TWI650897B - Fuel cell electrode material, method for manufacturing fuel cell electrode material, and fuel cell device - Google Patents
Fuel cell electrode material, method for manufacturing fuel cell electrode material, and fuel cell device Download PDFInfo
- Publication number
- TWI650897B TWI650897B TW105131721A TW105131721A TWI650897B TW I650897 B TWI650897 B TW I650897B TW 105131721 A TW105131721 A TW 105131721A TW 105131721 A TW105131721 A TW 105131721A TW I650897 B TWI650897 B TW I650897B
- Authority
- TW
- Taiwan
- Prior art keywords
- fuel cell
- electrode material
- cell electrode
- catalyst
- cathode
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8657—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8663—Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/8807—Gas diffusion layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8828—Coating with slurry or ink
- H01M4/8832—Ink jet printing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8875—Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0232—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0236—Glass; Ceramics; Cermets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
一種燃料電池電極材料在此被揭示,包含數個孔洞,該等孔洞具有一約500nm至5mm的實質上均一尺寸、具有一變化量小於約20%,及具有一約為40-85%的孔隙率。該燃料電池電極材料可以被使用於一燃料電池裝置中的一觸媒層、一氣體融合層或一水處理層。包含複數具有不同設計的細微陣列多孔燃料電池電極材料的複數燃料電池裝置及製備細微陣列多孔燃料電池電極材料的方法也在此被揭示。A fuel cell electrode material is disclosed herein comprising a plurality of pores having a substantially uniform size of from about 500 nm to about 5 mm, a variation of less than about 20%, and a porosity of from about 40 to about 85%. rate. The fuel cell electrode material can be used in a catalyst layer, a gas fusion layer or a water treatment layer in a fuel cell device. A plurality of fuel cell devices comprising a plurality of fine array porous fuel cell electrode materials having different designs and methods of preparing fine array porous fuel cell electrode materials are also disclosed herein.
Description
本發明是有關於一種用於複數燃料電池裝置的燃料電池電極材料,特別是指一種細微陣列多孔燃料電池電極材料及該燃料電池電極材料在複數燃料電池裝置中的應用。The present invention relates to a fuel cell electrode material for a plurality of fuel cell devices, and more particularly to a fine array porous fuel cell electrode material and the use of the fuel cell electrode material in a plurality of fuel cell devices.
複數燃料電池是電化學裝置的一種。該電化學裝置將一燃料中的化學能透過使用一氧化劑進行一化學反應轉換成電能。該燃料包括氫及例如柴油及甲醇的碳氫化合物。該氧化劑例如氧氣或過氧化氫。由於燃料電池的高能源效率及只要有燃料供給就會持續產生電力的能力,使得該燃料電池具有廣泛的應用,包括交通運輸、物料輸送、固定式後備電力、移動式後備電力及緊急後備電力等應用。A plurality of fuel cells are one type of electrochemical device. The electrochemical device converts chemical energy in a fuel into electrical energy by performing a chemical reaction using an oxidant. The fuel includes hydrogen and hydrocarbons such as diesel and methanol. The oxidizing agent is, for example, oxygen or hydrogen peroxide. Due to the high energy efficiency of the fuel cell and the ability to continuously generate electricity as long as there is fuel supply, the fuel cell has a wide range of applications, including transportation, material handling, stationary backup power, mobile backup power and emergency backup power. application.
一燃料電池典型地需要在陰極組件及陽極組件上存在有複數觸媒層,以降低用來進行產生電力的化學反應的活化能。該觸媒層一般被設計具有複數細微地分散的晶粒,該等晶粒為在一導電載體上的貴金屬觸媒,且該導電載體具有高表面積以增加該觸媒的活性表面面積及電催化活性。該貴金屬觸媒例如鉑,且該導電載體例如碳紙、碳布及碳奈米管。然而,如此的一構造通常存在有例如高成本及信賴性不足的問題,因而使得複數燃料電池的實務應用受到限制。A fuel cell typically requires a plurality of catalyst layers on the cathode assembly and the anode assembly to reduce the activation energy of the chemical reaction used to generate electricity. The catalyst layer is generally designed to have a plurality of finely dispersed crystal grains which are noble metal catalysts on a conductive support, and which have a high surface area to increase the active surface area of the catalyst and electrocatalysis active. The noble metal catalyst is, for example, platinum, and the conductive carrier is, for example, carbon paper, carbon cloth, and carbon nanotubes. However, such a configuration generally has problems such as high cost and insufficient reliability, thus limiting the practical application of the plural fuel cells.
因此,本發明的第一目的,即在提供一種用於一燃料電池裝置的一燃料電池電極材料。Accordingly, a first object of the present invention is to provide a fuel cell electrode material for a fuel cell device.
於是,本發明燃料電池電極材料典型地包含一細微陣列多孔材料,包括數個孔洞,其中,該等孔洞具有一約500nm至5mm的孔隙尺寸,且較佳地約1000-50000nm;該等孔洞的該尺寸實質上均一且變化量小於約20%;及該細微陣列多孔材料具有一約為40-85%的孔隙率。在一些實施例中,該細微陣列多孔材料可以是由一例如鎳、鋁、銅、金、銀、鈦、鐵、鉑、鈀、釕、錳、鈷或鉻的金屬所組成。在一些實施例中,該細微陣列多孔材料可以是由一例如不鏽鋼、鉑-鈷、鉑-鐵、鉑-鉻、鉑-鎳、鉑-鈦、鉑-錳、鉑-銅、鉑-釩、鉑-鉻-鈷、鉑-鐵-鉻、鉑-鐵-錳、鉑-鐵-鈷、鉑-鐵-鎳、鉑-鐵-銅、鉑-鉻-銅或鉑-鈷-鎵的合金所組成。在一些實施例中,該細微陣列多孔材料可以是由一選自於CoTMPP-TiO2 、MnOx -CoTMPP、CoFe2 O4 、Pt-WO3 、Pt-TiO2 、Pt-Cu-MOx 、MnO2 、CrO2 、Cux Mny Oz , LaMnO3 及 La1-x Srx FeO3 的金屬氧化物所組成。Thus, the fuel cell electrode material of the present invention typically comprises a fine array of porous materials comprising a plurality of pores, wherein the pores have a pore size of from about 500 nm to 5 mm, and preferably from about 1000 to 50,000 nm; The size is substantially uniform and varies by less than about 20%; and the fine array porous material has a porosity of about 40-85%. In some embodiments, the fine array porous material can be composed of a metal such as nickel, aluminum, copper, gold, silver, titanium, iron, platinum, palladium, rhodium, manganese, cobalt or chromium. In some embodiments, the fine array porous material may be composed of, for example, stainless steel, platinum-cobalt, platinum-iron, platinum-chromium, platinum-nickel, platinum-titanium, platinum-manganese, platinum-copper, platinum-vanadium, Alloys of platinum-chromium-cobalt, platinum-iron-chromium, platinum-iron-manganese, platinum-iron-cobalt, platinum-iron-nickel, platinum-iron-copper, platinum-chromium-copper or platinum-cobalt-gallium composition. In some embodiments, the fine array porous material may be selected from the group consisting of CoTMPP-TiO 2 , MnO x -CoTMPP, CoFe 2 O 4 , Pt-WO 3 , Pt-TiO 2 , Pt-Cu-MO x , It is composed of metal oxides of MnO 2 , CrO 2 , Cu x Mn y O z , LaMnO 3 and La 1-x Sr x FeO 3 .
在一些實施例中,一燃料電池電極材料可以用在該陰極觸媒層或該陽極觸媒層,且典型地包含一具有一約為74%的孔隙率的細微陣列多孔材料。在一些實施例中,該細微陣列多孔材料實質上完全是一觸媒材料所組成:例如一金屬(例如釕、鈀、鎳、鋁、銅、銀、金、鈦、鐵、鉑、錳、鈷及鉻)、一合金(例如鉑系合金,該鉑系合金例如鉑-鈷、鉑-鐵、鉑-鉻、鉑-鎳、鉑-鈦、鉑-錳、鉑-銅、鉑-釩、鉑-鉻-鈷、鉑-鐵-鉻、鉑-鐵-錳、鉑-鐵-鈷、鉑-鐵-鎳、鉑-鐵-銅、鉑-鉻-銅、鉑-鈷-鎵)或一金屬氧化物(例如CoTMPP-TiO2 、MnOx -CoTMPP、CoFe2 O4 、Pt-WO3 、Pt-TiO2 、Pt-Cu-MOx MnO2 、CrO2 、Cux Mny Oz 、LaMnO3 及La1-x Srx FeO3 )。在一些其它實施例中,該細微陣列多孔材料可以包含一觸媒載體及一觸媒成分。該觸媒載體是由一成本效益高的金屬(例如鎳、鋁、銅、鐵、鈦、鉻、錳、鈷及鋅)、一導電陶瓷材料(例如氧化鋅、一氧化二銅、氧化銦錫、AZO、IZO、IGZO)或一導電高分子(例如聚吡咯、聚苯硫醚、酞菁、聚苯胺及聚噻吩)所組成。該觸媒成分包含鉑、釕、鈀、CoPc、CoTMPP-TiO2 、MnOx -CoTMPP 及 CoFe2 O4 中至少一者。在一些實施例中,該觸媒成分可以塗在該觸媒載體的表面上。在一些其它實施例中,作為該觸媒成分的複數粒子可以設置在該細微陣列多孔觸媒載體的該等孔洞中。在一些其它實施例中,作為觸媒成分的該等粒子可以貼附在作為一例如碳奈米管或碳奈米球的第二觸媒載體的複數粒子的表面上,且它們是一起設置在該細微陣列多孔觸媒載體的該等孔洞中。In some embodiments, a fuel cell electrode material can be used in the cathode catalyst layer or the anode catalyst layer, and typically comprises a fine array of porous material having a porosity of about 74%. In some embodiments, the fine array porous material consists essentially entirely of a catalytic material: for example, a metal (eg, ruthenium, palladium, nickel, aluminum, copper, silver, gold, titanium, iron, platinum, manganese, cobalt) And chromium), an alloy (such as a platinum alloy, such as platinum-cobalt, platinum-iron, platinum-chromium, platinum-nickel, platinum-titanium, platinum-manganese, platinum-copper, platinum-vanadium, platinum - chromium-cobalt, platinum-iron-chromium, platinum-iron-manganese, platinum-iron-cobalt, platinum-iron-nickel, platinum-iron-copper, platinum-chromium-copper, platinum-cobalt-gallium, or a metal Oxide (for example, CoTMPP-TiO 2 , MnO x -CoTMPP, CoFe 2 O 4 , Pt-WO 3 , Pt-TiO 2 , Pt-Cu-MO x MnO 2 , CrO 2 , Cu x Mn y O z , LaMnO 3 And La 1-x Sr x FeO 3 ). In some other embodiments, the fine array porous material can comprise a catalyst carrier and a catalyst component. The catalyst carrier is composed of a cost-effective metal (such as nickel, aluminum, copper, iron, titanium, chromium, manganese, cobalt and zinc), a conductive ceramic material (such as zinc oxide, copper oxide, indium tin oxide). , AZO, IZO, IGZO) or a conductive polymer (such as polypyrrole, polyphenylene sulfide, phthalocyanine, polyaniline and polythiophene). The catalyst component contains at least one of platinum, rhodium, palladium, CoPc, CoTMPP-TiO 2 , MnO x -CoTMPP, and CoFe 2 O 4 . In some embodiments, the catalyst component can be applied to the surface of the catalyst carrier. In some other embodiments, a plurality of particles as the catalyst component can be disposed in the pores of the fine array porous catalyst support. In some other embodiments, the particles as a catalyst component may be attached to the surface of a plurality of particles as a second catalyst carrier such as a carbon nanotube or carbon nanotube, and they are disposed together The pores of the fine array of porous catalyst support.
