JP4613489B2 - Element arrangement method and display device - Google Patents
Element arrangement method and display device Download PDFInfo
- Publication number
- JP4613489B2 JP4613489B2 JP2003408663A JP2003408663A JP4613489B2 JP 4613489 B2 JP4613489 B2 JP 4613489B2 JP 2003408663 A JP2003408663 A JP 2003408663A JP 2003408663 A JP2003408663 A JP 2003408663A JP 4613489 B2 JP4613489 B2 JP 4613489B2
- Authority
- JP
- Japan
- Prior art keywords
- cell
- substrate
- liquid
- light emitting
- emitting diode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/95001—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/95053—Bonding environment
- H01L2224/95085—Bonding environment being a liquid, e.g. for fluidic self-assembly
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/9512—Aligning the plurality of semiconductor or solid-state bodies
- H01L2224/95136—Aligning the plurality of semiconductor or solid-state bodies involving guiding structures, e.g. shape matching, spacers or supporting members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/9512—Aligning the plurality of semiconductor or solid-state bodies
- H01L2224/95143—Passive alignment, i.e. self alignment, e.g. using surface energy, chemical reactions, thermal equilibrium
- H01L2224/95146—Passive alignment, i.e. self alignment, e.g. using surface energy, chemical reactions, thermal equilibrium by surface tension
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01049—Indium [In]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
- Lasers (AREA)
Description
本発明は、発光素子や薄膜素子などの微小な素子を装置基板上に複数個配列させて装置を構成するための素子配列方法に関するものである。 The present invention relates to an element arrangement method for configuring a device by arranging a plurality of minute elements such as light emitting elements and thin film elements on an apparatus substrate.
従来、素子をマトリクス状に配列して画像表示装置に組み上げる場合には、液晶表示装置(LCD:Liquid Crystal Display)やプラズマディスプレイパネル(PDP:Plasma Display Panel)のように基板上に素子を形成するか、あるいは発光ダイオードディスプレイ(LEDディスプレイ)のように単体のLEDパッケージを配列することが行われている。従来のLCD、PDPの如き画像表示装置においては、素子や画素のピッチに関し、素子分離が出来ないために製造プロセスの当初から各素子はその画像表示装置の画素ピッチだけ間隔を空けて形成することが通常行われている。 Conventionally, when elements are arranged in a matrix and assembled in an image display device, the elements are formed on a substrate like a liquid crystal display device (LCD) or a plasma display panel (PDP). Alternatively, a single LED package is arranged like a light emitting diode display (LED display). In conventional image display devices such as LCDs and PDPs, element separation is not possible with respect to the element and pixel pitch, so that each element is formed with an interval of the pixel pitch of the image display apparatus from the beginning of the manufacturing process. Is usually done.
一方、LEDディスプレイの場合にはLEDチップをダイシング後に取り出し、個別にワイヤーボンドもしくはフリップチップによるバンプ接続により外部電極に接続し、パッケージ化することが行われている。この場合、パッケージ化の前もしくは後に画像表示装置としての画素ピッチに配列されるが、この画像ピッチは素子形成時の素子のピッチとは無関係とされる。そこで、各素子を集積度高く形成し、各素子を広い領域に転写などによって離間させながら移動させ、画像表示装置などの比較的大きな表示装置を構成する技術が提案されている。また、集積度高く形成された素子のうち所定の間隔に位置する素子のみを選択的に転写することで、各素子の間隔が拡がった配列を実現する方法も提案されている(例えば特許文献1参照)。 On the other hand, in the case of LED displays, LED chips are taken out after dicing, and individually connected to external electrodes by wire bonding or bump connection by flip chip, and packaged. In this case, the pixel pitch as an image display device is arranged before or after packaging, but this image pitch is independent of the element pitch at the time of element formation. Therefore, a technique has been proposed in which each element is formed with a high degree of integration, and each element is moved to a wide area while being separated by transfer or the like to constitute a relatively large display device such as an image display device. Further, a method has been proposed in which only elements located at a predetermined interval among elements formed with a high degree of integration are selectively transferred to realize an arrangement in which the intervals between the elements are increased (for example, Patent Document 1). reference).
さらに、最近の技術として、いわゆる流体自己実装(Fluid Self Assembly)法による実装方法が知られてきており、例えば、エイリアン・テクノロジー社の技術にこのような実装方法ある(例えば非特許文献1参照)。この流体自己実装方法は多数の素子を製造後、流体中を流すようにして素子を搬送し、その途中でフィルム表面に形成した孔に素子を保持させ、フィルムを素子ごと実装すべき装置に合わせて転写する技術である。フィルム表面に形成される孔は実装すべき素子の形状に適合しており、多数の素子はこのような特殊なフィルム上に保持された状態で流体中から取り出され、装置上に転写される。 Furthermore, as a recent technique, a mounting method based on a so-called fluid self-assembly method has been known. For example, there is such a mounting method in the technology of Alien Technology (see, for example, Non-Patent Document 1). . In this fluid self-mounting method, after manufacturing a large number of elements, the elements are transported by flowing in the fluid, and the elements are held in the holes formed on the surface of the film, and the film is aligned with the device to be mounted together with the elements. Transfer technology. The holes formed in the film surface are adapted to the shape of the element to be mounted, and a large number of elements are taken out from the fluid while being held on such a special film and transferred onto the apparatus.
しかし、上述した特許文献1に記載された技術では、位置合わせに高い精度が要求される場合や、素子を形成した基板よりも転写先の基板が大きく複数回にわたって素子の転写を行う場合には、精密な制御を行う必要があるために転写の速度を低くする必要があった。また、素子を形成した際の素子間隔に対応した素子間隔で転写が行われるために、転写される素子の間隔は素子形成時の素子間隔の整数倍でしかなく、転写後の素子配列ピッチを任意に設定することが困難である。また、素子を成長基板から剥離して選択的に転写するために、剥離の際に必要な条件などから、剥離と同時に転写を行うことが困難であり、剥離工程と転写工程とを別作業とする必要があった。 However, in the technique described in Patent Document 1 described above, when high accuracy is required for alignment, or when the device is transferred multiple times, the transfer destination substrate is larger than the substrate on which the device is formed. Because of the need for precise control, it was necessary to reduce the transfer speed. Further, since transfer is performed at an element interval corresponding to the element interval at the time of forming the element, the transferred element interval is only an integral multiple of the element interval at the time of element formation, and the element arrangement pitch after transfer is It is difficult to set arbitrarily. In addition, since the element is peeled off from the growth substrate and selectively transferred, it is difficult to transfer at the same time as peeling due to conditions necessary for peeling, and the peeling process and the transferring process are separated from each other. There was a need to do.
また、上述した非特許文献1に記載された技術では、複数種類の素子を配列するためには、フィルム表面の孔形状と素子形状とを適合させて、流体自己実装方法を複数回実行する必要があり、作業時間が長くなりスループットが悪化するという問題があった。また、素子配列の時間を短縮し実装歩留まりを向上させるためには、配列したい素子数よりも多数の素子を用意して流体中を流す必要があり、必要な部品点数が多くなるという問題があった。さらに、フィルム表面の孔形状やフィルムの材料や表面処理、液体中に混合させる分散材などの条件を満たす必要があるために、工程の自由度が低くなるという問題があった。また、液体中でフィルム上に素子を配列した後に、液体中からフィルムを引き上げる際に素子が脱離してしまう不具合が生じるおそれがあり、製造歩留まりが悪化するという問題があった。 Further, in the technique described in Non-Patent Document 1 described above, in order to arrange a plurality of types of elements, it is necessary to execute the fluid self-mounting method a plurality of times by matching the hole shape on the film surface with the element shape. There is a problem that the working time becomes long and the throughput deteriorates. In addition, in order to shorten the element arrangement time and improve the mounting yield, it is necessary to prepare a larger number of elements than the number of elements to be arranged and to flow in the fluid, which increases the number of necessary components. It was. Furthermore, since it is necessary to satisfy the conditions such as the hole shape on the film surface, the material and surface treatment of the film, and the dispersing material mixed in the liquid, there is a problem that the degree of freedom of the process is lowered. In addition, after arranging the elements on the film in the liquid, there is a possibility that the elements may be detached when the film is pulled out of the liquid, and there is a problem that the manufacturing yield deteriorates.
したがって本発明は、複数種類の素子を配列する場合にも確実に素子配列を行い、かつ、短時間で効率良く素子配列を行うことが可能な素子配列方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide an element arrangement method capable of reliably arranging elements even when arranging a plurality of types of elements and efficiently arranging elements in a short time.
上記課題を解決するために本発明の素子配列方法は、第一の基板上に配置された素子を第二の基板上に転写して前記第二の基板上に配置する素子配列方法であって、前記第二の基板表面に、底部に前記素子を嵌合する凹部である素子配置孔を有し、内側に前記素子配置孔内を含んで液体を保持可能な構造とされるセルを形成する工程と、前記セル内に液体を導入する工程と、前記第一の基板上に形成された前記素子を剥離して前記セル内に転写する工程と、前記セル内の前記液体を除去する前に、前記素子配置孔内に前記素子を自己整合で配置する工程と、を含むことを特徴とする。 In order to solve the above problems, an element arrangement method of the present invention is an element arrangement method in which an element arranged on a first substrate is transferred onto a second substrate and arranged on the second substrate. , to the second substrate surface, has a device arrangement hole as a recess for fitting the element to the bottom, the cell shape formed to be a possible structure holds the liquid comprise said element arranged bore inside a step of, introducing a liquid into said cell, and transferring the first in the elements formed on a substrate peeling to the cell, removing the liquid in the cell Le before, characterized in that it and a step in which to place in self-alignment with the element in the element placement hole.
第二の基板を分割するセル領域内に素子を転写することで、比較的小さいセル領域内での自己整合によって素子の配置を行うことが出来るため、素子の配列に要する時間を短縮することができる。また、素子の転写に際してはセル領域内に素子を転写する大まかな位置制御をするだけでよく、セル領域内で自己整合により精密な位置制御を行うことができるため、素子の転写速度を向上させて素子配列のスループットを向上させることが可能である。 By transferring the element into the cell area dividing the second substrate, the element can be arranged by self-alignment in a relatively small cell area, so that the time required for element arrangement can be shortened. it can. In addition, when transferring an element, it is only necessary to roughly control the position of the element in the cell area, and since precise position control can be performed by self-alignment in the cell area, the transfer speed of the element is improved. Thus, the throughput of the element arrangement can be improved.
自己整合による配置は、セル領域内に液体を導入して第二の基板に超音波振動を加えて素子を液体中で移動させるものや、セル領域内に液体を導入して液体中に素子を浮遊させながら液体を蒸発させるものを用いることができる。素子の移動や液体の表面張力による素子の移動を用いて自己整合を行うことで、第二の基板上に多数のセルを形成して多数の素子を配列する際にも、安価かつ容易に素子配列を行うことが可能となる。 The self-alignment arrangement introduces liquid into the cell region and applies ultrasonic vibration to the second substrate to move the element in the liquid, or introduces liquid into the cell region and places the element in the liquid. A liquid that evaporates while floating can be used. By performing self-alignment using element movement and element movement due to the surface tension of the liquid, even when a large number of cells are formed on a second substrate and a large number of elements are arranged, the element can be easily and inexpensively arranged. Arrangement can be performed.
また、セルは第二の基板上に形成した凸部であるセル分割部や撥水性のパターンによって囲まれた領域としてもよい。第二の基板上に樹脂層の金型成形やフォトリソグラフィーなどでセル分割部の凹凸を容易に形成することができるため、微細で精密なセルを第二の基板上に形成し微細で精密な素子の配列を行うことが可能となる。 In addition, the cell may be a region surrounded by a cell dividing portion which is a convex portion formed on the second substrate or a water-repellent pattern. Since the unevenness of the cell division part can be easily formed on the second substrate by molding a resin layer or by photolithography, a fine and precise cell is formed on the second substrate. It becomes possible to arrange the elements.
また、セル領域内での素子の自己整合を行うために、セルの領域内に素子が嵌合する凹部である素子配置孔を形成するとしてもよい。素子配置孔に素子が嵌合した後は、素子がセル領域内で移動しにくくなるために自己整合で素子の配置を行うことが容易になる。この際、素子配置孔の形状を素子の形状と略同一にすることや、素子配置孔または素子を磁化させて素子が素子配置孔に嵌合する際の配向を制御すること、素子配置孔または素子の表面にセル領域内に導入される液体に対する濡れ性を変化させる処理を施すなどで、素子の機能によって求められる配向を第二の基板上で行うことが可能である。 In addition, in order to perform self-alignment of the elements in the cell region, an element arrangement hole that is a recess in which the element is fitted may be formed in the cell region. After the element is fitted into the element arrangement hole, it is difficult for the element to move in the cell region, so that it is easy to arrange the element by self-alignment. At this time, the shape of the element arrangement hole is made substantially the same as the shape of the element, the element arrangement hole or the element is magnetized to control the orientation when the element is fitted into the element arrangement hole, the element arrangement hole or The orientation required by the function of the element can be performed on the second substrate by subjecting the surface of the element to a process for changing the wettability with respect to the liquid introduced into the cell region.
また、第一の基板から素子を剥離してセルに転写する際に、第一の基板上の素子を選択的に転写することで、任意のセルに対して任意の素子を転写することができるため、複数種類の素子を任意の位置に配列することや複数回の素子の転写を繰り返して行うことが容易になる。素子の選択的な転写には、第一の基板の任意の位置にレーザー光を照射して、レーザーアブレーションを用いることができる。レーザーアブレーションによる素子の選択転写では高スループット、高位置精度、高エネルギー利用率を得ることができる。レーザーアブレーションには、開口部を形成したマスクを介してエキシマレーザーを照射することや、YAGレーザーを回転ミラーで反射してマスクを介して第一の基板の任意の位置にレーザー光の照射を用いることができる。 Further, when the element is peeled from the first substrate and transferred to the cell, the element on the first substrate can be selectively transferred to transfer the arbitrary element to the arbitrary cell. For this reason, it becomes easy to arrange a plurality of types of elements at arbitrary positions and to repeatedly transfer the elements a plurality of times. For selective transfer of the element, laser ablation can be used by irradiating a laser beam to an arbitrary position of the first substrate. In selective transfer of elements by laser ablation, high throughput, high positional accuracy, and high energy utilization can be obtained. For laser ablation, excimer laser irradiation is performed through a mask in which an opening is formed, or laser light irradiation is applied to an arbitrary position on the first substrate through reflection of a YAG laser by a rotating mirror. be able to.
セル領域内での素子の自己整合に液体を用いる場合には、セル領域内に素子を転写した後にセル領域内に液体を導入するとしても、セル領域内に液体を導入した後にセル領域内に前記素子を転写するとしてもよい。また、第二の基板上に液体を滴下し第二の基板を傾斜させてセルに液体を導入する方法や、ディスペンス機器を用いて液体を第二の基板上に拡散させセルに液体を導入する方法や、液体の噴射を行うノズルを用いて液体を滴下してセルに液体を導入する方法などにより、第二の基板上に形成されたセルに対して必要な量の液体を供給することが可能である。 When liquid is used for self-alignment of elements in the cell area, even if the liquid is introduced into the cell area after transferring the element into the cell area, the liquid is introduced into the cell area and then into the cell area. The element may be transferred. In addition, the liquid is dropped onto the second substrate and the second substrate is inclined to introduce the liquid into the cell, or the liquid is diffused onto the second substrate using a dispensing device to introduce the liquid into the cell. A necessary amount of liquid can be supplied to the cell formed on the second substrate by a method or a method of dropping the liquid using a nozzle that ejects the liquid and introducing the liquid into the cell. Is possible.
また、素子または第二の基板を静電除去した後に素子の転写を行うことで、静電気力によって素子が想定外の位置に付着することを防止して、素子をセルに対して確実に転写することができる。逆に、素子または第二の基板を帯電させた後に素子の転写を行うことで、静電気力によって確実にセル領域内に素子が付着するようにして、素子をセルに対して確実に転写することができる。 In addition, by transferring the element after removing the element or the second substrate electrostatically, the element is prevented from adhering to an unexpected position due to electrostatic force, and the element is reliably transferred to the cell. be able to. On the contrary, by transferring the element after charging the element or the second substrate, the element is surely transferred to the cell so that the element adheres in the cell region by electrostatic force. Can do.
