TWI664710B - System and method for the fluidic assembly of emissive displays - Google Patents

System and method for the fluidic assembly of emissive displays Download PDF

Info

Publication number
TWI664710B
TWI664710B TW106130894A TW106130894A TWI664710B TW I664710 B TWI664710 B TW I664710B TW 106130894 A TW106130894 A TW 106130894A TW 106130894 A TW106130894 A TW 106130894A TW I664710 B TWI664710 B TW I664710B
Authority
TW
Taiwan
Prior art keywords
light
emitting element
well
light emitting
providing
Prior art date
Application number
TW106130894A
Other languages
Chinese (zh)
Other versions
TW201826490A (en
Inventor
佐木健司 佐
羅修勒 保
特鄂孟 葛
宗霑 李
Original Assignee
美商伊樂視有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/266,796 external-priority patent/US9917226B1/en
Priority claimed from US15/410,001 external-priority patent/US9825202B2/en
Priority claimed from US15/410,195 external-priority patent/US10236279B2/en
Priority claimed from US15/412,731 external-priority patent/US10418527B2/en
Application filed by 美商伊樂視有限公司 filed Critical 美商伊樂視有限公司
Publication of TW201826490A publication Critical patent/TW201826490A/en
Application granted granted Critical
Publication of TWI664710B publication Critical patent/TWI664710B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67121Apparatus for making assemblies not otherwise provided for, e.g. package constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95053Bonding environment
    • H01L2224/95085Bonding environment being a liquid, e.g. for fluidic self-assembly

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Led Device Packages (AREA)
  • Wire Bonding (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

提供用於製造發光顯示器的流體組裝方法。提供具有頂表面的發光基板,該頂表面中形成有複數個井。每個井具有帶有第一電介面的一底表面。同時提供發光元件的液體懸浮液。該懸浮液流過該發光基板而發光元件被捕獲在所述井中。對發光基板進行退火使得每個發光元件與其對應的井的第一電介面之間形成電連接。在該基板或該發光元件上使用共晶焊料介面金屬以及在熱退火之前使用助熔劑都是可取的。所述發光元件可以是其頂面(靠近井的底表面)具有兩個電接觸部的表面貼裝發光二極體(SMLED)。 A fluid assembly method for manufacturing a light emitting display is provided. A light emitting substrate having a top surface is provided, in which a plurality of wells are formed. Each well has a bottom surface with a first electrical interface. A liquid suspension of the light-emitting element is also provided. The suspension flows through the light emitting substrate and the light emitting element is captured in the well. The light-emitting substrate is annealed such that an electrical connection is formed between each light-emitting element and the first electrical interface of its corresponding well. It is desirable to use a eutectic solder interface metal on the substrate or the light emitting element and to use a flux before thermal annealing. The light emitting element may be a surface mount light emitting diode (SMLED) having two electrical contact portions on its top surface (near the bottom surface of the well).

Description

發光顯示器的流體組裝的系統和方法 System and method for fluid assembly of light emitting display

本發明總體涉及積體電路(IC),尤其涉及用於製造發光顯示器的流體組裝方法。 The present invention relates generally to integrated circuits (ICs), and more particularly to a fluid assembly method for manufacturing a light emitting display.

將微加工電子裝置、光電裝置和次系統自母基板/晶片向大面積且/或非常規的基板的流體轉移為擴展電子和光電裝置的應用範圍提供了新的機會。例如,顯示圖元尺寸的發光二極體(LED)微結構,如棒、片、或盤,可以首先在小尺寸晶片上製造然後轉移到大面板玻璃基板上以實現直接的發光顯示。轉移該等LED微結構的一種傳統手段是藉由撿取-放置工藝。然而,對於包含數百萬個元件的顯示器,這樣的工藝可能需要幾個小時才能完成,因此效率低。 The fluid transfer of micro-machined electronic devices, optoelectronic devices, and sub-systems from mother substrates / wafers to large-area and / or unconventional substrates provides new opportunities for expanding the scope of applications of electronic and optoelectronic devices. For example, light-emitting diode (LED) microstructures, such as rods, sheets, or disks, that display the element size can be manufactured on a small-sized wafer and then transferred to a large panel glass substrate to achieve a direct light-emitting display. A traditional method of transferring such LED microstructures is through a pick-and-place process. However, for a display containing millions of elements, such a process may take several hours to complete and is therefore inefficient.

電子裝置,如LED和聚光太陽能電池,的流體自組裝,經常藉由在熔融焊料毛細管介面處表面能最小化來實現,使得在組裝期間可以同時實現與電極的機械連接和電性連接,如美國第7,774,929號專利所述。在一方面,電子設備被捕獲在形狀匹配的井結構中,電性集成工藝跟隨其後,如美國第6,316,278號專利所述。 Electronic devices, such as LEDs and concentrating solar cells, are often self-assembled by minimizing the surface energy at the molten solder capillary interface, so that the mechanical and electrical connections to the electrodes can be achieved simultaneously during assembly, such as As described in U.S. Patent No. 7,774,929. In one aspect, the electronic device is captured in a shape-matched well structure, followed by an electrical integration process, as described in US Patent No. 6,316,278.

常規的流體組裝工藝尚待解決的一些問題,與大規模的分配方法、在大面積上將微元件集成至驅動電路、以及用於有缺陷的微型元件的修復 的潛在結構有關。大規模的情況下,常規的流體組裝到井中受到用於微元件捕獲的最大速度和用於高速陣列組裝的最小分配速度的雙重要求的挑戰。類似地,實現在超過釐米級的整體組裝基板上高成品率所需的微元件分配方案和流速均勻性變得非常具有挑戰性。 Some problems to be solved in the conventional fluid assembly process, with large-scale distribution methods, integration of micro-components into drive circuits over a large area, and repair of defective micro-components Related to the underlying structure. On a large scale, conventional fluid assembly into a well is challenged by the dual requirements of maximum speed for micro-element capture and minimum distribution speed for high-speed array assembly. Similarly, the micro-component distribution scheme and flow rate uniformity required to achieve high yields on monolithic assembly substrates that exceed the centimeter level have become very challenging.

組裝的微元件的集成主要藉由對微元件的光蝕刻形成的電極沉積來實現,或者接近第一電極接觸部作為組裝方案的一部分的位置疊層第二電接觸部。然而,由於基板表面上任何剩餘微元件的污染,流體組裝後的大基板的光蝕刻可能被抑制。疊層的頂部接觸部未被證實出足夠可靠的電性連接至用於顯示應用的微元件。 The integration of the assembled micro-elements is mainly achieved by electrode deposition formed by photo-etching of the micro-elements, or a second electrical contact portion is laminated near the first electrode contact portion as part of the assembly scheme. However, due to contamination of any remaining micro-elements on the surface of the substrate, photolithography of the large substrate after fluid assembly may be suppressed. The top contact of the stack has not been proven to be sufficiently reliable to be electrically connected to the micro-devices used for display applications.

最後,電激發微元件的缺陷檢測是用於維修前檢查的最可靠和有效的方法。具有頂部接觸電極的組裝的微元件至少部分地保持在一種絕緣基質中。任何涉及從該基質中去除缺陷微組件的修復是非常困難的。此外,被添加到陣列中以補償有缺陷的微元件的任何類似的集成的微元件均要求重複電極接觸工藝。雖然技術方面的解決辦法可能存在,但預計它們將更昂貴,更耗時,更不可靠。 Finally, defect detection of electrically excited micro-components is the most reliable and effective method for pre-repair inspections. The assembled micro-element with the top contact electrode is held at least partially in an insulating matrix. Any repair involving the removal of defective micro-assemblies from this matrix is very difficult. In addition, any similar integrated micro-elements added to the array to compensate for defective micro-elements require repeated electrode contact processes. Although technical solutions may exist, they are expected to be more expensive, time consuming, and less reliable.

如果一種流體組裝工藝可以被使用以具有最少的工藝步驟有效地將發光元件轉移到顯示器基板,這將是有利的。 It would be advantageous if a fluid assembly process could be used to efficiently transfer light emitting elements to a display substrate with minimal process steps.

本發明揭露的流體組裝和取向方法使用施加在各個微型元件上的高變數的局部應力。該高變數的應力導致速度的高變數,從而作為用於捕獲的最大組裝速度存在的範圍,各個元件的速度可能低於該最大閾值並沉降到井中。高變數的第二個好處是在大型(米級)基板上的組件排布相對較快。一旦沉入井中,最大的應力為使組裝的元件不會從正確的方向移開, 而是錯位的部件被移開。這提供了一種低成本且高速的組裝方法,其實現預測組裝速度達每小時超過5600萬個微型元件。該組裝方法是一種可以適用於任何數量的基板的通用方法,但是非常適合於具有有限表面形貌的低填充因數和高面積的陣列。 The fluid assembly and orientation method disclosed by the present invention uses a highly variable local stress applied to each micro-component. This high-variable stress results in a high-variation of velocity, so that as a range where the maximum assembly speed for capture exists, the speed of individual components may fall below this maximum threshold and settle into the well. The second benefit of high variability is the relatively fast arrangement of components on large (meter-scale) substrates. Once sinking into the well, the greatest stress is to prevent the assembled components from moving away from the correct direction, Instead, the misplaced parts are removed. This provides a low-cost and high-speed assembly method that achieves a predicted assembly speed of more than 56 million micro-components per hour. This assembly method is a universal method that can be applied to any number of substrates, but is well suited for low fill factor and high area arrays with limited surface topography.

因此,提供了一種用於製造發光顯示器的流體組裝方法。該方法提供具有一個頂表面的一個發光基板,該頂表面上形成有複數個井。每個井具有帶有第一電介面的一個底表面,以及複數個列走線和複數個行走線形成的矩陣,所述複數個列走線和複數個行走線形成複數個列/行交叉點。 每個列/行交叉點與相應的一個井相關聯。還提供了發光元件的一種液體懸浮液。該液體可以是例如乙醇、多元醇、酮、鹵代烴或水。該方法將該懸浮液流過該發光基板的頂表面,而發光元件被捕獲於所述複數個井中。經對該發光基板進行退火,使得每個發光元件與與其對應的井的第一電介面之間電連接。該液體懸浮液可含有焊料助熔劑,或者焊劑助熔劑可以應用於一個在捕獲發光元件於所述複數個井中之前或之後且在基板退火之前的單獨步驟中。附加的工藝步驟可以在選定的井上形成顏色改變機構和光擴散機構。 Therefore, a fluid assembly method for manufacturing a light emitting display is provided. The method provides a light emitting substrate having a top surface on which a plurality of wells are formed. Each well has a bottom surface with a first electrical interface, and a matrix formed by a plurality of column traces and a plurality of walking lines, the plurality of column traces and a plurality of walking lines forming a plurality of column / row intersections . Each column / row intersection is associated with a corresponding one of the wells. A liquid suspension of a light emitting element is also provided. The liquid may be, for example, ethanol, a polyol, a ketone, a halogenated hydrocarbon, or water. The method flows the suspension through the top surface of the light emitting substrate, and the light emitting element is captured in the plurality of wells. The light-emitting substrate is annealed so that each light-emitting element is electrically connected to the first electrical interface of the corresponding well. The liquid suspension may contain a soldering flux, or the fluxing flux may be applied in a separate step before or after capturing the light emitting element in the plurality of wells and before the substrate is annealed. Additional process steps can form a color changing mechanism and a light diffusing mechanism on selected wells.

在該基板或該發光元件上使用共晶焊料介面金屬以及在熱退火之前使用助熔劑都是可取的。例如,二甲基氯化銨、二乙醇胺和甘油溶液可以溶解在異丙醇中。該溶液可用作組裝流體(懸浮液),也可以在藉由清掃和蒸發除去組裝流體後引入。 It is desirable to use a eutectic solder interface metal on the substrate or the light emitting element and to use a flux before thermal annealing. For example, dimethylammonium chloride, diethanolamine, and glycerol solutions can be dissolved in isopropanol. This solution can be used as an assembly fluid (suspension), or it can be introduced after the assembly fluid is removed by sweeping and evaporation.

在一些方面,該發光元件是一個表面貼裝發光二極體(SMLED),其頂面上具有兩個電接觸部(SMLED頂面面向井,靠近井的底表面)。然後實現所述發光元件與井的第一電介面之間的電性連接,不需要形成覆蓋金屬層和附加導電走線,或在退火之後在基板上引線邦定(bonding)。否 則,如果發光元件是垂直LED(具有一個電接觸部在頂面和一個電接觸部在底面),則在退火之後可能需要額外的金屬化步驟。通常,隨著發光元件被捕獲在複數個井中,未捕獲的發光元件被同時收集並重新配置以用於隨後的發光顯示器製造。 In some aspects, the light emitting element is a surface mount light emitting diode (SMLED) with two electrical contacts on its top surface (the top surface of the SMLED is facing the well, near the bottom surface of the well). The electrical connection between the light-emitting element and the first electrical interface of the well is then achieved without the need to form a cover metal layer and additional conductive traces, or wire bonding on the substrate after annealing. no Then, if the light emitting element is a vertical LED (having one electrical contact on the top surface and one electrical contact on the bottom surface), an additional metallization step may be required after annealing. Generally, as the light emitting elements are captured in a plurality of wells, the uncaught light emitting elements are collected and reconfigured simultaneously for subsequent light emitting display manufacturing.

