JP2008147031A - Manufacturing method of membrane-electrode assembly - Google Patents

Manufacturing method of membrane-electrode assembly Download PDF

Info

Publication number
JP2008147031A
JP2008147031A JP2006333138A JP2006333138A JP2008147031A JP 2008147031 A JP2008147031 A JP 2008147031A JP 2006333138 A JP2006333138 A JP 2006333138A JP 2006333138 A JP2006333138 A JP 2006333138A JP 2008147031 A JP2008147031 A JP 2008147031A
Authority
JP
Japan
Prior art keywords
catalyst layer
catalyst
electrode assembly
membrane
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2006333138A
Other languages
Japanese (ja)
Inventor
Koutaro Saito
功太郎 齋藤
Tomohisa Yoshie
智寿 吉江
Shinobu Takenaka
忍 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006333138A priority Critical patent/JP2008147031A/en
Publication of JP2008147031A publication Critical patent/JP2008147031A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a membrane-electrode assembly capable of providing a high-quality membrane-electrode assembly by preventing a crack and separation of a catalyst layer by obviating the need of a drying process after catalyst slurry application. <P>SOLUTION: This application relates to this manufacturing method of a membrane-electrode assembly formed by stacking a catalyst layer on an electrolyte membrane including: a slurry preparation process of preparing slurry containing a catalyst, an electrolyte and a solvent; a catalyst powder preparation process of preparing catalyst powder by removing the solvent in the slurry; a catalyst layer formation process of forming the catalyst layer by compressively molding the catalyst powder by a die; and a joint process of jointing the catalyst layer or a constituent material of the catalyst layer to the electrolyte membrane. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、たとえば燃料電池等に対して好適に用いることが可能な膜電極複合体の製造方法に関する。   The present invention relates to a method for producing a membrane electrode assembly which can be suitably used for, for example, a fuel cell.

近年、携帯電子機器等の電源として燃料電池に対する期待が高まっている。燃料電池においては、燃料極において燃料を、空気極において空気を、それぞれ電気化学的に酸化・還元することにより発電させる。固体高分子型燃料電池に使用することが可能な膜電極複合体の製造方法としては、従来、間接コーティング方法、直接コーティング方法等が用いられている。これらの方法のいずれにおいても、触媒層構成物質として、触媒粒子、水、溶媒、電解質溶液等が分散された触媒層製造用スラリーを用い、当該触媒層製造用スラリーを、基材としての固体高分子電解質膜に塗工するのが一般的である。   In recent years, expectations for fuel cells as a power source for portable electronic devices and the like are increasing. In a fuel cell, electric power is generated by electrochemically oxidizing and reducing fuel at a fuel electrode and air at an air electrode. Conventionally, an indirect coating method, a direct coating method, or the like has been used as a method for producing a membrane electrode assembly that can be used in a polymer electrolyte fuel cell. In any of these methods, a catalyst layer production slurry in which catalyst particles, water, a solvent, an electrolyte solution, and the like are dispersed is used as a catalyst layer constituent material. In general, it is applied to a molecular electrolyte membrane.

ここで、間接コーティング方法とは、フッ素樹脂等の離型性に優れる離型シート上に、触媒層スラリーをスクリーン印刷等でコーティングして電極を形成し、該電極を該離型シートと共に高分子電解質膜に密着させて積層し、その後、ホットプレス等によって、離型シート上の電極を高分子電解質膜に転写させる方法である。また、離型シートの代わりにカーボンペーパー等の拡散層を用い、拡散層ごと電極を固体高分子電解質膜に接合する方法も含まれる。一方、直接コーティング方法とは、エアーブラシ、スプレーガン等で、触媒層製造用スラリーを高分子電解質膜に直接塗工する方法である。   Here, the indirect coating method is to form an electrode by coating the catalyst layer slurry with screen printing or the like on a release sheet having excellent release properties such as a fluororesin, and the electrode is polymerized together with the release sheet. In this method, the electrodes are laminated in close contact with the electrolyte membrane, and then the electrode on the release sheet is transferred to the polymer electrolyte membrane by hot pressing or the like. Further, a method of using a diffusion layer such as carbon paper instead of the release sheet and joining the electrode together with the diffusion layer to the solid polymer electrolyte membrane is also included. On the other hand, the direct coating method is a method in which the slurry for producing the catalyst layer is directly applied to the polymer electrolyte membrane with an air brush, a spray gun or the like.

従来の燃料電池用電極触媒層を製造する方法で製造した燃料電池用電極触媒層においては、ひび割れや亀裂が発生することが多く、この傾向は、燃料電池用電極触媒層の厚みが大きくなるにつれてより顕著となる。このひび割れ等は、触媒担持カーボン微粒子等からなる触媒粒子を分散させたスラリーを塗工した後に溶媒が乾燥する際に発生する。   In a fuel cell electrode catalyst layer produced by a conventional method for producing a fuel cell electrode catalyst layer, cracks and cracks often occur, and this tendency is observed as the thickness of the fuel cell electrode catalyst layer increases. It becomes more prominent. The cracks and the like are generated when the solvent is dried after the slurry in which the catalyst particles including the catalyst-supporting carbon fine particles are dispersed is applied.

特許文献1では、乾燥した触媒担持カーボン微粒子を分散させるときに用いる水の表面張力が大きいことで、溶媒乾燥時の乾燥収縮力が大きいことと、汎用されるエタノール溶媒や1−プロパノール溶媒と電解質との相互作用(すなわち分子間力)が大きくなりすぎることの2点によってひび割れが生じることを見出し、乾燥した触媒担持カーボン微粒子を濡れさせる液体媒体として、水に代えて3級アルコールを採用し、固体高分子電解質を溶解させる液体溶媒として、一般的なアルコールに代えて誘電率20以下の有機溶媒を採用することで、ひび割れ等の発生を効果的に抑制できる旨提案されている。   In Patent Document 1, since the surface tension of water used when dispersing the dried catalyst-carrying carbon fine particles is large, the drying shrinkage force at the time of solvent drying is large, and a commonly used ethanol solvent or 1-propanol solvent and an electrolyte are used. It is found that cracks are generated due to two points that the interaction (ie, intermolecular force) becomes too large, and a tertiary alcohol is used instead of water as a liquid medium for wetting the dried catalyst-carrying carbon fine particles, It has been proposed that the occurrence of cracks and the like can be effectively suppressed by employing an organic solvent having a dielectric constant of 20 or less in place of general alcohol as a liquid solvent for dissolving the solid polymer electrolyte.

しかしながら、上記の技術においても、触媒層の作製工程は、依然として触媒層製造用スラリーに含まれる水および有機溶媒を塗布後に乾燥させる工程を有しており、一度に多量のスラリーを積層すると乾燥の工程においてひび割れ等が発生する。一方、少量ずつ多段に分けてスラリーを積層する場合、前段で塗布し乾燥させた触媒層中の電解質が後段のスラリー中の溶媒を吸い込むため、外表面から距離が遠くなることによって乾燥しにくくなり、触媒層の強度が弱くなることで剥離が生じてしまうという課題を有している。
特開2003−208903号公報
However, even in the above technique, the catalyst layer preparation process still includes a process of drying after applying water and an organic solvent contained in the slurry for producing the catalyst layer. Cracks and the like occur in the process. On the other hand, when laminating the slurry in multiple stages in small portions, the electrolyte in the catalyst layer applied and dried in the former stage sucks the solvent in the slurry in the latter stage, so it becomes difficult to dry due to the distance from the outer surface becoming far. Further, there is a problem that peeling occurs due to the weakness of the catalyst layer.
JP 2003-208903 A

本発明は上記の課題を解決し、触媒スラリー塗布後の乾燥工程を不要とすることで、触媒層のひび割れおよび剥離を防ぎ、高品質な膜電極複合体を得ることが可能な膜電極複合体の製造方法の提供を目的とする。   MEANS TO SOLVE THE PROBLEM This invention solves said subject and prevents the crack and peeling of a catalyst layer by making the drying process after catalyst slurry application | coating unnecessary, and the membrane electrode composite which can obtain a high quality membrane electrode composite It aims at providing the manufacturing method of this.

