。檢測裝置例如為包含一或多個金屬探針的裝置,其係用於檢測電解質溶液中的雜質。雜質包含一或多種汙染物、一或多個副產物或前述之組合。將交流電和直流電兩者輸入至檢測裝置,結果,根據從電解質溶液到檢測裝置的反饋或回應,可以鑑定出雜質的種類和濃度。這樣可以確保電解質溶 液在電鍍製程期間保持足夠乾淨。可以適時地以更乾淨的電解質溶液置換電解質溶液,以改善電鍍製程的品質。因此,可以更加提升半導體裝置的電路效能和可靠性。
根據一些實施例,提供電鍍製程的檢測方法。此檢測方法包含將基底浸入電解質溶液中以實施電鍍製程,電鍍製程包含添加劑。此檢測方法也包含將檢測裝置浸入電解質溶液中。此檢測方法更包含將第一交流電(AC)或直流電(DC)施加於檢測裝置以檢測添加劑的濃度。此外,檢測方法包含將第二交流電和第二直流電的組合施加於檢測裝置以檢驗電解質溶液,檢測出在電解質溶液中的雜質。此檢測方法也包含以另一電解質溶液置換含有雜質的電解質溶液。
根據一些實施例,提供電鍍製程的檢測方法。此檢測方法包含將第一探針浸入電化學電鍍裝置中的第一電解質溶液。此檢測方法也包含將交流電(AC)和直流電(DC)一起施加於第一探針以檢驗第一電解質溶液,檢測出在第一電解質溶液中的雜質。此檢測方法更包含從第一電解質溶液中移出第一探針。此外,檢測方法包含以第二電解質溶液置換含有雜質的第一電解質溶液。此檢測方法也包含將第一探針浸入第二電解質溶液。此檢測方法更包含將直流電和交流電一起施加於第一探針,以檢測第二電解質溶液。
根據一些實施例,提供電鍍製程的檢測方法。此檢測方法包含將基底浸入第一電鍍溶液中以實施電鍍製程。此檢測方法也包含將檢測裝置浸入第一電鍍溶液中。此檢測方法更包含將交流電(AC)和直流電(DC)同時施加於檢測裝 置,使得第一電鍍溶液中的檢測裝置接收到第一輸出訊號。此外,檢測方法包含將第一輸出訊號與校準資料進行比對,以鑑定出第一電鍍溶液中的雜質。
以上概述數個實施例之部件,使得在本發明所屬技術領域中具有通常知識者可以更加理解本發明實施例的觀點。在本發明所屬技術領域中具有通常知識者應該理解,他們能以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應該理解到,此類等效的結構並無悖離本發明的精神與範圍,且他們能在不違背本發明之精神和範圍下,做各式各樣的改變、取代和替換。

Claims (10)