一方面,採用一個輔助機構被用於將發光元件分佈在基板上。該輔助機構的一些示例包括刷子(旋轉或非旋轉)、刮水器、旋轉圓筒、加壓流體和機械振動(例如聲學或超聲波)。該輔助機構藉由與懸浮液中的發光元件或發光基板的頂表面接觸或配合而有助於發光元件在基板表面的分佈。例如,假設該發光基板具有長度和寬度,該方法使懸浮液在該發光基板的頂表面沿該發光基板的長度的第一方向以第一速度流動。一個輔助機構刷,其具有一個轉軸和一個至少等於發光基板的寬度的刷子長度,刷子長度沿跨越該發光基板的長度的第一方向平移。刷子平移的第一遍的同時,刷子旋轉以產生第一速度的第一區域變數。一方面,該刷子旋轉產生的第一區域變數大於第一速度。該方法還可進一步沿第一方向或其相反的方向上重複平移刷子,和刷子旋轉可產生大於或小於第一速度的區域變數。該刷子可以以速度在120至300轉/分鐘(RPM)的範圍內旋轉,並且以速度在3至10釐米每秒(cm/s)的範圍內在該發光基板的頂表面上平移。 On the one hand, an auxiliary mechanism is used to distribute the light emitting elements on the substrate. Some examples of this auxiliary mechanism include brushes (rotating or non-rotating), wipers, rotating cylinders, pressurized fluids, and mechanical vibrations (such as acoustic or ultrasonic). The auxiliary mechanism facilitates the distribution of the light emitting element on the surface of the substrate by contacting or cooperating with the top surface of the light emitting element or the light emitting substrate in the suspension. For example, assuming that the light emitting substrate has a length and a width, the method causes the suspension to flow on the top surface of the light emitting substrate at a first speed along a first direction of the length of the light emitting substrate. An auxiliary mechanism brush has a rotating shaft and a brush length at least equal to the width of the light-emitting substrate, and the brush length is translated in a first direction across the length of the light-emitting substrate. While the brush is being translated for the first pass, the brush is rotated to generate a first region variable of a first speed. In one aspect, the first region variable generated by the brush rotation is greater than the first speed. The method may further repeat the translation of the brush in the first direction or the opposite direction thereof, and the rotation of the brush may generate a regional variable that is greater than or less than the first speed. The brush can rotate at a speed in a range of 120 to 300 revolutions per minute (RPM), and translate on the top surface of the light emitting substrate at a speed in a range of 3 to 10 centimeters per second (cm / s).

在一個方面,所述表面貼裝發光元件被製造為具有從底面延伸的柱,或垂直的發光元件被製造為具有從頂面延伸的柱。然後,當該液體懸浮液流過該基板的頂表面時發光元件移動,至少部分地是響應於在發光元件的柱上產生的扭矩。也許更重要的是,從底面延伸的柱可助於表面定向,並將發光元件的頂面直接覆蓋在井的底表面上,所以該等柱有助於捕獲發光元件於井中。 In one aspect, the surface mount light emitting element is manufactured to have a post extending from a bottom surface, or the vertical light emitting element is manufactured to have a post extending from a top surface. Then, the light-emitting element moves when the liquid suspension flows over the top surface of the substrate, at least in part in response to a torque generated on a pillar of the light-emitting element. Perhaps more importantly, the pillars extending from the bottom surface can help the surface orientation and directly cover the top surface of the light emitting element on the bottom surface of the well, so these pillars help capture the light emitting element in the well.

下面將提供上述方法的附加細節以及用於將不同形狀的發光元件轉移到發光基板的方法。 Additional details of the above method and a method for transferring light emitting elements of different shapes to a light emitting substrate will be provided below.

200‧‧‧發光基板 200‧‧‧light emitting substrate

202‧‧‧頂表面 202‧‧‧Top surface

204‧‧‧井 204‧‧‧well

208,208-0,208-1,208-2‧‧‧第一電介面 208, 208-0, 208-1, 208-2 ‧‧‧ First electrical interface

206‧‧‧底表面 206‧‧‧ bottom surface

210‧‧‧列走線 210‧‧‧column alignment

212,212-0,212-1,212-2‧‧‧行走線 212, 212-0, 212-1, 212-2

214‧‧‧列/行交叉點 214‧‧‧column / row intersection

209-0,209-1,209-2,310‧‧‧第二電介面 209-0,209-1,209-2,310‧‧‧Second electrical interface

300‧‧‧液體懸浮液 300‧‧‧ liquid suspension

302‧‧‧發光元件 302‧‧‧Light-emitting element

304‧‧‧第一電接觸部 304‧‧‧First electrical contact

308‧‧‧頂面 308‧‧‧Top

306‧‧‧第二電接觸部 306‧‧‧Second electrical contact

402‧‧‧第一半導體層 402‧‧‧First semiconductor layer

404‧‧‧第二半導體層 404‧‧‧Second semiconductor layer

406‧‧‧多量子阱層 406‧‧‧Multi-quantum well layer

408‧‧‧電絕緣體 408‧‧‧electric insulator

500‧‧‧長度 500‧‧‧ length

502‧‧‧寬度 502‧‧‧Width

504‧‧‧第一方向 504‧‧‧first direction

506‧‧‧刷子 506‧‧‧ Brush

508‧‧‧轉軸 508‧‧‧Shaft

510‧‧‧刷子長度 510‧‧‧Brush length

1400‧‧‧橫向速度 1400‧‧‧ lateral speed

1402‧‧‧轉速 1402‧‧‧speed

602‧‧‧表面 602‧‧‧ surface

600‧‧‧柱 600‧‧‧columns

804,800‧‧‧圓形井 804, 800‧‧‧ round well

808,812‧‧‧發光元件盤 808,812‧‧‧‧Light emitting element tray

806‧‧‧第一直徑 806‧‧‧first diameter

802‧‧‧第二直徑 802‧‧‧second diameter

814‧‧‧第三直徑 814‧‧‧ third diameter

810‧‧‧第四直徑 810‧‧‧Fourth diameter

900‧‧‧第一形狀 900‧‧‧ first shape

902‧‧‧第二形狀 902‧‧‧Second Shape

904‧‧‧第三形狀 904‧‧‧ third shape

906‧‧‧第四形狀 906‧‧‧Fourth shape

圖1是製備發光顯示器的流體組裝方法的流程圖。 FIG. 1 is a flowchart of a fluid assembly method for preparing a light emitting display.

圖2A和2B分別是例如可提供在圖1的步驟102中的一個示例性發光基板的局部橫截面和局部平面圖。 2A and 2B are a partial cross-sectional view and a partial plan view, respectively, of an exemplary light emitting substrate that may be provided in step 102 of FIG. 1, for example.

圖3是實施圖1的步驟104至步驟108的各個方面的局部橫截面圖。 FIG. 3 is a partial cross-sectional view of implementing aspects of steps 104 to 108 of FIG. 1.

圖4A和4B分別是示例性的表面貼裝發光二極體(SMLED)的部分橫截面圖和平面圖。 4A and 4B are a partial cross-sectional view and a plan view of an exemplary surface mount light emitting diode (SMLED), respectively.

圖5是一個示例性的刷子輔助機構的立體圖。 FIG. 5 is a perspective view of an exemplary brush assist mechanism.

圖6是被具有柱的發光元件佔據的發光基板的局部橫截面圖。 FIG. 6 is a partial cross-sectional view of a light emitting substrate occupied by a light emitting element having a pillar.

圖7是製備發光顯示器的流體組裝方法的第一變更實施例的流程圖。 FIG. 7 is a flowchart of a first modified embodiment of a fluid assembly method for preparing a light emitting display.

圖8是支持圖7所示的方法的一個實施例版本的平面圖。 FIG. 8 is a plan view supporting an embodiment version of the method shown in FIG. 7.

圖9是支持圖7所示的方法的第二實施例版本的平面圖。 Fig. 9 is a plan view of a second embodiment version supporting the method shown in Fig. 7.

圖10是製備發光顯示器的流體組裝方法的第二變更實施例的流程圖。 10 is a flowchart of a second modified embodiment of a fluid assembly method for preparing a light emitting display.

圖11A和圖11B分別是例如可提供於圖1的步驟102中的第二示例性發光基板的局部橫截面圖和局部平面圖。 11A and 11B are a partial cross-sectional view and a partial plan view, respectively, of a second exemplary light emitting substrate that may be provided, for example, in step 102 of FIG. 1.

圖12A和圖12B是呈現發光元件的柱在發光元件表面定向中的功能的局部橫截面圖。 12A and 12B are partial cross-sectional views showing the function of the pillars of the light-emitting element in the orientation of the surface of the light-emitting element.

圖13A、圖13B和圖13C是呈現捕獲速度在發光元件的流體組裝上的影響的局部橫截面圖。 13A, 13B, and 13C are partial cross-sectional views showing the effect of capture speed on the fluid assembly of the light emitting element.

圖14是呈現組裝過程中流體組裝懸浮液阻力對發光元件速度的影響的局部橫截面圖。 14 is a partial cross-sectional view showing the effect of the resistance of the fluid assembly suspension on the speed of the light emitting element during the assembly process.

圖1是用於製造發光顯示器的一種流體組裝方法的流程圖。儘管為了清楚起見,該方法被描述為具有編號次序的複數個步驟,但編號並不一定決定步驟的次序。可以理解的,該等步驟中的一些可以被跳過,並存執行,或者執行而不要求維持嚴格的先後次序。然而,通常,該方法遵循所示步驟的數位順序。該方法從步驟100開始。步驟102提供發光基板。 FIG. 1 is a flowchart of a fluid assembly method for manufacturing a light emitting display. Although the method is described as a plurality of steps with a numbered order for clarity, numbering does not necessarily determine the order of the steps. Understandably, some of these steps can be skipped, executed concurrently, or executed without maintaining strict sequencing. However, in general, the method follows the numerical order of the steps shown. The method starts at step 100. Step 102 provides a light emitting substrate.

圖2A和圖2B分別是一個,例如可能提供在圖1的步驟102中的,示例性發光基板的局部橫截面圖和局部平面圖。該發光基板200具有一個頂表面202,以及形成於該頂表面202上的第一複數個井204(如圖所示的井204-0至204-2)。基本上,所述基板頂表面202為平坦的,且所述複數個井204是唯一影響流體組裝的表面形貌特徵。每個井204包括一個具有第一電介面208的底表面206,第一電介面208可選擇性地被焊接劑塗覆。圖中示出了第一電介面208-0至208-2。該發光基板200通常是透明的,並且可以是包括玻璃基板及覆蓋於該玻璃基板上的電介質材料的多層結構(圖未示),所述複數個井形成於該電介質材料中。該發光基板200還包括一個具有複數個列走線210和複數個行走線212的矩陣,該等列走線210和行走線212形成複數個列/行交叉點214。圖中示出了行走線212-0至212-3和列/行交叉點214-0至214-3。每個列/行交叉點214和與其對應的井204相關聯。例如,列/行交叉點214-0與井204-0相關聯。列走線210和行走線212可以形成一個簡單的被動型矩陣,以選擇性地激發發光元件,或者如下面更詳細地描述的作為用於相同目的的主動型矩陣的一部分。因此,本圖中未示出列、行和電介面之間的互連的細節。 2A and 2B are respectively a partial cross-sectional view and a partial plan view of an exemplary light emitting substrate, which may be provided in step 102 of FIG. 1, for example. The light-emitting substrate 200 has a top surface 202 and a first plurality of wells 204 (wells 204-0 to 204-2 as shown) formed on the top surface 202. Basically, the substrate top surface 202 is flat, and the plurality of wells 204 are the only surface topography features that affect fluid assembly. Each well 204 includes a bottom surface 206 having a first electrical interface 208 that can be selectively coated with solder. The figures show the first electrical interfaces 208-0 to 208-2. The light emitting substrate 200 is generally transparent, and may have a multilayer structure (not shown) including a glass substrate and a dielectric material covering the glass substrate, and the plurality of wells are formed in the dielectric material. The light-emitting substrate 200 further includes a matrix having a plurality of column lines 210 and a plurality of walking lines 212. The column lines 210 and the walking lines 212 form a plurality of column / row intersections 214. The figures show walking lines 212-0 to 212-3 and column / row intersections 214-0 to 214-3. Each column / row intersection 214 is associated with its corresponding well 204. For example, column / row intersection 214-0 is associated with well 204-0. The column traces 210 and the walking traces 212 may form a simple passive matrix to selectively excite light emitting elements, or as part of an active matrix for the same purpose as described in more detail below. Therefore, the details of the interconnections between the columns, rows, and electrical interfaces are not shown in this figure.