第二の基板を多層構造で形成し、セル領域内の所定位置に素子を自己整合で配置した後に、第二の基板の素子が配置されていない裏面層を剥離して、素子を裏面から露出させるとしてもよい。すなわち、セルを、第二の基板の基体部上に形成した樹脂より成る凸部であるセル分割部によって囲まれた領域とするとともに、セル分割部をセル内の底部の素子配置孔を有する樹脂層と一体に形成して、素子配置孔の底部に前記基体部の表面を露出させ、セル領域内の素子配置孔に素子を自己整合で配置して前記液体を除去した後、セル内を硬化性材料で充填して硬化し、その後第二の基板を構成する基体部を剥離して、素子をセル分割部の裏面から露出させることで、第二の基板の両面から素子を露出させることができるため、素子との電気的接続を確保する配線の形成を第二の基板の両面側から行うことが出来る。第二の基板の両面から配線接続を行うことができると、配線ルールの自由度が向上するために素子を配列して製造する電子機器の設計の自由度を向上させることができる。また、第二の基板の両面から配線接続を行うことができることで、素子の配列密度を向上させることが可能となり、高集積度の電子機器を製造することが可能となる。 After the second substrate is formed in a multilayer structure and the elements are arranged in a predetermined position in the cell region by self-alignment, the back layer on which the elements of the second substrate are not arranged is peeled off to expose the elements from the back surface. It may be allowed. That is, the cell is a region surrounded by the cell dividing portion which is a convex portion made of resin formed on the base portion of the second substrate, and the cell dividing portion is a resin having an element arrangement hole at the bottom in the cell. It is formed integrally with the layer, the surface of the base portion is exposed at the bottom of the element arrangement hole, the element is self-aligned in the element arrangement hole in the cell region, the liquid is removed, and the inside of the cell is cured. It is possible to expose the element from both sides of the second substrate by filling and curing with a functional material, and then peeling off the base part constituting the second substrate and exposing the element from the back surface of the cell dividing part. Therefore, the wiring for ensuring electrical connection with the element can be formed from both sides of the second substrate. If wiring connection can be made from both surfaces of the second substrate, the degree of freedom in wiring rules can be improved, so that the degree of freedom in designing electronic devices that are manufactured by arranging elements can be improved. In addition, since wiring connection can be performed from both surfaces of the second substrate, it is possible to improve the arrangement density of the elements and to manufacture a highly integrated electronic device.
また第二の基板に配列する素子は、発光素子であるとしても複数種類の素子が実装された複合素子であるとしてもよく、素子の種類に依存せずに素子の配列を行うことが可能である。 The element arranged on the second substrate may be a light emitting element or a composite element on which a plurality of types of elements are mounted, and the elements can be arranged without depending on the type of element. is there.
また、上記課題を解決するために本発明の素子配列方法は、第一の基板上に配置された第一の素子および第二の基板上に配置された第二の素子を第三の基板上に転写して前記第三の基板上に配置する素子配列方法であって、前記第三の基板表面に、底部に前記第一の素子又は前記第二の素子を嵌合する凹部である素子配置孔を有し、内側に前記素子配置孔内を含んで液体を保持可能な構造とされるセルを形成する工程と、前記セル内に液体を導入する工程と、前記第一の基板上に形成された前記第一の素子を剥離して前記セル内に転写する工程と、前記第二の基板上に形成された前記第二の素子を剥離して前記セル内に転写する工程と、前記セル内の前記液体を除去する前に、前記素子配置孔内に前記第一の素子及び第二の素子を自己整合で配置する工程と、を含むことを特徴とする。 In order to solve the above problems, the element arrangement method of the present invention includes a first element arranged on a first substrate and a second element arranged on a second substrate on a third substrate. Is an element arrangement method in which the first element or the second element is fitted into the bottom on the surface of the third substrate. has a hole, a step that form a cell that is capable of holding structure of the liquid containing the element arrangement hole inside, a step of introducing a liquid into said cell, to said first substrate and transferring into the cell a formed the first element peeling to the step of transferring into the cell by peeling the second of said second element formed on a substrate, wherein before removing the liquid in cell Le, said first element and second element in a self-aligned to the device arrangement hole Characterized by comprising the steps you location, a.
第三の基板を分割するセル領域内に素子を転写することで、比較的小さいセル領域内での自己整合によって素子の配置を行うことが出来るため、素子の配列に要する時間を短縮することができる。また、素子の転写に際してはセル領域内に素子を転写する大まかな位置制御をするだけでよく、セル領域内で自己整合により精密な位置制御を行うことができるため、素子の転写速度を向上させて素子配列のスループットを向上させることが可能である。また、第一の素子と第二の素子とをセルに対して転写するため、複数の基板上に配置されている素子を第三の基板上に精密に位置決めして配置することができる。 By transferring the element into the cell area dividing the third substrate, the element can be arranged by self-alignment in a relatively small cell area, so that the time required for element arrangement can be shortened. it can. In addition, when transferring an element, it is only necessary to roughly control the position of the element in the cell area, and since precise position control can be performed by self-alignment in the cell area, the transfer speed of the element is improved. Thus, the throughput of the element arrangement can be improved. Further, since the first element and the second element are transferred to the cell, the elements arranged on the plurality of substrates can be precisely positioned and arranged on the third substrate.
複数の基板上に配置されている素子を転写できるので、第一の素子と第二の素子とが異なる種類の素子であってもよく、様々な機能を実現するための素子を第三の基板上に効率良く精密に配列することが可能となる。また、第一の素子が転写されるセルと、第二の素子が転写されるセルとは、第三の基板上の異なる領域に形成されているとすることで、第三の基板上の任意の位置に任意の種類の素子を配置することが可能である。 Since elements arranged on a plurality of substrates can be transferred, the first element and the second element may be different types of elements, and elements for realizing various functions are provided on the third substrate. It becomes possible to arrange it efficiently and precisely. In addition, the cell to which the first element is transferred and the cell to which the second element is transferred are formed in different regions on the third substrate, so that any cell on the third substrate can be used. Arbitrary kinds of elements can be arranged at the positions.
本発明の素子配列方法では、配列基板上に形成されたセル領域内に素子を選択転写し、セル領域内で自己整合によって素子の精密な位置決定を行うことで、配列基板上に素子を配列する。セル領域は配列基板の一部領域であることから、セル領域内での自己整合を短時間で終了させることが可能となる。また、セル領域は素子を配置すべき位置よりも広い面積に形成されているため、素子の選択転写を行う際にはセル領域内に素子が落とし込まれる程度の位置精度で転写を行えばよく、精密な位置決定は自己整合により行われる。このため、素子の選択転写時の位置合わせ許容範囲を広くして素子転写のスループットを向上させて素子配列の速度を向上させることが可能となる。 In the element arrangement method of the present invention, the elements are arranged on the arrangement substrate by selectively transferring the elements into the cell area formed on the arrangement substrate and performing precise positioning of the elements by self-alignment in the cell area. To do. Since the cell region is a partial region of the array substrate, self-alignment within the cell region can be completed in a short time. In addition, since the cell region is formed in an area larger than the position where the element is to be arranged, when performing selective transfer of the element, it is sufficient to perform the transfer with positional accuracy enough to drop the element into the cell region. Precise positioning is performed by self-alignment. For this reason, it is possible to widen the alignment allowable range at the time of selective transfer of elements, improve the throughput of element transfer, and improve the speed of element arrangement.
また、本発明の素子配列方法では、素子を選択転写によってセルに落とし込むため、サファイア基板などの素子を形成した基板から素子を剥離して、直接セルに対して素子の転写を行うことができる。素子形成基板上での素子の形成は、密集したものであっても素子の転写に選択転写を用いるために任意のセルに対して任意の素子を転写することが可能である。また、セルの領域内に素子を選択転写できれば素子の精密な配列を行うことができるため、素子形成基板上に形成された素子のピッチに無関係な間隔で形成されたセルに対しても、素子を転写して自己整合による精密な配置を行うことが可能となり、配列基板上でのセルの配列に関しても自由度を向上させることが可能なる。 Further, in the element arrangement method of the present invention, since the element is dropped into the cell by selective transfer, the element can be directly transferred to the cell by peeling the element from a substrate on which an element such as a sapphire substrate is formed. Even when the elements are formed densely on the element formation substrate, it is possible to transfer any element to any cell because selective transfer is used for transferring the element. In addition, since the elements can be precisely arranged if the elements can be selectively transferred into the cell region, the elements can be applied to cells formed at intervals irrelevant to the pitch of the elements formed on the element formation substrate. It is possible to perform precise placement by self-alignment by transferring the number of cells, and it is possible to improve the degree of freedom with respect to the cell arrangement on the arrangement substrate.
以下、本発明を適用した素子配列方法について、図面を参照しながら詳細に説明する。なお本発明は、以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。 Hereinafter, an element arrangement method to which the present invention is applied will be described in detail with reference to the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably.
本発明の素子分離方法では、素子を配列するための配列基板をセル毎に分割して、各セル毎に素子を選択的に転写した後に、素子をセル領域内で自己整合によって所定の位置に配置するものである。セル毎に選択的に素子を転写することで、比較的小さいセル領域内での自己整合によって素子の配置を行うことが出来るため、素子の配列に要する時間を短縮することができる。また、素子の転写に際してはセル領域内に素子を転写する大まかな位置制御をするだけでよく、セル領域内で自己整合により精密な位置制御を行うことができるため、素子の転写速度を向上させて素子配列のスループットを向上させることが可能である。
[第一の実施の形態]
In the element separation method of the present invention, an array substrate for arraying elements is divided into cells, and after the elements are selectively transferred for each cell, the elements are placed in a predetermined position by self-alignment within the cell region. Is to be placed. By selectively transferring the elements for each cell, the elements can be arranged by self-alignment within a relatively small cell region, so that the time required for arranging the elements can be shortened. In addition, when transferring an element, it is only necessary to roughly control the position of the element in the cell area, and since precise position control can be performed by self-alignment in the cell area, the transfer speed of the element is improved. Thus, the throughput of the element arrangement can be improved.
[First embodiment]
まず図1(a)に示すように、サファイア基板やなどによって構成される素子形成基板10上に、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属気相成長法)法などで例えば発光ダイオード素子11を複数個形成する。発光ダイオード素子11は、n型ドープ層、活性層、p型ドープ層、電極などが形成されており、図1(b)の部分拡大図に示すように個々の発光ダイオード素子11は素子分離溝12によって分離されている。ここでは本発明の素子配列方法で配列を行うための素子として、発光ダイオード素子11を例として説明するが、発光ダイオードに限らず各種機能を実現するための集積回路である例えばアクティブチップなどの半導体素子や各種蛍光体などを用いることもできる。また発光ダイオード素子11は、コンタクト電極が形成されていたり、更に樹脂でパッケージされて引き出し電極が形成されていてもよい。 First, as shown in FIG. 1A, for example, a light emitting diode element 11 is formed on an element formation substrate 10 constituted by a sapphire substrate or the like by MOCVD (Metal Organic Chemical Vapor Deposition) method or the like. A plurality are formed. The light emitting diode element 11 is formed with an n-type doped layer, an active layer, a p-type doped layer, an electrode, and the like. As shown in the partially enlarged view of FIG. 12 are separated. Here, the light emitting diode element 11 will be described as an example of an element for performing the arrangement by the element arranging method of the present invention. However, the element is not limited to the light emitting diode, and is an integrated circuit for realizing various functions, for example, a semiconductor such as an active chip. Elements, various phosphors, and the like can also be used. The light emitting diode element 11 may be provided with a contact electrode or may be further packaged with a resin to form a lead electrode.
次に図2(a)に示すように、素子形成基板10とは別に発光ダイオード素子11を配列するための配列基板20を形成する。配列基板20は図2(b)の部分拡大図に示すように、基体部21上にセル分割部22および樹脂層22bが形成され、セル分割部22で仕切られた領域が個別のセル23を形成している。基体部21はプラスチックやガラス基板などの平板状もしくはフィルム状の部材であり、セル分割部22は樹脂で形成された土台である樹脂層22bと一体に形成された壁上の凸部である。セル23の領域内には、樹脂層22bの間に発光ダイオード素子11を配置するための素子配置孔24が開口されており、素子配置孔24の底部では基体部21が露出した形状となっている。また、樹脂層22bの上面にはフォトリソグラフィーなどで例えば電極25が形成されている。電極25は図中の紙面に垂直な方向に形成された電気配線であり、紙面に垂直方向に並べて形成されたセル23内を縦断してロウ電極として機能する。 Next, as shown in FIG. 2A, an array substrate 20 for arraying the light emitting diode elements 11 is formed separately from the element formation substrate 10. As shown in the partial enlarged view of FIG. 2B, the array substrate 20 is formed with the cell division part 22 and the resin layer 22b on the base part 21, and the area partitioned by the cell division part 22 is the individual cell 23. Forming. Base portion 21 is a plate-like or film-like member such as a plastic or glass substrate, the cell dividing unit 22 is a protrusion on the wall that is formed in the resin layer 22 b integrally a base formed of a resin . In the region of the cell 23, an element arrangement hole 24 for arranging the light emitting diode element 11 is opened between the resin layers 22b, and the base portion 21 is exposed at the bottom of the element arrangement hole 24. Yes. Further, for example, an electrode 25 is formed on the upper surface of the resin layer 22b by photolithography or the like. The electrode 25 is an electric wiring formed in a direction perpendicular to the paper surface in the figure, and functions as a row electrode by longitudinally cutting through the cells 23 formed side by side in the direction perpendicular to the paper surface.
また、セル分割部22で区切られた各セル23の内部領域には、アルコールや純水などの液体26を注入しておく。液体26の注入後には、セル23の内部領域は液体26が蓄えられているため、素子配置孔24、電極25および樹脂層22bは液体26で覆われて、液体26中に埋没することになる。また、液体26はセル分割部22で仕切られて保持されるため、セル分割部22の表面が液体26との親和性が低い場合には図2(b)に示したように、液体26は表面張力によって中央部分が盛り上がった状態となる。 In addition, a liquid 26 such as alcohol or pure water is injected into the internal region of each cell 23 partitioned by the cell dividing unit 22. After the liquid 26 is injected, since the liquid 26 is stored in the internal region of the cell 23, the element arrangement hole 24, the electrode 25, and the resin layer 22b are covered with the liquid 26 and buried in the liquid 26. . In addition, since the liquid 26 is partitioned and held by the cell dividing unit 22, when the surface of the cell dividing unit 22 has low affinity with the liquid 26, as shown in FIG. The central portion is raised due to the surface tension.
各セル23に液体26を満たす方法は、例えば図3(a)に示すように、基体部21上にセル分割部22および電極25を形成した後に、図3(b)に示すように配列基板20の一端に液体26を垂らしてセル分割部22に液体26を供給する。その後、図3(c)に示すように、配列基板20の液体26を供給した側を持ち上げて、配列基板20を傾斜させて液体26を隣接するセル23に流していくことで、図3(d)に示すように全てのセル23に液体26を供給する方法を用いる。この方法では、各セル23に対して液体26を供給するために特別な部材を必要とせず、簡単に液体26を供給することが可能である。全てのセル23に対して液体26を供給することが可能であれば、後述して説明する他の液体供給方法を用いるとしても良い。 For example, as shown in FIG. 3A, a method of filling each cell 23 with the liquid 26 is performed by forming the cell dividing portion 22 and the electrode 25 on the base portion 21 and then arranging the array substrate as shown in FIG. The liquid 26 is dropped on one end of the liquid 20 and the liquid 26 is supplied to the cell dividing unit 22. Thereafter, as shown in FIG. 3C, the side of the array substrate 20 to which the liquid 26 has been supplied is lifted, the array substrate 20 is tilted, and the liquid 26 is allowed to flow to the adjacent cells 23, whereby FIG. As shown in d), a method of supplying the liquid 26 to all the cells 23 is used. In this method, no special member is required to supply the liquid 26 to each cell 23, and the liquid 26 can be supplied easily. As long as it is possible to supply the liquid 26 to all the cells 23, other liquid supply methods described later may be used.