  1. 一種電鍍製程的檢測方法,包括:將一基底浸入一電解質溶液中以實施一電鍍製程,其中該電解質溶液包括一添加劑;將一檢測裝置浸入該電解質溶液中;將一第一交流電(AC)或直流電(DC)施加於該檢測裝置以檢測該添加劑的濃度;將一第二交流電和一第二直流電的一組合施加於該檢測裝置以檢驗該電解質溶液,其中該檢測裝置接收一輸出訊號以檢測出在該電解質溶液中的一雜質;以及以一另一電解質溶液置換含有該雜質的該電解質溶液。
  2. 如申請專利範圍第1項所述之電鍍製程的檢測方法,更包括:將該輸出訊號與一校準資料進行比對,以鑑定出該雜質及/或該雜質的濃度。
  3. 如申請專利範圍第1或2項所述之電鍍製程的檢測方法,其中在將該第二交流電和該第二直流電的該組合施加於該檢測裝置期間,該電解質溶液同時接觸該基底和該檢測裝置。
  4. 如申請專利範圍第1或2項所述之電鍍製程的檢測方法,其中該添加劑包括一促進劑、一抑制劑、一整平劑或前述之組合,且其中在該電解質溶液中的該雜質與該促進劑、該抑制劑及該整平劑不同,且其中該電解質溶液中的該雜質包括清洗該基底之一清潔劑或一油。
  5. 一種電鍍製程的檢測方法,包括:將一第一探針浸入在一電化學電鍍裝置中的一第一電解質溶液;將一交流電(AC)和一直流電(DC)一起施加於該第一探針,以檢驗該第一電解質溶液,其中該第一探針接收一輸出訊號以檢測出在該第一電解質溶液中的一雜質;從該第一電解質溶液移出該第一探針;以一第二電解質溶液置換含有該雜質之該第一電解質溶液;將該第一探針浸入第二電解質溶液中;以及將該直流電和該交流電一起施加於該第一探針,以檢驗該第二電解質溶液。
  6. 如申請專利範圍第5項所述之電鍍製程的檢測方法,更包括:將一第二探針浸入該第一電解質溶液中,以檢測在該第一電解質溶液中的一添加劑之一濃度,其中該雜質與該添加劑不同;以及從該第一電解質溶液移出該第二探針;其中在將該交流電和該直流電一起施加於該第一探針期間,將一額外的交流電或直流電施加於該第二探針,以檢測該添加劑之該濃度。
  7. 如申請專利範圍第6項所述之電鍍製程的檢測方法,其中該第一電解質溶液在該電化學電鍍裝置的一電鍍槽和一儲存槽中,且其中該第一探針插入該電鍍槽,並且該第二探針插入該儲存槽。
  8. 一種電鍍製程的檢測方法,包括:將一基底浸入一第一電鍍溶液中,以實施一電鍍製程;將一檢測裝置浸入該第一電鍍溶液中;將一交流電(AC)和一直流電(DC)同時施加於該檢測裝置,使得在該第一電鍍溶液中的該檢測裝置接收到一第一輸出訊號;以及將該第一輸出訊號與一校準資料進行比對,以鑑定出在該第一電鍍溶液中的一雜質。
  9. 如申請專利範圍第8項所述之電鍍製程的檢測方法,其中該第一電鍍溶液包括複數個添加劑,且其中該雜質包括在該電鍍製程期間,從該些添加劑形成的一副產物,且其中將該第一輸出訊號與該校準資料進行之該比對包括在一相角將該第一輸出訊號之一輸出曲線與該校準資料之複數個校準曲線匹配,以決定該副產物的一濃度,且在該副產物的該濃度大於一預定濃度之後,以一第二電鍍溶液置換含有該副產物之該第一電鍍溶液。
  10. 如申請專利範圍第8項所述之電鍍製程的檢測方法,更包括:在將該交流電和該直流電施加於該檢測裝置之前或之後,使用該檢測裝置監控該第一電鍍溶液中的複數個添加劑之複數個濃度;以及在藉由該檢測裝置檢測出該些添加劑之該些濃度之後,且在該檢測裝置接收該第一輸出訊號之後,從該第一電鍍溶液移出該檢測裝置;其中檢測該第一電鍍溶液中的該雜質的時間與檢測該第一電鍍溶液中的該些添加劑之該些濃度的時間不同。
TW106135675A 2017-06-22 2017-10-18 電鍍製程的檢測方法 TWI665340B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762523450P 2017-06-22 2017-06-22
US62/523,450 2017-06-22
US15/689,195 US10345254B2 (en) 2017-06-22 2017-08-29 Detection method for electroplating process
US15/689,195 2017-08-29

Publications (2)

Publication Number Publication Date
TW201905245A TW201905245A (zh) 2019-02-01
TWI665340B true TWI665340B (zh) 2019-07-11

Family

ID=64693044

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106135675A TWI665340B (zh) 2017-06-22 2017-10-18 電鍍製程的檢測方法

Country Status (3)