圖11A和圖11B分別是,例如可能提供至圖1的步驟102中的,第二示例性發光基板的局部橫截面圖和局部平面圖。在這方面,所述發光元件是如圖4A和圖4B詳細所示的表面貼裝發光二極體(SMLED)。如下麵所闡述,所述SMLED在其頂面上形成有兩個電接觸部,該頂面為與井的底表面206對向的表面。因此,井的底表面206上形成有兩個電介面,分別為第一電介面208-0至208-2和第二電介面209-0至209-2。在這方面,該發光基板200被形成為具有含列走線和行走線的被動型矩陣,以選擇性地激發所述複數個SMLED。如圖所示,列走線210與井204-0至204-2的列中的第一電介面(208-0至208-2)連接,行走線212-0至212-2分別與井204-0至204-2的列中的第二電介面(209-0至209-2)連接。 11A and 11B are a partial cross-sectional view and a partial plan view of a second exemplary light-emitting substrate, which may be provided, for example, in step 102 of FIG. 1, respectively. In this regard, the light emitting element is a surface mount light emitting diode (SMLED) as shown in detail in FIGS. 4A and 4B. As explained below, the SMLED has two electrical contacts formed on its top surface, which is a surface opposite to the bottom surface 206 of the well. Therefore, two electrical interfaces are formed on the bottom surface 206 of the well, namely the first electrical interfaces 208-0 to 208-2 and the second electrical interfaces 209-0 to 209-2. In this regard, the light emitting substrate 200 is formed as a passive matrix with column traces and walking traces to selectively activate the plurality of SMLEDs. As shown, the column trace 210 is connected to the first electrical interface (208-0 to 208-2) in the column of the wells 204-0 to 204-2, and the traces 212-0 to 212-2 are respectively connected to the well 204 The second electrical interfaces (209-0 to 209-2) in the columns of -0 to 204-2 are connected.

回到圖1,步驟104提供發光元件的一種液體懸浮液,並且步驟106將該懸浮液流過該發光基板的頂表面。步驟104中的液體可以是醇類、多元醇類、酮類、鹵代烴類或水的多種類型中的一種。步驟108捕獲發光元件於所述複數個井中。一方面,步驟104提供包含助焊劑的發光元件的一種液體懸浮液。或者或另外的,捕獲發光元件於所述複數個井中(步驟108)之後並且對基板進行退火(步驟110)之前,步驟109a採用焊劑助熔劑填充已有發光元件進入的井中。 Returning to FIG. 1, step 104 provides a liquid suspension of the light emitting element, and step 106 flows the suspension through the top surface of the light emitting substrate. The liquid in step 104 may be one of various types of alcohols, polyols, ketones, halogenated hydrocarbons, or water. Step 108 captures the light emitting elements in the plurality of wells. In one aspect, step 104 provides a liquid suspension of a light-emitting element including a flux. Alternatively or additionally, after capturing the light emitting elements in the plurality of wells (step 108) and before annealing the substrate (step 110), step 109a uses a flux to fill the wells into which the light emitting elements have entered.

圖3是實施圖1的步驟104至108的各個方面的局部橫截面圖。液體懸浮液300含有發光元件302,其中的一些發光元件302被捕獲於井204中,且具有至少一個發光元件第一電接觸部304。圖中還示出了發光元件第二電接觸部306。接觸部304和306均形成在發光元件302的頂面308上。同樣地,在每個井的底表面206上形成有一個第二電介面310。 FIG. 3 is a partial cross-sectional view of various aspects implementing steps 104 to 108 of FIG. 1. The liquid suspension 300 contains light-emitting elements 302, some of which are captured in the well 204, and have at least one light-emitting element first electrical contact 304. The figure also shows the second electrical contact portion 306 of the light emitting element. The contact portions 304 and 306 are each formed on the top surface 308 of the light emitting element 302. Similarly, a second electrical interface 310 is formed on the bottom surface 206 of each well.

回到圖1,步驟110對發光基板進行退火。由於退火,步驟112將每個發光元件和與其對應的井的第一電介面電性連接。如上所述,井的第一 電介面可以被焊接劑所塗覆。或者或另外,發光元件上的一個電接觸部或複數個電接觸部可以被焊接劑所塗覆。所述退火在足夠高的溫度下進行以熔化所使用的焊接劑。 Returning to FIG. 1, in step 110, the light emitting substrate is annealed. Due to the annealing, step 112 electrically connects each light-emitting element to the first dielectric interface of the corresponding well. As mentioned above, the first of the well The electrical interface can be coated with solder. Alternatively or in addition, one electrical contact or a plurality of electrical contacts on the light emitting element may be coated with a solder. The annealing is performed at a sufficiently high temperature to melt the flux used.

在基板或發光元件上使用共晶焊料介面金屬以及在熱退火之前使用助熔劑均是必要的。使用原子濃度(at%),Au28/Ge62焊料共晶體具有的熔點(MP)為361℃,而In49/Sn51焊料具有的熔點為120℃。純銦的熔點為156℃,但其具有在無壓力的情況下無法邦定(bonding)的缺點。助熔劑可以是溶解在異丙醇、有機酸、或松香型流體中的二甲基氯化銨、二乙醇胺、和甘油溶液。該溶液可用作組裝流體(懸浮液),或在藉由清掃和蒸發除去組裝流體後被引入。 It is necessary to use a eutectic solder interface metal on a substrate or a light emitting element and to use a flux before thermal annealing. Using atomic concentration (at%), the Au28 / Ge62 solder eutectic has a melting point (MP) of 361 ° C, while the In49 / Sn51 solder has a melting point of 120 ° C. Pure indium has a melting point of 156 ° C, but it has the disadvantage that it cannot be bonded without pressure. The flux may be a solution of dimethyl ammonium chloride, diethanolamine, and glycerol dissolved in isopropanol, an organic acid, or a rosin-type fluid. This solution can be used as an assembly fluid (suspension) or introduced after the assembly fluid is removed by sweeping and evaporation.

圖4A和是4B分別是呈現示例性的表面貼裝發光二極體(SMLED)的局部橫截面圖和局部平面圖。圖3所示的發光元件,例如,可以是SMLED。該SMLED302包括具有n-摻雜劑或p-摻雜劑的第一半導體層402。 第二半導體層404中含有未用於第一半導體層402中的摻雜劑。一個多量子阱(MQW)層406位於第一半導體層402和第二半導體層404之間。該MQW層406通常可以是圖未示的一系列的量子阱層(代表性的,為5層,例如,圖未示的交替設置的5nm的氮化銦鎵(InGaN)和9nm的n摻雜GaN(n-GaN))。在該MQW層和p摻雜的半導體層之間還可設置有氮化鋁鎵(AlGaN)電子阻擋層(圖未示)。外層可以是約200nm厚的p摻雜的GaN(Mg摻雜)。如果較高的銦含量使用在MQW中,則可以形成高亮度的藍色LED或綠色LED。最實用的第一半導體層和第二半導體層的材料是能夠發藍色或綠色光的氮化鎵(GaN)或能夠發紅光的鋁鎵銦磷(AlGaInP)。 4A and 4B are a partial cross-sectional view and a partial plan view showing an exemplary surface-mount light emitting diode (SMLED), respectively. The light-emitting element shown in FIG. 3 may be, for example, a SMLED. The SMLED 302 includes a first semiconductor layer 402 having an n-dopant or a p-dopant. The second semiconductor layer 404 contains a dopant that is not used in the first semiconductor layer 402. A multiple quantum well (MQW) layer 406 is located between the first semiconductor layer 402 and the second semiconductor layer 404. The MQW layer 406 may generally be a series of quantum well layers (not shown) (representatively, 5 layers, for example, 5 nm indium gallium nitride (InGaN) and 9 nm n-doped alternately not shown) GaN (n-GaN)). An aluminum gallium nitride (AlGaN) electron blocking layer (not shown) may be further provided between the MQW layer and the p-doped semiconductor layer. The outer layer may be about 200 nm thick p-doped GaN (Mg-doped). If a higher indium content is used in the MQW, a high-brightness blue LED or a green LED can be formed. The most practical materials for the first semiconductor layer and the second semiconductor layer are gallium nitride (GaN) capable of emitting blue or green light or aluminum gallium indium phosphorus (AlGaInP) capable of emitting red light.

一方面,該第一電接觸部304設置為環形,且該第二半導體層404為圓盤形狀,其邊緣位於該第一電接觸部304環的下方。該第二電接觸部306 形成在該第一電接觸部304環邊緣內,且該第一半導體層402和該MQW層406層疊於該第二電接觸部306下方。在該第一電接觸部304環邊緣和該第二電接觸部306之間形成一個壕溝,所述壕溝內填充有電絕緣體408。該SMLED的附加細節在由Schuele等人發明的題為“DISPLAY WITH SURFACE MOUNT EMMISIVE ELEMENT”的專利申請(申請號:15/410,001,申請日:2017/1/19)中有提供,此處該專利申請作為參考文獻引用。有利地,如果使用SMLED,則在步驟112中的每個發光元件與第一電介面之間的電性連接可以無需形成覆蓋金屬層、附加導電走線、和退火之後對基板進行引線邦定,也無需在發光元件上施加外部壓力而實現每個發光元件與第一電介面之間的電性連接。在所示的一個方面,該SMLED包括用於對準和定向的柱410。 In one aspect, the first electrical contact portion 304 is provided in a ring shape, and the second semiconductor layer 404 is in the shape of a disk, and an edge thereof is located below the ring of the first electrical contact portion 304. The second electrical contact portion 306 It is formed in the ring edge of the first electrical contact portion 304, and the first semiconductor layer 402 and the MQW layer 406 are stacked under the second electrical contact portion 306. A trench is formed between the ring edge of the first electrical contact portion 304 and the second electrical contact portion 306, and the trench is filled with an electrical insulator 408. Additional details of this SMLED are provided in a patent application entitled "DISPLAY WITH SURFACE MOUNT EMMISIVE ELEMENT" (application number: 15 / 410,001, filing date: 2017/1/19) invented by Schuele et al., Which patent here The application is cited as a reference. Advantageously, if a SMLED is used, the electrical connection between each light-emitting element and the first electrical interface in step 112 may eliminate the need to form a cover metal layer, additional conductive traces, and wire bonding the substrate after annealing, There is also no need to apply external pressure on the light-emitting elements to achieve the electrical connection between each light-emitting element and the first electrical interface. In one aspect shown, the SMLED includes a post 410 for alignment and orientation.

更明確地,該步驟102提供具有井的發光基板,其中井的底表面上具有第一電介面和第二電介面。如果使用被動型矩陣(PM),則該列走線和行走線被連接至該第一電介面和該第二電介面。如果使用主動型矩陣(AM),則列走線和行走線用於啟動與每個井相關聯的驅動電路,其該驅動電路的輸出端連接該第一電介面。在使用AM的情況下,該發光基板中的走線矩陣還將包括一個將直流電源連接到每個驅動電路的線。該發光基板還包括連接到每個井的第二電介面的電介面參考電壓網路。該AM和PM實施的更多細節在母案專利申請15/410,001中有提供。 More specifically, the step 102 provides a light emitting substrate having a well, wherein the bottom surface of the well has a first electrical interface and a second electrical interface. If a passive matrix (PM) is used, the column traces and traces are connected to the first electrical interface and the second electrical interface. If an active matrix (AM) is used, the column traces and the traces are used to activate a driving circuit associated with each well, and an output terminal of the driving circuit is connected to the first electrical interface. In the case of using AM, the wiring matrix in the light-emitting substrate will also include a line connecting a DC power source to each driving circuit. The light emitting substrate further includes an electrical interface reference voltage network connected to a second electrical interface of each well. More details of the AM and PM implementation are provided in the parent patent application 15 / 410,001.

接著,步驟104提供含表面貼裝發光元件(例如SMLED)的液體懸浮液,該表面貼裝發光元件具有一個底面和一個頂面,且該頂面上形成有第一電接觸部和第二電接觸部。在步驟108中捕獲發光元件於井中包括捕獲每個表面貼裝發光元件的頂面直接覆蓋於相應的井的底表面。藉由退火處理(步驟112)使每個發光元件的第一電接觸部和與其對應井的第一電介 面電連接,包括將每個表面貼裝發光元件的第一電接觸部和與其對應井的第一電介面電連接,以及將每個發光元件的第二電接觸部和與其對應井的第二電介面電連接。 Next, step 104 provides a liquid suspension containing a surface-mount light-emitting element (such as SMLED). The surface-mount light-emitting element has a bottom surface and a top surface, and a first electrical contact portion and a second electrical contact are formed on the top surface. Contact. Capturing the light emitting element in the well in step 108 includes capturing the top surface of each surface mount light emitting element directly covering the bottom surface of the corresponding well. The first electrical contact of each light-emitting element and the first dielectric of the corresponding well are made by an annealing process (step 112). Surface electrical connection includes electrically connecting a first electrical contact portion of each surface-mount light-emitting element and a first electrical interface of a corresponding well, and a second electrical contact portion of each light-emitting element and a second electrical contact of a corresponding well. The electrical interface is electrically connected.