本発明は、電解質膜の上に触媒層を積層してなる膜電極複合体の製造方法であって、触媒と、電解質と、溶媒とを含むスラリーを調製するスラリー調製工程と、スラリー中の溶媒を除去して触媒粉末を調製する触媒粉末調製工程と、触媒粉末を型によって圧縮成形し、触媒層を形成する触媒層形成工程と、触媒層または触媒層の構成材料を電解質膜と接合する接合工程とを含む、膜電極複合体の製造方法に関する。   The present invention relates to a method for producing a membrane electrode assembly in which a catalyst layer is laminated on an electrolyte membrane, a slurry preparation step for preparing a slurry containing a catalyst, an electrolyte, and a solvent, and a solvent in the slurry. Catalyst preparation step for removing catalyst to prepare catalyst powder, catalyst powder compression molding with catalyst mold to form catalyst layer, and joining of catalyst layer or constituent material of catalyst layer to electrolyte membrane And a process for producing a membrane electrode assembly.

本発明の膜電極複合体の製造方法において、触媒粉末調製工程における溶媒の除去は、スラリーを混練しながら行なわれることが好ましい。   In the method for producing a membrane electrode assembly of the present invention, the removal of the solvent in the catalyst powder preparation step is preferably performed while kneading the slurry.

本発明の膜電極複合体の製造方法においては、型が多孔質金属であることが好ましい。この場合、接合工程において電解質膜と接合される触媒層の構成材料が該多孔質金属であることが好ましい。   In the method for producing a membrane electrode assembly of the present invention, the mold is preferably a porous metal. In this case, it is preferable that the constituent material of the catalyst layer bonded to the electrolyte membrane in the bonding step is the porous metal.

本発明の膜電極複合体の製造方法においては、スラリーが導電性繊維をさらに含むことが好ましい。   In the method for producing a membrane electrode assembly of the present invention, the slurry preferably further contains conductive fibers.

本発明の膜電極複合体の製造方法においては、触媒層が燃料電池の燃料極触媒層であることが好ましい。この場合、触媒層の厚みが50μm以上であることが好ましい。   In the method for producing a membrane electrode assembly of the present invention, the catalyst layer is preferably a fuel electrode catalyst layer of a fuel cell. In this case, the thickness of the catalyst layer is preferably 50 μm or more.

本発明の膜電極複合体の製造方法においては、触媒を含むスラリーの溶媒を乾燥させて得た触媒粉末を型で圧縮成形することによって触媒層を形成するため、触媒層のひび割れおよび剥離が防止され、高品質な膜電極複合体を得ることが可能である。   In the method for producing a membrane electrode assembly of the present invention, the catalyst layer is formed by compressing the catalyst powder obtained by drying the solvent of the slurry containing the catalyst with a mold, thereby preventing cracking and peeling of the catalyst layer. Thus, it is possible to obtain a high quality membrane electrode composite.

また本発明によれば、従来の方法では作製が難しかった厚みが大きくかつ高品質である触媒層を少ない工程によって低コストで形成できる。   Further, according to the present invention, a catalyst layer having a large thickness and high quality, which was difficult to produce by the conventional method, can be formed at a low cost by a small number of steps.

本発明は、電解質膜の上に触媒層を積層してなる膜電極複合体の製造方法に関し、該製造方法は、触媒と電解質と溶媒とを含むスラリーを調製するスラリー調製工程と、スラリー中の溶媒を除去して触媒粉末を調製する触媒粉末調製工程と、触媒粉末を型によって圧縮成形し、触媒層を形成する触媒層形成工程と、触媒層または触媒層の構成材料を電解質膜と接合する接合工程とを含む。本発明で製造される膜電極複合体は、典型的には、電解質膜の両面に触媒層を積層した構成を有する。   The present invention relates to a method for producing a membrane electrode assembly in which a catalyst layer is laminated on an electrolyte membrane, the production method comprising a slurry preparation step for preparing a slurry containing a catalyst, an electrolyte, and a solvent; A catalyst powder preparation step for preparing a catalyst powder by removing the solvent, a catalyst layer forming step for forming the catalyst layer by compressing the catalyst powder by a mold, and a catalyst layer or a constituent material of the catalyst layer are joined to the electrolyte membrane. Joining process. The membrane electrode assembly produced in the present invention typically has a configuration in which catalyst layers are laminated on both surfaces of an electrolyte membrane.

[実施の形態1]
以下、図面を参照しながら本発明の典型的な実施の態様につき説明する。
[Embodiment 1]
Hereinafter, typical embodiments of the present invention will be described with reference to the drawings.

<スラリー調製工程>
スラリー調製工程においては、触媒と電解質と溶媒とを含むスラリーを調製する。スラリーは、たとえば、触媒、電解質および溶媒を攪拌下で混合することにより調製できる。本発明において、触媒は単独でスラリー中に含有されても良いが、触媒微粒子を用い、たとえば導電性粉末からなる担体に担持された状態で用いられることが好ましい。
<Slurry preparation process>
In the slurry preparation step, a slurry containing a catalyst, an electrolyte, and a solvent is prepared. The slurry can be prepared, for example, by mixing the catalyst, electrolyte and solvent under stirring. In the present invention, the catalyst may be contained alone in the slurry, but it is preferable to use catalyst fine particles, for example, in a state of being supported on a carrier made of conductive powder.

触媒としては、たとえば、Pt、Ru、Au、Ag、Rh、Pd、Os、Irなどの貴金属や、Ni、V、Ti、Co、Mo、Fe、Cu、Znなどの卑金属を好ましく使用できる。これらは、単独もしくは2種類以上の組み合わせで使用できる。   As the catalyst, for example, noble metals such as Pt, Ru, Au, Ag, Rh, Pd, Os, Ir, and base metals such as Ni, V, Ti, Co, Mo, Fe, Cu, and Zn can be preferably used. These can be used alone or in combination of two or more.

また、触媒を担持するための担体として用いられる導電性粉末としては、たとえば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブ、カーボンナノホーン、フラーレンなどの炭素粉末を好ましく使用できる。   Further, as the conductive powder used as a carrier for supporting the catalyst, for example, carbon powder such as acetylene black, ketjen black, furnace black, carbon nanotube, carbon nanohorn, fullerene can be preferably used.

電解質としては、たとえば、ナフィオン(登録商標)(デュポン社製)、フレミオン(登録商標)(旭硝子社製)などの高分子電解質を好ましく使用できる。スラリー調製工程において、これらはたとえば溶液の状態で好ましく使用できる。溶媒としては、たとえば、エチレングリコールジメチルエーテル、n-酢酸ブチル、イソプロパノールおよびその他の低級アルコール、などを好ましく用いることができる。   As the electrolyte, for example, polymer electrolytes such as Nafion (registered trademark) (manufactured by DuPont) and Flemion (registered trademark) (manufactured by Asahi Glass) can be preferably used. In the slurry preparation step, these can be preferably used in the form of a solution, for example. As the solvent, for example, ethylene glycol dimethyl ether, n-butyl acetate, isopropanol and other lower alcohols can be preferably used.

スラリーは触媒、電解質、溶媒のみで構成されても良いが、他の成分を含有しても良い。たとえば、電解質の溶液に対し、撥水性付与剤として、PTFE(ポリテトラフルオロエチレン)を添加したカーボン粉末等を添加したり、粘度調整剤としてエチレングリコール等を添加しても良い。またスラリーに水等を含有させても良い。   The slurry may be composed of only a catalyst, an electrolyte, and a solvent, but may contain other components. For example, carbon powder or the like to which PTFE (polytetrafluoroethylene) has been added as a water repellency imparting agent or ethylene glycol or the like as a viscosity modifier may be added to the electrolyte solution. Further, water or the like may be contained in the slurry.

また、本発明においては、スラリーが導電性繊維をさらに含むことが好ましい。この場合、触媒層の空隙率を所望の範囲内に調整して、触媒層への燃料の供給、および触媒層からの生成物の排出を効率良く行なわせることが可能となる。導電性繊維としては、たとえば、カーボンファイバー(例えば、昭和電工製VGCF)、カーボンナノチューブなどを例示できる。   Moreover, in this invention, it is preferable that a slurry further contains a conductive fiber. In this case, the porosity of the catalyst layer can be adjusted within a desired range so that the fuel can be supplied to the catalyst layer and the product discharged from the catalyst layer can be efficiently performed. Examples of the conductive fiber include carbon fiber (for example, VGCF manufactured by Showa Denko), carbon nanotube, and the like.