在一些實施例中,一燃料電池電極材料可以使用於對著該陰極或該陽極的該水處理層,且該燃料電池電極材料典型地經表面處理的,例如在該細微陣列多孔燃料電池電極材料的一指定區域藉由該金屬組成的氧化反應或塗上一親水性材料,以使該指定區域變成親水性。該水處理層電極材料的親水性表面處理在一些實施例中可以藉由利用一親水性電漿塗在該電極材料來完成、在一些實例中可以藉由利用一界面活性劑(例如十二烷基磺酸銨、十二烷基磺酸鈉、丁二酸二辛酯磺酸鈉、全氟辛烷磺酸鹽、全氟丁基磺酸鹽、月桂醯肌氨酸鈉、全氟壬酸酯或全氟辛酸酯)對該電極材料進行處理來完成,或在一些實施例中藉由利用一具有複數親水性官能基[例如羥基(OH)或羧酸基(COOH)]的化學試劑對該電極材料進行化學修飾來完成。In some embodiments, a fuel cell electrode material can be used for the water treatment layer facing the cathode or the anode, and the fuel cell electrode material is typically surface treated, such as in the fine array porous fuel cell electrode material. A designated region is oxidized by the metal or coated with a hydrophilic material to render the designated region hydrophilic. Hydrophilic surface treatment of the water treatment layer electrode material can be accomplished in some embodiments by coating the electrode material with a hydrophilic plasma, in some instances by utilizing a surfactant (eg, dodecane) Ammonium sulfonate, sodium dodecyl sulfonate, sodium dioctyl succinate, perfluorooctane sulfonate, perfluorobutyl sulfonate, sodium laurate sarcosinate, perfluorodecanoic acid The electrode material is treated with an ester or perfluorooctanoate, or in some embodiments by using a chemical having a plurality of hydrophilic functional groups [eg, hydroxyl (OH) or carboxylic acid (COOH)] The material is chemically modified to complete.
在一些實施例中,一燃料電池電極材料可以使用於對著該陰極或該陽極的氣體擴散層,且該燃料電池電極材料典型地經表面處理,例如在一指定區域透過塗上一疏水性材料,使該指定區域變成疏水性。該氣體擴散層電極材料的疏水性表面處理在一些實施例中可以藉由利用一疏水性電漿塗在該電極材料上來完成,或在一些實例中可以藉由利用氟矽酮、矽氧烷或氟碳化合物對該電極材料進行處理來完成。In some embodiments, a fuel cell electrode material can be used for the gas diffusion layer opposite the cathode or the anode, and the fuel cell electrode material is typically surface treated, such as by applying a hydrophobic material in a designated area. To make the designated area hydrophobic. Hydrophobic surface treatment of the gas diffusion layer electrode material may be accomplished in some embodiments by coating a hydrophobic material with the hydrophobic material, or in some instances by using fluorononanone, decane or The fluorocarbon is processed to treat the electrode material.
在此也揭示一種應用上述提及的細微陣列多孔燃料電池電極材料的燃料電池裝置。該燃料電池裝置包括一膜電解質組件。該膜電解質組件包含一聚合物電解質膜、一陽極觸媒層及一陰極觸媒層,其中,該聚合物電解質膜夾在該陽極層及該陰極層間;該陽極觸媒層及該陰極觸媒層中至少一者包含一具有一約為74%的孔隙率的細微陣列多孔燃料電池電極材料及一觸媒。Also disclosed herein is a fuel cell device employing the above-mentioned fine array porous fuel cell electrode material. The fuel cell device includes a membrane electrolyte assembly. The membrane electrolyte assembly comprises a polymer electrolyte membrane, an anode catalyst layer and a cathode catalyst layer, wherein the polymer electrolyte membrane is sandwiched between the anode layer and the cathode layer; the anode catalyst layer and the cathode catalyst At least one of the layers comprises a fine array of porous fuel cell electrode material having a porosity of about 74% and a catalyst.
在一些該燃料電池裝置的實施例中,該燃料電池電極材料是由一金屬所構成,且該金屬選自於鎳、鋁、銅、鐵、鈦、鉻、錳、鈷及鋅;該觸媒是鉑、釕、鈀、CoPc、CoTMPP-TiO2 、MnOx -CoTMPP 或CoFe2 O4 中至少一者。在一些實施例中,該觸媒是均勻地塗在該細微陣列多孔材料的表面;在一些其它實施例中,作為該觸媒的複數粒子是設置在該細微陣列多孔材料的該等孔洞內。在一些其它實施例中,該陽極觸媒層及該陰極觸媒層中至少一者還包含一觸媒載體,例如碳奈米管或碳奈米球,其中,作為該觸媒載體的複數粒子是設置在該陽極觸媒層及該陰極觸媒層中至少一者的該細微陣列多孔材料的該等孔洞中,且作為該觸媒載體的該等粒子承載有複數粒子且該等粒子是在做為該觸媒載體的該等粒子的外表面上的該觸媒粒子。In some embodiments of the fuel cell device, the fuel cell electrode material is composed of a metal selected from the group consisting of nickel, aluminum, copper, iron, titanium, chromium, manganese, cobalt, and zinc; It is at least one of platinum, rhodium, palladium, CoPc, CoTMPP-TiO 2 , MnO x -CoTMPP or CoFe 2 O 4 . In some embodiments, the catalyst is uniformly applied to the surface of the fine array of porous material; in some other embodiments, the plurality of particles as the catalyst are disposed within the pores of the fine array of porous material. In some other embodiments, at least one of the anode catalyst layer and the cathode catalyst layer further comprises a catalyst carrier, such as a carbon nanotube or a carbon nanosphere, wherein the plurality of particles as the catalyst carrier Provided in the pores of the fine array porous material of at least one of the anode catalyst layer and the cathode catalyst layer, and the particles as the catalyst carrier carry a plurality of particles and the particles are The catalyst particles on the outer surface of the particles as the catalyst carrier.
在一些實施例中,該燃料電池裝置包含一組合式觸媒-氣體擴散層的設計。在這些實施例中,該陽極觸媒層及該陰極觸媒層中至少一者還被建構來使該等反應氣體通過其中而擴散。在一些實施例中,進一步該陽極觸媒層、該陰極觸媒層或兩者的一指定區域經表面處理而變成疏水性,以利於該等反應氣體通過其中而擴散。在一些實施例中,該燃料電池裝置可以包含一分離式觸媒-氣體擴散層的設計。在這些實施例中,該燃料電池裝置還包含一陽極氣體擴散層及一陰極氣體擴散層,其中,該陽極氣體擴散層及該陰極氣體擴散層分別地排列在該陽觸媒層及該陰極觸媒層之相反於該聚合物電解質膜的一側面上;且該陽極氣體擴散層及該陰極氣體擴散層中至少一者包含一如上所述的第二細微陣列燃料電池電極材料。在一些實施例中,該陽極氣體擴散層及該陰極氣體擴散層中至少一者的該第二細微陣列燃料電池電極材料的該孔洞尺寸是小於在該陽觸媒層及該陰極觸媒層中至少一者的燃料電池電極材料的該孔洞尺寸;且該陽極氣體擴散層及該陰極氣體擴散層中至少一者還包含一選自於釕及鈀中至少一者的第二觸媒。In some embodiments, the fuel cell device includes a design of a combined catalyst-gas diffusion layer. In these embodiments, at least one of the anode catalyst layer and the cathode catalyst layer is also constructed to diffuse the reactive gases therethrough. In some embodiments, a specified region of the anode catalyst layer, the cathode catalyst layer, or both is surface treated to become hydrophobic to facilitate diffusion of the reactant gases therethrough. In some embodiments, the fuel cell device can include a design of a separate catalyst-gas diffusion layer. In these embodiments, the fuel cell device further includes an anode gas diffusion layer and a cathode gas diffusion layer, wherein the anode gas diffusion layer and the cathode gas diffusion layer are respectively arranged on the anode catalyst layer and the cathode contact The dielectric layer is opposite to one side of the polymer electrolyte membrane; and at least one of the anode gas diffusion layer and the cathode gas diffusion layer comprises a second fine array fuel cell electrode material as described above. In some embodiments, the hole size of the second fine array fuel cell electrode material of at least one of the anode gas diffusion layer and the cathode gas diffusion layer is smaller than in the anode catalyst layer and the cathode catalyst layer. The hole size of the at least one fuel cell electrode material; and at least one of the anode gas diffusion layer and the cathode gas diffusion layer further comprises a second catalyst selected from at least one of cerium and palladium.