Country Link
US (1) US10345254B2 (zh)
CN (1) CN109115860B (zh)
TW (1) TWI665340B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790526B (zh) * 2021-01-18 2023-01-21 日商荏原製作所股份有限公司 基板固持器、鍍覆裝置、鍍覆方法、及記憶媒體
TWI822514B (zh) * 2021-01-18 2023-11-11 日商荏原製作所股份有限公司 基板固持器、鍍覆裝置、鍍覆方法、及記憶媒體
US11920254B2 (en) * 2021-08-30 2024-03-05 Taiwan Semiconductor Manufacturing Co., Ltd. Detection of contact formation between a substrate and contact pins in an electroplating system
CN115846240B (zh) * 2023-02-14 2023-05-12 烟台三环智能装备有限公司 一种电镀件检测设备及其使用方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201443292A (zh) * 2013-03-15 2014-11-16 Applied Materials Inc 偵測電鍍槽汙染

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19708208C2 (de) * 1997-02-28 1999-11-25 Hans Juergen Pauling Verfahren und Vorrichtung zum Herstellen einer Elektrodenschicht
JP3357032B2 (ja) * 1999-12-21 2002-12-16 ハセ技研株式会社 めっき処理装置およびめっき処理方法
EP1184487A1 (de) * 2000-08-29 2002-03-06 Enthone-OMI (Deutschland) GmbH Verfahren zur Reinigung eines Elektrolyten
EP1264918B1 (en) * 2001-06-07 2011-11-23 Shipley Co. L.L.C. Electrolytic copper plating method
US8696917B2 (en) * 2009-02-09 2014-04-15 Edwards Lifesciences Corporation Analyte sensor and fabrication methods
KR101705734B1 (ko) * 2011-02-18 2017-02-14 삼성전자주식회사 구리 도금 용액 및 이것을 이용한 구리 도금 방법
CN103276416A (zh) * 2013-06-27 2013-09-04 灵宝华鑫铜箔有限责任公司 一种电解铜箔用添加剂及电解铜箔的生产工艺
US9964518B2 (en) * 2014-11-21 2018-05-08 Hioki Denki Kabushiki Kaisha Electroplating solution analyzing apparatus
CN106405402B (zh) * 2016-09-30 2023-05-16 中国南方电网有限责任公司超高压输电公司检修试验中心 一种断路器断口动态电压分布测量接线回路及测量方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201443292A (zh) * 2013-03-15 2014-11-16 Applied Materials Inc 偵測電鍍槽汙染

Also Published As

Publication number Publication date
CN109115860A (zh) 2019-01-01
US20180372665A1 (en) 2018-12-27
CN109115860B (zh) 2021-01-08
US10345254B2 (en) 2019-07-09
TW201905245A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
TWI665340B (zh) 電鍍製程的檢測方法
JP5235669B2 (ja) 基材表面を金属でコーティングするための電気めっき用組成物
US8574418B2 (en) Electroplating method for coating a substrate surface with a metal
KR102550311B1 (ko) 전기도금 동안 전해액들 모니터링
US20020033342A1 (en) Packaging deposition methods
CN113260739A (zh) 纳米孪晶铜结构的电沉积
US6627052B2 (en) Electroplating apparatus with vertical electrical contact
US20040188260A1 (en) Method of plating a semiconductor structure
US11603602B2 (en) Method for controlling electrochemical deposition to avoid defects in interconnect structures
Dubin et al. Electrochemical materials and processes in Si integrated circuit technology
US7544281B2 (en) Uniform current distribution for ECP loading of wafers
Caillard et al. Investigation of Cu/TaN and Co/TaN barrier-seed oxidation by acidic and alkaline copper electroplating chemistry for Damascene applications
US6303401B2 (en) Method for producing a metal layer with a given thickness
US9627317B2 (en) Wafer with improved plating current distribution
JP2008141088A (ja) 半導体装置の製造方法
KR100731082B1 (ko) 반도체 소자 제조 방법
TWI647342B (zh) Copper-silver two-component metal plating liquid for semiconductor wires and plating method
US20160222537A1 (en) Electroplating apparatus and method
KR20100050970A (ko) 전기도금 장치 및 이를 이용한 전기도금 방법
Huo Electrochemical planarization of copper for microelectronic applications
Chen et al. Investigation of Roles of Chloride and Polyethylene Glycol In Copper Electrochemical Deposition
Levert et al. A NOVEL SPIN-ETCH PLANARIZATION PROCESS FOR DUAL-DAMASCENE COPPER INTERCONNECTS