在一個不同的方面,該步驟104提供垂直發光元件的液體懸浮液,該垂直的發光元件包括具有第一電接觸部的底面和具有第二電接觸部的頂面。該步驟108捕獲該發光元件的底面直接覆蓋與其對應井的底表面,並且該步驟112將每個發光元件的第一電接觸部和與其對應井的第一電介面電連接。在這方面,在將發光元件第一電接觸部和與其對應井的第一電介面電連接的步驟112之後,步驟114形成覆蓋該發光基板的頂表面上的參考電壓介面層。如本領域中可理解的,這樣的步驟可能需要在該基板的頂表面上沉積一層隔離層,並且蝕刻以開設貫穿該隔離層的接觸孔,以使隨後形成的參考電壓介面層可以電連接至該第二電接觸部。步驟116將每個垂直發光元件的第二電接觸部與該參考電壓介面層連接。例如,可以使用薄膜工藝以在該發光基板的頂表面上形成金屬化互連。在使用垂直發光元件的被動型矩陣設計的情況下,列/行矩陣的一部分(例如,列線)可如所述以被提供在步驟102中,並且列/行矩陣的一部分(例如,行走線)被提供在步驟114中。 In a different aspect, the step 104 provides a liquid suspension of a vertical light emitting element including a bottom surface having a first electrical contact portion and a top surface having a second electrical contact portion. This step 108 captures the bottom surface of the light-emitting element to directly cover the bottom surface of its corresponding well, and this step 112 electrically connects the first electrical contact portion of each light-emitting element and the first electrical interface of its corresponding well. In this regard, after step 112 of electrically connecting the first electrical contact portion of the light emitting element and the first electrical interface of its corresponding well, step 114 forms a reference voltage interface layer on the top surface of the light emitting substrate. As can be understood in the art, such a step may require depositing an isolation layer on the top surface of the substrate and etching to open a contact hole penetrating the isolation layer so that a subsequently formed reference voltage interface layer can be electrically connected to The second electrical contact. Step 116 connects the second electrical contact portion of each vertical light emitting element with the reference voltage interface layer. For example, a thin film process may be used to form a metallized interconnect on a top surface of the light emitting substrate. In the case of a passive matrix design using vertical light emitting elements, a part of the column / row matrix (for example, a column line) may be provided as described in step 102 and a part of the column / row matrix (for example, a walking line) ) Is provided in step 114.

一方面,步驟107選擇性地使用輔助機構用於分配發光元件。例如,該輔助機構可以是刷子(旋轉的或非旋轉的)、擦拭器、旋轉圓筒、加壓流體或機械振動。該“流體”可以是氣體或液體。該機械振動的例子包括聲波振動和超聲波振動。然後,步驟108捕獲發光元件,至少部分地,是由於輔助機構對懸浮液中發光元件的作用或對發光基板頂表面的作用。 In one aspect, step 107 selectively uses an auxiliary mechanism for dispensing light emitting elements. For example, the auxiliary mechanism may be a brush (rotating or non-rotating), a wiper, a rotating cylinder, a pressurized fluid, or a mechanical vibration. The "fluid" can be a gas or a liquid. Examples of the mechanical vibration include sonic vibration and ultrasonic vibration. Step 108 then captures the light-emitting element, at least in part, due to the effect of the auxiliary mechanism on the light-emitting element in the suspension or on the top surface of the light-emitting substrate.

圖5是呈現一示例性刷子輔助機構的立體圖。參考圖1和圖5所示,步驟102提供具有長度500和寬度502的一個發光基板200。步驟106提供在跨 越發光基板200的長度500的第一方向504上具有第一速度的懸浮液。然後,步驟107使用一個刷子506,該刷子506具有轉軸508和刷子長度510,該刷子長度510至少等於後續子步驟中的發光基板200的寬度502。步驟107a中,在第一遍中,該刷子長度510在第一方向平移跨越該發光基板200的長度500。一方面,步驟107a中刷子以速度在3至10釐米每秒(cm/s)的範圍內平移。第一遍刷子平移的同時,步驟107b旋轉刷子以產生第一速度中的第一區域變數。如圖所示,第一區域變數是比第一速度更大的速度。或者,第一區域變數可以比第一速度更小的速度。一方面,步驟107b以120至300轉每分鐘(RPM)的速度旋轉刷子。在一個實施例中,刷子在基板表面的線速度為35cm/s,並且在刷子推動懸浮液移動的前部出現低速捕獲區域。 FIG. 5 is a perspective view showing an exemplary brush assist mechanism. Referring to FIGS. 1 and 5, step 102 provides a light emitting substrate 200 having a length 500 and a width 502. Step 106 provides the The light emitting substrate 200 has a suspension having a first velocity in a first direction 504 of a length 500. Then, step 107 uses a brush 506 having a rotating shaft 508 and a brush length 510, which is at least equal to the width 502 of the light-emitting substrate 200 in the subsequent sub-steps. In step 107a, in the first pass, the brush length 510 is translated in a first direction across the length 500 of the light emitting substrate 200. In one aspect, the brush is translated at a speed in the range of 3 to 10 centimeters per second (cm / s) in step 107a. While the brush is being translated for the first pass, step 107b rotates the brush to generate a first region variable in a first speed. As shown, the first region variable is a speed greater than the first speed. Alternatively, the first region variable may be a smaller speed than the first speed. In one aspect, step 107b rotates the brush at a speed of 120 to 300 revolutions per minute (RPM). In one embodiment, the linear velocity of the brush on the surface of the substrate is 35 cm / s, and a low-speed capture area appears in the front of the brush pushing the suspension to move.

例如,作為輔助機構使用的圓柱形刷可具有50mm的外徑,並且由75微米直徑的尼龍或聚丙烯刷毛形成的複數個3mm的毛簇組成,所述複數個毛簇可排布為緊密堆積的螺旋圖案或雙向螺旋圖案,中心點至中心點的毛簇間距為6mm。上面給出該等尺寸是為了說明一種圓柱形刷,其具有由非污染材料製成的精細的緊密堆積的刷毛,並且與微元件和載體流體都具有較佳的相互作用。 For example, a cylindrical brush used as an auxiliary mechanism may have an outer diameter of 50 mm and be composed of a plurality of 3 mm tufts formed by 75 micron diameter nylon or polypropylene bristles, and the plurality of tufts may be arranged to be closely packed. The spiral pattern or bidirectional spiral pattern, the tuft distance from the center point to the center point is 6mm. These dimensions are given above to illustrate a cylindrical brush that has fine, closely packed bristles made of a non-contaminating material and has a better interaction with both the micro-component and the carrier fluid.

在一個具體示例中,刷子從基板的第一邊緣開始。在第一步中,該刷子朝該基板的第二邊緣移動,並逆時針旋轉以增加區域變數。在第二步中,該刷子在與該第二邊緣的短距離處停止,並且旋轉反向為順時針。 在第三步中,刷子繼續移動到該第二邊緣,但隨後反向朝該第一邊緣移動,仍然保持順時針旋轉。在第四步中,該刷子在與該第一邊緣的短距離處停止,並且反向旋轉為逆時針轉動。在第五步中,該刷子完成移動到第一邊緣。可選地,可以重複上述步驟。 In a specific example, the brush starts from the first edge of the substrate. In the first step, the brush is moved towards the second edge of the substrate and rotated counterclockwise to increase the area variable. In the second step, the brush stops at a short distance from the second edge, and the rotation is reversed clockwise. In the third step, the brush continues to move to the second edge, but then moves in the opposite direction toward the first edge and still keeps rotating clockwise. In the fourth step, the brush stops at a short distance from the first edge, and the reverse rotation is a counterclockwise rotation. In the fifth step, the brush finishes moving to the first edge. Optionally, the above steps may be repeated.

如果基板以一定角度傾斜設置,則第一速度的流速可以是被重力驅動的。流速也可能是振盪或脈衝。還應當理解的是,懸浮液中的發光元件的速度不一定與液體的速度相同。如本申請中的第一速度是指液體速度。 If the substrate is tilted at an angle, the flow velocity at the first speed may be driven by gravity. The flow rate may also be an oscillation or a pulse. It should also be understood that the speed of the light emitting elements in the suspension is not necessarily the same as the speed of the liquid. The first speed as in this application refers to the liquid speed.

在一個方面,該液體懸浮液為在異丙醇中配置高濃度的2至8微米厚的複數個LED,該LED直徑或最大橫截面尺寸為20至150微米。在基板表面上存在低厚度的異丙醇,並且具有尼龍或聚丙烯刷毛的水準軸刷接近基板表面旋轉。該刷子在長度上與基板的一個尺寸相等以使平移跨過時刷子能夠完全覆蓋基板的表面。在平移時,旋轉最初使得與液體懸浮液接觸的刷毛的線速度與平移具有相同方向並具有較高的幅度。以這種方式,該刷子迫使跨越基板表面的發光元件彙聚。單個發光元件通常從其移動點迅速移動並以較大的初始速度(接近於刷子的線速度)行進,並且在再次沉降在表面之前自刷子移動一段距離。通常這種沉降使得其被組裝到井中。 In one aspect, the liquid suspension is a plurality of LEDs with a high concentration of 2 to 8 microns thick in isopropanol, and the LED has a diameter or maximum cross-sectional size of 20 to 150 microns. There is a low thickness of isopropyl alcohol on the substrate surface, and a level brush with nylon or polypropylene bristles rotates close to the substrate surface. The brush is equal in length to one dimension of the substrate so that the brush can completely cover the surface of the substrate when translated across. In translation, the rotation initially causes the linear velocity of the bristles that are in contact with the liquid suspension to have the same direction and a higher amplitude as the translation. In this way, the brush forces the light-emitting elements across the surface of the substrate to converge. A single light-emitting element typically moves rapidly from its moving point and travels at a large initial speed (close to the linear speed of the brush) and moves a distance from the brush before settling on the surface again. Usually this settling causes it to be assembled into a well.

圖13A至圖13C是呈現捕獲速度對發光元件的流體組裝的影響的局部橫截面圖。當發光元件速度(VO)小於或等於臨界捕獲速度(VCRIT),發光元件302移動得足夠慢以被捕獲於井204中。該臨界捕獲速度表現在用於發光元件接近捕獲井位置、並結合流體動力學,發光元件和局部的基板形貌以及相對於井的初始元件位置等的初始條件中,其定義一個速度量級,大於該速度量級則發光元件不能被捕獲,小於該速度量級則發光元件被捕獲。一個決定性的因素是井側壁和發光元件之間的相互作用是否在發光元件上提供阻力。這樣,即使發光元件的主要部分下沉到了基板頂表面的平面之下,進一步的流體力將發光元件驅出井外如果發光元件引導側壁邊緣為完全在基板頂表面的平面上。相反,如果發光元件的前緣被井側壁捕獲,則其動量被轉移到基板並且其可能沉降到井中。作用在發光元件上 的固定的向下的力(不包括流體動力學的作用力)是與由在流體中產生的浮力相反的重力。因此,VCRIT由流體密度以及幾何和初始條件來確定。 13A to 13C are partial cross-sectional views showing the effect of capture speed on the fluid assembly of a light emitting element. When the light emitting element speed (V O ) is less than or equal to the critical capture speed (V CRIT ), the light emitting element 302 moves slowly enough to be captured in the well 204. The critical capture speed is manifested in the initial conditions for the light-emitting element to approach the capture well position, combined with fluid dynamics, the shape of the light-emitting element and the local substrate, and the initial element position relative to the well, etc., which defines a magnitude of velocity, Above this magnitude, the light-emitting element cannot be captured, and below this magnitude, the light-emitting element is captured. A decisive factor is whether the interaction between the sidewall of the well and the light emitting element provides resistance on the light emitting element. In this way, even if the main part of the light-emitting element sinks below the plane of the top surface of the substrate, further fluid force drives the light-emitting element out of the well if the edge of the side wall of the light-emitting element guide is completely on the plane of the top surface of the substrate. In contrast, if the leading edge of the light emitting element is captured by the sidewall of the well, its momentum is transferred to the substrate and it may settle into the well. The fixed downward force (excluding the hydrodynamic force) acting on the light-emitting element is gravity opposite to the buoyancy generated in the fluid. Therefore, V CRIT is determined by fluid density as well as geometry and initial conditions.

該臨界捕獲速度在二維圖中示出,而實際上,發光元件行進的路徑可能不會穿過井中心,並且因此包括移入或移出該二維圖的組件。因為在接觸較遠的井側壁之前的發光元件的下降決定了發光元件是否被捕獲,並且途經中心的路徑表示發光元件可以在不接觸側壁的情況下可以採取的最長路徑,所以可以理解的是,需要明顯降低的速度來捕獲沿著井的偏心行進的發光元件。換句話說,臨界捕獲速度的大小被描述針對在井的中心上方行進的發光元件的,並且描述了組裝的最大極限值(一級)。為了在實踐中實現高產量,最小發光元件速度是顯著低於此處描述的VCRITThis critical capture velocity is shown in a two-dimensional map, and in fact, the path traveled by the light emitting element may not pass through the center of the well, and therefore includes components moving in or out of the two-dimensional map. Because the fall of the light-emitting element before it touches the far side wall of the well determines whether the light-emitting element is captured, and the path through the center represents the longest path that the light-emitting element can take without touching the side wall, it is understandable that Significantly reduced speed is required to capture light-emitting elements traveling eccentrically along the well. In other words, the magnitude of the critical capture velocity is described for a light-emitting element traveling above the center of the well, and the maximum limit value (first order) for assembly is described. To achieve high yields in practice, the minimum light emitting element speed is significantly lower than the V CRIT described here.