在一些實施例中,該燃料電池裝置還包含一水處理層。該水處理層排列在該陽極氣體擴散層、該陽極觸媒層、該陰極觸媒層及該陰極氣體擴散層的底部,其中該水處理層包含一如上所揭露的第三細微陣列多孔燃料電池電極材料,其中在該水處理層的該第三細微陣列多孔燃料電池電極材料的孔洞尺寸是大於在該陽極觸媒層及該陰極觸媒層中至少一者的該細微陣列多孔燃料電池電極材料的孔洞尺寸,且是大於在該陽極氣體擴散層及該陰極氣體擴散層中至少一者的該第二細微陣列多孔燃料電池電極材料的孔洞尺寸;及在該水處理層中的該第三細微陣列多孔燃料電池電極材料是選擇地經表面處理以形成親水性。在一些實施例中,該燃料電池裝置還包含一陽極水處理層及一陰極水處理層,其中該陽極水處理層及該陰極水處理層是分別地排列在該陽極觸媒層及該聚合物電解質膜間,及該陰極觸媒層及該聚合物電解質膜間;該陽極水處理層及該陰極水處理層中至少一者包含一第二細微陣列多孔燃料電池電極材料,及該第二細微陣列多孔燃料電池電極材料的孔洞尺寸是大於在該陽極觸媒層及該陰極觸媒層中至少一者的該細微陣列多孔燃料電池電極材料的孔洞尺寸;及該陽極觸媒層及該陰極觸媒層被建構來允許該反應氣體在其中擴散。In some embodiments, the fuel cell device further comprises a water treatment layer. The water treatment layer is arranged at the bottom of the anode gas diffusion layer, the anode catalyst layer, the cathode catalyst layer and the cathode gas diffusion layer, wherein the water treatment layer comprises a third fine array porous fuel cell as disclosed above An electrode material, wherein a pore size of the third fine array porous fuel cell electrode material in the water treatment layer is greater than the fine array porous fuel cell electrode material in at least one of the anode catalyst layer and the cathode catalyst layer a pore size, and a pore size larger than the second fine array porous fuel cell electrode material of at least one of the anode gas diffusion layer and the cathode gas diffusion layer; and the third fineness in the water treatment layer The array porous fuel cell electrode material is selectively surface treated to form hydrophilicity. In some embodiments, the fuel cell device further includes an anode water treatment layer and a cathode water treatment layer, wherein the anode water treatment layer and the cathode water treatment layer are respectively arranged on the anode catalyst layer and the polymer Between the electrolyte membranes, and between the cathode catalyst layer and the polymer electrolyte membrane; at least one of the anode water treatment layer and the cathode water treatment layer comprises a second fine array porous fuel cell electrode material, and the second fine The pore size of the array porous fuel cell electrode material is larger than the pore size of the fine array porous fuel cell electrode material of at least one of the anode catalyst layer and the cathode catalyst layer; and the anode catalyst layer and the cathode contact The media layer is constructed to allow the reaction gas to diffuse therein.
在一些實施例中,該燃料電池裝置包含一膜電解質組件,其中該膜電解質組件包含依序從陽極到陰極的一陽極氣體擴散層、一陽極觸媒層、一聚合物電解質膜及一陰極觸媒層,其中該陽極氣體擴散層及該陰極氣體擴散層中至少一者包含一細微陣列多孔燃料電池電極材料。在該燃料電池裝置的一些實施例中,在該陽極觸媒層及該陰極觸媒層中至少一者包含一選自於碳奈米管或碳奈米球的觸媒載體。In some embodiments, the fuel cell device includes a membrane electrolyte assembly, wherein the membrane electrolyte assembly includes an anode gas diffusion layer, an anode catalyst layer, a polymer electrolyte membrane, and a cathode contact sequentially from the anode to the cathode. a dielectric layer, wherein at least one of the anode gas diffusion layer and the cathode gas diffusion layer comprises a fine array of porous fuel cell electrode material. In some embodiments of the fuel cell device, at least one of the anode catalyst layer and the cathode catalyst layer comprises a catalyst carrier selected from the group consisting of carbon nanotubes or carbon nanotubes.
在此也揭示數種製造一如上所述的細微陣列多孔燃料電池電極材料的製備方法,包含步驟(i),藉由3D印刷或藉由模板製造方法來製備該細微陣列多孔材料。在該等方法的一些實施例中,該細微陣列多孔材料可以是藉由3D印刷來製造。在該等方法的一些實施例中,該細微陣列多孔材料可以是藉由一模板製造方法所製備,包含以下子步驟:a)電泳地製造一膠體粒子模板;b)將一電極材料滲入該膠體粒子模板;及c)移除該膠體粒子模板。在一些實施例中,該子步驟b)是藉由電沉積、物理氣相沉積、化學氣相沉積或溶膠凝膠法中至少一者來完成。Also disclosed herein are several methods of making a fine array porous fuel cell electrode material as described above, comprising the step (i) of preparing the fine array porous material by 3D printing or by a template fabrication process. In some embodiments of the methods, the fine array porous material can be fabricated by 3D printing. In some embodiments of the methods, the fine array porous material may be prepared by a template manufacturing process comprising the following sub-steps: a) electrophoretically fabricating a colloidal particle template; b) infiltrating an electrode material into the colloid a particle template; and c) removing the colloidal particle template. In some embodiments, the sub-step b) is accomplished by at least one of electrodeposition, physical vapor deposition, chemical vapor deposition, or sol gel processes.
在一些實施例中,該等方法還包含步驟(ii),藉由3D印刷或藉由模板製造方法在該細微陣列多孔材料的頂部上製造一第二細微陣列多孔材料。在一些實施例中,在該步驟(ii)中的該第二細微陣列多孔材料被建構有一孔洞尺寸,且該孔洞尺寸大於該細微陣列多孔材料的孔洞尺寸,及該第二細微陣列多孔材料被建構有親水性表面。該第二細微陣列多孔材料在一些實施例中可以是由一親水性導電聚合物所組成,或在一些其它實施例中可以是經表面處理以形成親水性。在一例子中,該第二細微陣列多孔材料是由一選自於鎳、鋁、銅、鐵、鈦、鉻、錳、鈷及鋅的金屬所組成,且該第二細微陣列多孔材料的表面經由氧化反應所處理。在另一例子中,該第二細微陣列多孔材料可以是塗有一親水性材料。In some embodiments, the methods further comprise the step (ii) of fabricating a second fine array of porous material on top of the fine array of porous material by 3D printing or by a template fabrication process. In some embodiments, the second fine array porous material in the step (ii) is constructed to have a pore size, and the pore size is larger than the pore size of the fine array porous material, and the second fine array porous material is Constructed with a hydrophilic surface. The second microarray porous material may be composed of a hydrophilic conductive polymer in some embodiments, or may be surface treated to form hydrophilicity in some other embodiments. In one example, the second fine array porous material is composed of a metal selected from the group consisting of nickel, aluminum, copper, iron, titanium, chromium, manganese, cobalt, and zinc, and the surface of the second fine array porous material It is treated via an oxidation reaction. In another example, the second microarray porous material can be coated with a hydrophilic material.
在一些實施例中,該方法還可包含步驟(ii),將作為觸媒載體的複數粒子分散至該細微陣列多孔材料的表面或該細微陣列多孔材料的該等空洞內,其中,該觸媒載體承載有複數作為觸媒的粒子。該觸媒載體可以是碳奈米管或碳奈米球。在一些實施例中,該方法還可包含立即在該步驟(ii)後進行的步驟(iii),該步驟(iii)是將為做觸媒的該等粒子和在該燃料電池電極材料中的該細微陣列多孔材料結合,且在一些實施例中可藉由加熱來完成。In some embodiments, the method may further comprise the step (ii) of dispersing a plurality of particles as a catalyst carrier into the surface of the fine array porous material or the voids of the fine array porous material, wherein the catalyst The carrier carries a plurality of particles as a catalyst. The catalyst carrier can be a carbon nanotube or a carbon nanosphere. In some embodiments, the method may further comprise the step (iii) performed immediately after the step (ii), the step (iii) being the particles to be used as a catalyst and in the electrode material of the fuel cell The fine array of porous materials are combined and, in some embodiments, can be accomplished by heating.
在一些實施例中,該方法可以還包含步驟(ii),對該細微陣列多孔材料施予一防蝕處理。例如,當該細微陣列多孔材料是由例如鋅、鈦及鎳的金屬所組成,在該步驟(ii)中的該防蝕處理在一些實施例中可以是氧化處理,且在一些其它實施例中可以是表面塗有一抗蝕材料。In some embodiments, the method may further comprise the step (ii) of applying an anti-corrosion treatment to the fine array of porous material. For example, when the fine array porous material is composed of a metal such as zinc, titanium, and nickel, the corrosion treatment in the step (ii) may be an oxidation treatment in some embodiments, and may be an oxidation treatment in some other embodiments. The surface is coated with a resist material.
在本文所述的該細微陣列多孔燃料電池電極材料也可以被應用在其它種類的燃料電池裝置中,該燃料電池裝置例如固態氧化物燃料電池、直接甲醇燃料電池、磷酸燃料電池、燃料電池、熔融碳酸鹽燃料電池或PFC。在此也提供一種燃料電池裝置,包含一細微陣列多孔燃料電池電極材料,其中該燃料電池裝置是固態氧化物燃料電池、直接甲醇燃料電池、磷酸燃料電池、燃料電池、熔融碳酸鹽燃料電池或PFC中至少一種。The fine array porous fuel cell electrode material described herein can also be applied to other types of fuel cell devices such as solid oxide fuel cells, direct methanol fuel cells, phosphoric acid fuel cells, fuel cells, and melting. Carbonate fuel cell or PFC. There is also provided a fuel cell device comprising a fine array of porous fuel cell electrode materials, wherein the fuel cell device is a solid oxide fuel cell, a direct methanol fuel cell, a phosphoric acid fuel cell, a fuel cell, a molten carbonate fuel cell or a PFC At least one of them.