図4は、セル分割部22が形成された配列基板20を示す斜視図である。基体部21上の全面にわたってセル分割部22が形成されることによって、配列基板20上にセル23が縦横に等間隔に形成されている。各セル23には素子配置孔24が一つ形成されているため、発光ダイオード素子11が素子配置孔24に配置されると、配列基板20上に発光ダイオード素子11が等間隔に配置されることになる。セル分割部22の形成方法としては、例えば、基体部21上に平坦に積層された樹脂を金型で成形するエンボス加工や、オゾン水や硫酸などのウエットエッチングやドライエッチングで凹凸を形成する方法や、基体部21上に感光性樹脂を塗布してフォトリソグラフィーにより凹凸を形成する方法などが挙げられる。このとき、素子配置孔24はセル23の中央位置に形成する必要は無く、セル23領域内のどこに形成しても良い。またセル23中に素子配置孔24を複数個形成して、セル23中に配置する発光ダイオード素子11の個数を素子配置孔24の複数にするとしてもよい。 FIG. 4 is a perspective view showing the array substrate 20 on which the cell dividing section 22 is formed. By forming the cell dividing portion 22 over the entire surface of the base portion 21, the cells 23 are formed on the array substrate 20 at equal intervals in the vertical and horizontal directions. Since one element arrangement hole 24 is formed in each cell 23, when the light emitting diode elements 11 are arranged in the element arrangement holes 24, the light emitting diode elements 11 are arranged on the array substrate 20 at equal intervals. become. As a method for forming the cell dividing portion 22, for example, a method for forming irregularities by embossing by molding a resin laminated flat on the base portion 21 with a mold, wet etching such as ozone water or sulfuric acid, or dry etching. Alternatively, a method of forming a concavo-convex by photolithography by applying a photosensitive resin on the base portion 21 may be used. At this time, the element arrangement hole 24 does not need to be formed at the center position of the cell 23 and may be formed anywhere in the cell 23 region. Alternatively, a plurality of element arrangement holes 24 may be formed in the cell 23, and the number of light emitting diode elements 11 arranged in the cell 23 may be a plurality of element arrangement holes 24.
次に、図5(a)に示すように素子形成基板10と配列基板20とを対向させ、素子形成基板10の所定の位置に形成されている発光ダイオード素子11を選択的に剥離させて、発光ダイオード素子11が各セル23に一個配分されるように落として転写を行う。セル23に落とし込まれた発光ダイオード素子11は、図5(b)の部分拡大図を示すように、セル23中に満たされている液体26に浮かんでおり、素子配置孔24が形成された位置の直上に位置するとは限らない。このとき、素子形成基板10と配列基板20とを空間的に離した状態で脱離させるとしてもよく、発光ダイオード素子11が液体26と接触する程度まで素子形成基板10と配列基板20とを接近させるとしても良い。素子形成基板10と配列基板20とを空間的に離した状態で発光ダイオード素子11を脱離する場合には、セル23中に確実に素子が落とし込まれるように基板間距離を調整する必要があるが、素子の転写に要する時間を短縮してスループットの向上を図ることが可能となる。 Next, as shown in FIG. 5A, the element formation substrate 10 and the array substrate 20 are opposed to each other, and the light emitting diode element 11 formed at a predetermined position of the element formation substrate 10 is selectively peeled off. Transfer is performed by dropping the light emitting diode element 11 so that one light emitting diode element 11 is distributed to each cell 23. The light emitting diode element 11 dropped into the cell 23 floats in the liquid 26 filled in the cell 23 as shown in the partial enlarged view of FIG. 5B, and the element arrangement hole 24 is formed. It is not necessarily located directly above the position. At this time, the element formation substrate 10 and the array substrate 20 may be detached in a spatially separated state, and the element formation substrate 10 and the array substrate 20 are brought close to the extent that the light emitting diode element 11 contacts the liquid 26. It may be allowed to. When the light emitting diode element 11 is detached while the element formation substrate 10 and the array substrate 20 are spatially separated, it is necessary to adjust the distance between the substrates so that the element is surely dropped into the cell 23. However, it is possible to improve the throughput by shortening the time required to transfer the element.
素子形成基板10から発光ダイオード素子11を剥離する方法としては、例えば、素子形成基板10の素子が形成されていない裏面から、素子形成基板10を透過するようにレーザー光を任意の発光ダイオード素子11に照射するレーザーアブレーションを用いることができる。レーザーアブレーションとは、照射光を吸収した固定材料が光化学的または熱的に励起され、その表面や内部の原子又は分子の結合が切断されて放出されることであり、主に固定材料の全部または一部が溶融、蒸発、気化などの相変化を生じる現象として現れる。例えば、素子形成基板10としてサファイア基板を用いて、窒化ガリウム(GaN)系の発光ダイオード素子11をレーザーアブレーションで剥離すると、素子と基板との界面で窒化ガリウムが金属のガリウム(Ga)と窒素ガスに分解して、発光ダイオード素子11が容易に剥離できる。 As a method of peeling the light emitting diode element 11 from the element forming substrate 10, for example, laser light is arbitrarily emitted from the back surface of the element forming substrate 10 on which the element is not formed so as to pass through the element forming substrate 10. Laser ablation that irradiates can be used. Laser ablation means that a fixing material that absorbs irradiated light is excited photochemically or thermally, and the bonds of atoms or molecules inside the surface or inside are cut and released. Part of it appears as a phenomenon that causes phase changes such as melting, evaporation, and vaporization. For example, when a sapphire substrate is used as the element formation substrate 10 and the gallium nitride (GaN) light emitting diode element 11 is peeled off by laser ablation, gallium nitride is a metal gallium (Ga) and nitrogen gas at the interface between the element and the substrate. The light emitting diode element 11 can be easily peeled off.
図6はレーザー光を素子形成基板10の任意のセル23に対して照射する方法を示す一例であり、エキシマレーザーとマスク投影の光学系とを用いる方法を説明する模式図である。エキシマレーザー発生装置30から照射面積が大きなレーザー光30aを照射して、マスク31に形成した開口部32を通過するレーザー光30aのみを反射鏡33に入射させる。開口部32を通過したレーザー光30aは反射鏡33で反射されてレンズ34に入射し、レンズ34でレーザー光30aが屈折されて集光されることで素子形成基板10の所定領域にレーザー光30aが照射される。素子形成基板10上の任意の位置に形成されている発光ダイオード素子11を所定のセル23に転写することで、確実に一つのセル23に一つの発光ダイオード素子11を対応させて転写を行い、高スループット、高位置精度、高エネルギー利用率の転写を行うことができる。 FIG. 6 is an example showing a method for irradiating an arbitrary cell 23 of the element forming substrate 10 with laser light, and is a schematic diagram for explaining a method using an excimer laser and an optical system for mask projection. A laser beam 30 a having a large irradiation area is irradiated from the excimer laser generator 30, and only the laser beam 30 a passing through the opening 32 formed in the mask 31 is incident on the reflecting mirror 33. The laser beam 30a that has passed through the opening 32 is reflected by the reflecting mirror 33 and enters the lens 34. The laser beam 30a is refracted and collected by the lens 34, whereby the laser beam 30a is applied to a predetermined region of the element forming substrate 10. Is irradiated. By transferring the light emitting diode element 11 formed at an arbitrary position on the element forming substrate 10 to a predetermined cell 23, the transfer is performed in such a manner that one light emitting diode element 11 is associated with one cell 23 reliably. Transfer with high throughput, high position accuracy, and high energy utilization rate can be performed.
また、正確に所望のセル23に対して発光ダイオード素子11を転写するため、図5(a)に示したように、発光ダイオード素子11の転写を繰り返して行い、赤色の発光を行う発光ダイオード素子11Rおよび緑色の発光を行う発光ダイオード素子11Gを所定のセル23に転写した後に、青色の発光を行う発光ダイオード素子11Bの転写を行うなど、複数種類の素子を配置することができる。したがって、同一の基板上に形成された任意のセルに対して複数種類の素子を配列するような場合にも、本発明の素子配列方法を用いて正確に素子の配列を行うことができる。また、素子形成基板10上に発光ダイオード素子11を密なピッチで形成し、配列基板20上ではそれよりも疎なピッチで配列することで、原料コストおよびプロセスコストを低減することができる。 Further, in order to accurately transfer the light emitting diode element 11 to the desired cell 23, as shown in FIG. 5A, the light emitting diode element 11 is repeatedly transferred to emit red light. It is possible to arrange a plurality of types of elements such as transferring the light emitting diode element 11B that emits blue light after transferring the light emitting diode element 11G that emits 11R and green light to the predetermined cell 23. Therefore, even when a plurality of types of elements are arranged in arbitrary cells formed on the same substrate, the elements can be accurately arranged using the element arrangement method of the present invention. Further, by forming the light emitting diode elements 11 on the element formation substrate 10 at a dense pitch and arranging the light emitting diode elements 11 on the array substrate 20 at a sparser pitch, the raw material cost and the process cost can be reduced.
図7は、発光ダイオード素子11を配列基板20に転写するための、異なる領域に段階的に転写を繰り返すステップ転写を説明する工程図である。素子形成基板10の面積が配列基板20の面積よりも小さい場合には、はじめに図7(a)に示すように所定領域に発光ダイオード素子11の転写と配列を行い、次に図7(b)および図7(c)に示すように段階的に発光ダイオード素子11を転写する領域を変化させていく。段階的に繰り返して発光ダイオード素子11の配置を行うことで、配列基板20の全ての領域に形成されたセル23に対して素子の配列を行うことができる。 FIG. 7 is a process diagram illustrating step transfer for transferring the light emitting diode element 11 to the array substrate 20 in a stepwise manner. When the area of the element formation substrate 10 is smaller than the area of the array substrate 20, first, the light emitting diode elements 11 are transferred and arranged in a predetermined region as shown in FIG. 7A, and then FIG. And as shown in FIG.7 (c), the area | region which transfers the light emitting diode element 11 is changed in steps. By arranging the light emitting diode elements 11 repeatedly in a stepwise manner, the elements can be arranged for the cells 23 formed in all the regions of the arrangement substrate 20.
この際、図7(a)乃至図7(c)のように繰り返し発光ダイオード素子11の配置を行う場合にも、セル分割部22で区切られるセル23に発光ダイオード素子11を対応させて選択的な配置を行うとする。各段階での発光ダイオード素子11の転写を選択的に行うことで、既に発光ダイオード素子11が配置されたセル23に重複して発光ダイオード素子11が配置されることを防止できるとともに、発光ダイオード素子11が配置されない素子抜けのセル23を無くして、全てのセル23に発光ダイオード素子11を配置することができる。選択的に素子が転写されてまばらに素子形成基板10上に残されている発光ダイオード素子11は、複数回の選択転写を行うことで配列基板20上に無駄なく実装することができる。 At this time, even when the light emitting diode elements 11 are repeatedly arranged as shown in FIGS. 7A to 7C, the light emitting diode elements 11 are selectively associated with the cells 23 partitioned by the cell dividing section 22. Suppose you make an arrangement. By selectively performing the transfer of the light-emitting diode element 11 at each stage, it is possible to prevent the light-emitting diode element 11 from being overlapped with the cell 23 in which the light-emitting diode element 11 is already disposed, and the light-emitting diode element. The light-emitting diode elements 11 can be disposed in all the cells 23 without the element missing cells 23 where the elements 11 are not disposed. The light emitting diode elements 11 sparsely left on the element formation substrate 10 after the elements are selectively transferred can be mounted on the array substrate 20 without waste by performing selective transfer a plurality of times.
配列基板20上に形成されたセル23に発光ダイオード素子11を落として転写した後に、セル23内部で発光ダイオード素子11を素子配置孔24に配置させる。図8は、配列基板20を超音波などで振動させることで、自己整合によって発光ダイオード素子11の配置を行う例を示す工程図である。図8(a)に示すように、発光ダイオード素子11をセル23中で液体26上に落とす。この際には、セル23中での発光ダイオード素子11が液体26上のどこに位置しているかは問題ではなく、液体26上に浮いた状態であればよい。次に図8(b)に示すように、配列基板20の基体部21を上下方向および水平方向に振動させて、液体26および発光ダイオード素子11を移動させ、発光ダイオード素子11を液体26中に沈める。 After the light emitting diode elements 11 are dropped and transferred to the cells 23 formed on the array substrate 20, the light emitting diode elements 11 are arranged in the element arrangement holes 24 inside the cells 23. FIG. 8 is a process diagram showing an example in which the light emitting diode elements 11 are arranged by self-alignment by vibrating the array substrate 20 with ultrasonic waves or the like. As shown in FIG. 8A, the light emitting diode element 11 is dropped on the liquid 26 in the cell 23. At this time, it does not matter where the light emitting diode element 11 in the cell 23 is located on the liquid 26, and may be in a state where it floats on the liquid 26. Next, as shown in FIG. 8B, the base portion 21 of the array substrate 20 is vibrated in the vertical direction and the horizontal direction to move the liquid 26 and the light emitting diode element 11, and the light emitting diode element 11 is placed in the liquid 26. Sink.
配列基板20の振動を持続させることで、発光ダイオード素子11がセル23内で微小に移動を続けて、最終的には図8(c)に示すように素子配置孔24に発光ダイオード素子11が嵌合する。このとき、振動を配列基板20に加える時間が短すぎる場合には、素子配置孔24に発光ダイオード素子11を嵌合させることができないため、十分に長い時間をかけて発光ダイオード素子11の自己整合を実行する必要がある。しかし、セル23はセル分割部22で区切られた領域であるため、セル23の面積は配列基板20の面積よりも十分に小さくすることができ、配列基板20上で複数の孔に複数の素子を嵌合させる従来技術と比較すると、短時間で発光ダイオード素子11が素子配置孔24に嵌合させる確率を高めることができる。 By continuing the vibration of the array substrate 20, the light emitting diode elements 11 continue to move slightly in the cell 23, and finally the light emitting diode elements 11 are placed in the element arrangement holes 24 as shown in FIG. Mating. At this time, if the time during which vibration is applied to the array substrate 20 is too short, the light emitting diode element 11 cannot be fitted into the element arrangement hole 24, and therefore the self-alignment of the light emitting diode element 11 takes a sufficiently long time. Need to run. However, since the cell 23 is a region divided by the cell dividing unit 22, the area of the cell 23 can be made sufficiently smaller than the area of the array substrate 20, and a plurality of elements are formed in a plurality of holes on the array substrate 20. Compared with the prior art for fitting the light emitting diode element 11, the probability that the light emitting diode element 11 is fitted into the element arrangement hole 24 can be increased in a short time.
発光ダイオード素子11と素子配置孔24を形成する際に、発光ダイオード素子11にテーパーを形成しておき、素子配置孔24を発光ダイオード素子11の形状に対応した形状とすることで、配列基板20上に形成した素子配置孔24に発光ダイオード素子11を嵌合させる際の素子の上下方向を調整するとしてもよい。また、液体26と配列基板20表面との濡れ性や発光ダイオード素子11と液体26との濡れ性に応じて、発光ダイオード素子11の移動傾向が異なるため、液体26中での発光ダイオード素子11の自己整合を行うためには、液体の表面張力や発光ダイオード素子11表面の液体26に対する濡れ性を考慮して素子の転写を行う必要がある。 When the light emitting diode element 11 and the element arrangement hole 24 are formed, the light emitting diode element 11 is tapered, and the element arrangement hole 24 has a shape corresponding to the shape of the light emitting diode element 11. The vertical direction of the element when the light emitting diode element 11 is fitted into the element arrangement hole 24 formed above may be adjusted. Further, since the movement tendency of the light emitting diode element 11 varies depending on the wettability between the liquid 26 and the surface of the array substrate 20 and the wettability between the light emitting diode element 11 and the liquid 26, the light emitting diode element 11 in the liquid 26 has a different movement tendency. In order to perform self-alignment, it is necessary to transfer the element in consideration of the surface tension of the liquid and the wettability of the surface of the light emitting diode element 11 with respect to the liquid 26.