圖14是呈現組裝過程中流體組裝懸浮液阻力對發光元件速度的影響的局部橫截面圖。當載體流體速度(V)大於臨界載體流體速度(VCRIT),該刷子506可能將發光碟向上推動離開基板的表面202。如圖所示,作用在發光元件302上的力也可能是刷子506的橫向速度1400和刷子506的轉速1402的函數。流體可能是湍流的,並且在一定程度上發光元件的移動獨立於總體的流體流動(超出初始的刷子衝程)。通常,在刷子區域附近存在高密度的發光元件,然後發光元件在基板上向前分散,依靠流體流動並經歷阻力,減速,並且最終在前進的刷子到達它們之前沉降在表面上並進入井中。因此,刷子的初始速度必然非常高,但發光元件302減速並穩定在低於VCRIT的速度,這是採用的刷子方法的主要優點。較高速度的刷毛會使定向不正確的發光碟脫落,並推動發光元件前高密度波浪於其前方,從而使他們有機會在刷子前方定位。刷毛速度(主要來自刷子轉速)是藉由用於定向發光碟的釋放力窗選擇,並且刷子的線性行進速度是藉由液體中發光 元件的沉降時間來選擇。以這種方式,該組裝方法將各個發光元件組裝速度(其受VCRIT限制)自總體顯示元件組裝速度(其是快速的)相分離。 14 is a partial cross-sectional view showing the effect of the resistance of the fluid assembly suspension on the speed of the light emitting element during the assembly process. When the carrier fluid velocity (V) is greater than the critical carrier fluid velocity (V CRIT ), the brush 506 may push the light-emitting disc upwards away from the surface 202 of the substrate. As shown, the force acting on the light emitting element 302 may also be a function of the lateral speed 1400 of the brush 506 and the rotational speed 1402 of the brush 506. The fluid may be turbulent, and to some extent the movement of the light-emitting element is independent of the overall fluid flow (beyond the initial brush stroke). Generally, there are high-density light-emitting elements near the brush area, and then the light-emitting elements are dispersed forward on the substrate, relying on fluid flow and experiencing resistance, decelerating, and eventually settle on the surface and enter the well before the advancing brush reaches them. Therefore, the initial speed of the brush must be very high, but the light-emitting element 302 decelerates and stabilizes at a speed lower than V CRIT , which is the main advantage of the brush method used. The higher-speed bristles will cause the incorrectly-oriented light plate to fall off, and push the high-density waves in front of the light-emitting element in front of it, thereby giving them the opportunity to locate in front of the brush. The bristle speed (mainly from the rotation speed of the brush) is selected by the release force window used to orient the light-emitting disc, and the linear travel speed of the brush is selected by the settling time of the light-emitting element in the liquid. In this way, the assembly method separates the individual light-emitting element assembly speed (which is limited by V CRIT ) from the overall display element assembly speed (which is fast).

裝配較少能藉由一遍完成,因此通常需要進行多遍改變方向的平移和旋轉。然而,平移和旋轉不需要同時變向。為了節省基板表面上未組裝部件的所占(即,不在井中),旋轉首先變向,同時刷子沿著與之前相同的方向平移,直到所有未組裝的部件朝著組裝區域被引回為止,此時刷子的平移方向也進行變換。 Assembly can be done in less than one pass, so it is usually necessary to perform multiple translation and rotation changes in direction. However, translation and rotation need not change direction at the same time. In order to save the occupation of unassembled components on the substrate surface (i.e., not in the well), the rotation is first changed while the brush is translated in the same direction as before, until all unassembled components are brought back towards the assembly area. The brush's translation direction is also changed.

在一個方面,組裝時的發光元件最大局部密度約為部件的0.3-0.8單層,以允許具有用於捕獲的大量機會的沉降的空間。當發光元件被捕獲時,期望補充位於移動中的刷子前面的未捕獲(未對準)發光元件的數量和附加劑量的懸浮液流體。藉由過量的組分可獲得良好的結果,也就是說,在組裝區域上方的液體懸浮液中的元件數量超過捕集點的數量至少為50%,以提高捕獲產量並減少組裝時間。在所有位置(井)被正確定向的發光元件佔據之後,使用相同的刷塗工具但是使用不同的方案(例如,以統一的旋轉方向將刷子平移到超過基板區域的程度)掃除多餘的未組裝的元件。掃除的元件被收集在儲存器中用於再利用(步驟109a和109b)。 In one aspect, the maximum local density of the light-emitting element when assembled is about 0.3-0.8 single layer of the component to allow space for settlement with a large number of opportunities for capture. When the light emitting element is captured, it is desirable to replenish the number of uncaught (misaligned) light emitting elements in front of the moving brush and an additional dose of suspension fluid. Good results are obtained with excess components, that is, the number of components in the liquid suspension above the assembly area exceeds the number of capture points by at least 50% to increase capture yield and reduce assembly time. After all positions (wells) are occupied by correctly oriented light-emitting elements, use the same brushing tool but use a different scheme (e.g., to translate the brush to a degree beyond the substrate area with a uniform rotation direction) to remove excess unassembled element. The swept components are collected in a reservoir for reuse (steps 109a and 109b).

突出這種方法的一個因素是部件的電接觸不會發生在組裝期間或者在組裝後僅藉由沉積的金屬實現,而是發生在超出該發光元件至基板交界面金屬的共晶熔融溫度的退火期間。雖然一些現有技術的方法在用於熔融焊料組裝的水性懸浮液中包含助熔劑(如HCl),但是該方法會逐漸溶解焊料接觸部,使得與微元件的一致的電連接困難。本申請中使用的助熔劑的濃度最初足夠低而不是腐蝕性的,但是在退火期間,殘留的異丙醇首先揮發,然後甘油揮發。在每個步驟中,助熔劑的濃度增加,去除表面氧化 物和污染物,以使金屬表面乾淨便於邦定。與撿取-放置方法不同,該方法實現了良好的電接觸,而不需要對部件介面施加任何的外部壓力。 One factor that underscores this approach is that the electrical contact of the components does not occur during assembly or after assembly is only achieved by the deposited metal, but rather occurs at an annealing that exceeds the eutectic melting temperature of the metal at the interface between the light emitting element and the substrate period. Although some prior art methods include a flux (such as HCl) in an aqueous suspension for molten solder assembly, this method gradually dissolves the solder contacts, making consistent electrical connection to the micro-component difficult. The concentration of the flux used in the present application was initially low enough not to be corrosive, but during annealing, the residual isopropanol was first volatilized and then glycerol was volatilized. In each step, the concentration of the flux increases, removing surface oxidation And contaminants to keep the metal surface clean and easy to bond. Unlike the pick-and-place method, this method achieves good electrical contact without requiring any external pressure on the component interface.

在一個方面,步驟106使發光元件在懸浮液中流動,在發光基板頂表面處發光元件具有比液體更高的體積百分比。在相關的變更實施例中,步驟106在0.3至0.8單層的範圍內,藉由產生懸浮液中的發光元件的最大局部密度,將懸浮液流過發光基板頂表面。 In one aspect, step 106 causes the light emitting element to flow in a suspension, the light emitting element having a higher volume percentage at the top surface of the light emitting substrate than the liquid. In a related modified embodiment, step 106 is in a range of 0.3 to 0.8 single layer, and the suspension is flowed through the top surface of the light-emitting substrate by generating the maximum local density of the light-emitting element in the suspension.

圖6是被具有柱的發光元件佔據的發光基板的局部橫截面圖。參考圖1和圖6,步驟104提供發光元件302的液體懸浮液,該發光元件302具有從表面602延伸的柱600。在本實施例中,該發光元件是表面貼裝發光元件。 步驟106流動液體懸浮液是藉由移動發光元件跨過基板的頂表面的方式,至少部分地,是響應於該發光元件的柱600上產生的扭矩。進一步,捕獲發光元件於井中(步驟108)可以包括藉由發光元件的柱600,表面定向表面貼裝發光元件頂面308直接覆蓋井的底表面。 FIG. 6 is a partial cross-sectional view of a light emitting substrate occupied by a light emitting element having a pillar. Referring to FIGS. 1 and 6, step 104 provides a liquid suspension of a light emitting element 302 having a post 600 extending from a surface 602. In this embodiment, the light-emitting element is a surface-mount light-emitting element. Step 106 The flowing liquid suspension is performed by moving the light emitting element across the top surface of the substrate, at least in part, in response to the torque generated on the pillar 600 of the light emitting element. Further, capturing the light-emitting element in the well (step 108) may include surface-oriented surface-mounting the light-emitting element top surface 308 directly covering the bottom surface of the well through the pillar 600 of the light-emitting element.

圖12A和圖12B是呈現在發光元件的表面定向上柱的功能的局部橫截面圖。在流體組裝期間,液體流(由箭頭1200指示)導致曳力穿過基板200的表面作用在發光元件302的柱600上。由於柱600從發光元件表面602延伸,所以曳力具有對面二極體的表面取向的不對稱影響。特別地,曳力導致圍繞旋轉的固定轉動點(例如,與基板200的表面接觸的發光元件的邊緣)的正力矩,其將倒置的發光元件302翻轉成非倒置的取向。相反,由於液體流動導致的作用在非倒置的發光元件302上的曳力主要是由於周圍柱600的擾動引起的,並且施加在發光元件302上的力導致負的淨力矩。該負淨力矩迫使發光元件的前緣(即,沿箭頭1200的方向引導的邊緣)向下並使發光元件在非倒置的方向穩定。 12A and 12B are partial cross-sectional views showing a function of a pillar on a surface orientation of a light emitting element. During fluid assembly, the liquid flow (indicated by arrow 1200) causes a drag force to act on the pillars 600 of the light emitting element 302 across the surface of the substrate 200. Since the post 600 extends from the light emitting element surface 602, the drag force has an asymmetrical effect on the surface orientation of the surface diode. In particular, the drag force causes a positive moment around a fixed fixed point of rotation (eg, the edge of the light emitting element that is in contact with the surface of the substrate 200), which flips the inverted light emitting element 302 into a non-inverted orientation. In contrast, the drag force acting on the non-inverted light-emitting element 302 due to the liquid flow is mainly caused by the disturbance of the surrounding column 600, and the force applied on the light-emitting element 302 results in a negative net moment. This negative net moment forces the leading edge of the light emitting element (ie, the edge guided in the direction of arrow 1200) downward and stabilizes the light emitting element in a non-inverted direction.

曳力的相似的不對稱的影響發生在以非倒置的取向沉積在井204中的發光元件302(參見圖12A)以及以倒置的取向沉積在井204中的發光元件302(參見圖12B)之間。如圖12A所示,由液體流引起的周圍發光元件302的右下角的任何力矩被藉由施加在表面602上的力抵消,導致負的淨力矩趨於維持發光元件沉積在井204中。如圖12B所示,當發光元件302在井204中反轉時,表面602作為從液體流產生提升力的水翼,使得正的淨力矩作用在圍繞在發光元件302的與井204的一側接觸的右側。這個正的淨力矩傾向於使得發光元件302沿箭頭1202所示的方向翻轉,使得發光元件被驅出於井204外並且當液體流使發光元件朝另一個可能重新沉積的下游井移動時,可能成為非倒置的取向。 Similar asymmetric effects of drag force occur in light emitting elements 302 (see FIG. 12A) deposited in well 204 in a non-inverted orientation and light emitting elements 302 (see FIG. 12B) deposited in well 204 in an inverted orientation. between. As shown in FIG. 12A, any moment in the lower right corner of the surrounding light emitting element 302 caused by the liquid flow is cancelled by the force applied on the surface 602, resulting in a negative net moment tending to maintain the light emitting element deposited in the well 204. As shown in FIG. 12B, when the light-emitting element 302 is inverted in the well 204, the surface 602 acts as a hydrofoil that generates a lifting force from the liquid flow, so that a positive net moment acts on the side of the light-emitting element 302 that is opposite to the well 204 Touch the right side. This positive net moment tends to cause the light-emitting element 302 to flip in the direction shown by arrow 1202, so that the light-emitting element is driven out of the well 204 and when the liquid flow moves the light-emitting element toward another downstream well that may re-deposit, it is possible Become a non-inverted orientation.

在一個方面,捕獲發光元件於井中(步驟108)的同時,步驟109b收集未捕獲的發光元件,並且步驟109c重新懸浮收集的發光元件以用於隨後的發光顯示器的製造。在另一方面,步驟118形成覆蓋相應的複數個發光元件的暴露的表面的複數個顏色改變機構。或者或另外,步驟118形成覆蓋相應的複數個發光元件的複數個光擴散機構。 In one aspect, while capturing the light emitting elements in the well (step 108), step 109b collects the uncaught light emitting elements, and step 109c resuspends the collected light emitting elements for subsequent manufacturing of the light emitting display. In another aspect, step 118 forms a plurality of color changing mechanisms that cover the exposed surfaces of the corresponding plurality of light emitting elements. Alternatively or in addition, step 118 forms a plurality of light diffusion mechanisms covering the corresponding plurality of light emitting elements.

如果發光元件具有兩個底部接觸部(例如SMLED),退火(步驟110)是最後的處理步驟,可以節省顏色改變整合和鈍化處理。如果如垂直的發光元件的情況下電極在相對的表面上,一個鈍化層被沉積被在發光元件頂面接觸部上並露出該接觸部,且圖案化的金屬實現與發光元件的電性連接(步驟114和116)。 If the light-emitting element has two bottom contacts (for example, SMLED), annealing (step 110) is the last processing step, which can save color change integration and passivation processing. If the electrode is on the opposite surface as in the case of a vertical light emitting element, a passivation layer is deposited on the top surface contact portion of the light emitting element and exposes the contact portion, and the patterned metal achieves an electrical connection with the light emitting element ( Steps 114 and 116).