スラリーのより具体的な組成としては、特に制限されるものではないが、貴金属触媒を担持した炭素粉末としてPt/Cを、高分子電解質溶液としてナフィオン(登録商標)溶液を、希釈用溶媒として有機溶媒を、それぞれ使用する場合、作製される電極の面積に対して、Pt/Cを、1〜30mgPt/cm2の範囲内で含有し、ナフィオン(登録商標)溶液を、0.5〜15mg/cm2の範囲内で含有し、有機溶媒を、30〜900mg/cm2の範囲内で含有する組成のスラリーが好ましい。 A more specific composition of the slurry is not particularly limited, but Pt / C is used as a carbon powder supporting a noble metal catalyst, a Nafion (registered trademark) solution is used as a polymer electrolyte solution, and an organic solvent is used as a dilution solvent. When each of the solvents is used, Pt / C is contained within a range of 1 to 30 mg Pt / cm 2 with respect to the area of the electrode to be prepared, and Nafion (registered trademark) solution is added at 0.5 to 15 mg / It comprises in the range of cm 2, the organic solvent, a slurry having a composition containing in the range of 30~900mg / cm 2 is preferred.

より典型的には、Pt/Cを2mgPt/cm2、ナフィオン(登録商標)溶液を1.0mg/cm2、有機溶媒を60mg/cm2で含有する塗布状態を形成できる組成のスラリーを例示できる。スラリーを構成する各々の物質を均一に混合、分散させるための手法としては、ビーズミルや超音波ホモジナイザーなどを用いる方法を好ましく採用できる。 More typically, a slurry having a composition capable of forming a coating state containing 2 mg Pt / cm 2 of Pt / C, 1.0 mg / cm 2 of Nafion (registered trademark) solution, and 60 mg / cm 2 of an organic solvent can be exemplified. . As a method for uniformly mixing and dispersing each substance constituting the slurry, a method using a bead mill or an ultrasonic homogenizer can be preferably employed.

<触媒粉末形成工程>
触媒粉末形成工程では、上記で得たスラリー中の溶媒を除去して触媒粉末を調製する。溶媒は、たとえば乾燥等により除去できる。溶媒の除去は、スラリーを混練しながら行なうことが好ましく、この場合、スラリーに外力が働くことによってスラリー中の構成物質の凝集が抑制されるため、溶媒の揮発速度を向上させることができるとともに、粒子径が小さく均一な触媒粉末を得ることができる。混練の手法としては、たとえば乳鉢ですりつぶす方法等を好ましく採用できる。
<Catalyst powder forming step>
In the catalyst powder forming step, the solvent in the slurry obtained above is removed to prepare catalyst powder. The solvent can be removed by, for example, drying. The removal of the solvent is preferably performed while the slurry is kneaded. In this case, the external force acts on the slurry to suppress the aggregation of constituent materials in the slurry, so that the volatilization rate of the solvent can be improved, A uniform catalyst powder having a small particle size can be obtained. As a kneading method, for example, a method of grinding with a mortar can be preferably employed.

<触媒層形成工程>
触媒層形成工程においては、上記で得た触媒粉末を型によって圧縮成形し、触媒層を形成する。図1は、本発明に係る膜電極複合体の製造方法の好ましい一態様について説明する模式図である。図1においては、簡略化のため、電解質膜の一方の表面上に積層される触媒層を代表して示している。
<Catalyst layer formation process>
In the catalyst layer forming step, the catalyst powder obtained above is compression-molded with a mold to form a catalyst layer. FIG. 1 is a schematic diagram illustrating a preferred embodiment of the method for producing a membrane electrode assembly according to the present invention. In FIG. 1, for the sake of simplicity, a catalyst layer laminated on one surface of the electrolyte membrane is shown as a representative.

まず、基材1の上に、触媒粉末充填スペース31が形成された型30を重ね(図1(A))、基材1と型30とを固定する。基材1としては、たとえば燃料電池において用いられる燃料および燃料電池における生成物の拡散性に優れた、カーボンペーパーに代表される拡散層、離型性の優れたテフロン(登録商標)シート、高濃度燃料の燃料供給量を制御する透過制御膜、などを用いることが可能である。触媒粉末充填スペース31の大きさを変えることによって、所望の触媒層の面積を実現することができる。また、型30の厚みを変えることによって、所望の触媒層の厚みを実現することができる。   First, a mold 30 in which a catalyst powder filling space 31 is formed is stacked on the substrate 1 (FIG. 1A), and the substrate 1 and the mold 30 are fixed. As the base material 1, for example, a diffusion layer represented by carbon paper, a Teflon (registered trademark) sheet excellent in releasability, a high concentration, excellent in diffusibility of fuel used in fuel cells and products in the fuel cells It is possible to use a permeation control film that controls the amount of fuel supplied. By changing the size of the catalyst powder filling space 31, a desired area of the catalyst layer can be realized. Further, by changing the thickness of the mold 30, a desired catalyst layer thickness can be realized.

次に、触媒粉末充填スペースに触媒粉末を充填し、好ましくはスペーサを介して基材1と型30との積層物の上下からプレス機を用いて圧縮することによって圧縮成形を行ない、触媒層2を形成する(図1(B))。圧縮成形の終了後には、型30を外す(図1(C))。圧縮成形によって、より均一で密な触媒層を作製することが可能となる。また、触媒がたとえば導電性粉末からなる担体に担持されている場合には、圧縮成形によって導電性粉末同士の接点が増加し、触媒層のオーミック抵抗を低減することが可能となる。   Next, the catalyst powder filling space is filled with the catalyst powder, and preferably compression molding is performed by using a press machine from above and below the laminate of the base material 1 and the mold 30 through the spacer, and the catalyst layer 2 (FIG. 1B). After completion of the compression molding, the mold 30 is removed (FIG. 1C). By compression molding, a more uniform and dense catalyst layer can be produced. Further, when the catalyst is supported on a carrier made of, for example, conductive powder, the contacts between the conductive powders are increased by compression molding, and the ohmic resistance of the catalyst layer can be reduced.

型30は、プレスした際に大きく変形しないようにある程度の剛性と耐熱性とを有するものが好ましい。型30の好ましい材質としては、たとえば、アクリル、PTFE(ポリテトラフルオロエチレン)、PEEK(ポリエーテルエーテルケトン)、PPS(ポリフェニレンサルファイド)、PI(ポリイミド)等を例示できる。   The mold 30 preferably has a certain degree of rigidity and heat resistance so as not to be greatly deformed when pressed. Examples of preferable materials for the mold 30 include acrylic, PTFE (polytetrafluoroethylene), PEEK (polyether ether ketone), PPS (polyphenylene sulfide), PI (polyimide), and the like.

また、スペーサを用いることによって基材1が潰れ過ぎることを防止できる。スペーサの厚みは、基材1の厚みと型の厚みとの合計よりも薄いことが好ましい。この場合圧縮成形によって均一で密な触媒層を作製することが可能である。また、プレス圧としては特に限定されるものでは無いが、5〜20kgf/cm2であることが好ましい。 Moreover, it can prevent that the base material 1 is crushed too much by using a spacer. The thickness of the spacer is preferably thinner than the sum of the thickness of the substrate 1 and the thickness of the mold. In this case, it is possible to produce a uniform and dense catalyst layer by compression molding. Moreover, it does not specifically limit as a press pressure, However, It is preferable that it is 5-20 kgf / cm < 2 >.

圧縮成形において、型30に充填される触媒粉末の固形分の充填率(以下、単に充填率とも記載する)は、例えば20%以上であることが好ましい。充填率が大きいほど触媒層の単位体積あたりの触媒表面積が増加し、反応サイトが増加するため、膜電極複合体の特性および該特性の安定性が向上する。該充填率が20%以上である場合、膜電極複合体の特性および該特性の安定性の向上効果が特に良好である。また、触媒層の該充填率は、80%以下であることが好ましい。該充填率が小さいほど、たとえば燃料電池における副生成物を排出する経路を確保できるため、膜電極複合体の特性の安定性が向上し、また、触媒層中の圧力が上がることにより生じる液漏れや部材間の剥離を良好に防止できる。該充填率が80%以下である場合、膜電極複合体における特性の安定性の向上効果および液漏れや剥離の防止効果が特に良好である。触媒層の該充填率は、25〜70%の範囲内であることがより好ましく、30〜60%の範囲内であることがさらに好ましい。   In compression molding, it is preferable that the filling rate of the solid content of the catalyst powder filled in the mold 30 (hereinafter also simply referred to as filling rate) is, for example, 20% or more. As the packing ratio increases, the catalyst surface area per unit volume of the catalyst layer increases and the number of reaction sites increases, so that the characteristics of the membrane electrode assembly and the stability of the characteristics are improved. When the filling rate is 20% or more, the effect of improving the characteristics of the membrane electrode assembly and the stability of the characteristics is particularly good. The filling rate of the catalyst layer is preferably 80% or less. The smaller the filling rate, the more, for example, a passage for discharging by-products in the fuel cell can be secured, so that the stability of the characteristics of the membrane electrode assembly is improved and the liquid leakage caused by the increased pressure in the catalyst layer Further, it is possible to prevent peeling between members. When the filling rate is 80% or less, the effect of improving the stability of characteristics in the membrane electrode assembly and the effect of preventing liquid leakage and peeling are particularly good. The filling rate of the catalyst layer is more preferably in the range of 25 to 70%, and still more preferably in the range of 30 to 60%.