相較於例如塗有複數觸媒粒子的碳紙/碳衣/碳奈米管的傳統燃料電池電極材料,本文所揭露的一細微陣列多孔燃料電池電極材料具有以下優點。第一,由於該細微陣列多孔結構的顯著較高的表面-面積-體積比,因此它具有非常高的有效電催化面積。第二,其膜結構消除了由於傳統燃料電池的該等觸媒顆粒自該導電載體脫落而產生的信賴性逐漸喪失的問題。第三,它消除了使用在傳統燃料電池中用來使該等觸媒顆粒緊密地貼附到該導電載體的黏結劑,而大幅減少了觸媒的用量及在製造複數燃料電池所產生的成本,並且大幅提升信賴性。第四,設計將不太昂貴的金屬或為金屬氧化物(例如銅、鐵、鋁、CoPc、CoTMPP-TiO2 、MnOx -CoTMPP、CoFe2 O4 等)的化合物形成一塗有昂貴的貴金屬觸媒(例如鉑)的微細陣列多孔導電載體,可以進一步降低複數燃料電池的製造成本,並且可以做到比傳統使用的碳紙/碳布/碳奈米管/碳奈米球具有更高的導電性。第五,一細微陣列多孔燃料電池電極材料的週期性結構的存在消除了由於局部缺陷或在複數碳系導電載體上的複數觸媒顆粒的不勻分佈而在一些位置產生了熱堆積的問題。第六,一細微陣列多孔燃料電池電極材料的週期性結構的存在進一步使得橫跨/通過該材料的反應氣體或反應性溶劑(例如H2 、O2 、乙醇、甲醇)、廢液產物(如水)以及電子有效的分佈及傳輸。最後,一些構思可以做到將在該燃料電池的複數觸媒層及複數氣體擴散層結合起來,而可以簡化設計,降低成本,並提高信賴性。A fine array porous fuel cell electrode material disclosed herein has the following advantages over conventional fuel cell electrode materials such as carbon paper/carbon coating/carbon nanotube coated with a plurality of catalyst particles. First, it has a very high effective electrocatalytic area due to the significantly higher surface-area-volume ratio of the fine array porous structure. Second, the film structure eliminates the problem of gradual loss of reliability due to the detachment of the catalyst particles of the conventional fuel cell from the conductive carrier. Third, it eliminates the use of a binder used in conventional fuel cells to closely attach the catalyst particles to the conductive carrier, thereby substantially reducing the amount of catalyst used and the cost of manufacturing the plurality of fuel cells. And greatly enhance the reliability. Fourth, designing a compound that is less expensive or a metal oxide (such as copper, iron, aluminum, CoPc, CoTMPP-TiO 2 , MnO x -CoTMPP, CoFe 2 O 4 , etc.) to form an expensive precious metal The micro-array porous conductive carrier of the catalyst (for example, platinum) can further reduce the manufacturing cost of the plurality of fuel cells, and can be higher than the conventional carbon paper/carbon cloth/carbon nanotube/carbon nanosphere. Electrical conductivity. Fifth, the presence of a periodic structure of the fine microarray porous fuel cell electrode material eliminates the problem of thermal buildup at some locations due to localized defects or uneven distribution of complex catalyst particles on a plurality of carbon-based conductive supports. Sixth, the presence of a periodic structure of the fine microarray porous fuel cell electrode material further enables reaction gases or reactive solvents (eg, H 2 , O 2 , ethanol, methanol), waste product (eg, water) across/through the material ) and the efficient distribution and transmission of electrons. Finally, some ideas can be combined in the multiple catalyst layer and the multiple gas diffusion layers of the fuel cell to simplify design, reduce cost, and improve reliability.
圖1說明一傳統質子交換膜燃料電池裝置,具有複數由塗有細微分散觸媒粒子的碳奈米管所構成的觸媒層。該質子交換膜燃料電池裝置100包含依序由陽極至陰極的一陽極端板101、一陽極雙極性板102、一陽極墊圈103、一陽極氣體擴散層104、一膜電極組件105、一陰極氣體擴散層106、一陰極墊圈107、一陰極雙電極板108及一陰極端板109。複數氣體通道典型地配置在該陽極雙極性板102及該陰極雙極性板108兩者上,作為將氫氣及氧氣分別地注入該燃料電池的陽極及陰極中的路徑。受限於視圖,圖1僅說明在該陰極雙極性板108上的該氧氣體通道110。該膜電極組件105典型地包含一聚合物電解質膜111,被夾置在一陽極觸媒層112及一陰極觸媒層113。典型地該陽極觸媒層及該陰極觸媒層兩者皆包含一觸媒載體,分別地塗有複數作為一陽極觸媒的非常細微的粉末及複數作為一陰極觸媒的非常細微的粉末。該觸媒載體典型地由一碳紙、碳布或碳奈米管膜所組成;該陽極觸媒可以是由一例如鉑的金屬、一例如Pt-Ru的合金、一例如二氧化鈰的金屬氧化物、一例如Mox Ruy Sz 及Mox Rhy Sz 的金屬硫化物,或一例如(Ru1-x Mox )SeOz 的chalcogenide所組成;及該陰極觸媒可以是由鉑或鎳所組成。圖1也顯示出一典型的陽極觸媒層的圖片,包含一具有塗有鉑奈米粒子115的碳奈米管114的膜。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates a conventional proton exchange membrane fuel cell device having a plurality of catalyst layers composed of carbon nanotubes coated with finely dispersed catalyst particles. The proton exchange membrane fuel cell device 100 includes an anode end plate 101, an anode bipolar plate 102, an anode gasket 103, an anode gas diffusion layer 104, a membrane electrode assembly 105, and a cathode gas diffusion sequentially from an anode to a cathode. A layer 106, a cathode gasket 107, a cathode dual electrode plate 108 and a cathode end plate 109. A plurality of gas passages are typically disposed on both the anode bipolar plate 102 and the cathode bipolar plate 108 as a path for separately injecting hydrogen and oxygen into the anode and cathode of the fuel cell. Limited to the view, FIG. 1 illustrates only the oxygen gas channel 110 on the cathode bipolar plate 108. The membrane electrode assembly 105 typically includes a polymer electrolyte membrane 111 sandwiched between an anode catalyst layer 112 and a cathode catalyst layer 113. Typically, both the anode catalyst layer and the cathode catalyst layer comprise a catalyst carrier, each coated with a very fine powder as an anode catalyst and a very fine powder as a cathode catalyst. The catalyst carrier is typically composed of a carbon paper, carbon cloth or carbon nanotube film; the anode catalyst may be a metal such as platinum, an alloy such as Pt-Ru, a metal such as cerium oxide. An oxide, a metal sulfide such as Mo x Ru y S z and Mo x Rh y S z , or a chalcogenide such as (Ru 1-x Mo x )SeO z ; and the cathode catalyst may be platinum Or nickel. Figure 1 also shows a picture of a typical anode catalyst layer comprising a film having carbon nanotubes 114 coated with platinum nanoparticles 115.
在圖1中所被描述的傳統燃料電池具有以下缺點。第一,通常需使用一黏結劑將該等觸媒粒子穩定地貼附及有效地分散在在該導電載體的該表面上。且一黏結劑的存在會減少在該燃料電池中的該觸媒的有效電催化面積,因此,為了補償有效電催化面積的減少,需要使用大量的觸媒以達到電力輸出的水平。第二,塗在該導電載體的該表面的複數觸媒粒子易鬆散且在一震動/衝擊環境下或者在氣體進入的期間或者從該燃料電池中處理水/其它反應產物時容易從該載體上脫落。這些都會造成該等燃料電池的信賴性問題。The conventional fuel cell described in Fig. 1 has the following disadvantages. First, it is generally necessary to stably attach and effectively disperse the catalyst particles on the surface of the conductive support using a binder. Moreover, the presence of a binder reduces the effective electrocatalytic area of the catalyst in the fuel cell. Therefore, in order to compensate for the reduction of the effective electrocatalytic area, it is necessary to use a large amount of catalyst to achieve the level of power output. Second, the plurality of catalyst particles coated on the surface of the electrically conductive support are loose and readily accessible from the carrier during a shock/shock environment or during gas ingress or when water/other reaction products are treated from the fuel cell. Fall off. These will cause the reliability of these fuel cells.
圖2說明一燃料電池膜電極組件,包含複數根據本文的一些實施例的細微陣列多孔電極材料。如圖2所示,該膜電極組件200包含一被夾置在一陽極觸媒層202及一陰極觸媒層203間的聚合物電解質膜201。該陽極觸媒層202及該陰極觸媒層203兩者皆可包含一具有一細微陣列多孔結構204的燃料電池電極材料。該燃料電池電極材料204典型地包含一具有複數孔洞的細微陣列多孔材料,其中該等孔洞具有約500nm-5mm的孔洞尺寸;該等孔洞的尺寸實質上均一且具有一小於約20%的變化量;及該細微陣列多孔材料具有約40-85%的孔隙率。在一些較佳實施例中,一燃料電池電極材料可以包含一具有一約74%的孔隙率的高緊密的細微陣列多孔材料,對一多孔材料而言,該細微陣列多孔材料理論上具有一高表面-面積-體積比。2 illustrates a fuel cell membrane electrode assembly comprising a plurality of fine array porous electrode materials in accordance with some embodiments herein. As shown in FIG. 2, the membrane electrode assembly 200 includes a polymer electrolyte membrane 201 sandwiched between an anode catalyst layer 202 and a cathode catalyst layer 203. Both the anode catalyst layer 202 and the cathode catalyst layer 203 can comprise a fuel cell electrode material having a fine array of porous structures 204. The fuel cell electrode material 204 typically comprises a fine array of porous materials having a plurality of pores, wherein the pores have a pore size of between about 500 nm and 5 mm; the pores are substantially uniform in size and have a variation of less than about 20%. And the fine array porous material has a porosity of about 40-85%. In some preferred embodiments, a fuel cell electrode material can comprise a highly compact microarray porous material having a porosity of about 74%. For a porous material, the fine array porous material theoretically has a High surface-area-to-volume ratio.
在一些實施例中,如在205中所述,一細微陣列多孔材料可以是完全由鉑或一些其它燃料電池觸媒材料所組成,因此可以直接用來作為一燃料電池的膜電極組件中的一觸媒層材料。在一些其它實施例中,由例如銅、鋁、鐵、鎳及不鏽鋼的金屬/合金或者一例如Znx O1-x 的導電金屬氧化物所組成的一細微陣列多孔載體在其表面上可均勻地塗有一在205中顯示的燃料電池觸媒材料,例如鉑。在一些其它實施例中,一細微陣列多孔材料可以作為一高表面-面積的導電載體,以承載複數粒子,且該等粒子為在一燃料電池的該等觸媒層中的複數觸媒。在一些其它實施例中,如在206中所述,由例如銅、鋁、鐵、不鏽鋼及鎳的金屬/合金或者一例如Znx O1-x 的導電金屬氧化物所組成的一細微陣列多孔載體在其該等孔洞內可均勻地塗有複數為一例如鉑的燃料電池觸媒的奈米粒子。在一些其它實施例中,如在207中所述,一例如碳奈米管、石墨烯及碳奈米球的第二導電載體的表面上承載有該等觸媒粒子,該第二導電載體連同該等觸媒粒子是設置在一第一細微陣列多孔導電載體的該等孔洞中,以及該第一細微陣列多孔導電載體是由銅、鋁、鐵、不鏽鋼或鎳所組成或由例如Znx O1-x 的一導電金屬氧化物所組成。In some embodiments, as described in 205, a fine array of porous material may be composed entirely of platinum or some other fuel cell catalyst material and thus may be used directly as one of the membrane electrode assemblies of a fuel cell. Catalyst layer material. In some other embodiments, a fine array of porous supports composed of a metal/alloy such as copper, aluminum, iron, nickel, and stainless steel or a conductive metal oxide such as Zn x O 1-x may be uniform on the surface thereof. The fuel cell catalyst material, such as platinum, shown in 205 is applied. In some other embodiments, a fine array of porous materials can serve as a high surface-area conductive support to carry a plurality of particles, and the particles are a plurality of catalysts in the catalyst layers of a fuel cell. In some other embodiments, as described in 206, a fine array of porous cells consisting of a metal/alloy such as copper, aluminum, iron, stainless steel, and nickel, or a conductive metal oxide such as Zn x O 1-x The carrier may be uniformly coated with nanoparticles of a fuel cell catalyst such as platinum in its pores. In some other embodiments, as described in 207, a second conductive support such as a carbon nanotube, graphene, and carbon nanosphere carries the catalyst particles on the surface, the second conductive carrier together with The catalyst particles are disposed in the holes of a first fine array of porous conductive support, and the first fine array porous conductive support is composed of copper, aluminum, iron, stainless steel or nickel or by, for example, Zn x O 1-x consists of a conductive metal oxide.
由於在該細微陣列多孔結構中的週期性複數孔洞的存在,因此如上所述的該燃料電池電極材料也可以用來作為一氣體擴散層材料,且該氣體擴散層材料允許例如氫氣及氧氣的反應氣體均勻地且有效地穿過該細微陣列多孔結構的該等孔洞而分散,而在此同時,在該細微陣列多孔導電載體的該表面上或該細微陣列多孔導電載體的該等孔洞內的觸媒的存在,使得在該燃料電池中產生有效的催化反應。這些特點允許在一燃料電池裝置中有一單一組合式觸媒-氣體擴散層的設計,且該單一組合式觸媒-氣體擴散層在該燃料電池中的作用是作為一觸媒層及一氣體擴散層。具有細微陣列多孔結構的組合式觸媒-氣體擴散層可以大幅簡化燃料電池的模組設計及製造。此外,基於對該細微陣列多孔燃料電池電極材料的複數特定區域進行處理而具有疏水性/親水性的設計,使得由該燃料電池的該細微陣列多孔燃料電池電極材料的這些被設計的區域來促進最終反應產物(例如水)的處理也是有可能。圖3說明一燃料電池膜電極組件包含複數根據本文的一些實施例的細微陣列多孔電極材料。該燃料電池膜電極組件300包含一聚合物電解質膜301、一組合式陽極觸媒-氣體擴散層302、一組合式陰極觸媒-氣體擴散層303及一該水處理層304,其中,該聚合物電解質膜301是夾置在該組合式陽極觸媒-氣體擴散層302及該組合式陰極觸媒-氣體擴散層303間,該水處理層304設置在該聚合物電解質膜301、該組合式陽極觸媒-氣體擴散層302及該組合式陰極觸媒-氣體擴散層303的底部。該組合式陽極觸媒-氣體擴散層302及該組合式陰極觸媒-氣體擴散層303兩者皆包含一細微陣列多孔燃料電池電極材料,且該細微陣列多孔燃料電池電極材料是完全由一陽極觸媒或陰極觸媒所組成,或者另一選擇是包含一塗有或滲入有複數粒子的細微陣列多孔金屬載體且該等粒子為有無第二觸媒載體的陽極觸媒或有無第二觸媒載體的陰極觸媒,如顯示在圖2中的205、206及207。除了作為複數觸媒層的作用外,該組合式陽極觸媒-氣體擴散層302及該組合式陰極觸媒-氣體擴散層303也作為在該燃料電池膜電極組件中的複數氣體擴散層。選擇地,為了進一步增加該燃料電池中的該等層的該氣體擴散效率,該組合式陽極觸媒-氣體擴散層302及該組合式陰極觸媒-氣體擴散層303可經表面處理以增加位在這兩者層中的一些區域的疏水性。 該水處理層304也包含一細微陣列多孔材料且是被設計來處理在該燃料電池內的例如水的該最後反應產物,並且為了進一步增加該水處理效率選擇地經表面處理以增加親水性。The fuel cell electrode material as described above can also be used as a gas diffusion layer material due to the presence of periodic plural pores in the fine array porous structure, and the gas diffusion layer material allows reaction of, for example, hydrogen and oxygen. The gas is uniformly and efficiently dispersed through the pores of the fine array porous structure, while at the same time, the contact on the surface of the fine array porous conductive support or within the pores of the fine array porous conductive support The presence of the medium results in an efficient catalytic reaction in the fuel cell. These features allow for the design of a single combined catalyst-gas diffusion layer in a fuel cell device, and the single combined catalyst-gas diffusion layer functions as a catalyst layer and a gas diffusion in the fuel cell. Floor. The combined catalyst-gas diffusion layer with a fine array of porous structures can greatly simplify the design and manufacture of fuel cell modules. Furthermore, a hydrophobic/hydrophilic design based on processing a plurality of specific regions of the fine array porous fuel cell electrode material facilitates the design of the fine array porous fuel cell electrode material of the fuel cell The treatment of the final reaction product, such as water, is also possible. 3 illustrates a fuel cell membrane electrode assembly comprising a plurality of fine array porous electrode materials according to some embodiments herein. The fuel cell membrane electrode assembly 300 includes a polymer electrolyte membrane 301, a combined anode catalyst-gas diffusion layer 302, a combined cathode catalyst-gas diffusion layer 303, and a water treatment layer 304, wherein the polymerization The electrolyte membrane 301 is interposed between the combined anode catalyst-gas diffusion layer 302 and the combined cathode catalyst-gas diffusion layer 303, and the water treatment layer 304 is disposed on the polymer electrolyte membrane 301, the combination The anode catalyst-gas diffusion layer 302 and the bottom of the combined cathode catalyst-gas diffusion layer 303. The combined anode catalyst-gas diffusion layer 302 and the combined cathode catalyst-gas diffusion layer 303 both comprise a fine array of porous fuel cell electrode material, and the fine array porous fuel cell electrode material is completely composed of an anode The catalyst or cathodic catalyst is composed of, or alternatively, comprises a fine array of porous metal supports coated or impregnated with a plurality of particles and the particles are anode catalysts with or without a second catalyst carrier or with or without a second catalyst. The cathode catalyst of the carrier is shown as 205, 206 and 207 in Figure 2. In addition to functioning as a plurality of catalyst layers, the combined anode catalyst-gas diffusion layer 302 and the combined cathode catalyst-gas diffusion layer 303 also function as a plurality of gas diffusion layers in the fuel cell membrane electrode assembly. Optionally, in order to further increase the gas diffusion efficiency of the layers in the fuel cell, the combined anode catalyst-gas diffusion layer 302 and the combined cathode catalyst-gas diffusion layer 303 may be surface treated to increase the position. The hydrophobicity of some of the two layers. The water treatment layer 304 also contains a fine array of porous material and is designed to treat this final reaction product, such as water, within the fuel cell, and is optionally surface treated to increase hydrophilicity in order to further increase the water treatment efficiency.
圖4說明燃料電池膜電極組件包含複數根據本文的一些實施例的細微陣列多孔電極材料。參閱圖4A,該燃料電池膜電極組件400包含依序由陽極至陰極排列的一陽極氣體擴散層401、一陽極觸媒層402、一聚合物電解質膜403、一陰極觸媒層404及一陰極氣體擴散層405。在一些實施例中,該陽極觸媒層402及該陰極觸媒層404兩者可包含複數如在圖2(205、206及207)所揭示的細微陣列多孔燃料電池電極材料,且該等細微陣列多孔燃料電池電極材料分別包含陽極觸媒及陰極觸媒,而該陽極氣體擴散層401及該陰極氣體擴散層405可以包含一不具有一細微陣列多孔結構的氣體擴散材料。在一些其它實施例中,該陽極氣體擴散層401及該陰極氣體擴散層405兩者可包含複數細微陣列多孔電極材料,而該陽極觸媒層402及該陰極觸媒層404可包含一不具有一細微陣列多孔結構的傳統觸媒層材料,分別地塗有陽極觸媒及陰極觸媒,且該傳統觸媒層材料例如碳紙、碳布或碳奈米管。在一些其它實施例中,該陽極觸媒層402、該陰極觸媒層404、該陽極氣體擴散層401及該陰極氣體擴散層405所有皆可包含複數細微陣列多孔燃料電池電極材料,但具有不同的孔洞尺寸或組成。在一些實施例中,該陽極觸媒層402及該陽極氣體擴散層401,或該陰極觸媒層404及該陰極氣體擴散層405可以是一為具有均一孔洞尺寸的細微陣列多孔燃料電池電極材料的塊狀物,且該細微陣列多孔燃料電池電極材料塗有或滲入有為一有無第二觸媒載體的陽極/陰極觸媒的複數粒子,該塊狀物緊鄰該聚合物電解質膜403的部分形成該陽極/陰極觸媒層402/404;而沒有複數觸媒成分的部分形成該陽極/陰極氣體擴散層401/405。在一些實施例中,該燃料電池膜電極組件還可包含一在該聚合物電解質膜403及該陽極/陰極觸媒層402/404間的額外陽極/陰極觸媒層。在一例子中,如在圖4C中所述,一傳統碳衍生觸媒層423,包含一塗有一陽極/陰極觸媒的碳紙/碳布/碳奈米管,設置在該細微陣列多孔觸媒層422的一側上,該細微陣列多孔觸媒層422包含在該等孔洞中的複數粒子且該等粒子為複數載有複數陽極/陰極觸媒粒子的碳載體,而該細微陣列多孔氣體擴散層421設置在該細微陣列多孔觸媒層422的另一側上。4 illustrates a fuel cell membrane electrode assembly comprising a plurality of fine array porous electrode materials according to some embodiments herein. Referring to FIG. 4A, the fuel cell membrane electrode assembly 400 includes an anode gas diffusion layer 401, an anode catalyst layer 402, a polymer electrolyte membrane 403, a cathode catalyst layer 404, and a cathode sequentially arranged from the anode to the cathode. Gas diffusion layer 405. In some embodiments, both the anode catalyst layer 402 and the cathode catalyst layer 404 can comprise a plurality of fine array porous fuel cell electrode materials as disclosed in FIG. 2 (205, 206, and 207), and such subtle The array porous fuel cell electrode materials respectively comprise an anode catalyst and a cathode catalyst, and the anode gas diffusion layer 401 and the cathode gas diffusion layer 405 may comprise a gas diffusion material having no fine array porous structure. In some other embodiments, the anode gas diffusion layer 401 and the cathode gas diffusion layer 405 may comprise a plurality of fine array porous electrode materials, and the anode catalyst layer 402 and the cathode catalyst layer 404 may comprise one without A conventional catalyst layer material of a fine array of porous structures is coated with an anode catalyst and a cathode catalyst, respectively, and the conventional catalyst layer material is, for example, carbon paper, carbon cloth or carbon nanotubes. In some other embodiments, the anode catalyst layer 402, the cathode catalyst layer 404, the anode gas diffusion layer 401, and the cathode gas diffusion layer 405 may all comprise a plurality of fine array porous fuel cell electrode materials, but have different The size or composition of the hole. In some embodiments, the anode catalyst layer 402 and the anode gas diffusion layer 401, or the cathode catalyst layer 404 and the cathode gas diffusion layer 405 may be a fine array porous fuel cell electrode material having a uniform pore size. a block, and the fine array porous fuel cell electrode material is coated or infiltrated with a plurality of particles of an anode/cathode catalyst which is a second catalyst carrier, the block being adjacent to the portion of the polymer electrolyte membrane 403 The anode/cathode catalyst layer 402/404 is formed; and the portion having no complex catalyst component forms the anode/cathode gas diffusion layer 401/405. In some embodiments, the fuel cell membrane electrode assembly can further include an additional anode/cathode catalyst layer between the polymer electrolyte membrane 403 and the anode/cathode catalyst layer 402/404. In one example, as depicted in Figure 4C, a conventional carbon-derived catalyst layer 423 comprises a carbon paper/carbon cloth/carbon nanotube coated with an anode/cathode catalyst disposed in the fine array porous contact On one side of the dielectric layer 422, the fine array porous catalyst layer 422 comprises a plurality of particles in the holes and the particles are a plurality of carbon carriers carrying a plurality of anode/cathode catalyst particles, and the fine array porous gas A diffusion layer 421 is disposed on the other side of the fine array porous catalyst layer 422.
在如圖4B所述的一實施例中,該燃料電池膜電極組件410包含依序由陽極至陰極排列的一陽極氣體擴散層411、一陽極觸媒層412、一聚合物電解質膜413、一陰極觸媒層414及一陰極氣體擴散層415,其中,該陽極觸媒層412及該陰極觸媒層414兩者皆包含複數具有該鉑觸媒的細微陣列多孔燃料電池電極材料;該陽極氣體擴散層411及該陰極氣體擴散層415兩者皆包含一細微陣列多孔燃料電池電極材料,且該細微陣列多孔燃料電池電極材料具有一孔洞尺寸,且該孔洞尺寸小於使用在該陽極觸媒層412及該陰極觸媒層414中的細微陣列多孔燃料電池電極材料的孔洞尺寸,以及塗有該釕/鉑觸媒。具有這樣的構造,該陽極氣體擴散層411及該陰極氣體擴散層415不僅提供複數擴散路徑,以允許例如氫氣及氧氣的反應氣體在該燃料電池的該陽極觸媒層412及該陰極觸媒層414的表面上反應,而且作為一藉由該釕/鉑的存在從該反應氣體中移除一氧化碳的過濾層,以避免存在於該反應氣體中的一氧化碳毒害在該陽極觸媒層412及該陰極觸媒層414中的該鉑觸媒。In an embodiment as shown in FIG. 4B, the fuel cell membrane electrode assembly 410 includes an anode gas diffusion layer 411, an anode catalyst layer 412, a polymer electrolyte membrane 413, and a cathode array arranged in an order from the anode to the cathode. a cathode catalyst layer 414 and a cathode gas diffusion layer 415, wherein the anode catalyst layer 412 and the cathode catalyst layer 414 both comprise a plurality of fine array porous fuel cell electrode materials having the platinum catalyst; The diffusion layer 411 and the cathode gas diffusion layer 415 both comprise a fine array of porous fuel cell electrode material, and the fine array porous fuel cell electrode material has a hole size, and the hole size is smaller than that used in the anode catalyst layer 412. And a pore size of the fine array porous fuel cell electrode material in the cathode catalyst layer 414, and coated with the rhodium/platinum catalyst. With such a configuration, the anode gas diffusion layer 411 and the cathode gas diffusion layer 415 not only provide a plurality of diffusion paths to allow a reaction gas such as hydrogen and oxygen to be present in the anode catalyst layer 412 and the cathode catalyst layer of the fuel cell. Reacting on the surface of 414, and as a filter layer for removing carbon monoxide from the reaction gas by the presence of the ruthenium/platinum, to prevent carbon monoxide present in the reaction gas from being poisoned at the anode catalyst layer 412 and the cathode The platinum catalyst in the catalyst layer 414.
圖5說明一燃料電池膜電極組件包含複數根據本文的一些實施例的細微陣列多孔電極材料。參閱圖5A,該燃料電池膜電極組件500包含依序由陽極至陰極排列的一陽極氣體擴散層501、一陽極觸媒層502、一聚合物電解質膜503、一陰極觸媒層504及一陰極氣體擴散層505,且也包含一設置在上述該等層501-505的底部的水處理層506。上述該等層501-505的組成及結構是相似於如圖4A所述的燃料電池膜電極組件中的陽極氣體擴散層401、陽極觸媒層402、聚合物電解質膜403、陰極觸媒層404及陰極氣體擴散層405。該水處理層506包含一細微陣列多孔材料,且該細微陣列多孔材料的孔洞尺寸約為該陽極氣體擴散層501及該陰極氣體擴散層505的孔洞尺寸的0.5-100倍,且是被設計來處理在該燃料電池內的例如水的該最後液體反應產物,並且為了進一步增加該處理效率選擇地經表面處理以增加親水性。Figure 5 illustrates a fuel cell membrane electrode assembly comprising a plurality of fine array porous electrode materials according to some embodiments herein. Referring to FIG. 5A, the fuel cell membrane electrode assembly 500 includes an anode gas diffusion layer 501, an anode catalyst layer 502, a polymer electrolyte membrane 503, a cathode catalyst layer 504, and a cathode sequentially arranged from the anode to the cathode. The gas diffusion layer 505 also includes a water treatment layer 506 disposed at the bottom of the layers 501-505. The composition and structure of the above layers 501-505 are similar to the anode gas diffusion layer 401, the anode catalyst layer 402, the polymer electrolyte membrane 403, and the cathode catalyst layer 404 in the fuel cell membrane electrode assembly as described in FIG. 4A. And a cathode gas diffusion layer 405. The water treatment layer 506 comprises a fine array of porous material, and the pore size of the fine array porous material is about 0.5-100 times the pore size of the anode gas diffusion layer 501 and the cathode gas diffusion layer 505, and is designed The final liquid reaction product, such as water, is treated within the fuel cell and is optionally surface treated to increase hydrophilicity in order to further increase the processing efficiency.
在另一實施例中,如圖5B所述,該燃料電池膜電極組件510包含依序由陽極至陰極排列的一陽極組合式觸媒-氣體擴散層511、一陽極水處理層512、一聚合物電解質膜513、一陰極水處理層514及一陰極組合式觸媒-氣體擴散層515。該陽極組合式觸媒-氣體擴散層511及該陰極組合式觸媒-氣體擴散層515兩者皆包含複數如圖3所述且具有一較小的孔洞尺寸的細微陣列多孔燃料電池電極材料,分別地塗有陽極觸媒及陰極觸媒。該陽極組合式觸媒-氣體擴散層511及該陰極組合式觸媒-氣體擴散層515兩者皆作為該燃料電池中的觸媒層及擴散層。該陽極水處理層512及該陰極水處理層514兩者皆包含複數細微陣列多孔材料且是被設計來處理在該燃料電池內的例如水的該最後液體反應產物。該陽極水處理層512及該陰極水處理層514中的細微陣列多孔材料具有一孔洞尺寸,選擇地大於或小於該陽極組合式觸媒-氣體擴散層511及該陰極組合式觸媒-氣體擴散層515中的細微陣列多孔燃料電池電極材料的孔洞尺寸。該陽極水處理層512及該陰極水處理層514可選擇地經表面處理而在表面上具有更多的親水性,繼而增加水處理效益;此外且較佳地它們是可以經表面處理而在表面上具有更多的疏水性,以使水遠離該陽極組合式觸媒-氣體擴散層511及該陰極組合式觸媒-氣體擴散層515,而允許複數反應氣體有效的流動以與該陽極組合式觸媒-氣體擴散層511及該陰極組合式觸媒-氣體擴散層515中的觸媒接觸。In another embodiment, as shown in FIG. 5B, the fuel cell membrane electrode assembly 510 includes an anode combined catalyst-gas diffusion layer 511, an anode water treatment layer 512, and an aggregation sequentially arranged from the anode to the cathode. An electrolyte membrane 513, a cathode water treatment layer 514, and a cathode combined catalyst-gas diffusion layer 515. The anode combined catalyst-gas diffusion layer 511 and the cathode combined catalyst-gas diffusion layer 515 both comprise a plurality of fine array porous fuel cell electrode materials as described in FIG. 3 and having a smaller pore size. They are coated with an anode catalyst and a cathode catalyst, respectively. Both the anode combined catalyst-gas diffusion layer 511 and the cathode combined catalyst-gas diffusion layer 515 serve as a catalyst layer and a diffusion layer in the fuel cell. Both the anode water treatment layer 512 and the cathode water treatment layer 514 comprise a plurality of fine array porous materials and are designed to treat the final liquid reaction product, such as water, within the fuel cell. The anode array water treatment layer 512 and the fine array porous material in the cathode water treatment layer 514 have a pore size, which is selectively larger or smaller than the anode combined catalyst-gas diffusion layer 511 and the cathode combined catalyst-gas diffusion. The pore size of the fine array porous fuel cell electrode material in layer 515. The anode water treatment layer 512 and the cathode water treatment layer 514 are optionally surface treated to have more hydrophilicity on the surface, which in turn increases water treatment benefits; and more preferably they are surface treated on the surface It has more hydrophobicity to keep water away from the anode combined catalyst-gas diffusion layer 511 and the cathode combined catalyst-gas diffusion layer 515, while allowing a plurality of reactive gases to flow efficiently to be combined with the anode. The catalyst-gas diffusion layer 511 is in contact with the catalyst in the cathode combined catalyst-gas diffusion layer 515.
圖6說明一燃料電池膜電極組件包含複數根據本文的一些實施例的細微陣列多孔電極材料。該燃料電池膜電極組件600包含依序由陽極至陰極排列的一陽極氣體擴散層601、一陽極觸媒層602、一聚合物電解質膜603、一陰極觸媒層604及一陰極氣體擴散層605。該陽極觸媒層602及該陰極觸媒層604兩者包含一例如碳紙、碳布、碳奈米管膜或碳奈米球膜的一導電載體,分別地塗有複數陽極觸媒及複數陰極觸媒。該陽極氣體擴散層601及該陰極氣體擴散層605皆包含一細微陣多孔材料,且為了進一步增加該燃料電池中的該等層的該氣體擴散效率,該細微陣多孔材料選擇地經表面處理以增加該等層的表面的疏水性。Figure 6 illustrates a fuel cell membrane electrode assembly comprising a plurality of fine array porous electrode materials according to some embodiments herein. The fuel cell membrane electrode assembly 600 includes an anode gas diffusion layer 601, an anode catalyst layer 602, a polymer electrolyte membrane 603, a cathode catalyst layer 604, and a cathode gas diffusion layer 605, which are sequentially arranged from the anode to the cathode. . The anode catalyst layer 602 and the cathode catalyst layer 604 comprise a conductive carrier such as carbon paper, carbon cloth, carbon nanotube film or carbon nanosphere film, respectively coated with a plurality of anode catalysts and plural Cathode catalyst. The anode gas diffusion layer 601 and the cathode gas diffusion layer 605 each comprise a fine matrix porous material, and in order to further increase the gas diffusion efficiency of the layers in the fuel cell, the fine matrix porous material is selectively surface treated to Increase the hydrophobicity of the surface of the layers.
在一些包含有一細微陣列多孔燃料電池電極材料的燃料電池裝置的實施例中,不論它是作為一觸媒層、一氣體擴散層或一水處理層,該細微陣列多孔燃料電池電極材料可以是藉由氧化反應對該電極材料的全部或部分進行表面處理,以避免被存在於該燃料電池裝置中的酸及鹼或在該燃料電池中所進行的電化學反應所產生的酸及鹼腐蝕。In some embodiments of a fuel cell device comprising a fine array of porous fuel cell electrode materials, whether it is a catalyst layer, a gas diffusion layer or a water treatment layer, the fine array porous fuel cell electrode material may be borrowed All or part of the electrode material is surface-treated by an oxidation reaction to avoid acid and alkali corrosion caused by the acid and alkali present in the fuel cell device or the electrochemical reaction carried out in the fuel cell.
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the simple equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still Within the scope of the invention patent.
100‧‧‧質子交換膜燃料電池裝置100‧‧‧Proton exchange membrane fuel cell device
101‧‧‧陽極端板101‧‧‧Anode end plate
102‧‧‧陽極雙極性板102‧‧‧Anode bipolar plate
103‧‧‧陽極墊圈103‧‧‧Anode washer
104‧‧‧陽極氣體擴散層104‧‧‧Anode gas diffusion layer
105‧‧‧膜電極組件105‧‧‧ membrane electrode assembly
106‧‧‧陰極氣體擴散層106‧‧‧ cathode gas diffusion layer
107‧‧‧陰極墊圈107‧‧‧Cathode Washer
108‧‧‧陰極雙電極板108‧‧‧Cathode double electrode plate
109‧‧‧陰極端板109‧‧‧ Cathode end plate
110‧‧‧氧氣體通道110‧‧‧Oxygen gas channel
111‧‧‧聚合物電解質膜111‧‧‧ polymer electrolyte membrane
112‧‧‧陽極觸媒層112‧‧‧Anode catalyst layer
113‧‧‧陰極觸媒層113‧‧‧ Cathode catalyst layer
114‧‧‧碳奈米管114‧‧‧Carbon nanotubes
115‧‧‧鉑奈米粒子115‧‧‧Platinum nanoparticles
200‧‧‧膜電極組件200‧‧‧ membrane electrode assembly
201‧‧‧聚合物電解質膜201‧‧‧ polymer electrolyte membrane
202‧‧‧陽極觸媒層202‧‧‧Anode catalyst layer
203‧‧‧陰極觸媒層203‧‧‧ Cathode catalyst layer
204‧‧‧細微陣列多孔結構204‧‧‧Microarray porous structure
205‧‧‧燃料電池電極材料205‧‧‧ fuel cell electrode material
206‧‧‧燃料電池電極材料206‧‧‧ fuel cell electrode material
207‧‧‧燃料電池電極材料207‧‧‧ Fuel cell electrode material
300‧‧‧燃料電池膜電極組件300‧‧‧ fuel cell membrane electrode assembly
301‧‧‧聚合物電解質膜301‧‧‧ polymer electrolyte membrane
302‧‧‧組合式陽極觸媒-氣體擴散層302‧‧‧Combined anode catalyst-gas diffusion layer
303‧‧‧組合式陰極觸媒-氣體擴散層303‧‧‧Combined Cathodic Catalyst-Gas Diffusion Layer
304‧‧‧水處理層304‧‧‧ water treatment layer
400‧‧‧燃料電池膜電極組件400‧‧‧ fuel cell membrane electrode assembly
401‧‧‧陽極氣體擴散層401‧‧‧Anode gas diffusion layer
402‧‧‧陽極觸媒層402‧‧‧Anode catalyst layer
403‧‧‧聚合物電解質膜403‧‧‧ polymer electrolyte membrane
404‧‧‧陰極觸媒層404‧‧‧Cathodic catalyst layer
405‧‧‧陰極氣體擴散層405‧‧‧ cathode gas diffusion layer
410‧‧‧燃料電池膜電極組件410‧‧‧ fuel cell membrane electrode assembly
411‧‧‧陽極氣體擴散層411‧‧‧Anode gas diffusion layer
412‧‧‧陽極觸媒層412‧‧‧Anode catalyst layer
413‧‧‧聚合物電解質膜413‧‧‧ polymer electrolyte membrane
414‧‧‧陰極觸媒層414‧‧‧ Cathode catalyst layer
415‧‧‧陰極氣體擴散層415‧‧‧ cathode gas diffusion layer
421‧‧‧細微陣列多孔氣體擴散層421‧‧‧Microarray porous gas diffusion layer
422‧‧‧細微陣列多孔觸媒層422‧‧‧Microarray porous catalyst layer
423‧‧‧碳衍生觸媒層423‧‧‧carbon-derived catalyst layer
500‧‧‧燃料電池膜電極組件500‧‧‧ fuel cell membrane electrode assembly
501‧‧‧陽極氣體擴散層501‧‧‧Anode gas diffusion layer
502‧‧‧陽極觸媒層502‧‧‧Anode catalyst layer
503‧‧‧聚合物電解質膜503‧‧‧ polymer electrolyte membrane
504‧‧‧陰極觸媒層504‧‧‧ Cathode catalyst layer
505‧‧‧陰極氣體擴散層505‧‧‧ cathode gas diffusion layer
506‧‧‧水處理層506‧‧‧Water treatment layer
510‧‧‧燃料電池膜電極組件510‧‧‧ fuel cell membrane electrode assembly
511‧‧‧陽極組合式觸媒-氣體擴散層511‧‧‧Anode combined catalyst-gas diffusion layer
512‧‧‧陽極水處理層512‧‧‧Anode water treatment layer
513‧‧‧聚合物電解質膜513‧‧‧ polymer electrolyte membrane
514‧‧‧陰極水處理層514‧‧‧cathode water treatment layer
515‧‧‧陰極組合式觸媒-氣體擴散層515‧‧‧Cathode combined catalyst-gas diffusion layer
600‧‧‧燃料電池膜電極組件600‧‧‧ fuel cell membrane electrode assembly
601‧‧‧陽極氣體擴散層601‧‧‧Anode gas diffusion layer
602‧‧‧陽極觸媒層602‧‧‧Anode catalyst layer
603‧‧‧聚合物電解質膜603‧‧‧ polymer electrolyte membrane
604‧‧‧陰極觸媒層604‧‧‧ Cathode catalyst layer
605‧‧‧陰極氣體擴散層 605‧‧‧ cathode gas diffusion layer
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1說明一具有複數催化層的傳統質子交換膜燃料電池裝置,其其中,該等催化層是由複數塗有複數細微分散觸媒粒子的碳奈米管所構成; 圖2說明根據本文的一些實施例,一燃料電池膜電極組件包含複數細微陣列多孔電極材料; 圖3說明根據本文的一些實施例,一燃料電池膜電極組件包含複數細微陣列多孔電極材料; 圖4說明根據本文的一些實施例,一燃料電池膜電極組件包含複數細微陣列多孔電極材料; 圖5說明根據本文的一些實施例,複數燃料電池膜電極組件包含複數細微陣列多孔電極材料;及 圖6說明根據本文的一些實施例,另一燃料電池膜電極組件包含複數細微陣列多孔電極材料。Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: Figure 1 illustrates a conventional proton exchange membrane fuel cell device having a plurality of catalytic layers, wherein the catalytic layers are A plurality of carbon nanotubes coated with a plurality of finely dispersed catalyst particles; FIG. 2 illustrates a fuel cell membrane electrode assembly comprising a plurality of fine array porous electrode materials, according to some embodiments herein; FIG. 3 illustrates some embodiments according to the present disclosure A fuel cell membrane electrode assembly comprising a plurality of fine array porous electrode materials; Figure 4 illustrates a fuel cell membrane electrode assembly comprising a plurality of fine array porous electrode materials, according to some embodiments herein; Figure 5 illustrates a plurality of embodiments according to some embodiments herein The fuel cell membrane electrode assembly comprises a plurality of fine array porous electrode materials; and Figure 6 illustrates that another fuel cell membrane electrode assembly comprises a plurality of fine array porous electrode materials, according to some embodiments herein.