圖7是製備發光顯示器的流體組裝方法的第一變更實施例的流程圖。該方法從步驟700開始。步驟702提供一個具有一個頂表面的發光基板,該頂表面上形成有複數個井。每個井包括具有第一電介面的底表面,並且該基板還包括由複數個列走線和行走線形成的矩陣,複數個列走線和行走 線形成複數個列/行交叉點。每個列/行交叉點和與其對應的井相關聯。步驟704提供含有第一類型的發光元件的第一液體懸浮液。步驟706第一懸浮液流過發光基板的頂表面。步驟708捕獲第一類型發光元件於井中。步驟710提供含有第二類型的發光元件的第二液體懸浮液。步驟712第二懸浮液流過發光基板的頂表面。步驟714進行發光基板的最終退火。藉由最終退火,步驟716發光元件和與其對應的井的第一電介面電連接。一方面,在第二懸浮液流動之前,步驟709進行初始退火以將已被捕獲在井中的第一類型的發光元件與電介面電連接。製造方法的具體細節可以在前述圖1的說明中找到,為了簡潔起見,這裡不再重複。一方面,捕獲的第二類型的發光元件位於其中的井形成在步驟708之後且在步驟712之前。 FIG. 7 is a flowchart of a first modified embodiment of a fluid assembly method for preparing a light emitting display. The method starts at step 700. Step 702 provides a light emitting substrate having a top surface on which a plurality of wells are formed. Each well includes a bottom surface having a first electrical interface, and the substrate further includes a matrix formed by a plurality of column traces and walking lines, and the plurality of column traces and walkings Lines form a plurality of column / row intersections. Each column / row intersection is associated with its corresponding well. Step 704 provides a first liquid suspension containing a first type of light emitting element. In step 706, the first suspension flows through the top surface of the light-emitting substrate. Step 708 captures the first type of light emitting element in the well. Step 710 provides a second liquid suspension containing a second type of light emitting element. Step 712 The second suspension flows through the top surface of the light emitting substrate. Step 714 performs final annealing of the light emitting substrate. With the final annealing, the light-emitting element is electrically connected to the first electrical interface of the corresponding well in step 716. In one aspect, before the second suspension flows, step 709 performs an initial anneal to electrically connect the light emitting element of the first type that has been captured in the well to the electrical interface. The specific details of the manufacturing method can be found in the foregoing description of FIG. 1, and for the sake of brevity, it will not be repeated here. In one aspect, the well in which the captured light emitting element of the second type is located is formed after step 708 and before step 712.

一個方面,在步驟714中的最終退火之前,步驟713a提供含有第三類型的表面貼裝發光元件的第三液體懸浮液。步驟713b第三懸浮液流過發光基板的頂表面。雖然沒有示出,但步驟713b之後的一個附加步驟為可對第三類型的發光元件進行退火以使第三類型的發光元件與已捕獲其的井的電介面連接。雖然未示出,但是該方法可以擴展為將任何數量的發光元件類型沉積在相應數量的不同懸浮液中。 In one aspect, before the final annealing in step 714, step 713a provides a third liquid suspension containing a third type of surface mount light-emitting element. Step 713b, the third suspension flows through the top surface of the light emitting substrate. Although not shown, an additional step after step 713b is to anneal the third type of light emitting element to connect the third type of light emitting element to the electrical interface of the well where it has been captured. Although not shown, the method can be extended to deposit any number of light-emitting element types in a corresponding number of different suspensions.

圖8是支持圖7所示的方法的一個實施例版本的平面圖。此處,步驟702提供具有複數個具有第一直徑806的圓形井804和複數個具有第二直徑802的圓形井800的發光基板,其中第二直徑802小於第一直徑806。然後,步驟704的第一液體懸浮液提供第一類型的發光元件盤812,該第一類型的發光元件盤812為具有大於第二直徑802且小於第一直徑806的第三直徑814的圓形形狀。步驟710提供含有第二類型的發光元件盤808的第二液體懸浮液,該第二類型的發光元件盤808為具有小於第二直徑802的第四直徑810的圓形形狀。 FIG. 8 is a plan view supporting an embodiment version of the method shown in FIG. 7. Here, step 702 provides a light emitting substrate having a plurality of circular wells 804 having a first diameter 806 and a plurality of circular wells 800 having a second diameter 802, wherein the second diameter 802 is smaller than the first diameter 806. Then, the first liquid suspension of step 704 provides a first type of light emitting element tray 812, which is a circular shape having a third diameter 814 larger than the second diameter 802 and smaller than the first diameter 806 shape. Step 710 provides a second liquid suspension containing a light emitting element tray 808 of a second type, which is a circular shape having a fourth diameter 810 smaller than a second diameter 802.

圖9是支持圖7所示的方法的第二實施例版本的平面圖。在這方面,步驟702提供發光基板,該發光基板具有具第一形狀900的複數個井和具第二形狀902的複數個井,該第二形狀902與第一形狀900不同。在該實施例中,該第一形狀900是正方形,該第二形狀902是圓形。然而,該方法不限於任何特定形狀或形狀的組合。步驟704提供含有第一種類型的發光元件的第一液體懸浮液,該第一種類型的發光元件具有第三形狀904,第三形狀904能夠填充於第一形狀井900中,但不能填充於第二形狀井902中。步驟710提供含有第二種類型的發光元件的第二液體懸浮液,第二種類型的發光元件具有第四形狀906,第四形狀906能夠填充於第二形狀井902中。在一個方面,具有第四形狀906的發光元件不能填充於第一形狀井900中。 Fig. 9 is a plan view of a second embodiment version supporting the method shown in Fig. 7. In this regard, step 702 provides a light emitting substrate having a plurality of wells having a first shape 900 and a plurality of wells having a second shape 902, which is different from the first shape 900. In this embodiment, the first shape 900 is a square, and the second shape 902 is a circle. However, the method is not limited to any particular shape or combination of shapes. Step 704 provides a first liquid suspension containing a first type of light-emitting element. The first type of light-emitting element has a third shape 904. The third shape 904 can be filled in the first shape well 900, but cannot be filled in. In a second shape well 902. Step 710 provides a second liquid suspension containing a second type of light emitting element. The second type of light emitting element has a fourth shape 906 that can be filled in the second shape well 902. In one aspect, the light emitting element having the fourth shape 906 cannot be filled in the first shape well 900.

圖10是製備發光顯示器的流體組裝方法的第二變更實施例的流程圖。該方法從步驟1000開始。步驟1002提供一個發光基板,其具有一個頂表面、具有第一形狀的複數個井和具有不同於第一形狀的第二形狀的複數個井。每個井包括一個具有第一電介面的底表面。步驟1002還提供複數個列走線和複數個行走線形成的矩陣,所述複數個列走線和複數個行走線形成複數個列/行交叉點。每個列/行交叉點和與其對應的一個井相關聯。步驟1004提供含有第一類型的發光元件的液體懸浮液,該第一類型的發光元件具有第三形狀,第三形狀能夠填充於第一形狀井中,但不能填充於第二形狀井中。步驟1004的液體懸浮液也含有第二類型的發光元件,該第二類型的發光元件具有第四形狀,第四形狀能夠填充於第二形狀井中,但不能填充於第一形狀井中。步驟1006懸浮液流過發光基板頂表面。步驟1008捕獲第一類型的發光元件於第一形狀井中並捕獲第二類型的發光元件於第二形狀井中。步驟1010對發光基板進行退火。藉由退火,步驟1012將發光元件和與其對應的井的第一電介面電連接。 10 is a flowchart of a second modified embodiment of a fluid assembly method for preparing a light emitting display. The method starts at step 1000. Step 1002 provides a light emitting substrate having a top surface, a plurality of wells having a first shape, and a plurality of wells having a second shape different from the first shape. Each well includes a bottom surface having a first electrical interface. Step 1002 also provides a matrix formed by a plurality of column traces and a plurality of walking lines, where the plurality of column traces and the plurality of walking lines form a plurality of column / row intersections. Each column / row intersection is associated with a corresponding well. Step 1004 provides a liquid suspension containing a light emitting element of a first type. The light emitting element of the first type has a third shape. The third shape can be filled in the first shape well, but cannot be filled in the second shape well. The liquid suspension of step 1004 also contains a second type of light-emitting element. The second type of light-emitting element has a fourth shape. The fourth shape can be filled in the second shape well, but cannot be filled in the first shape well. Step 1006 The suspension flows over the top surface of the light emitting substrate. Step 1008 captures a first type of light emitting element in a first shape well and captures a second type of light emitting element in a second shape well. Step 1010 anneals the light emitting substrate. By annealing, step 1012 electrically connects the light-emitting element and the first electrical interface of the corresponding well.

本申請提供用於製造發光顯示器的流體裝配工藝。具體材料,尺寸和電路佈局的示例已提供來說明本發明。然而,本發明不限於該等實施例。本領域技術人員將想到本發明的其它變型和實施例。 The application provides a fluid assembly process for manufacturing a light emitting display. Examples of specific materials, dimensions, and circuit layouts have been provided to illustrate the invention. However, the present invention is not limited to these embodiments. Those skilled in the art will envision other variations and embodiments of the invention.

Claims (25)