発光ダイオード素子11を自己整合によって素子配置孔24に嵌合する際に、発光ダイオード素子11の使用方法によっては素子の配向方向を制御する必要がある。そのため、発光ダイオード素子11の形状を左右非対称なものとし、素子配置孔24の凹み形状を発光ダイオード素子11の外形に合わせて形成することで、配列基板20上での発光ダイオード素子11の縦横や左右方向を制御するとしても良い。また、発光ダイオード素子11表面の液体26に対する濡れ性を非対称にする表面処理を施し、素子配置孔24表面の濡れ性を対応させることで、発光ダイオード素子11の配向制御を行うとしてもよい。さらに、素子形成基板10上において発光ダイオード素子11のバンプメタルをニッケル等で形成しておき所定方向に磁化させ、素子配置孔24もそれに合わせて磁化させて配置を行うことで、発光ダイオード素子11の配向制御を行うとしてもよい。また、素子配置孔24を磁化する代わりに配列基板20に外部から磁界を加えて、磁化した発光ダイオード素子11の配向制御を行うとしてもよい。 When the light emitting diode element 11 is fitted into the element arrangement hole 24 by self-alignment, it is necessary to control the orientation direction of the element depending on how the light emitting diode element 11 is used. For this reason, the shape of the light-emitting diode element 11 is asymmetrical, and the concave shape of the element arrangement hole 24 is formed in accordance with the outer shape of the light-emitting diode element 11, so that The left and right direction may be controlled. Alternatively, the orientation of the light-emitting diode element 11 may be controlled by applying a surface treatment that makes the wettability of the surface of the light-emitting diode element 11 with respect to the liquid 26 asymmetric so as to correspond to the wettability of the surface of the element arrangement hole 24. Further, the bump metal of the light emitting diode element 11 is formed of nickel or the like on the element forming substrate 10 and magnetized in a predetermined direction, and the element arrangement hole 24 is magnetized in accordance with the arrangement, thereby arranging the light emitting diode element 11. The orientation control may be performed. Instead of magnetizing the element arrangement hole 24, a magnetic field may be applied to the array substrate 20 from the outside to control the orientation of the magnetized light emitting diode element 11.
発光ダイオード素子11が素子配置孔24に嵌合した後に、図8(d)に示すように、セル23内に満たされていた液体26を加熱や乾燥により蒸発させる。液体26を蒸発させることで、セル23内では電極25と発光ダイオード素子11が露出した状態となる。図8(a)乃至図8(d)で説明したように、配列基板20を振動させてセル23内で発光ダイオード素子11を移動させることにより、発光ダイオード素子11が素子配置孔24に自己整合によって配置されることになる。セル23内で自己整合によって素子の位置を決定するため、本発明の素子配列方法では発光ダイオード素子11がセル23の領域内に位置していればよく、素子形成基板10から発光ダイオード素子11を剥離してセル23中に落とす際には、素子形成基板10と配列基板20との位置合わせ精度にセル23の領域程度の余裕を持たせることが可能である。 After the light emitting diode element 11 is fitted into the element arrangement hole 24, as shown in FIG. 8D, the liquid 26 filled in the cell 23 is evaporated by heating or drying. By evaporating the liquid 26, the electrode 25 and the light emitting diode element 11 are exposed in the cell 23. As described with reference to FIGS. 8A to 8D, the light emitting diode element 11 is self-aligned with the element arrangement hole 24 by vibrating the array substrate 20 and moving the light emitting diode element 11 in the cell 23. Will be placed by. In order to determine the position of the element in the cell 23 by self-alignment, the light emitting diode element 11 only needs to be located in the region of the cell 23 in the element arranging method of the present invention. When peeling and dropping into the cell 23, it is possible to give a margin of the area of the cell 23 to the alignment accuracy between the element forming substrate 10 and the array substrate 20.
次に図9(a)に示すように、セル23内で露出した発光ダイオード素子11と電極25とを透明導電性インク40(例えばITOインク)などで電気的に接続する。次に図9(b)に示すように、セル23内に透明樹脂42などを印刷し硬化させた後に、配列基板20の基体部21をセル分割部22から剥離する。発光ダイオード素子11は素子配置孔24に嵌合した状態で透明樹脂42によって固定されているために、配列基板20をセル分割部22から剥離しても発光ダイオード素子11が脱離することはない。また基体部21を剥離することによって、発光ダイオード素子11の一面がセル分割部22の基体部21が形成されていた側から露出する。最後に図9(c)に示すように、セル分割部22の基体部21が形成されていた面に電極41を形成して、発光ダイオード素子11を電気的に接続する。電極41は、図中の紙面に水平方向に形成される電気配線であり、紙面に水平方向に並べて形成されたセル23内を縦断してカラム電極として機能する。 Next, as shown in FIG. 9A, the light emitting diode element 11 exposed in the cell 23 and the electrode 25 are electrically connected with a transparent conductive ink 40 (for example, ITO ink) or the like. Next, as shown in FIG. 9B, after the transparent resin 42 or the like is printed and cured in the cells 23, the base portion 21 of the array substrate 20 is peeled from the cell dividing portion 22. Since the light emitting diode element 11 is fixed to the element arrangement hole 24 by the transparent resin 42, the light emitting diode element 11 is not detached even if the array substrate 20 is peeled off from the cell dividing portion 22. . Further, by peeling off the base portion 21, one surface of the light emitting diode element 11 is exposed from the side where the base portion 21 of the cell dividing portion 22 is formed. Finally, as shown in FIG. 9C, an electrode 41 is formed on the surface of the cell dividing portion 22 where the base portion 21 is formed, and the light emitting diode element 11 is electrically connected. The electrode 41 is an electric wiring formed in the horizontal direction on the paper surface in the figure, and functions as a column electrode by longitudinally cutting through the cells 23 formed side by side in the horizontal direction on the paper surface.
上述した様に本発明の素子配列方法を用いることで、グローバル配線の一部である電極25を予め配列基板20上に形成しておき、発光ダイオード素子11の転写後には発光ダイオード素子11と電極25を接続するのみで電気配線が完了する。セル23は図4に示したように配列基板20上に格子状に配列して形成されているため、発光ダイオード素子11も格子状に配列されることになり、セル分割部22の両面に形成された電極25と電極41がそれぞれロウ電極とカラム電極として機能することで、マトリクス駆動の表示装置を構成することができる。また、配列基板20を基体部21とセル分割部22の二層構造としておき、発光ダイオード素子11の選択転写を行った後に基体部21を剥離して、発光ダイオード素子11に対する電気的接続を両面から行うことで、発光ダイオード素子11が小さくても配線接続を容易にして配線ルールの自由度を高めることが可能となる。 As described above, by using the element arrangement method of the present invention, the electrode 25 which is a part of the global wiring is formed on the arrangement substrate 20 in advance, and after the light emitting diode element 11 is transferred, the light emitting diode element 11 and the electrode are formed. The electrical wiring is completed only by connecting 25. As shown in FIG. 4, since the cells 23 are arranged in a grid pattern on the array substrate 20, the light emitting diode elements 11 are also arranged in a grid pattern. Since the formed electrodes 25 and 41 function as a row electrode and a column electrode, respectively, a matrix drive display device can be configured. Further, the array substrate 20 has a two-layer structure of the base portion 21 and the cell dividing portion 22, and after selective transfer of the light emitting diode element 11, the base portion 21 is peeled off to make electrical connection to the light emitting diode element 11 on both sides. Thus, even if the light emitting diode element 11 is small, the wiring connection can be facilitated and the degree of freedom of the wiring rule can be increased.
発光ダイオード素子11の発光面を図9(c)の図中下側で電極41が形成された側になるように素子の配列を行った場合には、電極41と素子をITO(インジウム−スズ酸化物)やITOインクなどの透明電極で接続することで、電極41が発光ダイオード素子11の発光面を覆わずに電気的接続を行うことができ、光の取り出しを妨げずに良好な光取り出し効率を実現することができる。また、発光ダイオード素子11の発光面を図9(c)の図中上側で電極25が形成された側になるように素子の配列を行った場合には、セル分割部22と低い壁で構成される凹形状の内側や、素子配置孔24の表面に高反射金属と透明絶縁膜との多層構造を形成することで、光取り出し効率を向上させることができる。 When the elements are arranged so that the light emitting surface of the light emitting diode element 11 is on the lower side in FIG. 9C and the electrode 41 is formed, the electrode 41 and the element are made of ITO (indium-tin). By connecting with a transparent electrode such as an oxide) or ITO ink, the electrode 41 can be electrically connected without covering the light emitting surface of the light emitting diode element 11, and good light extraction without disturbing light extraction. Efficiency can be realized. When the elements are arranged so that the light emitting surface of the light emitting diode element 11 is on the side where the electrode 25 is formed on the upper side in FIG. 9C, the light emitting diode element 11 is composed of the cell dividing portion 22 and a low wall. The light extraction efficiency can be improved by forming a multilayer structure of a highly reflective metal and a transparent insulating film on the inner side of the concave shape or on the surface of the element arrangement hole 24.
本発明の素子配列方法では、配列基板上に形成されたセル領域内に素子を選択転写し、セル領域内で自己整合によって素子の精密な位置決定を行うことで、配列基板上に素子を配列する。セル領域は配列基板の一部領域であることから、セル領域内での自己整合を短時間で終了させることが可能となる。また、セル領域は素子を配置すべき位置よりも広い面積に形成されているため、素子の選択転写を行う際にはセル領域内に素子が落とし込まれる程度の位置精度で転写を行えばよく、精密な位置決定は自己整合により行われる。このため、素子の選択転写時の位置合わせ許容範囲を広くして素子転写のスループットを向上させて素子配列の速度を向上させることが可能となる。 In the element arrangement method of the present invention, the elements are arranged on the arrangement substrate by selectively transferring the elements into the cell area formed on the arrangement substrate and performing precise positioning of the elements by self-alignment in the cell area. To do. Since the cell region is a partial region of the array substrate, self-alignment within the cell region can be completed in a short time. In addition, since the cell region is formed in an area larger than the position where the element is to be arranged, when performing selective transfer of the element, it is sufficient to perform the transfer with positional accuracy enough to drop the element into the cell region. Precise positioning is performed by self-alignment. For this reason, it is possible to widen the alignment allowable range at the time of selective transfer of elements, improve the throughput of element transfer, and improve the speed of element arrangement.
また、本発明の素子配列方法では、素子を選択転写によってセルに落とし込むため、サファイア基板などの素子を形成した基板から素子を剥離して、直接セルに対して素子の転写を行うことができる。素子形成基板上での素子の形成は、密集したものであっても素子の転写に選択転写を用いるために任意のセルに対して任意の素子を転写することが可能である。また、セルの領域内に素子を選択転写できれば素子の精密な配列を行うことができるため、素子形成基板上に形成された素子のピッチに無関係な間隔で形成されたセルに対しても、素子を転写して自己整合による精密な配置を行うことが可能となり、配列基板上でのセルの配列に関しても自由度を向上させることが可能なる。
[第二の実施の形態]
Further, in the element arrangement method of the present invention, since the element is dropped into the cell by selective transfer, the element can be directly transferred to the cell by peeling the element from a substrate on which an element such as a sapphire substrate is formed. Even when the elements are formed densely on the element formation substrate, it is possible to transfer any element to any cell because selective transfer is used for transferring the element. In addition, since the elements can be precisely arranged if the elements can be selectively transferred into the cell region, the elements can be applied to cells formed at intervals irrelevant to the pitch of the elements formed on the element formation substrate. It is possible to perform precise placement by self-alignment by transferring the number of cells, and it is possible to improve the degree of freedom with respect to the cell arrangement on the arrangement substrate.
[Second Embodiment]
本発明の素子配列方法の他の実施の形態として、発光ダイオード素子をセル領域内に配置する自己整合の他の例を説明する。本実施の形態は上述した第一の実施の形態とは、セル領域内に転写した発光ダイオード素子を素子配置孔24に配置する方法が異なるが、他の手順および構成に関しては第一の実施の形態と同様であるため説明の重複を避けるため同一部分については説明を省略する。 As another embodiment of the element arranging method of the present invention, another example of self-alignment in which light emitting diode elements are arranged in a cell region will be described. This embodiment is different from the first embodiment described above in the method of arranging the light emitting diode element transferred in the cell region in the element arrangement hole 24, but the other procedures and configurations are the same as those in the first embodiment. Since the configuration is the same as that of the embodiment, the description of the same portion is omitted to avoid duplication of description.
図10はセル領域内での発光ダイオード素子の自己整合による配置の他の例を示す工程図である。本実施の形態でも上述した第一の実施の形態と同様にして、図10(a)に示すように、基体部21上にセル分割部22が形成された配列基板20を用意し、セル分割部22で区切られたセル23領域内に液体26を満たした後に、素子形成基板10上に形成された発光ダイオード素子11を選択的に転写して液体26上に落とし込む。このとき発光ダイオード素子11がセル23の領域内のどの位置に配置するかは特に問題ではなく、液体26上に発光ダイオード素子11が浮遊した状態で、セル23領域内での移動が可能となっていればよい。 FIG. 10 is a process diagram showing another example of the arrangement by self-alignment of the light emitting diode elements in the cell region. Also in the present embodiment, as in the first embodiment described above, as shown in FIG. 10A, an array substrate 20 having a cell division portion 22 formed on a base portion 21 is prepared, and cell division is performed. After filling the liquid 26 in the cell 23 region delimited by the portion 22, the light emitting diode element 11 formed on the element forming substrate 10 is selectively transferred and dropped onto the liquid 26. At this time, there is no particular problem in which position in the region of the cell 23 the light-emitting diode element 11 is arranged, and the light-emitting diode element 11 is floating on the liquid 26 and can be moved in the cell 23 region. It only has to be.
次に図10(b)に示すように、液体26上に発光ダイオード素子11が浮遊した状態のまま、加熱や乾燥によってセル23内の液体26を蒸発させていく。このとき、液体26の量が徐々に減少していき、それとともに発光ダイオード素子11も液体26上での位置が変化していく。セル23内では素子配置孔24が凹形状となっているので、液体26の蒸発過程では素子配置孔24内に液体26が滞留し易く、液体26が完全に蒸発する直前には素子配置孔24にのみ液体26が残留した状態となる。つまり、液体26の蒸発が進行するにしたがって、液体26は素子配置孔24に集約されるかのように減少していく。 Next, as shown in FIG. 10B, the liquid 26 in the cell 23 is evaporated by heating or drying while the light emitting diode element 11 is floating on the liquid 26. At this time, the amount of the liquid 26 is gradually reduced, and the position of the light emitting diode element 11 on the liquid 26 is changed at the same time. Since the element arrangement hole 24 has a concave shape in the cell 23, the liquid 26 tends to stay in the element arrangement hole 24 during the evaporation process of the liquid 26, and the element arrangement hole 24 immediately before the liquid 26 completely evaporates. Only the liquid 26 remains. That is, as the evaporation of the liquid 26 proceeds, the liquid 26 decreases as if it is concentrated in the element arrangement hole 24.
このとき、発光ダイオード素子11は液体26の流動にしたがって浮遊しているので、液体26が蒸発によって素子配置孔24に集約される動きに追従して、液体26の表面張力によって発光ダイオード素子11も素子配置孔24に近づいていき、最終的には図10(c)に示すように素子配置孔24に発光ダイオード素子11が嵌合される。このような液体26の蒸発に伴う発光ダイオード素子11の自己整合による配置では、素子配置孔24内部の表面を液体26に対する濡れ性が良い状態に表面処理し、素子配置孔24以外のセル23領域表面を液体26に対する濡れ性が悪い状態に表面処理することで、液体26が素子配置孔24に集約されるような蒸発を促すことができる。液体の蒸発と表面張力による素子の移動を用いて自己整合を行うことで、配列基板上に多数のセルを形成して多数の素子を配列する際にも、安価かつ容易に素子配列を行うことが可能となる。
[第三の実施の形態]
At this time, since the light emitting diode element 11 floats in accordance with the flow of the liquid 26, the light emitting diode element 11 also follows the movement in which the liquid 26 is concentrated in the element arrangement hole 24 by evaporation and the surface tension of the liquid 26 also. The light emitting diode element 11 is fitted into the element arrangement hole 24 as shown in FIG. In the arrangement by self-alignment of the light emitting diode element 11 accompanying the evaporation of the liquid 26, the surface inside the element arrangement hole 24 is surface-treated so that the wettability to the liquid 26 is good, and the cell 23 region other than the element arrangement hole 24 By subjecting the surface to a state where the wettability with respect to the liquid 26 is poor, evaporation such that the liquid 26 is concentrated in the element arrangement hole 24 can be promoted. By self-alignment using element movement due to liquid evaporation and surface tension, element arrangement can be performed easily and inexpensively even when many cells are arranged on an array substrate. Is possible.