Claims (40)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCPCT/CN2015/092499 | 2015-10-22 | ||
PCT/CN2015/092499 WO2017066949A1 (en) | 2015-10-22 | 2015-10-22 | Fuel cell electrode material and apparatuses |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201715778A TW201715778A (en) | 2017-05-01 |
TWI650897B true TWI650897B (en) | 2019-02-11 |
Family
ID=58556483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105131721A TWI650897B (en) | 2015-10-22 | 2016-09-30 | Fuel cell electrode material, method for manufacturing fuel cell electrode material, and fuel cell device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6726210B2 (en) |
KR (1) | KR102039536B1 (en) |
CN (1) | CN109618561B (en) |
TW (1) | TWI650897B (en) |
WO (1) | WO2017066949A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101988567B1 (en) * | 2017-06-01 | 2019-06-12 | 전남대학교산학협력단 | Three-dimensional membrane electrode assembly, fuel cell provided with the same and fabrication method thereof |
CN109037699B (en) * | 2017-06-09 | 2021-10-12 | 清华大学 | Fuel cell electrode and fuel cell |
CN108745308A (en) * | 2018-05-07 | 2018-11-06 | 江苏大学 | A kind of conductive traces Ag@PANI/CoFe2O4The preparation method and applications of/C |
CN108993470A (en) * | 2018-08-02 | 2018-12-14 | 福州大学 | A kind of preparation and application of the double array structure catalysis materials of titanium dioxide/graphene/zinc oxide |
CN108956730B (en) * | 2018-08-08 | 2020-06-16 | 甘肃省食品检验研究院 | Electrochemical sensor for direct alcohol fuel cell and preparation method and application thereof |
JP2020064784A (en) * | 2018-10-18 | 2020-04-23 | 株式会社グラヴィトン | Electrode and electrode manufacturing method |
JP7235284B2 (en) * | 2018-11-29 | 2023-03-08 | グローバル・リンク株式会社 | polymer electrolyte fuel cell |
JP7262739B2 (en) * | 2018-11-29 | 2023-04-24 | グローバル・リンク株式会社 | Manufacturing method for anode and cathode of electrolyzer |
JP7181404B2 (en) * | 2018-12-26 | 2022-11-30 | コーロン インダストリーズ インク | Catalyst, method for producing same, electrode containing same, membrane-electrode assembly containing same, and fuel cell containing same |
JP2020167041A (en) * | 2019-03-29 | 2020-10-08 | 正己 奥山 | Electrode and manufacturing method thereof |
JP2020167064A (en) * | 2019-03-29 | 2020-10-08 | 正己 奥山 | Solid polymer fuel cell |
JP7127603B2 (en) * | 2019-04-15 | 2022-08-30 | トヨタ自動車株式会社 | METHOD FOR MANUFACTURING ELECTRODE CATALYST LAYER FOR FUEL CELL |
CN112206799A (en) * | 2019-07-12 | 2021-01-12 | 丰田自动车株式会社 | Silicon-nitrogen co-doped graphene material, and preparation method and application thereof |
CN110846690B (en) * | 2019-10-14 | 2021-01-01 | 中南大学 | Manganese oxide-FeSiMnTi intermetallic compound based composite porous electrode material and preparation method thereof |
CN116435560A (en) * | 2023-06-14 | 2023-07-14 | 清氢(北京)科技有限公司 | Batch preparation process of polymer electrolyte ordered large-area membrane electrode |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3437525A (en) * | 1964-01-20 | 1969-04-08 | Engelhard Ind Inc | Fuel cell with titanium-containing electrode and process of use thereof |
US6284114B1 (en) * | 1997-09-29 | 2001-09-04 | Rodel Holdings Inc. | Method of fabricating a porous polymeric material by electrophoretic deposition |
DE10345261A1 (en) * | 2003-09-29 | 2005-04-21 | Ballard Power Systems | Polymer electrolyte membrane fuel cell comprises membrane-electrode arrangement having gas diffusion electrode with hydrophilic nano-porous catalytic layer and first hydrophobic nano-porous gas diffusion layer |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05283094A (en) * | 1992-03-31 | 1993-10-29 | Toshiba Corp | Fuel cell |
JPH10167855A (en) * | 1996-12-05 | 1998-06-23 | Toho Rayon Co Ltd | Porous carbon material |
JP2004186046A (en) * | 2002-12-04 | 2004-07-02 | Honda Motor Co Ltd | Electrode structure for solid polymer fuel cell |
JP2005183263A (en) * | 2003-12-22 | 2005-07-07 | Nissan Motor Co Ltd | Porous structure |
JP2007184204A (en) * | 2006-01-10 | 2007-07-19 | Canon Inc | Fuel cell membrane electrode assembly and method for fabrication thereof |
JP2008041467A (en) * | 2006-08-08 | 2008-02-21 | Toshiba Corp | Device and method of manufacturing electrode for fuel cell |
JP2008147031A (en) * | 2006-12-11 | 2008-06-26 | Sharp Corp | Manufacturing method of membrane-electrode assembly |
JP4683021B2 (en) * | 2007-08-02 | 2011-05-11 | トヨタ自動車株式会社 | Catalyst support for forming fuel cell electrode and method for producing polymer electrolyte fuel cell |
KR100982326B1 (en) * | 2008-05-13 | 2010-09-15 | 삼성에스디아이 주식회사 | Membrane electrode assembly for fuel cell, and fuel cell system comprising the same |
US20120251926A1 (en) * | 2010-04-29 | 2012-10-04 | Ford Global Technologies, Llc | Thin Film Catalyst With Heat-Extendable Wires |
CN102059114B (en) * | 2010-12-02 | 2012-11-14 | 华南师范大学 | Anode porous array catalyst Pt-HxMoO3 for direct methanol fuel cell and preparation method thereof |
JP6041162B2 (en) * | 2012-08-01 | 2016-12-07 | 国立大学法人九州大学 | Paper-like catalyst for reforming hydrocarbons, paper-like catalyst array, and solid oxide fuel cell having paper-like catalyst or paper-like catalyst array |
KR20140065283A (en) * | 2012-11-21 | 2014-05-29 | 삼성전자주식회사 | Electrode for fuel cell, method for preparing the same, membrane electrode assembly for fuel cell the electrode and fuel cell including the membrane electrode assembly |
CN103606687B (en) * | 2013-11-26 | 2015-08-26 | 华南师范大学 | A kind of anode catalyst porous array Pt-p-H for direct methanol fuel cell xmoO 3and preparation method thereof |
CN103887518B (en) * | 2014-03-26 | 2016-08-17 | 清华大学 | A kind of ordered polymer membrane electrode from humidification |
JP6300315B2 (en) * | 2014-03-31 | 2018-03-28 | 住友電気工業株式会社 | Fuel cell current collector and fuel cell |
CN104393318B (en) * | 2014-09-30 | 2016-06-29 | 成都新柯力化工科技有限公司 | A kind of fuel cell ceramics PEM and preparation method thereof |
-
2015
- 2015-10-22 KR KR1020177027257A patent/KR102039536B1/en active IP Right Grant
- 2015-10-22 WO PCT/CN2015/092499 patent/WO2017066949A1/en active Application Filing
- 2015-10-22 CN CN201580078974.4A patent/CN109618561B/en active Active
- 2015-10-22 JP JP2017554458A patent/JP6726210B2/en active Active
-
2016
- 2016-09-30 TW TW105131721A patent/TWI650897B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3437525A (en) * | 1964-01-20 | 1969-04-08 | Engelhard Ind Inc | Fuel cell with titanium-containing electrode and process of use thereof |
US6284114B1 (en) * | 1997-09-29 | 2001-09-04 | Rodel Holdings Inc. | Method of fabricating a porous polymeric material by electrophoretic deposition |
DE10345261A1 (en) * | 2003-09-29 | 2005-04-21 | Ballard Power Systems | Polymer electrolyte membrane fuel cell comprises membrane-electrode arrangement having gas diffusion electrode with hydrophilic nano-porous catalytic layer and first hydrophobic nano-porous gas diffusion layer |
Non-Patent Citations (3)
Title |
---|
Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure;NATURE COMMUNICATIONS 4:2473;DOI: 10.1038/ncomms3473 * |
Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure;NATURE COMMUNICATIONS 4:2473;DOI: 10.1038/ncomms3473。Published Sep 2013。 |
Published Sep 2013 * |
Also Published As
Publication number | Publication date |
---|---|
KR20180003536A (en) | 2018-01-09 |
JP2018522365A (en) | 2018-08-09 |
CN109618561A (en) | 2019-04-12 |
JP6726210B2 (en) | 2020-07-22 |
CN109618561B (en) | 2022-03-04 |
KR102039536B1 (en) | 2019-11-01 |
WO2017066949A1 (en) | 2017-04-27 |
TW201715778A (en) | 2017-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI650897B (en) | Fuel cell electrode material, method for manufacturing fuel cell electrode material, and fuel cell device | |
WO2020075777A1 (en) | Membrane-electrode assembly for fuel cells and solid polymer fuel cell | |
JP5115193B2 (en) | Catalyst-supported powder and method for producing the same | |
JP2007250210A (en) | Electrode catalyst layer for fuel cell and its manufacturing method | |
JP2013215701A (en) | Method for manufacturing core-shell catalyst and method for manufacturing membrane electrode assembly | |
JP4826057B2 (en) | Fuel cell | |
JP2020068148A (en) | Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell | |
JP2009037902A (en) | Catalyst carrying carrier for forming electrode for fuel cell, method for manufacturing the same, and solid polymer fuel cell | |
JP2007073291A (en) | Electrode catalyst particles for fuel cell and fuel cell using it | |
JP2008034191A (en) | Manufacturing method for membrane-electrode assembly for fuel cell, and inspection method of catalyst grain for fuel cell | |
CN109314249B (en) | Electrode catalyst, method for producing same, and electrode catalyst layer using same | |
JP5803536B2 (en) | Electrocatalyst | |
JP2016207419A (en) | Electrode catalyst layer, membrane electrode assembly and solid polymer fuel cell | |
JP6759651B2 (en) | Method for producing catalyst particles and method for producing electrode catalyst | |
JP2005197195A (en) | Solid polymer fuel cell | |
JP2012212661A (en) | Electrode catalyst layer for fuel cell, manufacturing method of electrode catalyst layer, membrane electrode assembly for fuel cell, and solid polymer fuel cell | |
JP2009129667A (en) | Fuel cell | |
JP2017069056A (en) | Electrode catalyst layer, membrane-electrode assembly and solid polymer fuel cell | |
JP2019186210A (en) | Electrode catalyst layer, membrane-electrode assembly and solid polymer fuel cell | |
JP2005190887A (en) | Electrode catalyst having surface constitution to structure catalyst layer having high performance and durability, and its manufacturing method | |
WO2018069979A1 (en) | Catalyst layer production method, catalyst layer, catalyst precursor, and catalyst precursor production method | |
JP2007213947A (en) | Manufacturing method of catalyst support powder for polymer electrolyte fuel cell, and polymer electrolyte fuel cell having catalyst support powder provided by same | |
WO2024101085A1 (en) | Composition for forming catalyst layer, method for producing catalyst layer using same, gas diffusion electrode and electrolysis cell using same | |
JP5003078B2 (en) | Electrode catalyst layer for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell | |
JP6846210B2 (en) | Electrode catalyst and membrane electrode assembly and fuel cell using the electrode catalyst |