ここで、触媒層の該充填率は、
充填率=(充填される触媒粉末の固形分の体積)/(型の触媒粉末充填スペースの体積)×100
という式で求めることができる。充填される触媒粉末の固形分の体積は、型に充填した触媒粉末の質量と、触媒粉末への各固形分の仕込み質量と、各固形分の密度とから求めることが可能である。
Here, the filling rate of the catalyst layer is
Filling rate = (volume of solid content of catalyst powder to be filled) / (volume of catalyst powder filling space of mold) × 100
It can be calculated by the formula. The volume of the solid content of the catalyst powder to be filled can be determined from the mass of the catalyst powder filled in the mold, the charged mass of each solid content into the catalyst powder, and the density of each solid content.

<接合工程>
接合工程においては、上記で得た触媒層、または触媒層の構成材料を電解質膜と接合する。本発明においては、触媒層を形成する前に溶媒を除去しているため、触媒層を作製した後に溶媒を乾燥させる場合に生じるひび割れや剥離を防ぐことが可能である。なお、図1では、型30を用いて触媒層2を形成した後、該触媒層2を電解質膜と接合する場合について説明するが、本発明においては、たとえば後述するような多孔質金属を触媒層の構成材料として用い、多孔質金属のみをあらかじめ電解質膜と接合する方法のように、接合工程において、触媒層の構成材料を電解質膜と接合しても良い。この場合には、触媒層形成工程よりも前に接合工程を行なうこととなる。
<Joint process>
In the joining step, the catalyst layer obtained above or the constituent material of the catalyst layer is joined to the electrolyte membrane. In the present invention, since the solvent is removed before forming the catalyst layer, it is possible to prevent cracking or peeling that occurs when the solvent is dried after the catalyst layer is formed. In FIG. 1, the case where the catalyst layer 2 is formed using the mold 30 and then the catalyst layer 2 is joined to the electrolyte membrane will be described. In the present invention, for example, a porous metal as described later is used as the catalyst. The constituent material of the catalyst layer may be joined to the electrolyte membrane in the joining step, as in the method of joining only the porous metal to the electrolyte membrane in advance as a constituent material of the layer. In this case, the joining step is performed before the catalyst layer forming step.

接合工程は、たとえば図1に示すように、基材1上に形成された触媒層2の上に電解質膜3を重ね合わせ(図1(D))、触媒層2と電解質膜3とをプレス等により接合することにより行なうことができる(図1(E))。本発明において触媒層または触媒層の構成材料を電解質膜に接合する手法としては、ホットプレス法等を例示できる。ホットプレス時の条件は、触媒層および電解質膜の材質に応じて選択されるが、たとえば電解質膜や触媒層に含まれる高分子電解質の軟化温度またはガラス転移温度を超える温度とすることが好ましい。具体的には、たとえば、高分子電解質としてナフィオン(登録商標)を用いる場合、ホットプレスの条件としては、たとえば、温度135℃、10kgf/cm2、時間5分(予熱2分、プレス3分)を採用できる。ホットプレスにより、電解質膜と触媒層との界面が電解質によって融合するとともに、触媒層中の電解質同士の界面も融合するため、膜電極複合体のプロトン伝導抵抗を低減すると共に、電解質膜と触媒層との接着強度を向上させることが可能となる。 In the joining step, for example, as shown in FIG. 1, an electrolyte membrane 3 is superimposed on a catalyst layer 2 formed on a substrate 1 (FIG. 1D), and the catalyst layer 2 and the electrolyte membrane 3 are pressed. It can be carried out by bonding by means such as (FIG. 1E). In the present invention, a hot press method or the like can be exemplified as a method for joining the catalyst layer or the constituent material of the catalyst layer to the electrolyte membrane. The conditions during hot pressing are selected according to the materials of the catalyst layer and the electrolyte membrane, and it is preferable that the temperature be higher than the softening temperature or glass transition temperature of the polymer electrolyte contained in the electrolyte membrane or catalyst layer, for example. Specifically, for example, when Nafion (registered trademark) is used as the polymer electrolyte, the hot press conditions are, for example, a temperature of 135 ° C., 10 kgf / cm 2 , a time of 5 minutes (preheating 2 minutes, press 3 minutes). Can be adopted. By hot pressing, the interface between the electrolyte membrane and the catalyst layer is fused by the electrolyte, and the interface between the electrolytes in the catalyst layer is also fused, so that the proton conduction resistance of the membrane electrode assembly is reduced, and the electrolyte membrane and the catalyst layer It becomes possible to improve the adhesive strength.

本発明の膜電極複合体が燃料電池に用いられる場合、電解質膜3は、燃料極触媒層から空気極触媒層へプロトンを伝達する機能と、燃料極触媒層と空気極触媒層との電気的絶縁性を保ち短絡を防止する機能とを有する。電解質膜の材質は、プロトン伝導性を有しかつ電気的絶縁性を有する材質であれば特に限定されず、高分子膜、無機膜、コンポジット膜を用いることができる。   When the membrane electrode assembly of the present invention is used in a fuel cell, the electrolyte membrane 3 has a function of transmitting protons from the fuel electrode catalyst layer to the air electrode catalyst layer, and an electrical connection between the fuel electrode catalyst layer and the air electrode catalyst layer. It has a function of maintaining insulation and preventing a short circuit. The material of the electrolyte membrane is not particularly limited as long as it has proton conductivity and electrical insulation, and a polymer membrane, an inorganic membrane, or a composite membrane can be used.

高分子膜としては、たとえばパーフルオロスルホン酸系電解質膜である、ナフィオン(登録商標)(デュポン社製)、ダウ膜(ダウ・ケミカル社)、アシプレックス(旭化成社製)、フレミオン(登録商標)(旭硝子社製)などが挙げられ、また、ポリスチレンスルホン酸、スルホン化ポリエーテルエーテルケトンなどの炭化水素系電解質膜なども挙げられる。   Examples of the polymer membrane include Nafion (registered trademark) (manufactured by DuPont), Dow membrane (Dow Chemical Company), Aciplex (manufactured by Asahi Kasei), and Flemion (registered trademark), which are perfluorosulfonic acid electrolyte membranes. (Manufactured by Asahi Glass Co., Ltd.), and hydrocarbon electrolyte membranes such as polystyrene sulfonic acid and sulfonated polyether ether ketone.

無機膜としては、たとえばリン酸ガラス、硫酸水素セシウム、ポリタングストリン酸、ポリリン酸アンモニウムなどが挙げられる。   Examples of the inorganic film include phosphate glass, cesium hydrogen sulfate, polytungstophosphoric acid, and ammonium polyphosphate.

コンポジット膜としては、スルフォン化ポリイミド系ポリマー、タングステン酸等の無機物とポリイミド等の有機物とのコンポジットなどが挙げられ、具体的にはゴアセレクト膜(ゴア社製)や細孔フィリング電解質膜などが挙げられる。   Examples of composite membranes include sulfonated polyimide polymers, composites of inorganic materials such as tungstic acid and organic materials such as polyimide, and specific examples include Gore Select membranes (manufactured by Gore) and pore filling electrolyte membranes. It is done.