[Third embodiment]
本発明の素子配列方法の他の実施の形態として、各セル領域内に液体を満たす方法の他の例を説明する。本実施の形態は上述した第一の実施の形態とは、セル領域内に液体を導入する方法が異なるが、他の手順および構成に関しては第一の実施の形態と同様であるため説明の重複を避けるため同一部分については説明を省略する。第一の実施の形態では図3に示したように、配列基板20の一方に液体26を供給して、配列基板20の液体26を供給した側を持ち上げて配列基板20を傾斜させることで、液体26が配列基板20上を流れて各セル23内に液体26が満たされるとした。しかし本発明の素子配列方法では、配列基板20の表面をセル23で分割して、セル23毎に発光ダイオード素子11を選択的に転写し、セル23内で発光ダイオード素子11が自己整合によって素子配置孔24に配置されればよく、セル23に液体を満たす方法は他のさまざまな手段によって実現することが可能である。 As another embodiment of the element arranging method of the present invention, another example of a method of filling a liquid in each cell region will be described. Although this embodiment is different from the first embodiment described above in the method of introducing the liquid into the cell region, the other procedures and configurations are the same as those in the first embodiment, and thus the description thereof is duplicated. In order to avoid this, the description of the same part is omitted. In the first embodiment, as shown in FIG. 3, the liquid 26 is supplied to one of the array substrates 20, and the array substrate 20 is lifted on the side where the liquid 26 is supplied to tilt the array substrate 20. It is assumed that the liquid 26 flows on the array substrate 20 and the cells 26 are filled with the liquid 26. However, in the element arraying method of the present invention, the surface of the array substrate 20 is divided by the cells 23, and the light emitting diode elements 11 are selectively transferred for each cell 23. The method of filling the liquid in the cell 23 may be realized by various other means.
図11(a)は、セル分割部22で区切られたセル23にノズル50から微小量の液体を噴出させて、各セル23に対して液体26を滴下して導入するインクジェット方式を説明する模式図である。この方式では、ノズル50によってセル23に液体26を規定量滴下した後に、隣接するセル23上にノズル50を移動させていくことにより、配列基板20上の全てのセル23に対して液体26を導入することができる。ノズル50としては、例えばインクジェットプリンターなどに用いられるノズル50を用いることができ、既存のインクジェット技術を用いているために液体26の滴下量制御や滴下位置制御を容易に行うことが可能である。 FIG. 11A is a schematic diagram illustrating an ink jet method in which a minute amount of liquid is ejected from the nozzle 50 to the cells 23 partitioned by the cell dividing unit 22 and the liquid 26 is dropped into each cell 23 and introduced. FIG. In this method, after a predetermined amount of the liquid 26 is dropped onto the cells 23 by the nozzles 50, the nozzles 50 are moved onto the adjacent cells 23, whereby the liquid 26 is applied to all the cells 23 on the array substrate 20. Can be introduced. As the nozzle 50, for example, the nozzle 50 used in an ink jet printer or the like can be used. Since the existing ink jet technology is used, it is possible to easily control the dropping amount and the dropping position of the liquid 26.
図11(a)に示したインクジェット方式では、配列基板20が水平となるように保持した状態で液体26をセル23に対して滴下することができるため、セル23内に発光ダイオード素子11を選択的に転写した後に、発光ダイオード素子11が落とし込まれているセル23に対して液体26を滴下することが可能である。液体26と発光ダイオード素子11とを各セル23内に落とした後に、配列基板20に超音波振動を加えるなど自己整合による発光ダイオード素子11の配置を行う。 In the ink jet method shown in FIG. 11A, the liquid 26 can be dripped onto the cell 23 while the array substrate 20 is held in a horizontal state, so the light emitting diode element 11 is selected in the cell 23. After the transfer, the liquid 26 can be dropped on the cell 23 in which the light emitting diode element 11 is dropped. After dropping the liquid 26 and the light emitting diode element 11 into each cell 23, the light emitting diode element 11 is arranged by self-alignment, such as applying ultrasonic vibration to the array substrate 20.
液体26をセル23内に滴下する以前にセル23に発光ダイオード素子11を選択転写する場合には、発光ダイオード素子11が微小かつ軽量であるため静電気力によって、発光ダイオード素子11が所望の領域以外に付着してしまう可能性がある。そこで、発光ダイオード素子11を素子形成基板10からセル23に転写する前に、素子形成基板10および配列基板20の両方を静電除去し、想定外の領域に発光ダイオード素子11が付着することを防止することが望ましい。または、素子形成基板10もしくは配列基板20を故意に帯電させておき、静電気力によって確実に発光ダイオード素子11が配列基板20に付着するようにしてもよい。 In the case where the light emitting diode element 11 is selectively transferred to the cell 23 before the liquid 26 is dropped into the cell 23, the light emitting diode element 11 is outside the desired region due to electrostatic force because the light emitting diode element 11 is minute and light. There is a possibility of sticking to. Therefore, before transferring the light emitting diode element 11 from the element forming substrate 10 to the cell 23, both the element forming substrate 10 and the array substrate 20 are electrostatically removed, and the light emitting diode element 11 adheres to an unexpected region. It is desirable to prevent. Alternatively, the element formation substrate 10 or the array substrate 20 may be intentionally charged, and the light emitting diode elements 11 may be reliably attached to the array substrate 20 by electrostatic force.
図11(b)は配列基板20上に供給された液体26をワイパー51で移動させ、全てのセル23に液体26を満たす例を示す模式図である。配列基板20上に大量に滴下した液体26を棒状のディスペンス機器であるワイパー51で引き伸ばし、配列基板20のセル分割部22上にコーティングするような形で液体26を各セル23に満たしていく。また、図11(c)は、液体26を満たした容器52に配列基板20をくぐらせて、セル分割部22で区切られるセル23内に液体26を満たす方法を示す模式図である。本発明の素子配列方法では、いずれの方法を用いて各セル23内に液体26を供給してもよい。
[第四の実施の形態]
FIG. 11B is a schematic diagram showing an example in which the liquid 26 supplied onto the array substrate 20 is moved by the wiper 51 and all the cells 23 are filled with the liquid 26. The liquid 26 dripped in a large amount on the array substrate 20 is stretched by the wiper 51 which is a rod-like dispense device, and the liquid 26 is filled in each cell 23 in such a manner as to be coated on the cell dividing portion 22 of the array substrate 20. FIG. 11C is a schematic diagram showing a method of filling the liquid 26 in the cells 23 partitioned by the cell dividing section 22 by passing the array substrate 20 through the container 52 filled with the liquid 26. In the element arrangement method of the present invention, the liquid 26 may be supplied into each cell 23 by any method.
[Fourth embodiment]
本発明の素子配列方法の他の実施の形態として、配列基板としてロール状の部材を用いて、流れ作業によってセルの形成、液体の滴下、素子の選択転写およびセル領域内での自己整合による素子配置を行う例を説明する。本実施の形態は上述した第一の実施の形態とは、配列基板をロール状の部材とした点と液体の滴下をインクジェット方式で行う点が異なるが、他の手順および構成に関しては第一の実施の形態と同様であるため説明の重複を避けるため同一部分については説明を省略する。 As another embodiment of the element arraying method of the present invention, a roll-shaped member is used as an array substrate, and an element is formed by cell formation, liquid dripping, element selective transfer, and self-alignment in a cell region by a flow operation. An example of performing the arrangement will be described. This embodiment is different from the above-described first embodiment in that the array substrate is a roll-shaped member and the liquid is dropped by an ink jet method. However, the other procedures and configurations are the same as the first embodiment. Since it is the same as that of embodiment, in order to avoid duplication of description, description is abbreviate | omitted about the same part.
本発明の素子配列方法では、発光ダイオード素子11を配列する配列基板20は平板な板状部材である必要はなく、フィルム状のプラスチックや樹脂を用いてロール形状にした配列基板を用いてもよい。図12は上述して説明した第一の実施の形態の素子配列方法を流れ作業で行う方法を示した工程図である。素子形成基板10と配列基板20とを離間させて発光ダイオード素子11をセル23中に落とすことで、ロール状の配列基板20を移動させながら流れ作業で複数工程を処理するロール・トゥ・ロールプロセスで効率的に発光ダイオード素子11の配列を行うことができる。 In the element arraying method of the present invention, the array substrate 20 on which the light emitting diode elements 11 are arrayed does not have to be a flat plate member, and an array substrate formed into a roll shape using a film-like plastic or resin may be used. . FIG. 12 is a process diagram showing a method of performing the element arrangement method of the first embodiment described above in a flow operation. A roll-to-roll process in which a plurality of steps are processed by a flow operation while moving the roll-shaped array substrate 20 by separating the element formation substrate 10 and the array substrate 20 and dropping the light-emitting diode element 11 into the cell 23. Thus, the light emitting diode elements 11 can be arranged efficiently.
プラスチックや樹脂で形成されたロール状の配列基板20を回転させて、ベルトコンベアー方式での流れ作業により、金型によるセル分割部22の型押成形でセル23を配列基板上に形成する。次に、配列基板20の流れ方向で金型成形よりも下流側で、インクジェット方式を用いてノズル50で液体26をセル23中に滴下する。その後に、素子形成基板10から発光ダイオード素子11をレーザーアブレーションなどで選択的に転写し、セル23中に発光ダイオード素子11を落とし込む。最後に、配列基板20に超音波振動を加えて自己整合によって発光ダイオード素子11を素子配置孔24に配置して、液体26を蒸発させ、配線形成や発光ダイオード素子11の固定を行う。 The roll-shaped array substrate 20 formed of plastic or resin is rotated, and the cells 23 are formed on the array substrate by stamping the cell dividing portion 22 with a mold by a flow operation using a belt conveyor system. Next, the liquid 26 is dropped into the cell 23 by the nozzle 50 using the ink jet method on the downstream side of the mold forming in the flow direction of the array substrate 20. Thereafter, the light emitting diode element 11 is selectively transferred from the element forming substrate 10 by laser ablation or the like, and the light emitting diode element 11 is dropped into the cell 23. Finally, ultrasonic vibration is applied to the array substrate 20 to place the light emitting diode elements 11 in the element arrangement holes 24 by self-alignment, the liquid 26 is evaporated, and wiring formation and fixing of the light emitting diode elements 11 are performed.
本発明の素子配列方法は、配列基板20の表面をセル23で分割して、セル23毎に発光ダイオード素子11を選択的に転写し、セル23内で発光ダイオード素子11が自己整合によって素子配置孔24に配置されればよい。したがって、配列基板20として樹脂やプラスチックなどで形成したロール状の部材を用いても、自己整合によって正確に発光ダイオード素子11を素子配置孔24に配置することができる。これにより、大面積の配列基板20に対してもロール・トゥ・ロールプロセスで効率的に発光ダイオード素子11の配列を行うことができる。で素子の配列を行うことができ、製造に要する時間を短縮することが可能となる。
[第五の実施の形態]
In the element arraying method of the present invention, the surface of the array substrate 20 is divided by the cells 23, and the light emitting diode elements 11 are selectively transferred to the cells 23, and the light emitting diode elements 11 are self-aligned in the cells 23. What is necessary is just to arrange | position to the hole 24. FIG. Therefore, even when a roll-shaped member formed of resin, plastic, or the like is used as the array substrate 20, the light emitting diode elements 11 can be accurately arranged in the element arrangement holes 24 by self-alignment. As a result, the light emitting diode elements 11 can be efficiently arranged on the array substrate 20 having a large area by the roll-to-roll process. Thus, the elements can be arranged, and the time required for manufacturing can be shortened.
[Fifth embodiment]
本発明の素子配列方法の他の実施の形態として、素子形成基板上に形成された発光ダイオード素子を選択的に転写する他の例を説明する。本実施の形態は上述した第一の実施の形態とは、発光ダイオード素子の選択転写方法が異なるが、他の手順および構成に関しては第一の実施の形態と同様であるため説明の重複を避けるため同一部分については説明を省略する。本発明の素子配列方法では、配列基板20の表面をセル23で分割して、セル23毎に発光ダイオード素子11を選択的に転写し、セル23内で発光ダイオード素子11が自己整合によって素子配置孔24に配置するため、確実にセル23に所望の発光ダイオード素子11を選択的に転写することが重要である。しかし、素子形成基板10から発光ダイオード素子11を選択的に剥離させる方法は、図6に示したエキシマレーザーを用いた方法以外であってもよい。 As another embodiment of the element arranging method of the present invention, another example of selectively transferring a light emitting diode element formed on an element forming substrate will be described. Although this embodiment is different from the above-described first embodiment in the selective transfer method of the light-emitting diode elements, the other procedures and configurations are the same as those in the first embodiment, and thus the description is not duplicated. Therefore, the description of the same part is omitted. In the element arraying method of the present invention, the surface of the array substrate 20 is divided by the cells 23, and the light emitting diode elements 11 are selectively transferred for each cell 23, and the light emitting diode elements 11 are arranged in the cells 23 by self-alignment. In order to arrange in the hole 24, it is important to selectively transfer the desired light emitting diode element 11 to the cell 23 reliably. However, the method of selectively peeling the light emitting diode element 11 from the element forming substrate 10 may be other than the method using the excimer laser shown in FIG.
図13は、本実施の形態の選択転写方法としてYAGレーザーを用いて素子形成基板10の所定の位置にレーザー光を照射する方法を示す模式図である。YAGレーザー発生装置60から照射面積が小さいレーザー光62を回転ミラー61に照射して、回転ミラー61でレーザー光62を反射する。回転ミラー61は、平板状の反射面が駆動可能に形成され、反射面の法線方向を変化させるような回転動作を行う装置である。図13では回転ミラー61として一枚の平面ミラーを用いた例を示しているが、二枚以上のミラーを組み合わせて光の反射方向を変化させる構成を用いても良い。回転ミラー61で反射されたレーザー光62は、回転ミラー61の法線方向に応じて進行方向が変えられ、マスク63に形成された開口部64を通過するレーザー光62のみがレンズ65に入射する。レンズ65でレーザー光62が屈折されて集光されることで素子形成基板10の所定領域にレーザー光62が照射される。 FIG. 13 is a schematic diagram showing a method of irradiating a predetermined position of the element formation substrate 10 with a laser beam using a YAG laser as the selective transfer method of the present embodiment. A laser beam 62 having a small irradiation area is irradiated onto the rotating mirror 61 from the YAG laser generator 60, and the laser beam 62 is reflected by the rotating mirror 61. The rotating mirror 61 is a device that has a flat reflecting surface that can be driven and performs a rotating operation to change the normal direction of the reflecting surface. Although FIG. 13 shows an example in which a single plane mirror is used as the rotating mirror 61, a configuration in which two or more mirrors are combined to change the light reflection direction may be used. The traveling direction of the laser light 62 reflected by the rotating mirror 61 is changed according to the normal direction of the rotating mirror 61, and only the laser light 62 that passes through the opening 64 formed in the mask 63 is incident on the lens 65. . The laser beam 62 is refracted and condensed by the lens 65, so that the laser beam 62 is irradiated onto a predetermined region of the element forming substrate 10.
回転ミラー61で反射されたレーザー光62は、回転ミラー61と素子形成基板10との間に配置されたマスク63方向に進行していくが、マスク63の開口部64以外の領域に到達したレーザー光62はマスク63により遮光されて素子形成基板10には到達しない。回転ミラー61で反射されたレーザー光62のうち、マスク63の開口部64に到達した光のみがマスク63を透過してレンズ65および素子形成基板10に到達するため、素子形成基板10の所望領域にのみレーザー光62が照射されるように開口部64とレンズ65の配置を設計することで、選択的なレーザー光62の照射を行うことができる。 The laser beam 62 reflected by the rotating mirror 61 travels in the direction of the mask 63 disposed between the rotating mirror 61 and the element forming substrate 10, but the laser beam that has reached a region other than the opening 64 of the mask 63. The light 62 is blocked by the mask 63 and does not reach the element formation substrate 10. Of the laser light 62 reflected by the rotating mirror 61, only the light that has reached the opening 64 of the mask 63 is transmitted through the mask 63 and reaches the lens 65 and the element formation substrate 10. By designing the arrangement of the opening 64 and the lens 65 so that only the laser beam 62 is irradiated, selective laser beam 62 irradiation can be performed.