一種用於製造發光顯示器的流體組裝方法,改良在於,所述方法包括:提供發光基板,該發光基板具有頂表面以及複數個列走線和複數個行走線形成的矩陣,該頂表面上形成有複數個井,每個井包括具有第一電介面的底表面,所述複數個列走線和所述複數個行走線形成複數個列/行交叉點,其中每個列/行交叉點與相應的一個井相關聯;提供發光元件的液體懸浮液,所述發光元件具有從其一表面延伸的柱;使該懸浮液流過該發光基板的頂表面;捕獲所述發光元件於所述複數個井中;對所述發光基板進行退火;以及藉由所述退火使每個發光元件和與其對應的井的第一電介面電連接。A fluid assembly method for manufacturing a light-emitting display is improved. The method includes: providing a light-emitting substrate having a top surface and a matrix formed by a plurality of column traces and a plurality of traces, and a top surface is formed on the top surface. A plurality of wells, each well including a bottom surface having a first electrical interface, the plurality of column traces and the plurality of walking lines forming a plurality of column / row intersections, wherein each column / row intersection and a corresponding Associated with a well; providing a liquid suspension of a light-emitting element having a post extending from one surface thereof; passing the suspension through a top surface of the light-emitting substrate; capturing the light-emitting element in the plurality of In a well; annealing the light-emitting substrate; and electrically connecting each light-emitting element to a first electrical interface of a well corresponding thereto by the annealing. 如請求項1所述的方法,其中:電連接每個發光元件包括將每個發光元件與第一電介面連接,無需形成覆蓋金屬層、附加導電走線、或在基板上引線邦定。The method according to claim 1, wherein: electrically connecting each light-emitting element includes connecting each light-emitting element to the first electrical interface without forming a cover metal layer, adding conductive traces, or bonding wires on a substrate. 如請求項1所述的方法,其中:該方法還包括:使用輔助機構用於分配所述發光元件,所述輔助機構選自由旋轉或非旋轉的刷子、擦拭器、旋轉圓筒、加壓流體和機械振動構成的群;其中所述捕獲所述發光元件於所述井中包括:藉由所述輔助機構配合所述懸浮液中的發光元件或所述發光基板頂表面,捕獲所述發光元件。The method according to claim 1, wherein the method further comprises: using an auxiliary mechanism for dispensing the light emitting element, the auxiliary mechanism selected from the group consisting of a rotating or non-rotating brush, a wiper, a rotating cylinder, and a pressurized fluid And a group consisting of mechanical vibration; wherein said capturing said light-emitting element in said well comprises: capturing said light-emitting element by cooperating with a light-emitting element in said suspension or a top surface of said light-emitting substrate by said auxiliary mechanism. 如請求項3所述的方法,其中:提供所述發光基板包括提供具有長度和寬度的發光基板;其中使所述懸浮液流過所述發光基板的所述頂表面包括沿著跨越所述發光基板的長度的第一方向以第一速度供應所述懸浮液;其中採用所述輔助機構包括採用刷子,所述刷子具有轉軸和至少等於所述發光基板的所述寬度的刷子長度,該刷子的使用如下:在第一遍中,將沿著所述第一方向平移所述刷子長度以跨越所述發光基板的長度;所述刷子平移的第一遍的同時,旋轉所述刷子以產生在所述第一速度中的第一區域變數。The method of claim 3, wherein: providing the light-emitting substrate comprises providing a light-emitting substrate having a length and a width; wherein flowing the suspension through the top surface of the light-emitting substrate includes crossing the light The suspension is supplied at a first speed in a first direction of the length of the substrate; wherein using the auxiliary mechanism includes using a brush having a rotating shaft and a length of the brush at least equal to the width of the light-emitting substrate. Use as follows: In the first pass, the length of the brush will be translated along the first direction to span the length of the light-emitting substrate; while the first pass of the brush is translated, the brush is rotated to produce The first region variable in the first speed is described. 如請求項4所述的方法,其中:使用所述輔助機構包括:以在120至300轉/分鐘(RPM)的範圍的速率旋轉所述刷子;並且以在3至10釐米每秒(cm/s)的範圍的速度平移刷子。The method of claim 4, wherein: using the auxiliary mechanism comprises: rotating the brush at a rate in a range of 120 to 300 revolutions per minute (RPM); and at a rate of 3 to 10 centimeters per second (cm / Speed of range s) to translate the brush. 如請求項1所述的方法,其中:提供所述發光基板包括焊料塗覆的第一電介面。The method of claim 1, wherein providing the light-emitting substrate includes a solder-coated first electrical interface. 如請求項1所述的方法,其中:使所述懸浮液流過所述發光基板的所述頂表面包括形成發光元件在該懸浮液中最大的局部密度為0.3-0.8單層。The method of claim 1, wherein flowing the suspension through the top surface of the light-emitting substrate includes forming a single layer having a maximum local density of 0.3-0.8 in the suspension. 如請求項1所述的方法,其中:提供所述發光元件的液體懸浮液包括提供垂直發光元件,所述垂直發光元件具有帶有第一電接觸部的底面和帶有第二電接觸部的頂面,其中捕獲所述發光元件於所述複數個井中包括捕獲帶有發光元件的底面直接覆蓋與其對應的井的底表面;其中將每個所述發光元件和與其對應的井的第一電介面電連接包括將每個所述發光元件的所述第一電接觸部和與其對應井的第一電介面電連接。The method of claim 1, wherein providing the liquid suspension of the light-emitting element includes providing a vertical light-emitting element having a bottom surface with a first electrical contact portion and a second surface with a second electrical contact portion A top surface, wherein capturing the light-emitting element in the plurality of wells includes capturing a bottom surface with the light-emitting element to directly cover a bottom surface of a well corresponding thereto; wherein each of the light-emitting element and a first electric power of the well corresponding thereto are captured The interface electrical connection includes electrically connecting the first electrical contact portion of each of the light emitting elements and a first electrical interface of a corresponding well therewith. 如請求項1所述的方法,其中:電連接每個所述發光元件包括將每個所述發光元件和與其對應的井的第一電介面電連接,而不需要在所述發光元件上施加外部壓力。The method of claim 1, wherein: electrically connecting each of the light-emitting elements includes electrically connecting each of the light-emitting elements with a first electrical interface of a well corresponding thereto, without applying the light-emitting element. External pressure. 如請求項1所述的方法,其中:使所述液體懸浮液流過所述發光基板的所述頂表面包括使所述發光元件移動穿過所述基板的頂表面至少部分地是受到在所述發光元件的柱所產生的扭矩的影響。The method of claim 1, wherein flowing the liquid suspension through the top surface of the light-emitting substrate includes moving the light-emitting element through the top surface of the substrate at least partially under impact. The effect of the torque generated by the pillar of the light-emitting element is described. 如請求項1所述的方法,其中:捕獲所述發光元件於所述複數個井中包括藉由所述發光元件的柱使表面定向所述發光元件的第一電接觸部直接覆蓋所述井的底表面。The method of claim 1, wherein capturing the light-emitting element in the plurality of wells includes directing a surface of the light-emitting element through a pillar of the light-emitting element to directly cover a surface of the well. Bottom surface. 如請求項1所述的方法,其中:提供所述發光基板包括每個所述井包括具有第一電介面和第二電介面的底表面;其中提供所述發光元件的液體懸浮液包括提供具有底面和頂面的表面貼裝發光元件,且所述表面貼裝發光元件具有形成在所述頂面的第一電接觸部和第二電接觸部;其中捕獲所述發光元件於所述複數個井中包括捕獲每一個表面貼裝發光元件的頂面直接覆蓋與其對應的井的底表面;藉由所述退火使每個所述發光元件和與其對應的井的第一電介面電連接包括將每個所述表面貼裝發光元件的所述第一電接觸部和與其對應的井的第一電介面電連接,並且將每個所述發光元件的所述第二電接觸部和與其對應的井的第二電介面電連接。The method of claim 1, wherein: providing the light-emitting substrate comprises each of the wells including a bottom surface having a first electrical interface and a second electrical interface; wherein providing a liquid suspension of the light-emitting element includes providing Surface-mount light-emitting elements on the bottom surface and the top surface, and the surface-mount light-emitting element has a first electrical contact portion and a second electrical contact portion formed on the top surface; wherein the light-emitting element is captured in the plurality of The well includes capturing the top surface of each surface-mount light-emitting element to directly cover the bottom surface of the well corresponding to it; electrically connecting each of the light-emitting elements and the first electrical interface of the well corresponding thereto by the annealing includes connecting each The first electrical contact portion of each of the surface mount light emitting elements is electrically connected to a first electrical interface of a well corresponding thereto, and the second electrical contact portion of each of the light emitting elements and a well corresponding thereto are electrically connected The second electrical interface is electrically connected. 如請求項1所述的方法,其中:提供所述發光元件的液體懸浮液包括提供含有助焊劑的懸浮液。The method according to claim 1, wherein providing a liquid suspension of the light-emitting element includes providing a suspension containing a flux. 如請求項1所述的方法,其中:該方法還包括:在捕獲所述發光元件於所述複數個井中之後且在對所述發光基板進行退火之前,用助焊劑填充已被發光元件填充的井。The method according to claim 1, wherein the method further comprises: after capturing the light-emitting element in the plurality of wells and before annealing the light-emitting substrate, filling the light-filled element that has been filled with the light-emitting element with a flux. well. 如請求項1所述的方法,其中:該方法還包括:捕獲所述發光元件於所述複數個井的同時,收集未被捕獲的發光元件;且重新懸浮收集的所述發光元件用於隨後的發光顯示器的製造。The method according to claim 1, wherein: the method further comprises: capturing the light emitting elements while collecting the plurality of wells, collecting the light elements not captured; and resuspending the collected light emitting elements for subsequent use Of light emitting display. 如請求項1所述的方法,其中:該方法還包括:形成複數個顏色改變機構,並覆蓋於相對應的複數個發光元件的暴露的表面。The method according to claim 1, wherein the method further comprises: forming a plurality of color changing mechanisms and covering the exposed surfaces of the corresponding plurality of light emitting elements. 如請求項1所述的方法,其中:該方法還包括:形成複數個光擴散機構,並覆蓋於相應的複數個發光元件。The method according to claim 1, wherein the method further comprises: forming a plurality of light diffusion mechanisms and covering the corresponding plurality of light emitting elements. 如請求項1所述的方法,其中:提供所述發光元件的液體懸浮液包括提供一種液體,該液體選自由乙醇、多元醇、酮、鹵代烴和水組成的組。The method of claim 1, wherein providing a liquid suspension of the light-emitting element comprises providing a liquid selected from the group consisting of ethanol, a polyol, a ketone, a halogenated hydrocarbon, and water. 如請求項1所述的方法,其中:提供所述發光元件的液體懸浮液包括提供具有被焊料塗覆的電接觸部的發光元件。The method of claim 1, wherein providing the liquid suspension of the light-emitting element includes providing a light-emitting element having electrical contacts coated with solder. 一種用於製造發光顯示器的流體組裝方法,改良在於,所述方法包括:提供發光基板,所述發光基板具有頂表面以及複數個列走線和複數個行走線形成的矩陣,所述頂表面上形成有複數個井,每個井包括具有第一電介面的底表面,所述複數個列走線和所述複數個行走線形成複數個列/行交叉點,其中每個所述列/行交叉點與相應的一個井相關聯;提供含有第一類型發光元件的第一液體懸浮液;使第一懸浮液流過所述發光基板的所述頂表面;捕獲所述第一類型發光元件於所述複數個井中;提供含有第二類型發光元件的第二液體懸浮液;使第二懸浮液流過所述發光基板的所述頂表面;對所述發光基板進行最後的退火;以及藉由最後的退火使發光元件和與其對應的井的第一電介面電連接;其中提供所述發光基板的井包括提供具有第一形狀的複數個井,並且提供具有第二形狀的複數個井;其中提供所述第一液體懸浮液包括提供第一類型的發光元件,所述第一類型的發光元件具有第三形狀,所述第三形狀能夠填充於所述第一形狀的井中但不能填充於所述第二形狀的井中;其中提供所述第二液體懸浮液包括提供第二類型的發光元件,所述第二類型的發光元件具有第四形狀,所述第四形狀能夠填充於所述第二形狀的井中。A fluid assembly method for manufacturing a light-emitting display is improved. The method includes: providing a light-emitting substrate having a top surface and a matrix formed by a plurality of column traces and a plurality of traces, on the top surface. A plurality of wells are formed, each well including a bottom surface having a first electrical interface, the plurality of column traces and the plurality of walking lines forming a plurality of column / row intersections, wherein each of the columns / rows The intersection is associated with a corresponding one of the wells; providing a first liquid suspension containing a first type of light emitting element; flowing a first suspension through the top surface of the light emitting substrate; capturing the first type of light emitting element at In the plurality of wells; providing a second liquid suspension containing a second type of light emitting element; flowing a second suspension through the top surface of the light emitting substrate; performing final annealing on the light emitting substrate; and by The final annealing electrically connects the light emitting element and the first dielectric interface of the corresponding well; wherein the well providing the light emitting substrate includes providing a plurality of wells having a first shape, and Providing a plurality of wells having a second shape; wherein providing the first liquid suspension includes providing a light emitting element of a first type, the light emitting element of the first type having a third shape, and the third shape can be filled in the The well of the first shape cannot be filled in the well of the second shape; providing the second liquid suspension includes providing a light emitting element of a second type, and the light emitting element of the second type has a fourth shape. The fourth shape can be filled in the well of the second shape. 如請求項20所述的方法,其中:該方法還包括:在最終退火之前,提供含有第三類型表面貼裝發光元件的第三液體懸浮液;以及使第三懸浮液流過所述發光基板的所述頂表面。The method according to claim 20, wherein the method further comprises: before the final annealing, providing a third liquid suspension containing a third type of surface mount light-emitting element; and passing the third suspension through the light-emitting substrate The top surface. 如請求項20所述的方法,其中:所述具有第一形狀的複數個井為具有第一直徑的複數個圓形的井,所述第二形狀的複數個井為具有小於所述第一直徑的第二直徑的複數個圓形的井;其中提供所述第一液體懸浮液包括提供具有第三直徑的圓形的第一類型的發光元件盤,所述第三直徑大於所述第二直徑且小於所述第一直徑;其中提供所述第二液體懸浮液包括提供具有第四直徑的圓形的第二類型的發光元件盤,所述第四直徑小於所述第二直徑。The method according to claim 20, wherein the plurality of wells having a first shape are a plurality of circular wells having a first diameter, and the plurality of wells having a second shape are smaller than the first A plurality of circular wells of a second diameter in diameter; wherein providing the first liquid suspension includes providing a light emitting element disc of a first type having a circle having a third diameter, the third diameter being greater than the second diameter Diameter and smaller than the first diameter; wherein providing the second liquid suspension includes providing a second type of light emitting element disc having a circular shape having a fourth diameter, the fourth diameter being smaller than the second diameter. 如請求項20所述的方法,其中:所述第一形狀不同於所述第二形狀。The method of claim 20, wherein the first shape is different from the second shape. 如請求項20所述的方法,其中:該方法還包括:在使所述第二懸浮液流動之前,進行初始退火。The method of claim 20, wherein the method further comprises: performing an initial annealing before flowing the second suspension. 一種用於製造發光顯示器的流體組裝方法,改良在於,所述方法包括:提供發光基板,所述發光基板具有頂表面、具第一形狀的複數個井和具不同於所述第一形狀的第二形狀的複數個井,每個井包括具有第一電介面的底表面,並提供複數個列走線和複數個行走線形成的矩陣,所述複數個列走線和所述複數個行走線形成複數個列/行交叉點,其中每個所述列/行交叉點與相應的一個井相關聯;提供含有第一類型發光元件和第二類型發光元件的液體懸浮液,所述第一類型發光元件具有第三形狀,所述第三形狀能夠填充於所述第一形狀的井中但不能夠填充於所述第二形狀的井中,所述第二類型發光元件具有第四形狀,所述第四形狀能夠填充於所述第二形狀的井中但不能夠填充於所述第一形狀的井中;使所述懸浮液流過所述發光基板的所述頂表面;捕獲所述第一類型發光元件於所述第一形狀的井中,捕獲所述第二類型發光元件於所述第二形狀的井中;對所述發光基板進行退火;以及藉由退火使所述發光元件和與其對應的井的第一電介面電連接。A fluid assembly method for manufacturing a light-emitting display, which is improved in that the method includes: providing a light-emitting substrate having a top surface, a plurality of wells having a first shape, and a first hole having a shape different from the first shape. A plurality of wells of two shapes, each well including a bottom surface having a first electrical interface, and providing a matrix formed by a plurality of column traces and a plurality of walklines, the plurality of column traces and the plurality of walklines Forming a plurality of column / row intersections, wherein each of said column / row intersections is associated with a corresponding one of the wells; providing a liquid suspension containing a first type light emitting element and a second type light emitting element, said first type The light-emitting element has a third shape that can be filled in the well of the first shape but cannot be filled in the well of the second shape. The second-type light-emitting element has a fourth shape. Four shapes can be filled in the wells of the second shape but not in the wells of the first shape; the suspension is allowed to flow through the top surface of the light-emitting substrate; A type of light emitting element in the first shape well, capturing the second type of light emitting element in the second shape well; annealing the light emitting substrate; and annealing the light emitting element and corresponding to the light emitting element The first electrical interface of the well is electrically connected.
TW106130894A 2016-09-15 2017-09-08 System and method for the fluidic assembly of emissive displays TWI664710B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US15/266,796 US9917226B1 (en) 2016-09-15 2016-09-15 Substrate features for enhanced fluidic assembly of electronic devices
US15/266,796 2016-09-15
US15/410,001 US9825202B2 (en) 2014-10-31 2017-01-19 Display with surface mount emissive elements
US15/410,195 US10236279B2 (en) 2014-10-31 2017-01-19 Emissive display with light management system
US15/410,001 2017-01-19
US15/410,195 2017-01-19
US15/412,731 2017-01-23
US15/412,731 US10418527B2 (en) 2014-10-31 2017-01-23 System and method for the fluidic assembly of emissive displays