本発明の製造方法で得られる膜電極複合体は、燃料電池に用いられる膜電極複合体であることが好ましい。この場合、本発明の製造方法によって形成される触媒層は、燃料極触媒層および空気極触媒層のうち少なくともいずれかであれば良いが、燃料極触媒層であることがより好ましい。メタノールから直接プロトンを取り出すことにより発電を行なう、直接メタノール型燃料電池(Direct Methanol Fuel Cell、以下「DMFC」とも記載する)においては、燃料極に供給されたメタノールを酸化する際の活性化過電圧が大きいことと、燃料極に投入したメタノール燃料が電解質膜を介して空気極に透過してしまい、発電に寄与せず燃焼してしまうメタノールクロスオーバーが大きいこととが課題となっている。   The membrane electrode composite obtained by the production method of the present invention is preferably a membrane electrode composite used for a fuel cell. In this case, the catalyst layer formed by the production method of the present invention may be at least one of a fuel electrode catalyst layer and an air electrode catalyst layer, but is more preferably a fuel electrode catalyst layer. In a direct methanol fuel cell (hereinafter also referred to as “DMFC”) that generates electricity by directly extracting protons from methanol, the activation overvoltage when oxidizing methanol supplied to the fuel electrode is low. The problem is that the methanol crossover is large and the methanol fuel introduced into the fuel electrode permeates the air electrode through the electrolyte membrane and burns without contributing to power generation.

本発明の製造方法を用いる場合、従来の方法では剥離が生じ作製できなかった厚みの大きな燃料極触媒層を、比較的短時間で作製することが可能となる。よって、触媒層の単位面積あたりの触媒量を増やすことで触媒層中の触媒表面積を増加させ、メタノール酸化をより効率よく行なうことが可能となる。また、触媒層の厚みを大きくすることで、投入された燃料が電解質膜に到達するまでの移動距離を長くすることが可能となり、燃料が反応に使用される頻度が向上するため、クロスオーバーによる燃料効率の低下を軽減することが可能となる。   When the production method of the present invention is used, it is possible to produce a fuel electrode catalyst layer having a large thickness, which cannot be produced by the conventional method, in a relatively short time. Therefore, by increasing the amount of catalyst per unit area of the catalyst layer, the catalyst surface area in the catalyst layer can be increased, and methanol oxidation can be performed more efficiently. In addition, by increasing the thickness of the catalyst layer, it is possible to increase the travel distance until the injected fuel reaches the electrolyte membrane, and the frequency with which the fuel is used in the reaction is improved. It becomes possible to reduce the decrease in fuel efficiency.

燃料極触媒層の厚みは、50μm以上であることが好ましく、200μm以上であることがより好ましい。この場合、メタノールの酸化効率、およびクロスオーバーによって生じる燃料効率の低下の軽減効果が特に良好となる。燃料極触媒層の厚みは、製造コストの点でたとえば1000μm以下であることが好ましい。   The thickness of the fuel electrode catalyst layer is preferably 50 μm or more, and more preferably 200 μm or more. In this case, the oxidation efficiency of methanol and the effect of reducing the decrease in fuel efficiency caused by crossover are particularly good. The thickness of the fuel electrode catalyst layer is preferably 1000 μm or less, for example, in terms of manufacturing cost.

[実施の形態2]
図2は、本発明に係る膜電極複合体の製造方法の好ましい別の態様について説明する模式図である。図2においても、簡略化のため、電解質膜の一方の表面上に積層される触媒層を代表して示している。なお以下で特に説明しない操作については実施の形態1と同様の操作を好ましく採用できる。図1と同様の機能を有する要素には同一の参照符号を付している。
[Embodiment 2]
FIG. 2 is a schematic diagram for explaining another preferred embodiment of the method for producing a membrane electrode assembly according to the present invention. Also in FIG. 2, for the sake of simplification, the catalyst layer laminated on one surface of the electrolyte membrane is shown as a representative. For operations not specifically described below, the same operations as in the first embodiment can be preferably employed. Elements having the same functions as those in FIG. 1 are denoted by the same reference numerals.

本実施の形態では、触媒層形成工程において、多孔質金属4に基材1を重ねて(図2(A))基材1と多孔質金属4とをあらかじめ固定し、基材1と多孔質金属4とが積層されている部分において、基材1の積層面と反対の面から多孔質金属4の空隙に触媒粉末を充填し、触媒粉末と多孔質金属とで構成される触媒層2を形成する(図2(B))。   In the present embodiment, in the catalyst layer forming step, the base material 1 is overlapped with the porous metal 4 (FIG. 2A), and the base material 1 and the porous metal 4 are fixed in advance. In the portion where the metal 4 is laminated, the catalyst powder 2 is filled with the catalyst powder from the surface opposite to the laminated surface of the base material 1 into the void of the porous metal 4, and the catalyst layer 2 composed of the catalyst powder and the porous metal is formed. It forms (FIG. 2 (B)).

本実施の形態では、触媒層形成工程において、型として触媒層の構成材料でもある多孔質金属4を用い、該多孔質金属4の空隙に触媒粉末を充填することで、触媒粉末と多孔質金属とで構成される触媒層2を形成する。また、図2(B)に示すように、触媒粉末を充填しない部分を多孔質金属4の一部に設ける場合、該多孔質金属4からなる燃料電池の取り出し電極5を形成することができる。   In the present embodiment, in the catalyst layer forming step, the porous metal 4 that is also a constituent material of the catalyst layer is used as a mold, and the catalyst powder and the porous metal are filled by filling the voids of the porous metal 4 with the catalyst powder. The catalyst layer 2 comprised by these is formed. As shown in FIG. 2B, when a portion not filled with the catalyst powder is provided in a part of the porous metal 4, a fuel cell take-out electrode 5 made of the porous metal 4 can be formed.

型として用いられる多孔質金属4は触媒層2の芯の役割を果たすため、本実施の形態によれば触媒層の強度をさらに向上させることが可能となる。また、多孔質金属4を燃料電池の取り出し電極として用いることができる。この場合、触媒層2中で発生もしくは供給される電子が、触媒粉末に由来する部分よりも抵抗の小さい多孔質金属の部分を通ることにより、オーミックロスをさらに低減することが可能となる。従来の製造方法では、触媒スラリーを多孔質金属に充填した後で溶媒を揮発させる際に、触媒スラリー由来部分が収縮してプロトン伝導パスが分断されてしまうが、本発明においては、あらかじめ乾燥させた電解質でコーティングされた状態で触媒を充填するため、プロトン伝導パスを確保した触媒層を作製することが可能となる。   Since the porous metal 4 used as a mold plays the role of the core of the catalyst layer 2, according to the present embodiment, the strength of the catalyst layer can be further improved. Further, the porous metal 4 can be used as a take-out electrode of the fuel cell. In this case, the electrons generated or supplied in the catalyst layer 2 pass through a portion of the porous metal having a lower resistance than the portion derived from the catalyst powder, whereby the ohmic loss can be further reduced. In the conventional manufacturing method, when the solvent is volatilized after the catalyst slurry is filled in the porous metal, the portion derived from the catalyst slurry contracts and the proton conduction path is disrupted. Since the catalyst is filled in the state coated with the electrolyte, a catalyst layer having a proton conduction path can be produced.

なお本発明においては、基材1を用い、多孔質金属4を基材1に固定した後に触媒粉末の充填を行なうことが好ましいが、基材1を用いることなく多孔質金属4に触媒粉末を充填しても構わない。   In the present invention, it is preferable to fill the catalyst powder after fixing the porous metal 4 to the substrate 1 using the substrate 1, but the catalyst powder is applied to the porous metal 4 without using the substrate 1. You may fill.

多孔質金属4の材質としては、比抵抗が小さく、燃料電池において層厚方向に電流を取り出しても電圧の低下が抑制される点で金属が好ましく、電子伝導性を有し、酸性雰囲気下で耐腐食性を有する金属であればより好ましい。具体的には、Au、Pt、Pd等の貴金属、Ti、Ta、W、Nb、Ni、Al、Cr、Ag、Cu、Zn、Su等の金属の他、C、Si等を例示でき、ステンレス、Ti−Pt等の合金も好ましい。またこれらの窒化物、炭化物等も使用できる。中でも、Ti、Au、Cu、Ni、Wからなる群より選ばれる少なくとも一つの元素を含むことがより好ましい。   The material of the porous metal 4 is preferably a metal because it has a small specific resistance and suppresses a decrease in voltage even when a current is taken in the layer thickness direction in a fuel cell, has an electron conductivity, and is in an acidic atmosphere. A metal having corrosion resistance is more preferable. Specifically, it can be exemplified by noble metals such as Au, Pt, Pd, metals such as Ti, Ta, W, Nb, Ni, Al, Cr, Ag, Cu, Zn, Su, C, Si, etc., stainless steel An alloy such as Ti—Pt is also preferable. These nitrides and carbides can also be used. Among these, it is more preferable that at least one element selected from the group consisting of Ti, Au, Cu, Ni, and W is included.