素子形成基板10のレーザー光62が照射された領域では、上述したレーザーアブレーションによって発光ダイオード素子11が素子形成基板10から剥離され、選択的に発光ダイオード素子11の転写を行うことができる。素子形成基板10上の任意の位置に形成されている発光ダイオード素子11を所定のセル23に転写することで、確実に一つのセル23に一つの発光ダイオード素子11を対応させて転写を行うことができる。図13を用いて説明したYAGレーザーを用いた選択転写は、回転ミラー61を用いたガルバノスキャンとマスク63を用いたマスク投影光学系を組み合わせたレーザーシステムであり、高スループット、高位置精度、高エネルギー利用率を得ることができる。 In the region where the laser beam 62 of the element forming substrate 10 is irradiated, the light emitting diode element 11 is peeled off from the element forming substrate 10 by the laser ablation described above, and the light emitting diode element 11 can be selectively transferred. By transferring the light emitting diode element 11 formed at an arbitrary position on the element forming substrate 10 to a predetermined cell 23, it is possible to reliably transfer one light emitting diode element 11 corresponding to one cell 23. Can do. The selective transfer using the YAG laser described with reference to FIG. 13 is a laser system that combines a galvano scan using the rotating mirror 61 and a mask projection optical system using the mask 63, and has high throughput, high positional accuracy, and high Energy utilization can be obtained.
また、レーザー光を用いた発光ダイオード素子11の選択転写のほかには、基板上に粘着剤を塗布して粘着剤上に発光ダイオード素子11を密集させて配置しておき、光の照射や熱の照射によって粘着材の粘着力を低下させて発光ダイオード素子11を選択的に脱離させるなどの方法を用いても良い。
[第六の実施の形態]
Besides the selective transfer of the light-emitting diode element 11 using laser light, an adhesive is applied on the substrate and the light-emitting diode elements 11 are arranged closely on the adhesive so that light irradiation or heat is applied. For example, a method may be used in which the light-emitting diode element 11 is selectively detached by reducing the adhesive strength of the adhesive material by irradiation.
[Sixth embodiment]
本発明の素子配列方法の他の実施の形態として、配列基板の表面をセル領域に区切る方法の他の例として、撥水性のパターンを塗布することでセルを形成する例を説明する。本実施の形態は上述した第一の実施の形態とは、セルを形成するための方法が異なるが、他の手順および構成に関しては第一の実施の形態と同様であるため説明の重複を避けるため同一部分については説明を省略する。 As another embodiment of the element arranging method of the present invention, an example in which cells are formed by applying a water-repellent pattern will be described as another example of the method of dividing the surface of the array substrate into cell regions. This embodiment is different from the first embodiment described above in the method for forming a cell, but the other procedures and configurations are the same as those in the first embodiment, and therefore, duplicate description is avoided. Therefore, the description of the same part is omitted.
図14は本発明の素子配列方法で用いる配列基板70上に、撥水性のパターンを塗布して表面処理を行うことでセルの形成を行う例を示す模式図である。基体部21上に樹脂層71を形成し、樹脂層71が形成されていない領域を樹脂層71から一段低い凹部とすることで素子配置孔24を形成する。樹脂層71上には、液体26に対する濡れ性が低い撥水パターン72を塗布して、撥水パターン72によって囲まれた領域でセル23が構成される。 FIG. 14 is a schematic diagram showing an example in which cells are formed by applying a water-repellent pattern on the array substrate 70 used in the element array method of the present invention and performing surface treatment. The element arrangement hole 24 is formed by forming the resin layer 71 on the base portion 21 and forming a region where the resin layer 71 is not formed as a recess that is one step lower than the resin layer 71. On the resin layer 71, a water repellent pattern 72 having low wettability with respect to the liquid 26 is applied, and the cell 23 is configured in a region surrounded by the water repellent pattern 72.
撥水パターン72が塗布された領域には液体26が滞留し難いため、上述したインクジェット方式などで素子配置孔24周辺に液体26を滴下したとしても、撥水パターン72上には液体26が貯まらずに素子配置孔24および樹脂層71が露出した領域であるセル23内にだけ液体26が蓄えられる。つまり、樹脂層71上には高低差を形成する構造は無いが、撥水パターン72によってセル23が分割され、各セル23毎に個別に液体26が蓄えられる。したがって、上述した第一の実施の形態と同様に、各セル23に対して発光ダイオード素子11を選択的に転写し、超音波振動などによる自己整合で発光ダイオード素子11を素子配置孔24に嵌合させることができる。 Since the liquid 26 is unlikely to stay in the region where the water repellent pattern 72 is applied, even if the liquid 26 is dropped around the element arrangement hole 24 by the above-described inkjet method or the like, the liquid 26 is not collected on the water repellent pattern 72. In other words, the liquid 26 is stored only in the cell 23 where the element arrangement hole 24 and the resin layer 71 are exposed. That is, although there is no structure for forming a height difference on the resin layer 71, the cells 23 are divided by the water repellent pattern 72, and the liquid 26 is stored individually for each cell 23. Therefore, as in the first embodiment described above, the light emitting diode element 11 is selectively transferred to each cell 23, and the light emitting diode element 11 is fitted into the element arrangement hole 24 by self-alignment by ultrasonic vibration or the like. Can be combined.
撥水パターン72でセル23を構成するのと同様に、液体26に対する濡れ性が高い親水パターンを素子配置孔24周辺領域にのみ塗布しておき、親水パターンが塗布された領域をセル23とすることで、セル23毎に液体26を蓄えるとしてもよい。この場合にも、樹脂層71上には高低差を形成する構造は無いが、親水パターンによってセル23が決定され、各セル23毎に個別に液体26が蓄えられる。したがって、上述した第一の実施の形態と同様に、各セル23に対して発光ダイオード素子11を選択的に転写し、超音波振動などによる自己整合で発光ダイオード素子11を素子配置孔24に嵌合させることができる。
[第七の実施の形態]
As in the case where the cell 23 is configured by the water repellent pattern 72, a hydrophilic pattern having high wettability with respect to the liquid 26 is applied only to the peripheral region of the element arrangement hole 24, and the region to which the hydrophilic pattern is applied is defined as the cell 23. Thus, the liquid 26 may be stored for each cell 23. Also in this case, there is no structure that forms a height difference on the resin layer 71, but the cells 23 are determined by the hydrophilic pattern, and the liquid 26 is stored individually for each cell 23. Therefore, as in the first embodiment described above, the light emitting diode element 11 is selectively transferred to each cell 23, and the light emitting diode element 11 is fitted into the element arrangement hole 24 by self-alignment by ultrasonic vibration or the like. Can be combined.
[Seventh embodiment]
本発明の素子配列方法の他の実施の形態として、発光ダイオード素子を素子配置孔に自己整合により配置した後の発光ダイオード素子の固定方法の例を説明する。本実施の形態は上述した第一の実施の形態とは、自己整合により発光ダイオード素子を配置した後に固定する方法が異なるが、他の手順および構成に関しては第一の実施の形態と同様であるため説明の重複を避けるため同一部分については説明を省略する。 As another embodiment of the element arrangement method of the present invention, an example of a method for fixing a light emitting diode element after arranging the light emitting diode element in the element arrangement hole by self-alignment will be described. This embodiment is different from the above-described first embodiment in the method of fixing the light-emitting diode element after it is arranged by self-alignment, but the other procedures and configurations are the same as those in the first embodiment. Therefore, the description of the same part is omitted to avoid duplication of description.
図15は、本発明の素子配列方法において熱可塑性で熱硬化性の樹脂を用いて発光ダイオード素子の固定を行う例を示す模式図である。本実施の形態でも、素子形成基板10とは別に発光ダイオード素子11を配列するための配列基板80を形成する。配列基板80は基体部21上にセル分割部22および樹脂層22bが形成され、セル分割部22で仕切られた領域が個別のセル23を形成している。基体部21はプラスチックやガラス基板などの平板状の部材であり、セル分割部22は樹脂などにより構成された高い壁と低い壁の二段構造の壁状部材である。セル23の領域内には、樹脂層22bの間に発光ダイオード素子11を配置するための素子配置孔24が開口されている。樹脂層22bおよび素子配置孔24上には、熱可塑性で熱硬化性の樹脂によって固定用樹脂層81が形成されている。 FIG. 15 is a schematic view showing an example in which a light emitting diode element is fixed using a thermoplastic and thermosetting resin in the element arranging method of the present invention. Also in the present embodiment, an array substrate 80 for arraying the light emitting diode elements 11 is formed separately from the element formation substrate 10. In the array substrate 80, the cell dividing portion 22 and the resin layer 22 b are formed on the base portion 21, and the regions partitioned by the cell dividing portion 22 form individual cells 23. The base portion 21 is a flat plate member such as a plastic or glass substrate, and the cell dividing portion 22 is a two-stage wall member having a high wall and a low wall made of resin or the like. In the region of the cell 23, an element arrangement hole 24 for arranging the light emitting diode element 11 is opened between the resin layers 22b. On the resin layer 22b and the element arrangement hole 24, a fixing resin layer 81 is formed of a thermoplastic and thermosetting resin.
また、樹脂層22bの上面にはフォトリソグラフィーなどで電極25が形成されている。電極25は図中の紙面に垂直な方向に形成された電気配線であり、紙面に垂直方向に並べて形成されたセル23内を縦断してロウ電極として機能する。また、セル分割部22で区切られた各セル23の内部領域には、アルコールや純水などの液体26を注入しておく。セル23の内部領域は液体26が蓄えられているため、素子配置孔24、電極25および樹脂層22bは液体26で覆われて、液体26中に埋没することになる。 An electrode 25 is formed on the upper surface of the resin layer 22b by photolithography or the like. The electrode 25 is an electric wiring formed in a direction perpendicular to the paper surface in the figure, and functions as a row electrode by longitudinally cutting through the cells 23 formed side by side in the direction perpendicular to the paper surface. In addition, a liquid 26 such as alcohol or pure water is injected into the internal region of each cell 23 partitioned by the cell dividing unit 22. Since the liquid 26 is stored in the internal region of the cell 23, the element arrangement hole 24, the electrode 25, and the resin layer 22 b are covered with the liquid 26 and buried in the liquid 26.
図15(a)に示すように、用意された配列基板80と素子形成基板10とを対向させ、素子形成基板10の所定の位置に形成されている発光ダイオード素子11を選択的に剥離させて、発光ダイオード素子11が各セル23に一個配分されるように落として転写を行う。図15(b)の部分拡大図に示すように、セル23に落とし込まれた発光ダイオード素子11は、セル23中に満たされている液体26に浮かんでおり、素子配置孔24が形成された位置の直上に位置するとは限らない。 As shown in FIG. 15A, the prepared array substrate 80 and the element forming substrate 10 are opposed to each other, and the light emitting diode elements 11 formed at predetermined positions on the element forming substrate 10 are selectively peeled off. Then, the light emitting diode element 11 is dropped and transferred so as to be distributed to each cell 23. As shown in the partially enlarged view of FIG. 15B, the light emitting diode element 11 dropped into the cell 23 floats in the liquid 26 filled in the cell 23, and the element arrangement hole 24 is formed. It is not necessarily located directly above the position.
次に図15(b)に示すように、液体26中に発光ダイオード素子11が浮遊した状態で、第一の実施の形態と同様に配列基板80に超音波振動を加えることで、自己整合によって発光ダイオード素子11を素子配置孔24に嵌合させる。自己整合による発光ダイオード素子11の配置を行った後に、配列基板80を加熱して固定用樹脂層81を軟化させ、発光ダイオード素子11と素子配置孔24の隙間をなくす。その後、配列基板80を固定用樹脂層81が硬化する温度に冷却または加熱して、固定用樹脂層81を硬化させることで固定層82へと変化させて発光ダイオード素子11の固定を行う。 Next, as shown in FIG. 15B, by applying ultrasonic vibration to the array substrate 80 in a state where the light emitting diode element 11 is suspended in the liquid 26, the self alignment is performed. The light emitting diode element 11 is fitted into the element arrangement hole 24. After the light emitting diode element 11 is arranged by self-alignment, the array substrate 80 is heated to soften the fixing resin layer 81, and the gap between the light emitting diode element 11 and the element arrangement hole 24 is eliminated. Thereafter, the array substrate 80 is cooled or heated to a temperature at which the fixing resin layer 81 is cured, and the fixing resin layer 81 is cured to change to the fixed layer 82 to fix the light emitting diode element 11.
素子配置孔24の内部に固定用樹脂層81を形成しているため、自己整合により素子配置孔24に発光ダイオード素子11を配置させた後の発光ダイオード素子11の固定を簡便に行うことができる。
[第八の実施の形態]
Since the fixing resin layer 81 is formed inside the element arrangement hole 24, the light emitting diode element 11 can be easily fixed after the light emitting diode element 11 is arranged in the element arrangement hole 24 by self-alignment. .
[Eighth embodiment]
図16は、本発明の素子配列方法で液体を吸収して膨張、変形する材質を用いて発光ダイオード素子の固定を行う例を示す模式図である。図16(a)に示すように、配列基板90として、基体部21上に樹脂層91を形成し、樹脂層91が形成されていない領域を樹脂層91から一段低い凹部とすることで素子配置孔24を形成する。樹脂層91上には、液体26を吸収して膨張、変形する材質によって膨張パターン92が形成され、膨張パターン92によって囲まれた領域でセル23が構成されている。また、膨張パターン92で区切られた各セル23の内部領域には、アルコールや純水などの液体26を注入しておく。 FIG. 16 is a schematic view showing an example in which a light emitting diode element is fixed using a material that absorbs liquid and expands and deforms by the element arranging method of the present invention. As shown in FIG. 16A, as the array substrate 90, the resin layer 91 is formed on the base portion 21, and the region where the resin layer 91 is not formed is formed as a recess one step lower than the resin layer 91. Hole 24 is formed. On the resin layer 91, an expansion pattern 92 is formed of a material that absorbs the liquid 26 and expands and deforms, and the cell 23 is configured in a region surrounded by the expansion pattern 92. In addition, a liquid 26 such as alcohol or pure water is injected into the internal region of each cell 23 partitioned by the expansion pattern 92.
次に、発光ダイオード素子11が形成された素子形成基板10を配列基板90に対向させて、第一の実施の形態と同様にしてエキシマレーザーを用いた選択転写を行うことで、各セル23に発光ダイオード素子11を落とし込む。各セル23内で超音波振動によって発光ダイオード素子11を移動させることで、図16(b)に示すように自己整合によって発光ダイオード素子11を素子配置孔24に嵌合させる。 Next, the element formation substrate 10 on which the light emitting diode elements 11 are formed is opposed to the array substrate 90, and selective transfer using an excimer laser is performed in the same manner as in the first embodiment, so that each cell 23 is transferred to each cell 23. The light emitting diode element 11 is dropped. By moving the light emitting diode element 11 by ultrasonic vibration in each cell 23, the light emitting diode element 11 is fitted into the element arrangement hole 24 by self-alignment as shown in FIG.
膨張パターン92は、液体26と反応して膨張、変形する材質によって形成されているため、時間の経過に伴って膨張パターン92が樹脂層91上で膨張していき、図16(c)に示すように発光ダイオード素子11の周囲にまで到達する。これにより、膨張パターン92によって発光ダイオード素子11が固定され、自己整合による発光ダイオード素子11の配置後に容易に発光ダイオード素子11を固定することが可能となる。
[第九の実施の形態]
Since the expansion pattern 92 is formed of a material that expands and deforms in response to the liquid 26, the expansion pattern 92 expands on the resin layer 91 with the passage of time, as shown in FIG. As such, the light reaches the periphery of the light emitting diode element 11. Thereby, the light emitting diode element 11 is fixed by the expansion pattern 92, and the light emitting diode element 11 can be easily fixed after the light emitting diode element 11 is arranged by self-alignment.