Publications (2)

Publication Number Publication Date
TW201826490A TW201826490A (en) 2018-07-16
TWI664710B true TWI664710B (en) 2019-07-01

Family

ID=61643258

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130894A TWI664710B (en) 2016-09-15 2017-09-08 System and method for the fluidic assembly of emissive displays

Country Status (4)

Country Link
JP (1) JP6578332B2 (en)
KR (1) KR102037226B1 (en)
CN (1) CN107833525B (en)
TW (1) TWI664710B (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108803149B (en) * 2018-07-20 2021-05-25 京东方科技集团股份有限公司 Surface light source, manufacturing method thereof and liquid crystal display device
CN108962042B (en) * 2018-07-23 2021-04-02 上海天马微电子有限公司 Display panel and manufacturing method thereof
CN109065692A (en) * 2018-08-01 2018-12-21 厦门多彩光电子科技有限公司 A kind of packaging method of LED
CN109065677A (en) * 2018-08-17 2018-12-21 京东方科技集团股份有限公司 Micro-LED flood tide transfer method and Micro-LED substrate
CN109449270B (en) * 2018-10-26 2020-07-31 上海天马微电子有限公司 L ED structure, display panel and manufacturing method thereof
CN111162064B (en) * 2018-11-08 2022-03-25 成都辰显光电有限公司 LED unit, guide plate, LED display and manufacturing method thereof
CN111244246B (en) * 2018-11-29 2021-08-17 成都辰显光电有限公司 Light-emitting micro-element, transfer system thereof and display device
CN109585342B (en) * 2018-11-30 2020-10-16 天马微电子股份有限公司 Micro light emitting diode transfer method and display panel
KR102145016B1 (en) * 2019-02-28 2020-08-18 엘지전자 주식회사 Assembly apparatus for assembling semiconductor light emitting diode to display panel
JP6694222B1 (en) * 2019-03-18 2020-05-13 アルディーテック株式会社 Method for manufacturing semiconductor chip integrated device, semiconductor chip integrated device, semiconductor chip ink, and semiconductor chip ink ejection device
KR20200124799A (en) * 2019-04-24 2020-11-04 삼성디스플레이 주식회사 Display device and method of fabricating the same
KR20200026669A (en) * 2019-05-22 2020-03-11 엘지전자 주식회사 Self assembly device and method for semi-conductor light emitting device
KR102687815B1 (en) * 2019-06-20 2024-07-24 엘지전자 주식회사 Display device and self assembly method for semiconductor light emitting device
KR102695965B1 (en) * 2019-06-20 2024-08-16 엘지전자 주식회사 Substrate for manufacturing display device and method for manufacturing display device
KR20190104276A (en) * 2019-08-20 2019-09-09 엘지전자 주식회사 Display device using micro led and manufacturing method thereof
KR20200026725A (en) * 2019-08-28 2020-03-11 엘지전자 주식회사 Apparatus and method for picking-up semiconductor light emitting device
WO2020117032A2 (en) 2019-09-19 2020-06-11 엘지전자 주식회사 Substrate chuck for self-assembly of semiconductor light-emitting diodes
WO2021054508A1 (en) 2019-09-19 2021-03-25 엘지전자 주식회사 Self-assembly apparatus for semiconductor light-emitting elements
KR102302475B1 (en) * 2020-01-22 2021-09-16 엘지전자 주식회사 Substrate chuck for self assembly of semiconductor light emitting device
CN110600590B (en) * 2019-09-25 2021-02-02 深圳市华星光电半导体显示技术有限公司 Transfer method of micro light-emitting diode and display panel
KR20190117413A (en) * 2019-09-26 2019-10-16 엘지전자 주식회사 Display device using micro led and manufacturing method thereof
KR102186922B1 (en) * 2019-10-01 2020-12-04 윤치영 Vertical alignment method of vertical type micro LED and LED assembly manufacturing method using the same
KR102251195B1 (en) 2019-10-01 2021-05-12 윤치영 LED assembly with vertically aligned vertical type micro LED
KR102512547B1 (en) * 2019-10-01 2023-03-29 윤치영 LED assembly with vertically aligned vertical type micro LED
JP6842783B1 (en) * 2019-10-31 2021-03-17 アルディーテック株式会社 Manufacturing method of micro LED display and micro LED display
KR20190143840A (en) * 2019-12-11 2019-12-31 엘지전자 주식회사 Display device related to micro led and manufacturing method thereof
KR20200024178A (en) * 2020-02-17 2020-03-06 엘지전자 주식회사 Substrate chuck for self assembly of semiconductor light emitting device
KR20210140956A (en) * 2020-05-14 2021-11-23 엘지전자 주식회사 An Intelligent assembling and transferring integrated apparatus for semiconductor light emitting device
CN113675108B (en) * 2020-05-15 2024-03-29 展晶科技(深圳)有限公司 Backboard and fluid assembly method
CN111933774B (en) * 2020-07-06 2022-09-23 深圳市隆利科技股份有限公司 Method and system for preparing LED display by using fluid
CN112002792B (en) * 2020-07-06 2022-02-22 深圳市隆利科技股份有限公司 Method for preparing LED display by electrophoretic assembly
CN111933775B (en) * 2020-07-24 2022-09-23 深圳市隆利科技股份有限公司 Method for preparing LED display by limiting and assembling interface
CN112289907A (en) * 2020-09-11 2021-01-29 罗化芯显示科技开发(江苏)有限公司 Rapid and precise chip mass transfer process
US20230335674A1 (en) * 2020-09-28 2023-10-19 Lg Electronics Inc. Semiconductor light-emitting element and display device comprising same
US11711896B2 (en) 2020-10-29 2023-07-25 Innolux Corporation Electronic device and manufacturing method thereof
TWI799752B (en) * 2020-10-29 2023-04-21 群創光電股份有限公司 Electronic device and manufacturing method thereof
WO2022119018A1 (en) * 2020-12-04 2022-06-09 엘지전자 주식회사 Display device
KR20230128475A (en) * 2021-01-08 2023-09-05 엘지전자 주식회사 Self-assembly device and self-assembly method
CN112967951B (en) * 2021-01-29 2023-02-17 天马微电子股份有限公司 Light-emitting element assembling system and assembling method
DE112021006742T5 (en) * 2021-02-03 2023-10-19 LG Electronics Inc. Electrode structure of a roller unit for transferring a semiconductor light-emitting element and intelligent integrated mounting and transferring device including the same
TWI820389B (en) * 2021-02-08 2023-11-01 隆達電子股份有限公司 Light emitting element package, display device, and method of manufacturing display device
TWI820627B (en) * 2021-02-08 2023-11-01 隆達電子股份有限公司 Display device and manufacturing method thereof
KR102530177B1 (en) * 2021-04-08 2023-05-09 주식회사 어드밴스트뷰테크널러지 Method for aligning fluid-based micro led
KR20220160196A (en) * 2021-05-27 2022-12-06 삼성전자주식회사 Guide apparatus and display transfer mathod using the same
CN117378052A (en) 2021-05-27 2024-01-09 三星电子株式会社 Guiding device for transferring light emitting device onto substrate and method for applying the guiding device
KR20230033386A (en) * 2021-09-01 2023-03-08 엘지전자 주식회사 Assembly Substrate Structure of Semiconductor Light Emitting Device and Display Device including the same
WO2023163406A1 (en) * 2022-02-25 2023-08-31 삼성전자주식회사 Display module and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090230174A1 (en) * 2008-01-22 2009-09-17 Washington, University Of Self-assembly of elements using microfluidic traps

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864570B2 (en) * 1993-12-17 2005-03-08 The Regents Of The University Of California Method and apparatus for fabricating self-assembling microstructures
US5824186A (en) * 1993-12-17 1998-10-20 The Regents Of The University Of California Method and apparatus for fabricating self-assembling microstructures
US5545291A (en) * 1993-12-17 1996-08-13 The Regents Of The University Of California Method for fabricating self-assembling microstructures
JP4082031B2 (en) * 2002-01-17 2008-04-30 ソニー株式会社 Element arrangement method and display device
US6927382B2 (en) * 2002-05-22 2005-08-09 Agilent Technologies Optical excitation/detection device and method for making same using fluidic self-assembly techniques
JP4281044B2 (en) * 2002-06-18 2009-06-17 財団法人名古屋産業科学研究所 Micropart placement method
JP4620939B2 (en) 2003-06-25 2011-01-26 株式会社リコー Method for manufacturing composite element
JP4613489B2 (en) * 2003-12-08 2011-01-19 ソニー株式会社 Element arrangement method and display device
JP3978189B2 (en) * 2004-01-23 2007-09-19 松下電器産業株式会社 Semiconductor device manufacturing method and manufacturing apparatus thereof
US7687277B2 (en) * 2004-12-22 2010-03-30 Eastman Kodak Company Thermally controlled fluidic self-assembly
US7662008B2 (en) * 2005-04-04 2010-02-16 Searete Llc Method of assembling displays on substrates
US20060223225A1 (en) * 2005-03-29 2006-10-05 Symbol Technologies, Inc. Method, system, and apparatus for transfer of integrated circuit dies using an attractive force
JP4899675B2 (en) * 2006-07-12 2012-03-21 ソニー株式会社 Mounting method, electronic device manufacturing method, and light emitting diode display manufacturing method
US8415879B2 (en) * 2007-05-31 2013-04-09 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US8028621B2 (en) * 2008-05-02 2011-10-04 International Business Machines Corporation Three-dimensional structures and methods of fabricating the same using a printing plate
TWI528604B (en) * 2009-09-15 2016-04-01 無限科技全球公司 Light emitting, photovoltaic or other electronic apparatus and system
KR101058880B1 (en) * 2010-05-07 2011-08-25 서울대학교산학협력단 Led display apparatus having active devices and fabrication method thereof
CN102788779B (en) * 2012-09-07 2015-04-01 中国科学院苏州纳米技术与纳米仿生研究所 Coding suspension microchip and preparation method and application thereof
KR101490758B1 (en) * 2013-07-09 2015-02-06 피에스아이 주식회사 Nano-scale LED electrode assembly and method for manufacturing thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090230174A1 (en) * 2008-01-22 2009-09-17 Washington, University Of Self-assembly of elements using microfluidic traps

Also Published As

Publication number Publication date
JP2018061017A (en) 2018-04-12
JP6578332B2 (en) 2019-09-18
CN107833525B (en) 2020-10-27
CN107833525A (en) 2018-03-23
TW201826490A (en) 2018-07-16
KR20180030454A (en) 2018-03-23
KR102037226B1 (en) 2019-10-28

Similar Documents

Publication Publication Date Title
TWI664710B (en) System and method for the fluidic assembly of emissive displays
US10276754B2 (en) Method for the fluidic assembly of emissive displays
TWI762428B (en) Micro-transfer-printable flip-chip structures and methods
JP6639451B2 (en) Display with surface mounted light emitting device
CN100505352C (en) LED chip and method for preparing the same
KR102162739B1 (en) Self assembly method and device for semiconductor light emitting device
JP2019036719A (en) Micro light emitting diode (LED) element and display
US10505079B2 (en) Flexible devices and methods using laser lift-off
KR102697604B1 (en) Fabricating method for display device using semiconductor light emitting device
JP4927223B2 (en) LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD, LIGHT EMITTING DEVICE MANUFACTURING METHOD, LIGHTING DEVICE, BACKLIGHT AND DISPLAY DEVICE
KR102687815B1 (en) Display device and self assembly method for semiconductor light emitting device
EP3352211B1 (en) Method for the fluidic assembly of emissive displays
KR20200026669A (en) Self assembly device and method for semi-conductor light emitting device
JP2010238845A (en) Method of manufacturing semiconductor device, semiconductor device, and semiconductor composite device
Gong et al. Laser‐Based Micro/Nano‐Processing Techniques for Microscale LEDs and Full‐Color Displays
JP2022542259A (en) Inkjet printing device, method for aligning bipolar elements, and method for manufacturing display device
JP2011119612A (en) Semiconductor device manufacturing method, and semiconductor device
US20230081184A1 (en) Display device using semiconductor light-emitting element, and method for manufacturing same
KR20200026770A (en) Display device using micro led
JP2007158111A (en) Manufacturing method of semiconductor device
KR20200021485A (en) Display device using semiconductor light emitting devices and method thereof
KR20200015073A (en) Micro led transfer system
EP3975228B1 (en) Module for removing misassembled semiconductor light-emitting element, and method using same to remove misassembled semiconductor light-emitting element
JP2011119627A (en) Semiconductor device
CN106298557B (en) A kind of low-temperature bonding method based on Au/In isothermal solidification