また、Cu、Ag、Zn等の、酸性雰囲気下で耐腐食性に乏しい金属を用いる場合には、Au、Ag、Pt等の耐腐食性を有する材質や、導電性高分子、導電性酸化物等を表面コーティングとして用いることができる。この場合膜電極複合体の寿命をさらに延ばすことができる。   In addition, when using a metal having poor corrosion resistance in an acidic atmosphere such as Cu, Ag, Zn, etc., a material having corrosion resistance such as Au, Ag, Pt, a conductive polymer, a conductive oxide Etc. can be used as a surface coating. In this case, the lifetime of the membrane electrode assembly can be further extended.

多孔質金属4の形状は、たとえば燃料電池の用途において燃料および空気を供給できるとともに燃料極で生成した排ガスや空気極で生成した水の排出効率が良好である点で、たとえば、板や箔に複数の穴を開けた多孔質層の形状とされることが好ましい。さらには、燃料極で生成した排ガスの排出を促進させるために、たとえば、発泡体、不織布、線を編んだメッシュ等の多孔質層であることがより好ましい。   The shape of the porous metal 4 is, for example, that it can supply fuel and air in the application of a fuel cell and has good discharge efficiency of exhaust gas generated at the fuel electrode and water generated at the air electrode. It is preferable that the porous layer has a plurality of holes. Furthermore, in order to promote the discharge of the exhaust gas generated at the fuel electrode, for example, a porous layer such as a foam, a nonwoven fabric, or a mesh knitted with a wire is more preferable.

接合工程においては、電解質膜3、触媒層2、基材1の順に重ね、実施の形態1と同様の手法で接合する(図2(C))。上記の方法により、膜電極複合体を形成することができる。   In the joining step, the electrolyte membrane 3, the catalyst layer 2, and the base material 1 are stacked in this order, and joined by the same method as in the first embodiment (FIG. 2C). A membrane electrode assembly can be formed by the above method.

[実施の形態3]
本実施の形態においては、触媒層の構成材料と電解質膜とを接合した後、触媒粉末を該多孔質金属中に充填することによって触媒層を形成する態様について説明する。
[Embodiment 3]
In the present embodiment, an embodiment will be described in which the catalyst layer is formed by joining the constituent material of the catalyst layer and the electrolyte membrane and then filling the porous metal with the catalyst powder.

図3は、本発明に係る膜電極複合体の製造方法の好ましい別の態様について説明する模式図である。図3においても、簡略化のため、電解質膜の一方の表面上に積層される触媒層を代表して示している。なお以下で特に説明しない操作については実施の形態1または2と同様の操作を好ましく採用できる。図1および図2と同様の機能を有する要素には同一の参照符号を付している。   FIG. 3 is a schematic diagram for explaining another preferred embodiment of the method for producing a membrane electrode assembly according to the present invention. Also in FIG. 3, for the sake of simplicity, the catalyst layer laminated on one surface of the electrolyte membrane is shown as a representative. For operations not specifically described below, operations similar to those in the first or second embodiment can be preferably employed. Elements having the same functions as those in FIGS. 1 and 2 are denoted by the same reference numerals.

図3に示す方法においては、実施の形態2で説明したのと同様の多孔質金属4を型として用いる(図3(A))。多孔質金属4を電解質膜3に接合し(接合工程)(図3(B))、その後、該多孔質金属4に実施の形態2で説明したのと同様の方法で、電解質膜3との接合面と反対側の表面から多孔質金属4中に触媒粉末を充填し、触媒層2を形成する(図3(C))(触媒層形成工程)。このとき、電解質膜3と多孔質金属4との界面においては、電子もプロトンも授受されないため、電子伝導性およびプロトン伝導性を有さない接着剤を用いて電解質膜3と多孔質金属4とを接合することも可能である。この場合、より安価な接着剤を用いることが可能となり、また部材間の接合力が向上することでより安定な膜電極複合体を提供することが可能となる。   In the method shown in FIG. 3, a porous metal 4 similar to that described in Embodiment 2 is used as a mold (FIG. 3A). The porous metal 4 is joined to the electrolyte membrane 3 (joining step) (FIG. 3B), and then the porous metal 4 is bonded to the electrolyte membrane 3 in the same manner as described in the second embodiment. The catalyst powder 2 is filled into the porous metal 4 from the surface opposite to the joint surface to form the catalyst layer 2 (FIG. 3C) (catalyst layer forming step). At this time, since neither electrons nor protons are exchanged at the interface between the electrolyte membrane 3 and the porous metal 4, the electrolyte membrane 3 and the porous metal 4 are bonded using an adhesive having no electron conductivity and proton conductivity. It is also possible to join. In this case, it is possible to use a cheaper adhesive, and it is possible to provide a more stable membrane electrode assembly by improving the bonding force between the members.

[実施例]
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

<実施例1>
(スラリー調製工程)
Pt粒子とRu粒子とカーボン粒子とからなる、Pt担持量が32.5wt%、Ru担持量が16.9wt%の触媒担持カーボン粒子(TEC66E50、田中貴金属社製)と、20wt%のナフィオン(登録商標)のアルコール溶液(アルドリッチ社製)と、イソプロパノールと、ジルコニアビーズとを、所定の割合でPTFE(ポリテトラフルオロエチレン)製の容器に入れ、攪拌機を用いて500rpmで50分間混合し、燃料極用の触媒スラリーを作製した。また、Pt粒子とカーボン粒子とからなるPt担持量が46.8wt%の触媒担持カーボン粒子(TEC10E50E、田中貴金属社製)を用いて、燃料極用の触媒スラリーと同様の作製条件で、空気極用の触媒スラリーを作製した。
<Example 1>
(Slurry preparation process)
A catalyst-supported carbon particle (TEC66E50, manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt loading amount of 32.5 wt% and a Ru loading amount of 16.9 wt%, and 20 wt% Nafion (registered), comprising Pt particles, Ru particles, and carbon particles. (Trademark) alcohol solution (manufactured by Aldrich), isopropanol, and zirconia beads at a predetermined ratio in a container made of PTFE (polytetrafluoroethylene) and mixed for 50 minutes at 500 rpm using a stirrer. A catalyst slurry was prepared. In addition, using catalyst-supported carbon particles (TEC10E50E, manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt support amount of 46.8 wt% made of Pt particles and carbon particles, under the same production conditions as the catalyst slurry for the fuel electrode, A catalyst slurry was prepared.

(触媒粉末調製工程)
作製した燃料極用の触媒スラリーを乳鉢に入れ、25℃雰囲気下で、乳棒で混練しながら溶媒を乾燥させ、触媒粉末を作製した。なお、触媒粉末調製工程には3時間を要した。
(Catalyst powder preparation process)
The produced catalyst slurry for the fuel electrode was put in a mortar, and the solvent was dried while kneading with a pestle in an atmosphere of 25 ° C. to produce a catalyst powder. The catalyst powder preparation step took 3 hours.

(触媒層形成工程)
次に、図1に示す方法で、燃料極の触媒層を形成した。燃料極用の基材1として、厚さ0.32mmのカーボンペーパー(GDL35BC,SGLカーボン社製)を用い、23×23mmの触媒粉末充填スペース31を設けた0.6mm厚アクリルマスクを型30として、触媒粉末を充填した後、基材1が潰れ過ぎないようにスペーサを入れ、厚み方向に圧力をかける工程を3回繰り返し、最後に型30を外すことで、基材1上に触媒層2として燃料極触媒層を作製した。スペーサとしては、厚み0.8mmの額縁状のテフロン(登録商標)シートを用いた。触媒粉末の充填された型30を額縁状テフロン(登録商標)シートの中央開口部に設置し、額縁状のテフロン(登録商標)シートと外形サイズが等しいPETフィルムを基材1と型30との積層物の上下に配置し、プレス圧10kgf/cm2で1分間プレスを行なった。上記で燃料極触媒層を形成する触媒形成工程には0.5時間を要した。
(Catalyst layer formation process)
Next, the catalyst layer of the fuel electrode was formed by the method shown in FIG. A carbon paper (GDL35BC, manufactured by SGL Carbon Co.) having a thickness of 0.32 mm is used as the base material 1 for the fuel electrode, and a 0.6 mm thick acrylic mask provided with a catalyst powder filling space 31 of 23 × 23 mm is used as a mold 30. After filling the catalyst powder, a step of applying a spacer in the thickness direction so that the base material 1 is not crushed and repeating the pressure in the thickness direction is repeated three times, and finally the mold 30 is removed, whereby the catalyst layer 2 is formed on the base material 1. A fuel electrode catalyst layer was prepared. As the spacer, a frame-shaped Teflon (registered trademark) sheet having a thickness of 0.8 mm was used. The mold 30 filled with the catalyst powder is installed in the central opening of the frame-shaped Teflon (registered trademark) sheet, and a PET film having the same outer size as the frame-shaped Teflon (registered trademark) sheet is placed between the substrate 1 and the mold 30. The laminate was placed at the top and bottom of the laminate and pressed at a pressing pressure of 10 kgf / cm 2 for 1 minute. The catalyst forming step for forming the fuel electrode catalyst layer took 0.5 hour.

一方、上記と異なる方法で空気極触媒層も形成した。空気極用の基材1として、厚さ0.32mmのカーボンペーパー(GDL35BC,SGLカーボン社製)を用い、23×23mmのサイズに切り出し、触媒Pt担持量が1mg/cm2となるように、空気極用の触媒スラリーをスクリーン印刷法にて塗布することで空気極触媒層を作成した。 On the other hand, an air electrode catalyst layer was also formed by a method different from the above. As a base material 1 for an air electrode, a carbon paper having a thickness of 0.32 mm (GDL35BC, manufactured by SGL Carbon Co., Ltd.) is used, cut into a size of 23 × 23 mm, and the amount of supported catalyst Pt is 1 mg / cm 2 . An air electrode catalyst layer was prepared by applying a catalyst slurry for the air electrode by screen printing.

(接合工程)
上記で形成した燃料極触媒層および空気極触媒層を、膜厚175ミクロンのナフィオン(登録商標)膜(デュポン社製)の両面に温度135℃、圧力10kgf/cm2で5分間(予熱2分、プレス3分)ホットプレスした。
(Joining process)
The fuel electrode catalyst layer and the air electrode catalyst layer formed above were placed on both sides of a 175 micron thick Nafion (registered trademark) membrane (manufactured by DuPont) for 5 minutes at a temperature of 135 ° C. and a pressure of 10 kgf / cm 2 (preheating 2 minutes). , Press 3 minutes) hot pressing.

以上の方法により、膜電極複合体を作製した。膜電極複合体において、燃料極触媒層の厚みは600μm、空気極触媒層の厚みは20μmであった。該膜電極複合体を、特性評価セル(FC05−01SP−REF、エレクトロケム社製)に挟み込むような形で組み込み、3Mメタノール水溶液を流量5.0ml/分でアノード流路に送り、200ml/分の流量で水素をカソード流路に送り、測定環境40℃において30mA/cm2負荷条件下で燃料極の発電を行ったところ、出力電圧は0.36Vとなった。 A membrane electrode assembly was produced by the above method. In the membrane electrode assembly, the thickness of the fuel electrode catalyst layer was 600 μm, and the thickness of the air electrode catalyst layer was 20 μm. The membrane electrode assembly is incorporated in such a manner as to be sandwiched between characterization cells (FC05-01SP-REF, manufactured by Electrochem), and 3M methanol aqueous solution is sent to the anode flow path at a flow rate of 5.0 ml / min, and 200 ml / min. When hydrogen was sent to the cathode channel at a flow rate of 30 and a fuel electrode was generated under a load of 30 mA / cm 2 in a measurement environment of 40 ° C., the output voltage was 0.36V.

<比較例1>
燃料極の基材として、厚さ0.32mmのカーボンペーパー(GDL35BC,SGLカーボン社製)を用い、23×23mmのサイズに切り出し、触媒PtRu担持量が3mg/cm2となるように燃料極用の触媒スラリーをスクリーン印刷法にて塗布することで燃料極触媒層を作製した以外は実施例1と同様にして膜電極複合体を作製した。得られた膜電極複合体において、燃料極触媒層の厚みは42μm、空気極触媒層の厚みは実施例1と同様20μmであった。実施例1と同様の手法にて、得られた膜電極複合体の特性を評価したところ、出力電圧は0.37Vとなった。
<Comparative Example 1>
Use carbon paper (GDL35BC, manufactured by SGL Carbon Co., Ltd.) with a thickness of 0.32 mm as the base material for the fuel electrode, cut into a size of 23 × 23 mm, and for the fuel electrode so that the supported amount of catalyst PtRu is 3 mg / cm 2 A membrane electrode assembly was produced in the same manner as in Example 1 except that the fuel electrode catalyst layer was produced by applying the catalyst slurry by screen printing. In the obtained membrane electrode assembly, the thickness of the fuel electrode catalyst layer was 42 μm, and the thickness of the air electrode catalyst layer was 20 μm as in Example 1. When the characteristics of the obtained membrane electrode assembly were evaluated in the same manner as in Example 1, the output voltage was 0.37V.

上記の結果から、本発明の製造方法によれば、過電圧を低減させることが可能な触媒層を形成できることが分かる。   From the above results, it can be seen that according to the production method of the present invention, a catalyst layer capable of reducing overvoltage can be formed.

<比較例2>
燃料極のPtRu担持量を30mg/cm2とした以外は比較例1と同様にして膜電極複合体を作製したところ、厚み600μmの燃料極触媒層を形成するためには、スクリーン印刷で燃料極用の触媒スラリーを塗布し、乾燥する工程を150回繰り返す必要があり、燃料極触媒層を形成するための工程に25時間かかった。
<Comparative example 2>
A membrane electrode assembly was produced in the same manner as in Comparative Example 1 except that the amount of PtRu supported on the fuel electrode was 30 mg / cm 2. In order to form a fuel electrode catalyst layer having a thickness of 600 μm, the fuel electrode was formed by screen printing. It was necessary to repeat the process of applying and drying the catalyst slurry for 150 times, and the process for forming the fuel electrode catalyst layer took 25 hours.

上記の結果から、本発明の製造方法においては触媒層を形成するための時間を大幅に短縮できることが分かる。   From the above results, it can be seen that the time for forming the catalyst layer can be greatly shortened in the production method of the present invention.

<実施例2>
燃料極用の触媒スラリー中に、VGCF(昭和電工製)を触媒担持カーボンに対して10質量%となるようにさらに含有させた以外は実施例1と同様にして作製した膜電極複合体を、実施例1と同様の手法にて評価したところ、出力電圧は0.35Vとなった。
<Example 2>
A membrane electrode assembly produced in the same manner as in Example 1 except that VGCF (manufactured by Showa Denko) was further contained in the catalyst slurry for the fuel electrode so as to be 10% by mass with respect to the catalyst-supported carbon, When evaluated by the same method as in Example 1, the output voltage was 0.35V.

上記の結果から、本発明の製造方法において導電性繊維をスラリー中に含有させ、該スラリーを用いて膜電極複合体を作製した場合、燃料電池特性をさらに向上させることが可能であることが確認された。   From the above results, it is confirmed that when the conductive fiber is contained in the slurry in the production method of the present invention and the membrane electrode assembly is produced using the slurry, the fuel cell characteristics can be further improved. It was done.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の製造方法によって作製される膜電極複合体は、たとえば燃料電池等に対して好適に適用され得る。   The membrane electrode assembly produced by the production method of the present invention can be suitably applied to, for example, a fuel cell.

本発明に係る膜電極複合体の製造方法の好ましい一態様について説明する模式図である。It is a schematic diagram explaining the preferable one aspect | mode of the manufacturing method of the membrane electrode assembly which concerns on this invention. 本発明に係る膜電極複合体の製造方法の好ましい別の態様について説明する模式図である。It is a schematic diagram explaining another preferable aspect of the manufacturing method of the membrane electrode assembly which concerns on this invention. 本発明に係る膜電極複合体の製造方法の好ましい別の態様について説明する模式図である。It is a schematic diagram explaining another preferable aspect of the manufacturing method of the membrane electrode assembly which concerns on this invention.

符号の説明Explanation of symbols

1 基材、2 触媒層、3 電解質膜、4 多孔質金属、5 取り出し電極、30 型、31 触媒粉末充填スペース。   1 base material, 2 catalyst layer, 3 electrolyte membrane, 4 porous metal, 5 extraction electrode, 30 type, 31 catalyst powder filling space.

Claims (7)

電解質膜の上に触媒層を積層してなる膜電極複合体の製造方法であって、
触媒と、電解質と、溶媒とを含むスラリーを調製するスラリー調製工程と、
前記スラリー中の前記溶媒を除去して触媒粉末を調製する触媒粉末調製工程と、
前記触媒粉末を型によって圧縮成形し、触媒層を形成する触媒層形成工程と、
前記触媒層または前記触媒層の構成材料を電解質膜と接合する接合工程と、
を含む、膜電極複合体の製造方法。
A method for producing a membrane electrode assembly comprising a catalyst layer laminated on an electrolyte membrane,
A slurry preparation step of preparing a slurry containing a catalyst, an electrolyte, and a solvent;
A catalyst powder preparation step of preparing a catalyst powder by removing the solvent in the slurry;
A catalyst layer forming step of compressing the catalyst powder with a mold to form a catalyst layer;
A bonding step of bonding the catalyst layer or the constituent material of the catalyst layer to an electrolyte membrane;
A process for producing a membrane electrode assembly.
前記触媒粉末調製工程における前記溶媒の除去は、前記スラリーを混練しながら行なわれる、請求項1に記載の膜電極複合体の製造方法。   The method for producing a membrane electrode assembly according to claim 1, wherein the removal of the solvent in the catalyst powder preparation step is performed while the slurry is kneaded. 前記型が多孔質金属である、請求項1または2に記載の膜電極複合体の製造方法。   The method for producing a membrane electrode assembly according to claim 1 or 2, wherein the mold is a porous metal. 前記接合工程において前記電解質膜と接合される前記構成材料が前記多孔質金属である、請求項3に記載の膜電極複合体の製造方法。   The manufacturing method of the membrane electrode assembly according to claim 3, wherein the constituent material to be joined to the electrolyte membrane in the joining step is the porous metal. 前記スラリーが導電性繊維をさらに含む、請求項1〜4のいずれかに記載の膜電極複合体の製造方法。   The manufacturing method of the membrane electrode assembly according to any one of claims 1 to 4, wherein the slurry further contains conductive fibers. 前記触媒層が燃料電池の燃料極触媒層である、請求項1〜5のいずれかに記載の膜電極複合体の製造方法。   The method for producing a membrane electrode assembly according to any one of claims 1 to 5, wherein the catalyst layer is a fuel electrode catalyst layer of a fuel cell. 前記触媒層の厚みが50μm以上である、請求項6に記載の膜電極複合体の製造方法。   The method for producing a membrane electrode assembly according to claim 6, wherein the catalyst layer has a thickness of 50 μm or more.
JP2006333138A 2006-12-11 2006-12-11 Manufacturing method of membrane-electrode assembly Ceased JP2008147031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333138A JP2008147031A (en) 2006-12-11 2006-12-11 Manufacturing method of membrane-electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333138A JP2008147031A (en) 2006-12-11 2006-12-11 Manufacturing method of membrane-electrode assembly

Publications (1)

Publication Number Publication Date
JP2008147031A true JP2008147031A (en) 2008-06-26

Family

ID=39606957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333138A Ceased JP2008147031A (en) 2006-12-11 2006-12-11 Manufacturing method of membrane-electrode assembly

Country Status (1)

Country Link
JP (1) JP2008147031A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009934A (en) * 2008-06-26 2010-01-14 Dainippon Printing Co Ltd Electrode for fuel cell, manufacturing method of electrode for fuel cell, electrode electrolyte membrane laminate, cell of fuel cell, and fuel cell
JP2013201140A (en) * 2013-06-03 2013-10-03 Dainippon Printing Co Ltd Transfer foil film and solid polymer electrolyte membrane with mask obtained by using the same, solid polymer electrolyte membrane with transfer foil film, catalyst transfer film with mask, catalyst layer-electrolyte membrane laminate, and method for manufacturing solid polymer electrolyte fuel cell
JP2018522365A (en) * 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305249A (en) * 1991-04-03 1992-10-28 Matsushita Electric Ind Co Ltd Production of catalyst for liquid fuel battery and production of electrode thereof
JPH09306508A (en) * 1996-05-16 1997-11-28 Sony Corp Manufacture of catalyst layer sheet, catalyst sheet by this method, and air battery therewith
JPH10223233A (en) * 1997-02-06 1998-08-21 Japan Storage Battery Co Ltd Electrode for fuel cell, and electrode electrolyte film joint body
JP2003123769A (en) * 2001-10-11 2003-04-25 Honda Motor Co Ltd Electrode for solid polymer fuel cell
JP2005149872A (en) * 2003-11-14 2005-06-09 Kaneka Corp Liquid fuel battery and battery packed containing it
JP2006278231A (en) * 2005-03-30 2006-10-12 Toshiba Corp Proton conductive film for fuel cell, film electrode complex and fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305249A (en) * 1991-04-03 1992-10-28 Matsushita Electric Ind Co Ltd Production of catalyst for liquid fuel battery and production of electrode thereof
JPH09306508A (en) * 1996-05-16 1997-11-28 Sony Corp Manufacture of catalyst layer sheet, catalyst sheet by this method, and air battery therewith
JPH10223233A (en) * 1997-02-06 1998-08-21 Japan Storage Battery Co Ltd Electrode for fuel cell, and electrode electrolyte film joint body
JP2003123769A (en) * 2001-10-11 2003-04-25 Honda Motor Co Ltd Electrode for solid polymer fuel cell
JP2005149872A (en) * 2003-11-14 2005-06-09 Kaneka Corp Liquid fuel battery and battery packed containing it
JP2006278231A (en) * 2005-03-30 2006-10-12 Toshiba Corp Proton conductive film for fuel cell, film electrode complex and fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009934A (en) * 2008-06-26 2010-01-14 Dainippon Printing Co Ltd Electrode for fuel cell, manufacturing method of electrode for fuel cell, electrode electrolyte membrane laminate, cell of fuel cell, and fuel cell
JP2013201140A (en) * 2013-06-03 2013-10-03 Dainippon Printing Co Ltd Transfer foil film and solid polymer electrolyte membrane with mask obtained by using the same, solid polymer electrolyte membrane with transfer foil film, catalyst transfer film with mask, catalyst layer-electrolyte membrane laminate, and method for manufacturing solid polymer electrolyte fuel cell
JP2018522365A (en) * 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus

Similar Documents

Publication Publication Date Title
KR100696621B1 (en) Electrode substrate for fuel cell, method for preparating the same, and membrane-electrode assembly
KR102189064B1 (en) Method for manufacturing electrode, electrode manufactured by using the same, membrane-electrode assembly comprising the electrode, and fuel cell comprising the membrane-electrode assembly
WO2007026797A1 (en) Electrolytic membrane-electrode assembly
KR102141882B1 (en) The mixed catalysts composition for fuel cell electrode, the electrode of fuel cell and manufacturing method of the electrode
JPWO2019069789A1 (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
KR20220057565A (en) membrane electrode assembly
KR20110043908A (en) Membrane electrode assembly(mea) fabrication procedure on polymer electrolyte membrane fuel cell
JP2006339018A (en) Gas diffusion layer for fuel cell and its manufacturing method
JP5153130B2 (en) Membrane electrode assembly
JP6332541B1 (en) Electrocatalyst layer
CN111837278A (en) Membrane electrode assembly for solid polymer fuel cell and solid polymer fuel cell
JP2006019300A (en) Electrode for fuel cell, fuel cell, and manufacturing method therefor
JP2008077974A (en) Electrode
JP2009238388A (en) Paste for micropore layer, membrane electrode assembly, and fuel cell
US10868311B2 (en) Membrane-electrode assembly for fuel cell, method for manufacturing same, and fuel cell system comprising same
JP5410787B2 (en) Gas diffusion layer for polymer electrolyte fuel cells
JP2008147031A (en) Manufacturing method of membrane-electrode assembly
KR101561101B1 (en) Polymer catalyst Slurry composition, porous electrodes produced thereby, membrane-electrode assembly comprising the porous electrodes, and method for the MEA
JP2011070984A (en) Method of manufacturing electrode catalyst layer for fuel cell, and membrane-electrode assembly having the electrode catalyst layer
JP7187798B2 (en) Catalyst layers and membrane electrode assemblies for polymer electrolyte fuel cells
WO2019088096A1 (en) Electrode catalyst layer and solid polymer fuel cell
CN114094152A (en) Electrode for membrane electrode assembly and method of manufacturing the same
JP2007234473A (en) Catalyst electrode layer for fuel cell and its process of manufacture
KR20070039360A (en) Method for manufacturing membrane electrode assembly using decal process
JP7315079B2 (en) Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20130423