[Ninth embodiment]
本発明の素子配列方法の他の実施の形態として、配列基板上に形成するセルの他の構成例を説明する。本実施の形態は上述した第一の実施の形態とは、配列基板上に形成されるセルの形状や配列される素子の種類が異なるが、他の手順および構成に関しては第一の実施の形態と同様であるため説明の重複を避けるため同一部分については説明を省略する。 As another embodiment of the element arraying method of the present invention, another configuration example of a cell formed on an array substrate will be described. This embodiment is different from the above-described first embodiment in the shape of cells formed on the array substrate and the type of elements to be arrayed, but with respect to other procedures and configurations, the first embodiment In order to avoid duplication of explanation, explanation of the same part is omitted.
図17(a)乃至(f)は、本発明の素子配列方法で配列基板上に形成するセルの形状および配列を示す平面図である。本発明の素子配列方法では、配列基板20の表面をセル23で分割して、セル23毎に発光ダイオード素子11を選択的に転写し、セル23内で発光ダイオード素子11が自己整合によって素子配置孔24に配置するため、セル23の形状や配置方法に自由度を持たせることができる。 FIGS. 17A to 17F are plan views showing the shape and arrangement of cells formed on the arrangement substrate by the element arrangement method of the present invention. In the element arraying method of the present invention, the surface of the array substrate 20 is divided by the cells 23, and the light emitting diode elements 11 are selectively transferred for each cell 23, and the light emitting diode elements 11 are arranged in the cells 23 by self-alignment. Since it arrange | positions in the hole 24, a freedom degree can be given to the shape and arrangement | positioning method of the cell 23. FIG.
セル23の形状および配列の一例として、図17(a)に示すように配列基板20上に長方形のセル23を等間隔で形成する。また、各セル23には選択転写によって赤色の発光ダイオード素子11Rと、緑色の発光ダイオード11Gと、青色の発光ダイオード11Bとが転写され、自己整合によってセル23内での所定位置に配置されている。発光ダイオード素子11R、11G、11Bとが一組で画素100を構成している。光の三原色である赤緑青を発光する画素100が配列基板20上に縦横に形成されることで、表示装置が形成される。 As an example of the shape and arrangement of the cells 23, rectangular cells 23 are formed at equal intervals on the arrangement substrate 20 as shown in FIG. Further, the red light emitting diode element 11R, the green light emitting diode 11G, and the blue light emitting diode 11B are transferred to each cell 23 by selective transfer, and are arranged at predetermined positions in the cell 23 by self-alignment. . The light emitting diode elements 11R, 11G, and 11B constitute the pixel 100 as a set. Pixels 100 that emit red, green, and blue, which are the three primary colors of light, are formed vertically and horizontally on the array substrate 20 to form a display device.
同様に図17(b)に示すように、配列基板20上に略正方形のセル23を形成して画素101を構成するとしてもよい。発光ダイオード素子11をセル23領域内に選択転写するためには、セル23の面積が大きいほうが好ましいが、セル23領域内での自己整合による発光ダイオード素子11の位置決定を迅速に行うためにはセル23の面積が小さいほうが好ましい。したがって、セル23の面積は発光ダイオード素子11を確実に領域内に転写できる程度の大きさとし、配列基板20上の限られた領域をセル23としてもよい。 Similarly, as shown in FIG. 17B, the pixels 101 may be configured by forming substantially square cells 23 on the array substrate 20. In order to selectively transfer the light emitting diode element 11 into the cell 23 region, it is preferable that the area of the cell 23 is large. However, in order to quickly determine the position of the light emitting diode element 11 by self-alignment in the cell 23 region. It is preferable that the area of the cell 23 is small. Therefore, the area of the cell 23 may be set to a size that allows the light emitting diode element 11 to be reliably transferred into the region, and a limited region on the array substrate 20 may be used as the cell 23.
また図17(c)に示すように、配置する発光ダイオード素子11の種類に応じてセル23の形状を変化させて画素102を構成するとしてもよい。図17(c)では赤色の発光ダイオード素子11Rを配置するためのセルの形状を横長の長方形とし、青色の発光ダイオード素子11Bと緑色の発光ダイオード素子11Gを配置するためのセルの形状を略正方形としている。このような変則的なセル23の形状および配列でも、素子を選択転写でセル23内に落とした後に自己整合によって精密な素子の配置を行うこが可能である。このようなセル形状と配列は、配置する素子の種類によって素子サイズが異なる場合や、素子の機能を実現するために必要なセル面積が異なる場合に好適である。例えば、赤色の発光ダイオード素子11Rが他の素子よりも大きい場合には、発光ダイオード素子11Rを配置するセル23の面積を大きくし、緑色の発光ダイオード素子11Gの輝度が他の素子よりも低い場合には発光ダイオード素子11Gを配置するセル23の面積を大きくするなどが挙げられる。 Further, as shown in FIG. 17C, the pixel 102 may be configured by changing the shape of the cell 23 in accordance with the type of the light emitting diode element 11 to be arranged. In FIG. 17C, the shape of the cell for arranging the red light emitting diode element 11R is a horizontally long rectangle, and the shape of the cell for arranging the blue light emitting diode element 11B and the green light emitting diode element 11G is substantially square. It is said. Even in such an irregular shape and arrangement of the cells 23, it is possible to arrange the elements precisely by self-alignment after dropping the elements into the cells 23 by selective transfer. Such a cell shape and arrangement are suitable when the element size is different depending on the type of element to be arranged, or when the cell area required for realizing the function of the element is different. For example, when the red light emitting diode element 11R is larger than the other elements, the area of the cell 23 in which the light emitting diode element 11R is arranged is increased, and the luminance of the green light emitting diode element 11G is lower than the other elements. For example, the area of the cell 23 in which the light emitting diode element 11G is arranged is increased.
さらに変則的なセル23の配置としては、図17(d)に示すように、配列基板20上に縦横に形成される画素103毎に、セル23の配列を変化させるような例も可能である。この場合にも、素子を選択転写でセル23内に落とした後に自己整合によって精密な素子の配置を行うこが可能である。 Further, as an irregular arrangement of the cells 23, as shown in FIG. 17D, an example in which the arrangement of the cells 23 is changed for each pixel 103 formed vertically and horizontally on the array substrate 20 is also possible. . Also in this case, it is possible to arrange the elements precisely by self-alignment after dropping the elements into the cell 23 by selective transfer.
また、配列基板20上に配列する素子は発光ダイオード素子11に限定せず、図17(e)に示すように、発光ダイオード素子11R,11G,11Bに加えてアクティブチップ11Aを配列することも可能である。素子の転写方法としては、レーザーアブレーションによる素子の剥離以外にも、上述した様に、粘着層上に密集させて配列した素子を光照射や熱照射によって剥離する方法を用いることができる。そのため、画素104毎に発光ダイオード素子11R,11G,11Bを駆動するためのアクティブチップ11Aを配置するためのセル23を形成して、アクティブマトリクス型の表示装置を構成することが可能である。 In addition, the elements arranged on the arrangement substrate 20 are not limited to the light emitting diode elements 11, and as shown in FIG. 17E, the active chips 11A can be arranged in addition to the light emitting diode elements 11R, 11G, and 11B. It is. As the transfer method of the element, the peeling other than elements by laser ablation, as described above, the elements arranged by densely in the adhesive layer can be used a method of peeling by light irradiation or heat irradiation. Therefore, it is possible to form an active matrix display device by forming a cell 23 for disposing an active chip 11A for driving the light emitting diode elements 11R, 11G, and 11B for each pixel 104.
配列基板20に配列する素子としては、アクティブチップの他にも、有機ELなどの自発光素子、各種蛍光体、または図18に示すように微小な基板111上に複数種類の素子112,113,114が実装されている複合素子110(例えばSi−Trサブマウント上のRGBマイクロLEDなど)を用いることができる。本発明の素子配列方法では、配列基板20の表面をセル23で分割して、セル23毎に素子を選択的に転写し、セル23内で素子が自己整合によって素子配置孔24に配置するため、素子の形状や種類に依らずに精密な位置決めを行うことが可能である。したがって、複数種類の素子を変則的なセル配列に対して簡便に配列することができるため、精密な位置決めを行う必要がある複雑な装置を簡単かつ迅速に製造することが可能となる。 As elements arranged on the array substrate 20, in addition to the active chip, self-luminous elements such as organic EL, various phosphors, or a plurality of types of elements 112, 113, A composite element 110 (for example, an RGB micro LED on a Si-Tr submount) on which 114 is mounted can be used. In the element arrangement method of the present invention, the surface of the arrangement substrate 20 is divided by the cells 23, the elements are selectively transferred for each cell 23, and the elements are arranged in the element arrangement holes 24 by self-alignment in the cells 23. It is possible to perform precise positioning regardless of the shape and type of the element. Therefore, since a plurality of types of elements can be easily arranged with respect to an irregular cell arrangement, it is possible to easily and quickly manufacture a complicated apparatus that requires precise positioning.
また、配列基板20上に形成されるセル23の形状は略正方形や長方形などの矩形状である必要は無く、図17(f)に示すような円形状のセル23に発光ダイオード素子11を選択転写して、画素105を構成するとしてもよい。セル23の形状や配列方法に依存せずに、発光ダイオード素子11がセル23領域内に落とし込まれるような選択転写を行うことで、セル23領域内で発光ダイオード素子11の自己整合で精密な位置決めを行うことが可能であるため、自由度の高い電子機器設計を行うことが可能である。 The shape of the cells 23 formed on array substrate 20 is not necessarily a rectangular shape such as a substantially square or rectangular, select light emitting diode element 11 in a circular shape of the cell 23 as shown in FIG. 17 (f) The pixel 105 may be configured by being transferred. By performing selective transfer such that the light emitting diode element 11 is dropped into the cell 23 area without depending on the shape and arrangement method of the cell 23, the light emitting diode element 11 is self-aligned and precise in the cell 23 area. Since positioning can be performed, it is possible to design an electronic device with a high degree of freedom.
10 素子形成基板
11 発光ダイオード素子
12 素子分離溝
20,70,80,90 配列基板
21 基体部
22 セル分割部
23 セル
24 素子配置孔
25,41 電極
26 液体
30 エキシマレーザー発生装置
30a,62 レーザー光
31 マスク
32,64 開口部
33 反射鏡
34,65 レンズ
40 透明導電性インク
42 透明樹脂
50 ノズル
51 ワイパー
52 容器
60 レーザー発生装置
61 回転ミラー
63 マスク
71,91 樹脂層
72 撥水パターン
81 固定用樹脂層
82 固定層
92 膨張パターン
100〜105 画素
110 複合素子
111 微小な基板
112,113,114 素子
DESCRIPTION OF SYMBOLS 10 Element formation board | substrate 11 Light emitting diode element 12 Element separation groove | channel 20, 70, 80, 90 Array substrate 21 Base | substrate part 22 Cell division part 23 Cell 24 Element arrangement | positioning hole 25, 41 Electrode 26 Liquid 30 Excimer laser generator 30a, 62 Laser light 31 Mask 32, 64 Opening 33 Reflecting mirror 34, 65 Lens 40 Transparent conductive ink 42 Transparent resin 50 Nozzle 51 Wiper 52 Container 60 Laser generator 61 Rotating mirror 63 Mask 71, 91 Resin layer 72 Water repellent pattern 81 Fixing resin Layer 82 Fixed layer 92 Expansion pattern 100 to 105 Pixel 110 Composite element 111 Minute substrate 112, 113, 114 element
Claims (24)
前記第二の基板表面に、底部に前記素子を嵌合する凹部である素子配置孔を有し、内側に前記素子配置孔内を含んで液体を保持可能な構造とされるセルを形成する工程と、
前記セル内に液体を導入する工程と、
前記第一の基板上に形成された前記素子を剥離して前記セル内に転写する工程と、
前記セル内の前記液体を除去する前に、前記素子配置孔内に前記素子を自己整合で配置する工程と、を含む
素子配列方法。 An element arrangement method for transferring an element arranged on a first substrate onto a second substrate and arranging the element on the second substrate,
A step of forming a cell on the second substrate surface having an element arrangement hole which is a recess for fitting the element at the bottom, and having a structure capable of holding a liquid inside the element arrangement hole. When,
Introducing a liquid into the cell;
Peeling the element formed on the first substrate and transferring it into the cell;
Arranging the elements in the element arrangement hole in a self-aligned manner before removing the liquid in the cell.
前記素子または前記第二の基板を静電除去した後に、前記素子の転写を行う請求項1〜12のいずれかに記載の素子配列方法。 When transferring the element into the cell before introducing the liquid into the cell,
The element arrangement method according to claim 1, wherein the element is transferred after electrostatically removing the element or the second substrate.
前記素子または前記第二の基板を帯電させた後に、前記素子の転写を行う請求項1〜12のいずれかに記載の素子配列方法。 When transferring the element into the cell before introducing the liquid into the cell,
The element arrangement method according to claim 1, wherein the element is transferred after the element or the second substrate is charged.
前記セル内の前記素子配置孔に前記素子を自己整合で配置して前記液体を除去した後、前記セル内を硬化性材料で充填して硬化し、
その後前記第二の基板を構成する前記基体部を剥離して、前記素子を前記セル分割部の裏面から露出させる請求項4記載の素子配列方法。 Forming the cell division part integrally with the resin layer having the element arrangement hole at the bottom in the cell, exposing the surface of the base part to the bottom of the element arrangement hole;
After the element is arranged in the element arrangement hole in the cell by self-alignment and the liquid is removed, the cell is filled with a curable material and cured,
The element arranging method according to claim 4, wherein the base portion constituting the second substrate is then peeled off to expose the element from the back surface of the cell dividing portion.
前記電極と、前記素子配置孔内に配置した前記素子とを、導電性材料により接続する工程と、を含む請求項1〜17のいずれかに記載の素子配列方法。 Forming an electrode on a portion of the bottom in the cell;
The element arrangement | positioning method in any one of Claims 1-17 including the process of connecting the said electrode and the said element arrange | positioned in the said element arrangement | positioning hole with an electroconductive material.
前記素子を前記素子配置孔に自己整合により配置した後、前記固定用樹脂層が硬化する温度に冷却又は加熱して固定用樹脂層を硬化させることで素子の固定を行う請求項1〜19のいずれかに記載の素子配列方法。 A fixing resin layer made of a thermoplastic resin or a thermosetting resin is formed including the inside of the element arrangement hole in the cell,
The element is fixed by cooling or heating to a temperature at which the fixing resin layer is cured after the element is arranged in the element arrangement hole by self-alignment to cure the fixing resin layer. The element arrangement | sequence method in any one.
前記第三の基板表面に、底部に前記第一の素子又は前記第二の素子を嵌合する凹部である素子配置孔を有し、内側に前記素子配置孔内を含んで液体を保持可能な構造とされるセルを形成する工程と、
前記セル内に液体を導入する工程と、
前記第一の基板上に形成された前記第一の素子を剥離して前記セル内に転写する工程と、
前記第二の基板上に形成された前記第二の素子を剥離して前記セル内に転写する工程と、
前記セル内の前記液体を除去する前に、前記素子配置孔内に前記第一の素子及び第二の素子を自己整合で配置する工程と、を含む
素子配列方法。 An element arrangement method in which a first element arranged on a first substrate and a second element arranged on a second substrate are transferred onto a third substrate and arranged on the third substrate. There,
The surface of the third substrate has an element arrangement hole which is a recess for fitting the first element or the second element at the bottom, and the liquid can be held inside the element arrangement hole. Forming a cell having a structure;
Introducing a liquid into the cell;
Peeling the first element formed on the first substrate and transferring it into the cell;
Peeling the second element formed on the second substrate and transferring it into the cell;
Arranging the first element and the second element in the element arrangement hole in a self-alignment manner before removing the liquid in the cell.
前記樹脂層の前記素子配置孔内に配置される発光素子と、
前記樹脂層の複数の前記セルの底面にそれぞれ配置され、複数の前記発光素子とそれぞれ接続され、所定の方向に延在する第1の配線層と、
前記樹脂層の裏面上に、複数の前記発光素子にそれぞれ接続され、前記第1の配線層と異なる方向に延在する第2の配線層と、を備え、
前記第2の配線層が光透過性の導電性材料より成り、
前記樹脂層の裏面側が表示面側とされる
表示装置。 An element arrangement having a convex cell dividing portion for dividing a plurality of concave cells on the front surface side, provided on the back surface side corresponding to the plurality of cells, and penetrating from the bottom surface of the cell to the back surface side A resin layer having pores;
A light emitting element disposed in the element arrangement hole of the resin layer;
A first wiring layer disposed on the bottom surface of each of the plurality of cells of the resin layer, connected to the plurality of light emitting elements, and extending in a predetermined direction;
A second wiring layer connected to each of the plurality of light emitting elements and extending in a direction different from the first wiring layer on the back surface of the resin layer ;
The second wiring layer is made of a light-transmitting conductive material;
A display device in which a back surface side of the resin layer is a display surface side .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003408663A JP4613489B2 (en) | 2003-12-08 | 2003-12-08 | Element arrangement method and display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003408663A JP4613489B2 (en) | 2003-12-08 | 2003-12-08 | Element arrangement method and display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005174979A JP2005174979A (en) | 2005-06-30 |
JP4613489B2 true JP4613489B2 (en) | 2011-01-19 |
Family
ID=34730280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003408663A Expired - Fee Related JP4613489B2 (en) | 2003-12-08 | 2003-12-08 | Element arrangement method and display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4613489B2 (en) |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1576666A2 (en) * | 2002-12-18 | 2005-09-21 | Koninklijke Philips Electronics N.V. | Manipulation of micrometer-sized electronic objects with liquid droplets |
US9343593B2 (en) | 2007-05-31 | 2016-05-17 | Nthdegree Technologies Worldwide Inc | Printable composition of a liquid or gel suspension of diodes |
US8852467B2 (en) | 2007-05-31 | 2014-10-07 | Nthdegree Technologies Worldwide Inc | Method of manufacturing a printable composition of a liquid or gel suspension of diodes |
US8809126B2 (en) | 2007-05-31 | 2014-08-19 | Nthdegree Technologies Worldwide Inc | Printable composition of a liquid or gel suspension of diodes |
US9018833B2 (en) | 2007-05-31 | 2015-04-28 | Nthdegree Technologies Worldwide Inc | Apparatus with light emitting or absorbing diodes |
US20100244056A1 (en) * | 2007-05-31 | 2010-09-30 | Nthdegree Technologies Worldwide Inc. | Addressable Or Static Light Emitting, Power Generating Or Other Electronic Apparatus |
US8674593B2 (en) | 2007-05-31 | 2014-03-18 | Nthdegree Technologies Worldwide Inc | Diode for a printable composition |
US9419179B2 (en) | 2007-05-31 | 2016-08-16 | Nthdegree Technologies Worldwide Inc | Diode for a printable composition |
US8877101B2 (en) | 2007-05-31 | 2014-11-04 | Nthdegree Technologies Worldwide Inc | Method of manufacturing a light emitting, power generating or other electronic apparatus |
US8415879B2 (en) | 2007-05-31 | 2013-04-09 | Nthdegree Technologies Worldwide Inc | Diode for a printable composition |
US8846457B2 (en) | 2007-05-31 | 2014-09-30 | Nthdegree Technologies Worldwide Inc | Printable composition of a liquid or gel suspension of diodes |
US9425357B2 (en) | 2007-05-31 | 2016-08-23 | Nthdegree Technologies Worldwide Inc. | Diode for a printable composition |
US8384630B2 (en) | 2007-05-31 | 2013-02-26 | Nthdegree Technologies Worldwide Inc | Light emitting, photovoltaic or other electronic apparatus and system |
US9534772B2 (en) | 2007-05-31 | 2017-01-03 | Nthdegree Technologies Worldwide Inc | Apparatus with light emitting diodes |
US8127477B2 (en) | 2008-05-13 | 2012-03-06 | Nthdegree Technologies Worldwide Inc | Illuminating display systems |
US7992332B2 (en) | 2008-05-13 | 2011-08-09 | Nthdegree Technologies Worldwide Inc. | Apparatuses for providing power for illumination of a display object |
JP4888473B2 (en) | 2008-11-20 | 2012-02-29 | ソニー株式会社 | Mounting board |
EP2374427A4 (en) * | 2009-06-09 | 2014-07-09 | Fujikura Ltd | Optical device, laser irradiation device and laser therapy device |
JP2011100832A (en) * | 2009-11-05 | 2011-05-19 | Sharp Corp | Method for disposing micro element, micro element mount body, and display device |
JP2011227814A (en) * | 2010-04-22 | 2011-11-10 | Hitachi Chem Co Ltd | Semiconductor device, semiconductor device manufacturing apparatus, semiconductor device manufacturing method, and ic tag |
JP6334945B2 (en) * | 2014-02-17 | 2018-05-30 | スタンレー電気株式会社 | Semiconductor light emitting device, semiconductor light emitting element, and method for manufacturing semiconductor light emitting device |
JP2016025205A (en) * | 2014-07-18 | 2016-02-08 | スタンレー電気株式会社 | Method of manufacturing semiconductor optical device |
KR101653478B1 (en) * | 2015-01-12 | 2016-09-01 | 영남대학교 산학협력단 | Top-down type graphene transfer method |
EP3207572B1 (en) * | 2015-04-01 | 2019-06-05 | Goertek. Inc | Transferring method and manufacturing method of micro-led |
FR3039700B1 (en) * | 2015-07-31 | 2017-08-11 | Commissariat Energie Atomique | METHOD OF DIRECT COLLAGE WITH ULTRASOUND SELF ALIGNMENT |
EP3262694B1 (en) * | 2015-10-20 | 2019-08-21 | Goertek. Inc | Method for transferring micro-leds and method for manufacturing micro-led device |
CN107833527B (en) * | 2016-09-15 | 2021-06-22 | 伊乐视有限公司 | Light emitting display with printed light altering structures |
CN107833525B (en) * | 2016-09-15 | 2020-10-27 | 伊乐视有限公司 | System and method for fluid assembly of light emitting displays |
KR102019252B1 (en) * | 2016-09-15 | 2019-11-14 | 일룩스 아이엔씨. | Emissive display with light management system |
TWI655765B (en) * | 2016-09-26 | 2019-04-01 | 啟端光電股份有限公司 | Microled display panel |
EP3552465A1 (en) * | 2016-12-09 | 2019-10-16 | Lumileds Holding B.V. | Method of manufacturing an led carrier assembly |
FR3065321B1 (en) * | 2017-04-14 | 2019-06-21 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | METHOD FOR MANUFACTURING EMISSIVE LED DISPLAY DEVICE |
US10062674B1 (en) * | 2017-04-28 | 2018-08-28 | Corning Incorporated | Systems and methods for display formation using photo-machinable material substrate layers |
KR20240130146A (en) * | 2017-06-12 | 2024-08-28 | 쿨리케 & 소파 네덜란드 비.브이. | Parallel assembly of discrete components onto a substrate |
US11201077B2 (en) | 2017-06-12 | 2021-12-14 | Kulicke & Soffa Netherlands B.V. | Parallel assembly of discrete components onto a substrate |
KR102022303B1 (en) * | 2018-03-15 | 2019-09-18 | 한국광기술원 | Apparatus and Method for Manufacturing Micro LED Package |
FR3084204B1 (en) * | 2018-07-18 | 2021-05-14 | Commissariat Energie Atomique | PROCESS FOR INTEGRATING STRUCTURES INTO A SUPPORT AND ASSOCIATED DEVICE |
WO2020136764A1 (en) * | 2018-12-26 | 2020-07-02 | 日立化成株式会社 | Method for manufacturing electronic component package |
EP3742477A1 (en) | 2019-05-21 | 2020-11-25 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO | Light induced selective transfer of components using a jet of melted adhesive |
KR102173350B1 (en) * | 2019-06-28 | 2020-11-03 | 엘지전자 주식회사 | Method for manufacturing display device and substrate for manufacturing display device |
KR102302475B1 (en) * | 2020-01-22 | 2021-09-16 | 엘지전자 주식회사 | Substrate chuck for self assembly of semiconductor light emitting device |
EP4071789A4 (en) | 2019-09-19 | 2024-02-14 | LG Electronics Inc. | Substrate chuck for self-assembly of semiconductor light-emitting diodes |
JP6886213B1 (en) | 2020-06-20 | 2021-06-16 | アルディーテック株式会社 | Semiconductor light emitting device chip integration device and its manufacturing method |
JP6803595B1 (en) | 2020-09-16 | 2020-12-23 | アルディーテック株式会社 | Semiconductor light emitting device chip integration device and its manufacturing method |
CN114335286B (en) * | 2020-09-30 | 2024-01-23 | Tcl科技集团股份有限公司 | Bonding method of LED chip |
KR20230114283A (en) * | 2021-01-04 | 2023-08-01 | 엘지전자 주식회사 | Substrate assembly of display device using light emitting element and manufacturing method thereof |
TWI824688B (en) | 2022-08-31 | 2023-12-01 | 晶呈科技股份有限公司 | Bonding and transfer methods of chip packages |
CN116312280B (en) * | 2023-05-24 | 2023-08-25 | 惠科股份有限公司 | Lamp panel, manufacturing method of lamp panel and display device |
CN116914062B (en) * | 2023-09-14 | 2023-11-21 | 罗化芯显示科技开发(江苏)有限公司 | Transfer method of miniature light-emitting unit |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0653258A (en) * | 1992-07-29 | 1994-02-25 | Mitsubishi Cable Ind Ltd | Manufacture of display |
JPH07235696A (en) * | 1994-02-25 | 1995-09-05 | Sharp Corp | Chip part type led and manufacture thereof |
JPH09120943A (en) * | 1995-06-07 | 1997-05-06 | Univ California | Method of mounting microstrocture on substrate |
JP2000049388A (en) * | 1998-07-27 | 2000-02-18 | Matsushita Electron Corp | Semiconductor device and manufacture thereof |
JP2000223752A (en) * | 1999-01-29 | 2000-08-11 | Nichia Chem Ind Ltd | Optical semiconductor device and its forming method |
JP2000236111A (en) * | 1999-02-15 | 2000-08-29 | Matsushita Electric Works Ltd | Light source equipment |
JP2001257218A (en) * | 2000-03-10 | 2001-09-21 | Sony Corp | Method for mounting fine chip |
JP2001291583A (en) * | 2000-04-07 | 2001-10-19 | Seiko Epson Corp | Organic el element and manufacturing method of organic el element |
JP2001332383A (en) * | 2000-03-17 | 2001-11-30 | Seiko Epson Corp | Manufacturing method of organic el display body, arrangement method of semiconductor element, manufacturing method of semiconductor device |
JP2002100758A (en) * | 2000-07-06 | 2002-04-05 | Seiko Epson Corp | Device comprising functional block, manufacturing method thereof, and optical transmission device |
JP2002231877A (en) * | 2001-02-06 | 2002-08-16 | Sony Corp | Element array type device, method for manufacturing element array type device and image display device |
JP2003209295A (en) * | 2002-01-16 | 2003-07-25 | Sony Corp | Electronic component, manufacturing method therefor and image display device using the same |
JP2003209397A (en) * | 2002-01-16 | 2003-07-25 | Sony Corp | Component allocation method |
JP2003216052A (en) * | 2002-01-17 | 2003-07-30 | Sony Corp | Method for arraying element, method for manufacturing display device and display device |
JP2003272871A (en) * | 2002-03-14 | 2003-09-26 | Toshiba Corp | Self-luminous display device and its manufacturing method |
JP2003347669A (en) * | 2002-05-27 | 2003-12-05 | Kyocera Corp | Method of manufacturing surface emission laser |
-
2003
- 2003-12-08 JP JP2003408663A patent/JP4613489B2/en not_active Expired - Fee Related
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0653258A (en) * | 1992-07-29 | 1994-02-25 | Mitsubishi Cable Ind Ltd | Manufacture of display |
JPH07235696A (en) * | 1994-02-25 | 1995-09-05 | Sharp Corp | Chip part type led and manufacture thereof |
JPH09120943A (en) * | 1995-06-07 | 1997-05-06 | Univ California | Method of mounting microstrocture on substrate |
JP2000049388A (en) * | 1998-07-27 | 2000-02-18 | Matsushita Electron Corp | Semiconductor device and manufacture thereof |
JP2000223752A (en) * | 1999-01-29 | 2000-08-11 | Nichia Chem Ind Ltd | Optical semiconductor device and its forming method |
JP2000236111A (en) * | 1999-02-15 | 2000-08-29 | Matsushita Electric Works Ltd | Light source equipment |
JP2001257218A (en) * | 2000-03-10 | 2001-09-21 | Sony Corp | Method for mounting fine chip |
JP2001332383A (en) * | 2000-03-17 | 2001-11-30 | Seiko Epson Corp | Manufacturing method of organic el display body, arrangement method of semiconductor element, manufacturing method of semiconductor device |
JP2001291583A (en) * | 2000-04-07 | 2001-10-19 | Seiko Epson Corp | Organic el element and manufacturing method of organic el element |
JP2002100758A (en) * | 2000-07-06 | 2002-04-05 | Seiko Epson Corp | Device comprising functional block, manufacturing method thereof, and optical transmission device |
JP2002231877A (en) * | 2001-02-06 | 2002-08-16 | Sony Corp | Element array type device, method for manufacturing element array type device and image display device |
JP2003209295A (en) * | 2002-01-16 | 2003-07-25 | Sony Corp | Electronic component, manufacturing method therefor and image display device using the same |
JP2003209397A (en) * | 2002-01-16 | 2003-07-25 | Sony Corp | Component allocation method |
JP2003216052A (en) * | 2002-01-17 | 2003-07-30 | Sony Corp | Method for arraying element, method for manufacturing display device and display device |
JP2003272871A (en) * | 2002-03-14 | 2003-09-26 | Toshiba Corp | Self-luminous display device and its manufacturing method |
JP2003347669A (en) * | 2002-05-27 | 2003-12-05 | Kyocera Corp | Method of manufacturing surface emission laser |
Also Published As
Publication number | Publication date |
---|---|
JP2005174979A (en) | 2005-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4613489B2 (en) | Element arrangement method and display device | |
JP4055405B2 (en) | Electronic component and manufacturing method thereof | |
CN109075184B (en) | Light emitting diode | |
JP3608615B2 (en) | Device transfer method, device array method using the same, and image display device manufacturing method | |
JP3906653B2 (en) | Image display device and manufacturing method thereof | |
US6972204B2 (en) | Method of transferring devices, method of arranging devices using the same, and method of manufacturing an image display system | |
US20230008806A1 (en) | Laser printing of color converter devices on micro led display devices and methods | |
JP3994681B2 (en) | Element arrangement method and image display device manufacturing method | |
JP2002344011A (en) | Display element and display unit using the same | |
JP2002313914A (en) | Method for forming wiring, method for arranging element using it and method for manufacturing image display device | |
US9508695B2 (en) | Method of manufacturing light emitting device | |
EP3796378B1 (en) | Device for self-assembling semiconductor light-emitting diodes | |
JP3890921B2 (en) | Element arrangement method and image display device manufacturing method | |
JP2008109156A (en) | Electronic components, method of manufacturing the same, and image display device using the same | |
JP2022542259A (en) | Inkjet printing device, method for aligning bipolar elements, and method for manufacturing display device | |
JP2003347524A (en) | Transferring method of element, arraying method of element, and manufacturing method of image display | |
JP2002368289A (en) | Resin forming element, image display, and illumination equipment, and method of manufacturing the same | |
JP4701537B2 (en) | Device transfer method and image display device manufacturing method | |
JP7383430B2 (en) | Display device manufacturing method and display device | |
US20150179894A1 (en) | Methods of locating differently shaped or differently sized led die in a submount | |
JP2002343944A (en) | Transferring method of electronic part, arraying method of element, and manufacturing method of image display device | |
JP2002314053A (en) | Chip part transfer method, element arraying method using the same, and manufacturing method of image display device | |
JP2003162231A (en) | Method of manufacturing element, method of arraying element and method of manufacturing image display device | |
JP4691793B2 (en) | Method for manufacturing element array type device | |
JP2003208106A (en) | Element transfer method, electronic application device, image display device, method of manufacturing resin- formed element, and method of manufacturing image display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050527 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050617 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060724 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090625 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100921 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101004 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |