WO2007026797A1 - Electrolytic membrane-electrode assembly - Google Patents

Electrolytic membrane-electrode assembly Download PDF

Info

Publication number
WO2007026797A1
WO2007026797A1 PCT/JP2006/317173 JP2006317173W WO2007026797A1 WO 2007026797 A1 WO2007026797 A1 WO 2007026797A1 JP 2006317173 W JP2006317173 W JP 2006317173W WO 2007026797 A1 WO2007026797 A1 WO 2007026797A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
catalyst layer
layer
water vapor
gasket
Prior art date
Application number
PCT/JP2006/317173
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Numao
Atsushi Ohma
Motoharu Obika
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Publication of WO2007026797A1 publication Critical patent/WO2007026797A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrolyte membrane-electrode assembly (hereinafter also simply referred to as “MEA”) and a fuel cell using the electrolyte membrane-electrode assembly.
  • MEA electrolyte membrane-electrode assembly
  • the present invention relates to an electrolyte membrane / electrode assembly in which water vapor permeation from the electrolyte membrane is effectively prevented, and a fuel cell using the electrolyte membrane / electrode assembly.
  • a fuel cell is a clean power generation system in which the product of the electrode reaction is water in principle and has almost no adverse effect on the global environment.
  • solid polymer electrolyte fuel cells are expected to serve as power sources for electric vehicles because they operate at relatively low temperatures.
  • the structure of a solid polymer electrolyte fuel cell generally has a structure in which an electrolyte membrane-electrode assembly is sandwiched between separators.
  • a high molecular electrolyte membrane is sandwiched between a pair of electrode catalyst layers, and a polymer electrolyte membrane and an electrode catalyst layer are sandwiched between a pair of gas diffusion layers.
  • the formed protons pass through the polymer electrolyte membrane in contact with the solid polymer electrolyte contained in the anode side electrode catalyst layer and the anode side electrode catalyst layer, and reach the force sword side electrode catalyst layer.
  • the electrons generated in the anode side electrode catalyst layer are in contact with the conductive carrier constituting the anode side electrode catalyst layer !, and further on the side different from the polymer electrolyte membrane of the anode side electrode catalyst layer, Reaches the force sword side electrode catalyst layer through the gas diffusion layer, separator and external circuit.
  • the protons and electrons that have reached the force sword side electrode catalyst layer react with oxygen contained in the oxidant gas supplied to the force sword side to generate water (O + 4H + + 4e " ⁇ 2H 0).
  • electricity is taken outside through the electrochemical reaction described above.
  • a reinforcing film Z protective film Japanese Patent Laid-Open No. 5-242897, Japanese Patent Laid-Open No. 5-21077
  • a gas seal Japanese Patent Laid-Open No. 2002-324556
  • Side surfaces of the electrolyte membrane are open, and no gas seal structure is provided.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide an electrolyte membrane-electrode assembly in which drying of the electrolyte membrane is suppressed and durability is improved. Another object of the present invention is to provide an electrolyte membrane-electrode assembly having a structure in which the electrolyte membrane is an inexpensive material and is simply edge-sealed.
  • An electrolyte membrane electrode assembly includes an electrolyte membrane, an anode catalyst layer provided on one surface of the electrolyte membrane, and a cathode provided on the other surface of the electrolyte membrane.
  • a part of the seal forms an adhesion part for adhering the electrolyte membrane and the gasket, and the adhesion part is formed on the outer periphery of the anode catalyst layer and the force sword catalyst layer in the surface direction of the anode catalyst layer. Arranged to prevent gas leakage from the side and side of the force sword catalyst layer.
  • FIG. 1A is a cross-sectional view showing an example of the arrangement of water vapor seal members in the MEA of the present invention.
  • FIG. 1B is a cross-sectional view showing an example of the arrangement of water vapor seal members in the MEA of the present invention.
  • FIG. 1C is a cross-sectional view showing an example of the arrangement of water vapor seal members in the MEA of the present invention.
  • FIG. 1D is a cross-sectional view showing an example of the arrangement of water vapor seal members in the MEA of the present invention.
  • FIG. 1E is a cross-sectional view showing an example of the arrangement of water vapor seal members in the MEA of the present invention.
  • FIG. 1F is a cross-sectional view showing an example of the arrangement of the water vapor seal members in the MEA of the present invention.
  • FIG. 2A is a cross-sectional view for explaining the positional relationship between a water vapor seal member and a sealing convex portion in the MEA of the present invention.
  • FIG. 2B shows the positions of the water vapor seal member and the sealing convex portion in the MEA of the present invention. It is sectional drawing explaining arrangement
  • FIG. 3A is a plan view showing an example of the positional relationship of the water vapor seal member with respect to the electrolyte membrane.
  • FIG. 3B is a plan view showing an example of the positional relationship of the water vapor seal member with respect to the electrolyte membrane.
  • FIG. 3C is a plan view showing an example of a positional relationship of the water vapor seal member with respect to the electrolyte membrane.
  • FIG. 4 is a cross-sectional view of the MEA of the present invention when the gasket and the water vapor seal member are formed as a single body.
  • FIG. 5A is a cross-sectional view of the MEA of the present invention when it has a reinforcing member.
  • FIG. 5B is a cross-sectional view of the MEA of the present invention when it has a reinforcing member.
  • FIG. 5C is a cross-sectional view of the MEA of the present invention in the case of having a reinforcing member having adhesive ability.
  • FIG. 5D is a cross-sectional view of the MEA of the present invention when it has a reinforcing member and a reinforcing layer.
  • FIG. 6A is a cross-sectional view of the MEA of the present invention in the case where the adhesive layer is formed inside the electrolyte membrane beyond the gasket.
  • FIG. 6B is a cross-sectional view of the MEA of the present invention when the adhesive layer is formed inside the electrolyte membrane beyond the gasket.
  • FIG. 7 is a diagram for explaining one step of a method for producing an MEA of the present invention.
  • an electrolyte membrane electrode assembly 1 of the present invention includes an electrolyte membrane 2, an anode catalyst layer 4a disposed on one surface of the electrolyte membrane 2, and the electrolyte membrane.
  • a force sword catalyst layer 4c disposed on the other surface.
  • the electrolyte membrane-electrode assembly 1 includes a gas diffusion layer 5a formed on the anode catalyst layer 4a and a gas diffusion layer 5c formed on the force sword catalyst layer 4c in the thickness direction.
  • the electrolyte membrane-one electrode assembly 1 of the present invention includes an anode side gasket 6a provided on the outer peripheral portion in the surface direction of the anode catalyst layer 4a and the gas diffusion layer 5a, and preventing leakage of fuel gas.
  • a force sword side gasket 6c is provided on the outer peripheral portion in the surface direction of the force sword catalyst layer 4c and the gas diffusion layer 5c, and prevents leakage of oxidant gas.
  • the anode side gasket 6a and the force sword side gasket 6c are bonded to the electrolyte membrane 2 through adhesive layers (adhesive portions) 7a and 7c.
  • the electrolyte membrane-one electrode assembly 1 and the anode side and cathode side gaskets 6a, 6c are sandwiched between a pair of separators 10a, 10c.
  • the separator 10a is provided with a fuel gas channel 10b, and fuel gas (H or the like) is supplied to the gas diffusion layer 5a and the anode catalyst layer 4a through the fuel gas channel 10b. Also separator 1
  • Oc is provided with an oxidant gas flow path 10d, and oxidant gas (air, O, etc.) is supplied to the gas diffusion layer 5c and the force node catalyst layer 4c through the oxidant gas flow path 10d.
  • oxidant gas air, O, etc.
  • the anode side gasket 6a and the force sword side gasket 6c are bonded to the electrolyte membrane 2 via the bonding layers (bonding portions) 7a and 7c.
  • the adhesive layers (adhesive portions) 7a and 7c are arranged on the outer peripheral portions in the surface direction of the anode catalyst layer 4a and the force sword catalyst layer 4c.
  • the anode catalyst layer 4a and the adhesive layer 7a are in contact, and the force sword catalyst layer 4c and the adhesive layer 7c are also in contact.
  • the anode catalyst layer 4a and the adhesive layer 7a do not need to be in contact with each other, and the force sword catalyst layer 4c and the adhesive layer 7c do not need to be in contact with each other.
  • the thicknesses of the adhesive layers 7a and 7c are described as being equivalent to the thicknesses of the catalyst layers 4a and 4c.
  • the thickness of the adhesive layers 7a and 7c need not be equal to the thickness of the catalyst layers 4a and 4c.
  • the electrolyte membrane 2 used in the MEA of the present invention may be a member having at least high proton conductivity.
  • the polymer electrolytes that can be used are broadly classified into fluorine-based electrolytes that contain fluorine atoms in all or part of the polymer skeleton, and hydrocarbon-based electrolytes that do not contain fluorine atoms in the polymer skeleton.
  • fluorine-based electrolyte examples include perfluorocarbon sulfonic acid polymers such as naphthion (manufactured by DuPont), Aciplex (manufactured by Asahi Kasei Co., Ltd.), and Flemion (manufactured by Asahi Glass Co., Ltd.), poly Trifluorostyrene sulfonic acid polymer, perfluoro Carbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride perfluorocarbon
  • a suitable example is a sulfonic acid polymer.
  • hydrocarbon electrolyte examples include polysulfone, polysulfonic acid, polyaryl ether ketone sulfonic acid, polybenzimidazole alkylsulfonic acid, polybenzimidazolenorenorequinolephosphonic acid, and polystyrene sulphonone.
  • Suitable examples include acid, polyetherol ketone sulfonic acid, and polysulfonic sulfonic acid.
  • fluorine-based electrolytes such as naphthions, aciplexes, and flemions are preferred among those that preferably contain fluorine atoms.
  • electrolyte membrane perfluorosulfonic acid membranes represented by various naphthion ions Flemion manufactured by DuPont, ion-exchange resin manufactured by Dow Chemical Company, ethylene tetrafluoride styrene copolymer Fluoropolymer electrolytes such as resin membranes and resin membranes based on trifluorostyrene, and solid polymer types that are generally available on the market, such as hydrocarbon-based resin membranes with sulfonic acid groups An electrolyte membrane may be used.
  • electrolyte membrane a membrane in which a polymer microporous membrane is impregnated with a liquid electrolyte, or a membrane in which a porous body is filled with a polymer electrolyte may be used.
  • an electrolyte membrane an electrolyte component such as phosphoric acid or ionic liquid is applied to a porous thin film such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF). Use impregnated ones.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the thickness of the electrolyte membrane may be appropriately determined in consideration of the properties of the obtained MEA, but is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, and particularly preferably ⁇ . 15 ⁇ : LOO ⁇ m. It is preferably 5 m or more from the viewpoint of strength during film formation and durability during MEA operation. From the viewpoint of output characteristics during MEA operation, it is preferably 300 ⁇ m or less.
  • the electrolyte membrane-electrode assembly 1 of the present invention includes a gas, particularly water vapor, from the side surface 4b of the anode catalyst layer 4a, the side surface 4d of the force sword catalyst layer 4c, and the side surface 2b of the electrolyte membrane 2.
  • Seal 3 is provided to prevent leakage.
  • the seal 3 includes a water vapor seal member 3a and adhesive layers 7a and 7c.
  • leakage of gas from the side surface 4b of the anode catalyst layer 4a and the side surface 5b of the gas diffusion layer 5a can be effectively prevented by the adhesive layer 7a and the anode side gasket 6a.
  • gas leakage from the side surface 4d of the force sword catalyst layer 4c and the side surface 5d of the gas diffusion layer 5c can be effectively prevented by the adhesive layer 7c and the force sword side gasket 6c.
  • leakage of gas in the thickness direction of the electrolyte membrane can be prevented by the adhesive layers 7a and 7c.
  • At least a part of the water vapor seal member 3a is formed between the anode side and force sword side gaskets 6a, 6c provided on the outer peripheral portions of the gas diffusion layers 5a, 5c.
  • the water vapor seal member 3a is disposed on at least a part of the lateral outer periphery of the electrolyte membrane.
  • the lateral outer periphery of the electrolyte membrane means the entire electrolyte membrane portion (arrow A portion in FIG. 1A) in contact with one of the adhesive layers 7a and 7c.
  • the water vapor seal member is in contact with the adhesive layer on at least one side of the anode catalyst layer and the force sword catalyst layer.
  • it is preferably arranged in the electrolyte membrane part in contact with the adhesive layer on both catalyst layers.
  • the member 3a is formed toward the inside of the electrolyte membrane 2 beyond the joint surfaces 9a and 9c of the end force gaskets 6a and 6c of the electrolyte membrane 2 and the gas diffusion layers 5a and 5c.
  • the partial force bonding surface 9a, 9c of the water vapor seal member 3a is formed toward the inner side of the electrolyte membrane 2, but there may be a case where the end of the electrolyte membrane 2 is not included.
  • the joining surfaces 9a and 9c of the anode-side and force-sword-side gaskets 6a and 6c and the gas diffusion layers 5a and 5c are at the same position with respect to the MEA thickness direction.
  • An embodiment was shown. Force and these When the joint surfaces 9a and 9c are at different positions with respect to the thickness direction of the MEA, the water vapor seal member 3a is formed from at least one of the joint surfaces 9a and 9c toward the inside of the electrolyte membrane 2. Just do it. However, it is preferable that the water vapor seal member 3a is formed at least on the inner side of the electrolyte membrane 2 from the joint surface 9c between the gas diffusion layer 5c on the force sword side and the gasket 6c.
  • FIG. 1A to E show an example in which the electrolyte membrane 2 and the water vapor seal member 3a are in close contact with each other, but there may be a gap 11 between them as shown in FIG. 1F. . Even in such a case, the gas leak in the thickness direction of the electrolyte membrane 2 is caused by the gas impermeable gaskets 6a and 6c, and the gas leak in the surface direction of the electrolyte membrane 2 is caused by the water vapor seal member 3a. They can also prevent each.
  • “inside” means the center side of the electrolyte membrane / electrode assembly in the thickness direction or the surface direction.
  • the water vapor sealing member 3a is preferably arranged so as to include at least a part of the outermost peripheral portion of the electrolyte membrane 2. This is because such a structure can effectively prevent the permeation of water vapor from the side surface 2b of the electrolyte membrane 2 and maintain the humidity of the electrolyte membrane 2 well. In addition, such a structure makes it easier to perform the process of forming the water vapor seal member 3a as compared with the case where it is formed in the middle of the lateral outer periphery of the electrolyte membrane 2 as shown in FIG. 1B, for example. Can do.
  • the “outermost peripheral portion of the electrolyte membrane” means the portion of the electrolyte membrane 2 farthest from the catalyst layers 4a and 4c, that is, as shown in FIGS. 1A, 1C and ID, The case where the sealing member is formed so as to include the end portion of the electrolyte membrane is included.
  • the water vapor seal member 3a is disposed at a position corresponding to at least a portion where a reaction force is applied to the gaskets 6a and 6c.
  • “part where reaction force is applied to the gasket” refers to a part where compression pressure is applied in the thickness direction of the MEA.
  • a solid polymer electrolyte fuel cell has a structure in which an electrolyte membrane-electrode assembly 1 is sandwiched between separators 10a and 10c, and fuel gas and oxidant gas are supplied from the separators 10a and 10c. In this case, as shown in FIG.
  • the water vapor seal member 3a formed of an adhesive or a material having a high compression elastic modulus is disposed in a portion where a reaction force is applied to the gaskets 6a and 6c, thereby separating the separators 10a and 10c. Even when the MEA is clamped by the electrolyte membrane, the electrolyte membrane 2 will not be crushed by the compressive stress. In such a case, the arrangement position of the water vapor seal member 3a may be at least partially formed between the convex portions 8a and 8c in the case of the solid polymer electrolyte fuel cell. However, as shown in FIG.
  • the water vapor seal member 3a is preferably formed completely between the convex portions 8a and 8c.
  • the convex portions 8a and 8c are arranged so as to be shifted from each other on the anode and force sword sides, they are within the range of the water vapor seal member 3a (arrow B in FIG. 2B). It is preferable that both the convex portions 8a and 8c are completely included in the portion).
  • the cross-sectional shapes of the convex portions 8a and 8c are triangular.
  • this shape is not particularly limited as long as the sealability of the electrolyte membrane-electrode assembly can be improved, and the cross-sectional shape is a triangle or more polygon, quadrilateral, rectangle, cylinder, truncated cone, Polygonal columns and polygonal frustums can also be used.
  • the portions where the convex portions 8a and 8c are formed are not particularly limited as long as the sealability of the electrolyte membrane / electrode assembly can be improved, and is formed in contact with at least a part of the gaskets 6a and 6c. That's fine.
  • the outer periphery of the catalyst layers 4a and 4c on the electrolyte membrane 2 may be scattered so that the convex portions 8a and 8c may be scattered so as to fill the concave portions of the separator such as the fuel gas flow channel 10b and the oxidant gas flow channel 10d.
  • the convex portions 8a and 8c may be formed in a frame shape so as to surround the frame.
  • the convex portions 8a, 8c formed on the gaskets 6a, 6c are fitted between the convex portions 8a, 8c formed on the gaskets 6a, 6c.
  • the protrusions 8a and 8c that may be formed may have an O-ring shape.
  • the material of the convex portions 8a and 8c is not particularly limited as long as the material can ensure the sealing property between the separators 10a and 10c and the electrolyte membrane-electrode assembly 1.
  • rubber materials such as fluorine rubber, silicon rubber, ethylene propylene rubber (EPDM), polyisobutylene rubber, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), poly
  • fluorine-based polymer materials such as xafluoropropylene and tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and thermoplastic resins such as polyolefin and polyester.
  • the thickness of the convex portions 8a and 8c may be about 2mm to 50m, preferably about lmm to 100m.
  • the water vapor seal member 3a is disposed at least at a part of the lateral outer peripheral portion of the electrolyte membrane 2, but as high as possible in the gas (especially water vapor) sealability in the electrolyte membrane 2. Since it is preferably maintained, the water vapor sealing member 3a is preferably formed so as not to be interrupted in the middle at the lateral outer periphery of the electrolyte membrane 2. At this time, the shape of the water vapor seal member 3a is not particularly limited as long as it is formed so as not to be interrupted halfway, but as shown in FIG. 3A (corresponding to FIG. 1A) and FIG. 3B (corresponding to FIG. 1B).
  • the member 3a may be arranged concentrically with respect to the electrolyte membrane, or it may be arranged so that the lateral outer periphery of the electrolyte membrane 2 makes an uncircular round as shown in FIG. 3C.
  • the member 3a it is preferable that the member 3a is disposed concentrically with respect to the electrolyte membrane 2.
  • 3A to 3C show the case where the electrolyte membrane 2 has a rectangular shape, the electrolyte membrane 2 according to the present invention is not limited to the above shape, and may have a shifted shape.
  • the width of the water vapor seal member 3a is not necessarily required to be constant. For example, the width of a portion where water vapor permeates easily can be increased.
  • the width of the water vapor seal member 3a is constant. Further, as shown in FIGS. 1A to 1F, various sizes can be applied as the size of the water vapor seal member 3a. However, it is preferable that the thickness of the water vapor seal member 3a is equal to the thickness of the electrolyte membrane 2 to be used. It is a force that can completely prevent permeation of water vapor from the electrolyte membrane 2.
  • the water vapor seal member 3a may be formed of a misaligned material.
  • the adhesive or the electrolyte membrane 2 is used. It is preferable to be made of a material with a high compression modulus.
  • an adhesive is impregnated in a predetermined position of the electrolyte membrane 2.
  • a method of arranging an adhesive member at a predetermined position of the electrolyte membrane 2 can be used. By using such a method, the water vapor seal member 3a can be easily and simply formed, and the formation position of the water vapor seal member 3a can be accurately controlled.
  • the adhesive that can be used at this time is not particularly limited as long as it does not transmit water vapor.
  • hot melt adhesives such as polyolefin, polypropylene, and thermoplastic elastomers, acrylic adhesives, polyesters, Olefin adhesives such as polyolefin can be used.
  • hot melt adhesives are preferably used in consideration of adhesion, precise bonding position, and long-time adhesion.
  • the melting temperature of the hot melt adhesive is the handleability (the impregnation of the electrolyte membrane, the ease of forming an adhesive member), the deterioration temperature of the electrolyte membrane 2, the fuel Considering durability at the use temperature as a battery, it is preferably 25 to 150 ° C, more preferably 70 to 120 ° C.
  • a predetermined portion of the electrolyte membrane 2 is preliminarily set at 100 to 180 ° C.
  • a method of dipping in a hot-melt adhesive that has been melted can be used.
  • a hot melt adhesive melted in the same manner as described above can be applied to a predetermined portion of the electrolyte membrane 2 by a method such as a screen printing method, a deposition method, or a spray method.
  • a specific method for forming the water vapor seal member 3a by disposing an adhesive member at a predetermined position of the electrolyte membrane 2 is previously melted at 100 to 180 ° C! It is possible to use a method in which an adhesive member is formed by applying and curing a hot-melt adhesive on a transfer mount to a predetermined thickness to form an adhesive member, which is then bonded to the end of the electrolyte membrane 2.
  • the gas diffusion layers 5a, 5c and the gaskets 6a, 6c are formed on the transfer mount, and further the catalyst layers 4a, 4c are formed on the gas diffusion layers 5a, 5c, and the gaskets 6a, 6c are formed.
  • Adhesive layers 7a and 7c are formed on the substrate to form a laminate.
  • the electrolyte membrane 2 can be placed at a predetermined position of the laminate, and an adhesive melted at the same temperature as described above can be applied to the remaining positions to form an adhesive member.
  • the gas diffusion layers 5a and 5c and the gaskets 6a and 6c are formed on the transfer mount, and further After the catalyst layers 4a and 4c are formed on the gas diffusion layers 5a and 5c, and the adhesive layers 7a and 7c and the adhesive member are simultaneously formed on the gaskets 6a and 6c, the electrolyte membrane 2 is placed on the remaining portion. Good.
  • the water vapor sealing member 3a has a higher compression elastic modulus than the electrolyte membrane 2.
  • the electrolyte membrane 2 can be used even when the MEA is sandwiched between the separators 10a and 10c and when each layer of MEA is joined. This prevents the occurrence of short circuits.
  • a material having a high compression elastic modulus that can be used at this time, it does not transmit water vapor, and can be resisted from the reaction force applied to the gasket when sandwiched or joined by a general separator. Any material can be used.
  • the MEA of the present invention is formed with gaskets 6a and 6c and a water vapor seal member 3a through adhesive layers 7a and 7c.
  • the same adhesive can provide the same adhesive strength, so the layers that make up the MEA are closely bonded with one adhesive. However, this is because a MEA with high adhesion can be obtained.
  • the water vapor seal member 3a is formed of the same material as that constituting the gaskets 6a and 6c, as shown in FIG. 4, any one of the gaskets 6a and 6c on the anode Z-force sword side and the water vapor seal member is used. 3a is formed integrally.
  • the water vapor sealing member 3a may be a reinforcing member 3b having higher strength than the electrolyte membrane 2.
  • a part of the reinforcing member 3b is disposed on the outer periphery of the side of the electrolyte membrane 2 so as to be formed inside the electrolyte membrane 2 rather than either one of the joint surfaces 9a and 9c. Is disposed on the outer periphery of the side of the electrolyte membrane 2 so as to be formed inside the electrolyte membrane 2 with respect to both the joining surfaces 9a and 9c.
  • the MEA is sandwiched between the separators 10a and 10c and the MEA is the same as described for the material having a higher compression modulus than that of the electrolyte membrane 2. It is possible to prevent the occurrence of a short circuit by suppressing the collapse of the film during hot pressing of each constituent layer.
  • the position in the direction is shifted mutually. This is because the stress applied to the joint surfaces 9a and 9c is dispersed when the MEA is sandwiched between the separators and the MEA constituent layers are hot-pressed, and the breakage of the electrolyte membrane 2 can be more effectively prevented.
  • the reinforcing member 3b a material having higher strength than the electrolyte membrane 2 can be used as appropriate.
  • the reinforcing member 3b is made of polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), which may be composed of a material force different from that of the constituent material of the electrolyte membrane 2.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • Kapton Kapton
  • “high strength” means high mechanical strength such as compressive strength and tensile strength.
  • the reinforcing member 3b may include a polymer electrolyte similar to the electrolyte membrane 2 described above.
  • the reinforcing member 3b may be manufactured by filling a porous body with an electrolyte.
  • the porous material that can be used in this case can be appropriately selected from polymer materials such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyimide, polyolefin, and polysulfone.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF polyimide
  • polyolefin polysulfone
  • a porous material having a fluorine-based polymer material such as polytetrafluoroethylene (PTFE) or poly (vinylidene fluoride) (PVDF) is preferably used.
  • the reinforcing member 3b may be formed of a material having an adhesive ability, particularly a heat-sealing ability! That is, in the present invention, the reinforcing member 3b (water vapor seal member 3a) and the adhesive layers 7a and 7c may be integrally formed, and the adhesive portions 7a and 7c may be formed in the reinforcing member 3b.
  • the reinforcing member 3b formed of such a material, particularly when the MEA is assembled by the transfer method, the reinforcing member 3b exhibits the adhesive ability during hot pressing, and therefore the reinforcing member 3b and the electrolyte membrane 2 are used. Thus, the adhesion between the catalyst layers 4a and 4c and the gaskets 6a and 6c can be further improved.
  • a reinforcing member 3b is preferably such that the reinforcing member 3b exhibits adhesive ability at the time of hot pressing.
  • the reinforcing member 3b preferably exhibits adhesive ability at 100 to 200 ° C. .
  • a fiber knitted into a desired shape for example, a sheet shape by appropriately combining fibers of low melting point resin such as olefin-based resin
  • low melting point resin fibers such as polypropylene (P) fiber, polyethylene (PE) fiber, modified polyolefin fiber, polytetrafluoroethylene (PTFE) fiber, glass, etc. Examples include those combined with other fibers such as fiber (GF).
  • the reinforcing member 3b may be directly joined to the gaskets 6a and 6c as shown in FIG. 5C. Even in such a case, the reinforcing member 3b and the gaskets 6a and 6c can be sufficiently joined by hot pressing.
  • the anode catalyst layers 4a and Z or force are strengthened with respect to the thickness direction of the reinforcing layer 3c force electrolyte membrane electrode assembly as compared with the electrolyte membrane 2. It is preferably disposed in the middle of the electrolyte membrane 2 so as to overlap at least part of the sword catalyst layer 4c. Thereby, the strength of the electrolyte membrane 2 itself can be improved.
  • the material constituting the reinforcing layer 3c is not particularly limited as long as it has proton conductivity and can improve the strength of the electrolyte membrane 2, but is manufactured by filling an electrolyte in a porous body, etc.
  • the porous body and the electrolyte are described in the reinforcing member 3b. You can use the same ones.
  • the thickness of the reinforcing layer 3c varies depending on the thickness and type of the electrolyte membrane, desired strength, etc., and is not particularly limited, but is preferably about 10 to 50% of the thickness of the electrolyte membrane. Further, considering the strength of the electrolyte membrane and the like, the position of the reinforcing layer 3c is preferably located substantially at the center in the thickness direction of the electrolyte membrane as shown in FIG. 5D. In FIG.
  • the reinforcing layer 3c has a form in which the end portions of the water vapor seal member 3a are joined to each other, but the end of the water vapor seal member and the reinforcing layer 3c are not limited to such a form. There may be a gap between the two ends. Further, the reinforcing layer 3c may be intermittently disposed in the middle of the electrolyte membrane 2. Further, it may be arranged only at the center in the surface direction of the electrolyte membrane 2. However, considering the strength improvement of the electrolyte membrane 2, the reinforcing layer 3c is provided on the entire electrolyte membrane 2 and arranged so as to be joined to the end of the water vapor seal member 3a as shown in FIG. Is particularly preferred. In FIG. 5B, the force shown in the case where the reinforcing layer 3c and the reinforcing member 3b are combined is also applicable to the combination with the other water vapor sealing member 3a described above in the present invention.
  • the joining surface 9a and the joining surface 9c are arranged at the same position in the thickness direction of the MEA. These joining surfaces are shown in FIGS. 5B to 5D. As shown, they may be located at different locations. As described above, if the joint surfaces 9a and 9c are arranged at different positions with respect to the thickness direction of the MEA, the joint surfaces 9a and 9c are sandwiched between the separators 10a and 10c and when MEA components are hot pressed. , 9c can be dispersed to alleviate the concentration of stress. For this reason, breakage due to stress of the electrolyte membrane 2 can be more effectively prevented.
  • the joining surfaces 9a and 9c at different positions with respect to the thickness direction of the MEA, it is preferable to dispose so that the area of the anode catalyst layer 4a is larger than the area of the force sword catalyst layer 4c.
  • the area of the cathode catalyst layer 4c region facing the air existing portion downstream of the anode can be reduced, that is, the portion where the difference between the force sword potential and the electrolyte potential is large can be significantly reduced. Therefore, carbon corrosion of the force sword catalyst layer 4c can be effectively suppressed. In such a case, a structure in which almost no oxygen cross-leak from the force sword to the anode at the end of the force sword catalyst layer can occur can be obtained.
  • the deterioration of 2 can also be effectively suppressed. Therefore, a fuel cell using an MEA having such a structure cannot be started or stopped. The performance at the time of turning and ocv can be maintained for a long time, and the fuel consumption can be improved.
  • the adhesive layer 7a and the adhesive layer 7c are completely overlapped with the gasket 6a and the gasket 6c, respectively, in the thickness direction of the MEA.
  • the adhesive layer and the gasket may be arranged so as not to overlap each other.
  • the adhesive layers 7a and 7c are preferably arranged so that the area of the anode catalyst layer 4a is larger than the area of the force sword catalyst layer 4c.
  • the adhesive layers 7a and 7c are preferably formed so as to contact the gas diffusion layers 5a and 5c beyond the joint surfaces 9a and 9c, respectively.
  • the adhesive layer 7c is in contact with all of the gas diffusion layer 5c, the gasket 6c, the water vapor seal member 3a, and the electrolyte membrane 2, and the adhesive layer 7a is the gas diffusion layer 5a, the gasket 6a, and the water vapor seal member 3a.
  • the components of the MEA can be joined together with higher bondability.
  • the said aspect demonstrated using the example of the reinforcement member 3b it is applicable similarly to the other water vapor
  • the adhesive layers 7a and 7c are formed to extend over the joint surfaces 9a and 9c and below the gas diffusion layers 5a and 5c, as shown in FIG.
  • an anode catalyst layer 4a In the electrolyte membrane-electrode assembly of the present invention, an anode catalyst layer 4a, a force sword catalyst layer 4c, gaskets 6a and 6c, and gas diffusion layers 5a and 5c are sequentially formed on the electrolyte membrane 2 in an appropriate arrangement.
  • Manufactured by a method Examples of the method for producing the electrolyte membrane / electrode assembly according to the present invention by the transfer method include the following (i) to (V).
  • the catalyst ink is applied on the transfer mount to form the catalyst layer on the anode side and the force sword side, respectively, and the side outer peripheral portion thereof is a water vapor seal member. After sandwiching the electrolyte membrane sealed with, perform hot pressing, and then peel off the transfer mount to obtain a stack of anode catalyst layer and electrolyte membrane first sword catalyst layer, and gas on each catalyst layer After disposing the diffusion layer, an adhesive layer and a gasket are formed on the electrolyte membrane, respectively.
  • a catalyst ink is formed on the gas diffusion layer by forming a catalyst layer on each of the anode side and the force sword side. After sandwiching the electrolyte membrane sealed with, hot pressing is performed to obtain a laminate of the gas diffusion layer, catalyst layer and electrolyte membrane, and then an adhesive layer and a gasket are formed on the electrolyte membrane, respectively. How to get Ming MEA.
  • the catalyst ink is applied on the gas diffusion layer to form the catalyst layer, and the adhesive layer is formed on the gasket to form a laminate.
  • the anode laminate and the force sword laminate obtained in this way were sandwiched between the electrolyte membranes whose lateral outer peripheral portions were sealed with a water vapor seal member, and then hot-pressed, Thereafter, the transfer mount is peeled off to obtain the MEA of the present invention.
  • a catalyst ink is prepared, and this catalyst ink is coated on a transfer mount and dried to obtain a transfer sheet having a catalyst layer formed on the transfer mount.
  • a PTFE (polytetrafluoroethylene) sheet, a PET (polyethylene terephthalate) sheet, a polyester sheet, or the like can be used as a transfer mount.
  • the transfer mount is appropriately selected according to the type of catalyst ink to be used (particularly, a conductive carrier such as carbon in the ink).
  • the catalyst ink used in the above method includes a solvent, an electrolyte, and a catalyst component.
  • the catalyst component used in the force sword catalyst layer is not particularly limited as long as it has a catalytic action in the oxygen reduction reaction.
  • the catalyst component used in the anode catalyst layer is not particularly limited as long as it has a catalytic action for the oxidation reaction of hydrogen.
  • metals such as platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof Etc. are selected.
  • the composition of the alloy is such that the force depending on the type of metal to be alloyed is 30 to 90 atomic% for platinum and 10 to 70 atomic% for the metal to be alloyed.
  • the composition of the alloy varies depending on the type of metal to be alloyed, etc., and can be appropriately selected by those skilled in the art. 70 atomic% is preferable.
  • an alloy is a generic term for a metal element having one or more kinds of other metal elements or non-metal elements and having metallic properties.
  • the alloy structure includes eutectic alloys, which are so-called mixtures in which the constituent elements become separate crystals, those in which the constituent elements are completely melted into a solid solution, and the constituent elements are intermetallic compounds or compounds of metals and nonmetals. In the present application, any of them may be used.
  • the catalyst component used for the force sword catalyst layer and the catalyst component used for the anode catalyst layer can be appropriately selected from the above.
  • the descriptions of the catalyst components for the sword catalyst layer and the anode catalyst layer are the same for both, and are collectively referred to as “catalyst components”. However, the catalyst components for the force sword catalyst layer and the anode catalyst layer do not need to be the same, and are appropriately selected so as to exhibit the desired action as described above.
  • the shape of the catalyst component is preferably granular.
  • the average particle diameter of the catalyst particles contained in the catalyst ink is preferably 1 to 30 nm, more preferably 1.5 to 20 nm, even more preferably 2 to: LOnm, particularly preferably 2 to 5 nm. . From the viewpoint of easy loading, it is preferably 1 nm or more, and from the viewpoint of catalyst utilization, it is preferably 30 nm or less.
  • the “average particle diameter of the catalyst particles” in the present invention is the average value of the particle diameter of the catalyst component determined from the crystallite diameter or transmission electron microscopic image obtained from the half width of the diffraction peak of the catalyst component in X-ray diffraction. Can be measured.
  • the catalyst particles described above are supported on a conductive carrier and are included in the catalyst ink as an electrode catalyst.
  • the conductive carrier is not particularly limited as long as it has a specific surface area for supporting the catalyst particles in a desired dispersed state and has sufficient electronic conductivity as a current collector.
  • the component is preferably carbon. Specific examples include powerful carbon particles such as carbon black, activated carbon, coatus, natural graphite, and artificial graphite.
  • the main component is carbon refers to containing a carbon atom as a main component, and is a concept including both a carbon atom and substantially a carbon atom. In some cases, elements other than carbon atoms may be included to improve the characteristics of the fuel cell. Note that “substantially carbon nuclear power” means that the inclusion of impurities of about 2 to 3% by mass or less is allowed.
  • the BET specific surface area of the conductive carrier may be a specific surface area sufficient to carry the catalyst component in a highly dispersed state, but is preferably 20 to 1600 m 2 Zg, more preferably 80 to 1200 m 2 Zg. .
  • the specific surface area is 20 m 2 Zg or more, the catalyst component in the conductive support is formed. Therefore, sufficient power generation performance can be obtained without lowering the dispersibility of the electrolyte component and the electrolyte component described later, and if it is 1600 m 2 Zg or less, the effective utilization rate of the catalyst component and the electrolyte component can be avoided from decreasing.
  • the size of the conductive carrier is preferably 5 to 200 nm in average particle diameter from the viewpoint of easy loading, catalyst utilization, and catalyst layer thickness control within an appropriate range. Should be around 10 ⁇ lOOnm! /.
  • the supported amount of the catalyst component is preferably 10 to 80% by mass, more preferably 30 to 30%, based on the total amount of the electrode catalyst. 70% by mass is recommended.
  • the loading amount is 80% by mass or less, the degree of dispersion of the catalyst component on the conductive carrier does not decrease, and when the loading amount increases, the power generation performance is greatly improved and the economic advantage does not decrease.
  • the supported amount is 10% by mass or more, a large amount of electrode catalyst is not required to obtain a desired power generation performance without lowering the catalytic activity per unit mass.
  • the amount of catalyst component supported can be measured by inductively coupled plasma emission spectroscopy (ICP).
  • catalyst components supported on a conductive carrier include impregnation method, liquid phase reduction support method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method), etc. The method can be used.
  • the force sword catalyst layer and the anode catalyst layer of the present invention may contain a polymer electrolyte in addition to the electrode catalyst.
  • the polymer electrolyte the same polymer electrolyte as that used for the electrolyte membrane can be used.
  • the polymer electrolyte used for the electrolyte membrane and the polymer electrolyte used for each catalyst layer may be the same or different, but from the viewpoint of improving the adhesion between each catalyst layer and the electrolyte membrane. It is preferable to use the same one.
  • the polymer electrolyte may be a member having at least high proton conductivity.
  • the polymer electrolyte that can be used in this case is roughly classified into a fluorine-based electrolyte containing fluorine atoms in all or part of the polymer skeleton and a hydrocarbon-based electrolyte containing no fluorine atoms in the polymer skeleton.
  • fluorine-based electrolyte examples include perfluorocarbons such as naphthion (manufactured by DuPont), Aciplex (manufactured by Asahi Kasei Co., Ltd.), and Flemion (manufactured by Asahi Glass Co., Ltd.).
  • Sulfonic acid polymer polytrifluorostyrene sulfonic acid polymer, perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene g-styrene sulfonic acid polymer, ethylene tetrafluoro
  • Preferable examples include an ethylene copolymer and a polyvinylidene fluoride perfluorocarbon sulfonic acid polymer.
  • hydrocarbon electrolyte examples include polysulfone sulfonic acid, polyaryl ether ketone sulfonic acid, poly benzimidazole alkyl sulfonic acid, poly benzimidazole alkyl phosphonic acid, polystyrene sulfonic acid, polyether ether ketone.
  • suitable examples include sulfonic acid and polyphenyl sulfonic acid.
  • the polymer electrolyte is excellent in heat resistance, chemical stability and the like, it is preferable to include a fluorine atom, among which fluorine-based electrolytes such as naphthion, aciplex, and flemion are preferable.
  • a catalyst layer is formed by applying a catalyst ink comprising the above-described electrode catalyst, polymer electrolyte and solvent to the gas diffusion layer.
  • a normal solvent used for forming the catalyst layer can be used in the same manner. Specifically, water, lower alcohols such as cyclohexanol, ethanol and 2-propanol can be used.
  • the amount of the solvent used is any amount in the catalyst ink as long as the electrode catalyst can sufficiently exhibit the desired catalytic action for the hydrogenation reaction (anode side) and the oxygen reduction reaction (power sword side). But you can.
  • the electrode catalyst is present in an amount such that it is 5 to 30% by mass, more preferably 9 to 20% by mass in the catalyst ink.
  • the catalyst ink of the present invention may contain a thickener.
  • a thickener is effective in cases where the catalyst ink cannot be successfully applied onto the gas diffusion layer!
  • examples of the thickener that can be used in this case include glycerin, ethylene glycol (EG), polybulal alcohol (PVA), and propylene glycol (PG).
  • the addition amount of the thickener is preferably 5 to 20% by mass with respect to the total mass of the catalyst ink as long as it is an amount that does not hinder the above effect of the present invention.
  • the catalyst ink of the present invention comprises an electrode catalyst, an electrolyte and a solvent, and water repellent if necessary.
  • the preparation method is not particularly limited as long as a functional polymer and z or a thickener are appropriately mixed.
  • a catalyst ink can be prepared by adding an electrolyte to a polar solvent, heating and stirring the mixture, dissolving the electrolyte in the polar solvent, and then adding an electrode catalyst thereto.
  • the dispersion Z suspension may be mixed with an electrode catalyst to prepare a catalyst ink.
  • a commercially available electrolyte solution for example, a DuPont Nafion solution: Nafion dispersed and suspended at a concentration of 5 wt% in 1 propanol
  • a commercially available electrolyte solution for example, a DuPont Nafion solution: Nafion dispersed and suspended at a concentration of 5 wt% in 1 propanol
  • the catalyst ink as described above is applied onto a transfer mount to form each catalyst layer.
  • the catalyst ink was applied on the transfer mount so that the thickness after drying was 5 to 20 / ⁇ ⁇ , Dry in a vacuum dryer or under reduced pressure.
  • the drying temperature is preferably 25 to 150 ° C, preferably 60 to 120 ° C, and the drying time is preferably 5 to 30 minutes, preferably 10 to 20 minutes.
  • the coating / drying step is repeated until the desired thickness is reached.
  • the anode and force sword transfer sheet formed in the above (a) is sandwiched between the electrolyte membranes whose lateral outer peripheral portions are sealed with a water vapor seal member, Then, the transfer mount is peeled off to obtain an anode catalyst layer-electrolyte membrane-forced sword catalyst layer laminate.
  • the hot press conditions are not particularly limited as long as the catalyst layer, the adhesive layer, and the electrolyte membrane can be joined sufficiently closely, but 100-200. C, more preferably 110 to 170 ° C., and preferably 1 to 5 MPa with respect to the electrode surface. Thereby, the bondability between the polymer electrolyte membrane and the catalyst layer can be enhanced.
  • a laminate of the catalyst layer and the electrolyte membrane can be obtained by removing the transfer mount.
  • a gas diffusion layer is disposed on each of the anode and the force sword catalyst layer to obtain a laminate of the gas diffusion layer, the catalyst layer, and the electrolyte membrane.
  • the laminate (b) is further sandwiched between gas diffusion layers, and if necessary, sandwiched and joined by hot pressing.
  • the gas diffusion layer carbon fabric, paper-like paper, felt, etc.
  • Non-woven fabrics, and materials based on sheet-like materials having electrical conductivity and porosity are exemplified.
  • the thickness of the substrate may be appropriately determined in consideration of the characteristics of the gas diffusion layer to be obtained, but is preferably 30 to 500 ⁇ m in view of mechanical strength and gas and water permeability. More preferably, it is 50-300 micrometers.
  • the gas diffusion layer preferably contains a water repellent in the base material for the purpose of further improving water repellency and preventing a flooding phenomenon or the like.
  • the water repellent include fluorine such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyhexafluoropropylene, and tetrafluoroethylene monohexafluoropropylene copolymer (FEP).
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • FEP tetrafluoroethylene monohexafluoropropylene copolymer
  • Polymer materials such as polypropylene, polypropylene, and polyethylene.
  • the gas diffusion layer may have a carbon particle layer having an aggregate strength of carbon particles containing a water repellent on the substrate.
  • carbon particles carbon black, graphite, expanded graphite and the like can be used.
  • carbon blacks such as oil furnace black, channel black, lamp black, thermal black, and acetylene black are preferred because of their excellent electron conductivity and large specific surface area.
  • the particle size of the carbon particles is preferably about 10 to: LOOnm.
  • Examples of the water repellent used in the carbon particle layer include the same water repellents as those used in the substrate. Of these, fluorine-based polymer materials are preferably used because of their excellent water repellency and corrosion resistance during electrode reaction.
  • the mixing ratio of the carbon particles to the water repellent may not provide water repellency as expected if there are too many carbon particles. Conductivity may not be obtained. Considering these, the mixing ratio of the carbon particles and the water repellent in the carbon particle layer is preferably about 90:10 to 40:60 in terms of mass ratio.
  • the thickness of the carbon particle layer may be appropriately determined in consideration of the water repellency of the obtained gas diffusion layer.
  • the base material used for the gas diffusion layer is repellent.
  • a method of heating and drying in an oven or the like after dipping in a liquid dispersion of a liquid medicine for example, a method of heating and drying in an oven or the like after dipping in a liquid dispersion of a liquid medicine.
  • a bonbon particle, a water repellent, etc. are added to water, perfluorobenzene, dichloropentafluoropropan, A slurry is prepared by dispersing in an alcohol solvent such as methanol or ethanol. Then, the slurry is applied on a transfer mount and dried, or the slurry is dried and pulverized to form a powder, which is coated on the gas diffusion layer. Thereafter, heat treatment is preferably performed at about 250 to 400 ° C. using a pine furnace or a baking furnace.
  • an adhesive layer and a gasket are respectively formed at predetermined positions of the electrolyte membrane.
  • the material that can be used for the adhesive layer is not particularly limited as long as the electrolyte membrane and the gasket can be adhered closely, but hot melt adhesives such as polyolefin, polypropylene, and thermoplastic elastomer, acrylic adhesives, and the like. Agents, olefin-based adhesives such as polyester and polyolefin can be used.
  • the water vapor seal member is formed of an adhesive
  • the water vapor seal member and the adhesive used for the adhesive layer may be the same or different.
  • the adhesive used for the water vapor seal member and the adhesive layer is the same, as shown in FIG.
  • an electrolyte membrane having no water vapor seal member is used.
  • step d) a step of forming a water vapor sealing member at a predetermined portion of the electrolyte membrane and a step of forming an adhesive layer may be performed.
  • the thickness of the adhesive layer is not particularly limited as long as sufficient adhesion with the electrolyte membrane and the gasket can be achieved, but it is 5 to 30 ⁇ m, more preferably 10 to 25 ⁇ m. That is preferable
  • a gasket is formed on the adhesive layer so as to be in contact with the end portion of the gas diffusion layer, possibly with a gap.
  • the gasket is composed of a material cover which is impermeable to gas, particularly oxygen gas, hydrogen gas and water vapor.
  • the gas-impermeable material that can be used is not particularly limited as long as it is impermeable to oxygen or hydrogen gas when formed into a film. Specific examples include polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), and poly (vinylidene fluoride) (PVDF).
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PTFE polytetrafluoroethylene
  • PVDF poly (vinylidene fluoride)
  • a method can be used in which an impermeable material is applied to a predetermined thickness and cured by heating at 25 to 150 ° C. for 10 seconds to 10 minutes.
  • a gas impermeable material may be formed into a sheet shape in advance, and the sheet bonded to the adhesive layer may be disposed on the electrolyte membrane.
  • the thickness of the gasket is not limited as long as it can exhibit a sufficient gas sealing property.
  • the convex portions 8a and 8c are formed on the gasket and further sandwiched by the separator. At this time, the convex portions 8a and 8c are subjected to compressive stress. .
  • the gasket is preferably formed so as to be lower than the height of the gas diffusion layer.
  • the thickness of the gasket is more preferably 10 to 200 ⁇ m, particularly preferably 15 to 40 ⁇ m.
  • the MEA of the present invention directly prints the catalyst ink on the electrolyte membrane. It may be manufactured by other methods such as a coating method. That is, it is only necessary to form the catalyst layer, the gas diffusion layer, the adhesive layer, and the gasket on the surfaces of the anode and the force sword on the electrolyte membrane whose lateral outer peripheral portion is sealed with the water vapor seal member. The details of each step can be applied to the same method as described above, and thus the description thereof is omitted here.
  • the electrolyte membrane-electrode assembly of the present invention suppresses drying of the electrolyte membrane due to water vapor permeation, and effectively breaks the membrane due to compressive stress at the joint surface between the gas diffusion layer and the gasket. It is possible to suppress. Therefore, by using a strong electrolyte membrane-electrode assembly, it is possible to provide a highly reliable fuel cell that has a simple manufacturing process and excellent durability.
  • the polymer electrolyte fuel cell has been described above as an example, but in addition to this, an acid electrolyte represented by an alkaline fuel cell and a phosphoric acid fuel cell is also used.
  • Fuel cells direct methanol fuel cells, micro fuel cells, and the like. Above all, the polymer electrolyte fuel is small, high density and high output is possible. A battery is preferable.
  • the fuel cell is a power source that is useful as a stationary power source in addition to a power source for moving vehicles such as vehicles with limited mounting space. Especially in automotive applications where system start-up and output fluctuations frequently occur. It can be particularly preferably used.
  • the polymer electrolyte fuel cell is useful as a power source for a mobile object such as an automobile in which a mounting space is limited in addition to a stationary power source.
  • a mobile object such as an automobile in which a mounting space is limited in addition to a stationary power source.
  • the movement of automobiles and the like that are susceptible to corrosion of the carbon support due to the high output voltage required after a relatively long shutdown, and the deterioration of the polymer electrolyte due to the high output voltage being taken out during operation It is particularly preferred to be used as a body power source.
  • the fuel cell generally has a structure in which MEA is sandwiched between separators.
  • the separator can be used without limitation, such as those made of carbon such as dense carbon graphite and carbon plate, or made of metal such as stainless steel.
  • the separator has a function of separating air and fuel gas, and a flow channel groove for securing such a gas flow channel may be formed.
  • the thickness and size of the separator, the shape of the channel groove, etc. should be determined appropriately in consideration of the output characteristics of the resulting fuel cell.
  • a stack in which a plurality of MEAs are stacked and connected in series via a separator may be formed so that the fuel cell can obtain a desired voltage or the like.
  • the shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
  • the electrolyte membrane-electrode assembly having the structure according to the present invention is excellent in durability because it does not dry and the phenomenon that the humidity in the external atmosphere rises excessively does not occur.
  • the electrolyte membrane is prevented from being crushed or broken, so that the electrolyte can be applied by joining the MEA layers by hot pressing or by the fastening pressure when assembling the battery. It is possible to effectively suppress the deterioration of the film over time.

Abstract

Disclosed is an electrolytic membrane-electrode assembly, which comprises an electrolytic membrane (2), an anode catalyst layer (4a) provided on one surface of the electrolytic membrane (2), a cathode catalyst layer (4c) provided on the other surface of the electrolytic membrane (2), a seal (3) for preventing the leakage of a gas from a side face (4b) of the anode catalyst layer (4a), a side face (4d) of the cathode catalyst layer (4c) and a side face (2b) of the electrolytic membrane (2), and gaskets (6a, 6c) provided on the both surfaces of the seal (3). In the assembly, a part of the seal (3) forms bonding regions (7a, 7c) which bind the electrolytic membrane (2) and each of the gaskets (6a, 6c) together. The binding regions (7a, 7c) are provided on the outer peripheries in a plane-wise direction of the anode catalyst layer (4a) and the cathode catalyst layer (4c), respectively, so as to prevent the leakage of a gas from the side face (4b) of the anode catalyst layer (4a) and the side face (4d) of the cathode catalyst layer (4c). According to this configuration, the moisture permeation from the side face (2b) of the electrolyte membrane (2) can be prevented and the drying of the electrolyte membrane (2) can also be prevented effectively.

Description

明 細 書  Specification
電解質膜一電極接合体  Electrolyte membrane-one electrode assembly
技術分野  Technical field
[0001] 本発明は、電解質膜—電極接合体 (以下、単に「MEA」とも記載する)、及び当該 電解質膜—電極接合体を使用してなる燃料電池に関するものである。特に、本発明 は、電解質膜からの水蒸気透過が有効に防止される電解質膜 電極接合体、及び 当該電解質膜—電極接合体を使用してなる燃料電池に関するものである。  The present invention relates to an electrolyte membrane-electrode assembly (hereinafter also simply referred to as “MEA”) and a fuel cell using the electrolyte membrane-electrode assembly. In particular, the present invention relates to an electrolyte membrane / electrode assembly in which water vapor permeation from the electrolyte membrane is effectively prevented, and a fuel cell using the electrolyte membrane / electrode assembly.
背景技術  Background art
[0002] 近年、エネルギー ·環境問題を背景とした社会的要求や動向と呼応して、常温でも 作動して高出力密度が得られる燃料電池が電気自動車用電源、定置型電源として 注目されている。燃料電池は、電極反応による生成物が原理的に水であり、地球環 境への悪影響がほとんどないクリーンな発電システムである。特に、固体高分子電解 質型燃料電池は、比較的低温で作動することから、電気自動車用電源として期待さ れている。固体高分子電解質型燃料電池の構成は、一般的には、電解質膜—電極 接合体を、セパレータで挟持した構造となっている。電解質膜一電極接合体は、高 分子電解質膜が一対の電極触媒層により挟持され、さらに高分子電解質膜及び電 極触媒層が一対のガス拡散層により挟持されてなるものである。  [0002] In recent years, in response to social demands and trends against the background of energy and environmental problems, fuel cells that can operate at room temperature and obtain high output density have attracted attention as power sources for electric vehicles and stationary power sources. . A fuel cell is a clean power generation system in which the product of the electrode reaction is water in principle and has almost no adverse effect on the global environment. In particular, solid polymer electrolyte fuel cells are expected to serve as power sources for electric vehicles because they operate at relatively low temperatures. The structure of a solid polymer electrolyte fuel cell generally has a structure in which an electrolyte membrane-electrode assembly is sandwiched between separators. In the electrolyte membrane-electrode assembly, a high molecular electrolyte membrane is sandwiched between a pair of electrode catalyst layers, and a polymer electrolyte membrane and an electrode catalyst layer are sandwiched between a pair of gas diffusion layers.
[0003] 上記したような MEAを有する固体高分子電解質型燃料電池では、以下のような電 気化学的反応が進行する。まず、アノード側に供給された燃料ガスに含まれる水素 は、触媒成分により酸化され、プロトン及び電子となる(2H→4H+ + 4e―)。次に、生  [0003] In the polymer electrolyte fuel cell having MEA as described above, the following electrochemical reaction proceeds. First, hydrogen contained in the fuel gas supplied to the anode side is oxidized by the catalyst component to become protons and electrons (2H → 4H ++ 4e−). Next, raw
2  2
成したプロトンは、アノード側電極触媒層に含まれる固体高分子電解質、さらにァノ ード側電極触媒層と接触して!/ヽる高分子電解質膜を通り、力ソード側電極触媒層に 達する。また、アノード側電極触媒層で生成した電子は、アノード側電極触媒層を構 成して!/ヽる導電性担体、さらにアノード側電極触媒層の高分子電解質膜と異なる側 に接触して 、るガス拡散層、セパレータ及び外部回路を通して力ソード側電極触媒 層に達する。そして、力ソード側電極触媒層に達したプロトン及び電子は、力ソード側 に供給されて ヽる酸化剤ガスに含まれる酸素と反応し水を生成する(O +4H+ + 4e "→2H 0)。燃料電池では、上述した電気化学的反応を通して、電気を外部に取りThe formed protons pass through the polymer electrolyte membrane in contact with the solid polymer electrolyte contained in the anode side electrode catalyst layer and the anode side electrode catalyst layer, and reach the force sword side electrode catalyst layer. . In addition, the electrons generated in the anode side electrode catalyst layer are in contact with the conductive carrier constituting the anode side electrode catalyst layer !, and further on the side different from the polymer electrolyte membrane of the anode side electrode catalyst layer, Reaches the force sword side electrode catalyst layer through the gas diffusion layer, separator and external circuit. The protons and electrons that have reached the force sword side electrode catalyst layer react with oxygen contained in the oxidant gas supplied to the force sword side to generate water (O + 4H + + 4e "→ 2H 0). In a fuel cell, electricity is taken outside through the electrochemical reaction described above.
2 2
出すことが可能となるのである。  It becomes possible to put out.
[0004] 従来、このような MEAの構造について様々な検討がなされている。例えば、固体 高分子電解質型燃料電池では、従来、ガス供給溝内の燃料ガスや酸化剤ガスが M EAの積層面を介して外部に漏れないように、隙間を設けつつ電極触媒層の周囲に ガスシール部を配置していた。しかし、このような隙間部分は、固体高分子電解質膜 に加わる反応ガスの差圧や膜のクリープにより機械的ストレスを受けやすぐ固体高 分子電解質膜が破損するという問題があった。この問題を解消するために、当該破 損の生じやすい電極触媒層とガスシール材との間の隙間部分に、補強膜 Z保護膜 を配置することが報告されて 、る(特開平 5— 242897号公報,特開平 5— 21077号 公報参照)。 [0004] Conventionally, various studies have been made on the structure of such an MEA. For example, in a solid polymer electrolyte fuel cell, conventionally, a fuel gas and an oxidant gas in a gas supply groove do not leak to the outside through a laminated surface of MEA, and a gap is provided around the electrode catalyst layer. A gas seal was placed. However, such a gap has a problem in that the solid polymer electrolyte membrane is damaged immediately upon receiving mechanical stress due to the differential pressure of the reaction gas applied to the solid polymer electrolyte membrane or the creep of the membrane. In order to solve this problem, it has been reported that a reinforcing film Z protective film is disposed in a gap portion between the electrode catalyst layer and the gas sealing material which are easily damaged (Japanese Patent Laid-Open No. 5-242897). No. 5, JP-A-5-21077).
[0005] また、従来の固体高分子電解質型燃料電池では、セパレータとガスケットとの間に 隙間が生じ、燃料あるいは酸化剤ガスがリークして性能が低下したり、セパレータと電 極との密着性が十分に確保できず、所望の発電特性が発現しないことがあった。そこ で、このような問題を解消するために、ガスケットを有する電解質膜—電極接合体を セパレータで狭持した単セルにおいて、セパレータで狭持する前のガスケット(ガスシ ール)の厚さを電極の厚さよりも薄くした単セルが開示されている(特開 2002— 3245 56号公報参照)。  [0005] In addition, in a conventional solid polymer electrolyte fuel cell, a gap is formed between the separator and the gasket, and fuel or oxidant gas leaks, resulting in a decrease in performance or adhesion between the separator and the electrode. However, the sufficient power generation characteristics may not be exhibited. Therefore, in order to solve such a problem, in the single cell in which the electrolyte membrane-electrode assembly having the gasket is sandwiched by the separator, the thickness of the gasket (gas seal) before being sandwiched by the separator is set to the electrode. A single cell having a thickness smaller than that of the above is disclosed (see JP 2002-324556 A).
発明の開示  Disclosure of the invention
[0006] し力しながら、上記文献に開示される MEAでは、電解質膜周辺の表面にはガスの リークを防ぐために補強膜 Z保護膜 (特開平 5— 242897号公報,特開平 5— 2107 7号公報)やガスシール (特開 2002— 324556号公報)が設けられている力 電解質 膜の側面は開放されており、ガスシール構造が設けられていない。このため、上記し たように力ソード電極触媒層側で生成した水の一部が電解質膜末端側面部を通じて 外部に排出されてしまい、力ソード電極触媒層側での生成水の存在により、電解質 膜の適度に湿った状態を維持することができない。このため、このような構造では、電 解質膜が乾燥して、強度が低下してしまったり、また、外部雰囲気の湿度が上がって しまったりして、 MEAの耐久性や発電性能が低下してしまうという問題があった。 [0007] 本発明は、上記課題を解決するためになされたものであり、その目的は、電解質膜 の乾燥を抑制し、耐久性が向上した電解質膜—電極接合体を提供することにある。 また、本発明の他の目的は、電解質膜が安価な材料でかつ簡易にエッジシールされ た構造を有する電解質膜—電極接合体を提供することにある。 However, in the MEA disclosed in the above document, a reinforcing film Z protective film (Japanese Patent Laid-Open No. 5-242897, Japanese Patent Laid-Open No. 5-21077) is provided on the surface around the electrolyte film to prevent gas leakage. No.) and a gas seal (Japanese Patent Laid-Open No. 2002-324556) are provided. Side surfaces of the electrolyte membrane are open, and no gas seal structure is provided. For this reason, as described above, a part of the water generated on the force sword electrode catalyst layer side is discharged to the outside through the side surface portion of the electrolyte membrane, and the presence of the generated water on the force sword electrode catalyst layer side causes the electrolyte to flow out. The membrane cannot be maintained in a moderately moist state. For this reason, in such a structure, the electrolyte membrane dries and the strength decreases, and the humidity of the external atmosphere increases, which decreases the durability and power generation performance of the MEA. There was a problem that. [0007] The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide an electrolyte membrane-electrode assembly in which drying of the electrolyte membrane is suppressed and durability is improved. Another object of the present invention is to provide an electrolyte membrane-electrode assembly having a structure in which the electrolyte membrane is an inexpensive material and is simply edge-sealed.
[0008] 本発明の態様に係る電解質膜 電極接合体は、電解質膜と、前記電解質膜の一 方の面に設けられたアノード触媒層と、前記電解質膜の他方の面に設けられたカソ ード触媒層と、前記アノード触媒層の側面及び力ソード触媒層の側面、並びに前記 電解質膜の側面からの気体の漏洩を防止するシールと、前記シールの両面に設けら れるガスケットと、を備え、前記シールの一部は、前記電解質膜と前記ガスケットとを 接着する接着部を形成し、前記接着部は、前記アノード触媒層及び力ソード触媒層 の面方向における外周部分に、前記アノード触媒層の側面及び力ソード触媒層の側 面からのガス漏れを防止できるように配置される。  [0008] An electrolyte membrane electrode assembly according to an aspect of the present invention includes an electrolyte membrane, an anode catalyst layer provided on one surface of the electrolyte membrane, and a cathode provided on the other surface of the electrolyte membrane. A catalyst layer, a seal for preventing gas leakage from the side surface of the anode catalyst layer and the side surface of the force sword catalyst layer, and the side surface of the electrolyte membrane, and a gasket provided on both surfaces of the seal, A part of the seal forms an adhesion part for adhering the electrolyte membrane and the gasket, and the adhesion part is formed on the outer periphery of the anode catalyst layer and the force sword catalyst layer in the surface direction of the anode catalyst layer. Arranged to prevent gas leakage from the side and side of the force sword catalyst layer.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1A]図 1Aは、本発明の MEAにおいて、水蒸気シール部材の配置の一例を示す 断面図である。  FIG. 1A is a cross-sectional view showing an example of the arrangement of water vapor seal members in the MEA of the present invention.
[図 1B]図 1Bは、本発明の MEAにおいて、水蒸気シール部材の配置の一例を示す 断面図である。  FIG. 1B is a cross-sectional view showing an example of the arrangement of water vapor seal members in the MEA of the present invention.
[図 1C]図 1Cは、本発明の MEAにおいて、水蒸気シール部材の配置の一例を示す 断面図である。  FIG. 1C is a cross-sectional view showing an example of the arrangement of water vapor seal members in the MEA of the present invention.
[図 1D]図 1Dは、本発明の MEAにおいて、水蒸気シール部材の配置の一例を示す 断面図である。  FIG. 1D is a cross-sectional view showing an example of the arrangement of water vapor seal members in the MEA of the present invention.
[図 1E]図 1Eは、本発明の MEAにおいて、水蒸気シール部材の配置の一例を示す 断面図である。  FIG. 1E is a cross-sectional view showing an example of the arrangement of water vapor seal members in the MEA of the present invention.
[図 1F]図 1Fは、本発明の MEAにおいて、水蒸気シール部材の配置の一例を示す 断面図である。  FIG. 1F is a cross-sectional view showing an example of the arrangement of the water vapor seal members in the MEA of the present invention.
[図 2A]図 2Aは、本発明の MEAにおける水蒸気シール部材とシール用の凸部との 位置関係を説明する断面図である。  FIG. 2A is a cross-sectional view for explaining the positional relationship between a water vapor seal member and a sealing convex portion in the MEA of the present invention.
[図 2B]図 2Bは、本発明の MEAにおける水蒸気シール部材とシール用の凸部との位 置関係を説明する断面図である。 [FIG. 2B] FIG. 2B shows the positions of the water vapor seal member and the sealing convex portion in the MEA of the present invention. It is sectional drawing explaining arrangement | positioning relationship.
[図 3A]図 3Aは、電解質膜に対し、水蒸気シール部材の位置関係の一例を示す平面 図である。  FIG. 3A is a plan view showing an example of the positional relationship of the water vapor seal member with respect to the electrolyte membrane.
[図 3B]図 3Bは、電解質膜に対し、水蒸気シール部材の位置関係の一例を示す平面 図である。  FIG. 3B is a plan view showing an example of the positional relationship of the water vapor seal member with respect to the electrolyte membrane.
[図 3C]図 3Cは、電解質膜に対し、水蒸気シール部材の位置関係の一例を示す平面 図である。  FIG. 3C is a plan view showing an example of a positional relationship of the water vapor seal member with respect to the electrolyte membrane.
[図 4]図 4は、ガスケットと水蒸気シール部材がー体ィ匕して形成される場合における本 発明の MEAの断面図である。  FIG. 4 is a cross-sectional view of the MEA of the present invention when the gasket and the water vapor seal member are formed as a single body.
[図 5A]図 5Aは、補強部材を有する場合における本発明の MEAの断面図である。  FIG. 5A is a cross-sectional view of the MEA of the present invention when it has a reinforcing member.
[図 5B]図 5Bは、補強部材を有する場合における本発明の MEAの断面図である。  FIG. 5B is a cross-sectional view of the MEA of the present invention when it has a reinforcing member.
[図 5C]図 5Cは、接着能を有する補強部材を有する場合における本発明の MEAの 断面図である。  [FIG. 5C] FIG. 5C is a cross-sectional view of the MEA of the present invention in the case of having a reinforcing member having adhesive ability.
[図 5D]図 5Dは、補強部材及び補強層を有する場合における本発明の MEAの断面 図である。  FIG. 5D is a cross-sectional view of the MEA of the present invention when it has a reinforcing member and a reinforcing layer.
[図 6A]図 6Aは、接着層がガスケットを超えて電解質膜の内側に形成される場合にお ける本発明の MEAの断面図である。  FIG. 6A is a cross-sectional view of the MEA of the present invention in the case where the adhesive layer is formed inside the electrolyte membrane beyond the gasket.
[図 6B]図 6Bは、接着層がガスケットを超えて電解質膜の内側に形成される場合にお ける本発明の MEAの断面図である。  FIG. 6B is a cross-sectional view of the MEA of the present invention when the adhesive layer is formed inside the electrolyte membrane beyond the gasket.
[図 7]図 7は、本発明の MEAを作製する方法の一工程を説明する図である。  [FIG. 7] FIG. 7 is a diagram for explaining one step of a method for producing an MEA of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、本発明の電解質膜—電極接合体に関し、その実施形態を図面に基づき詳 細に説明する。 Hereinafter, embodiments of the electrolyte membrane-electrode assembly of the present invention will be described in detail with reference to the drawings.
[0011] 図 1Aに示すように、本発明の電解質膜 電極接合体 1は、電解質膜 2と、前記電 解質膜 2の一方の面に配置されたアノード触媒層 4aと、前記電解質膜の他方の面に 配置された力ソード触媒層 4cとを備える。さらに電解質膜一電極接合体 1は、厚さ方 向に対して、アノード触媒層 4a上に形成されたガス拡散層 5aと、力ソード触媒層 4c 上に形成されたガス拡散層 5cと、を備える。 [0012] また、本発明の電解質膜一電極接合体 1には、アノード触媒層 4a及びガス拡散層 5aの面方向における外周部分に設けられ、燃料ガスのリークを防止するアノード側ガ スケット 6aと、力ソード触媒層 4c及びガス拡散層 5cの面方向における外周部分に設 けられ、酸化剤ガスのリークを防止する力ソード側ガスケット 6cが備えられている。ァノ ード側ガスケット 6a及び力ソード側ガスケット 6cは、接着層(接着部) 7a, 7cを介して 電解質膜 2に接着される。そして電解質膜一電極接合体 1と、アノード側及びカソー ド側ガスケット 6a, 6cとは、一対のセパレータ 10a, 10cにより挟持される。セパレータ 10aには、燃料ガス流路 10bが設けられており、燃料ガス流路 10bを通じて、ガス拡 散層 5a及びアノード触媒層 4aに燃料ガス (Hなど)が供給される。また、セパレータ 1 As shown in FIG. 1A, an electrolyte membrane electrode assembly 1 of the present invention includes an electrolyte membrane 2, an anode catalyst layer 4a disposed on one surface of the electrolyte membrane 2, and the electrolyte membrane. A force sword catalyst layer 4c disposed on the other surface. Furthermore, the electrolyte membrane-electrode assembly 1 includes a gas diffusion layer 5a formed on the anode catalyst layer 4a and a gas diffusion layer 5c formed on the force sword catalyst layer 4c in the thickness direction. Prepare. [0012] In addition, the electrolyte membrane-one electrode assembly 1 of the present invention includes an anode side gasket 6a provided on the outer peripheral portion in the surface direction of the anode catalyst layer 4a and the gas diffusion layer 5a, and preventing leakage of fuel gas. A force sword side gasket 6c is provided on the outer peripheral portion in the surface direction of the force sword catalyst layer 4c and the gas diffusion layer 5c, and prevents leakage of oxidant gas. The anode side gasket 6a and the force sword side gasket 6c are bonded to the electrolyte membrane 2 through adhesive layers (adhesive portions) 7a and 7c. The electrolyte membrane-one electrode assembly 1 and the anode side and cathode side gaskets 6a, 6c are sandwiched between a pair of separators 10a, 10c. The separator 10a is provided with a fuel gas channel 10b, and fuel gas (H or the like) is supplied to the gas diffusion layer 5a and the anode catalyst layer 4a through the fuel gas channel 10b. Also separator 1
2  2
Ocには、酸化剤ガス流路 10dが設けられており、酸化剤ガス流路 10dを通じて、ガス 拡散層 5c及び力ノード触媒層 4cに酸化剤ガス (空気、 Oなど)が供給される。なお、  Oc is provided with an oxidant gas flow path 10d, and oxidant gas (air, O, etc.) is supplied to the gas diffusion layer 5c and the force node catalyst layer 4c through the oxidant gas flow path 10d. In addition,
2  2
図 1B以降では、セパレータ 10a及び 10cを省略する。  In FIG. 1B and later, the separators 10a and 10c are omitted.
[0013] ここで、上述のように、アノード側ガスケット 6a及び力ソード側ガスケット 6cは、接着 層 (接着部) 7a, 7cを介して電解質膜 2に接着される。この場合、前記接着層 (接着 部) 7a, 7cは、前記アノード触媒層 4a及び力ソード触媒層 4cの面方向における外周 部分に配置される。そして、図において、アノード触媒層 4a及び接着層 7aは接触し ており、さらに力ソード触媒層 4c及び接着層 7cも接触している。しかし、アノード触媒 層 4a及び接着層 7aは接触している必要は無ぐまた、力ソード触媒層 4c及び接着層 7cも接触している必要はない。さらに、図において、接着層 7a, 7cの厚さは、触媒層 4a, 4cの厚さと同等に記載されている。しかし、接着層 7a, 7cの厚さは、触媒層 4a, 4cの厚さと同等である必要はない。  [0013] Here, as described above, the anode side gasket 6a and the force sword side gasket 6c are bonded to the electrolyte membrane 2 via the bonding layers (bonding portions) 7a and 7c. In this case, the adhesive layers (adhesive portions) 7a and 7c are arranged on the outer peripheral portions in the surface direction of the anode catalyst layer 4a and the force sword catalyst layer 4c. In the figure, the anode catalyst layer 4a and the adhesive layer 7a are in contact, and the force sword catalyst layer 4c and the adhesive layer 7c are also in contact. However, the anode catalyst layer 4a and the adhesive layer 7a do not need to be in contact with each other, and the force sword catalyst layer 4c and the adhesive layer 7c do not need to be in contact with each other. Further, in the figure, the thicknesses of the adhesive layers 7a and 7c are described as being equivalent to the thicknesses of the catalyst layers 4a and 4c. However, the thickness of the adhesive layers 7a and 7c need not be equal to the thickness of the catalyst layers 4a and 4c.
本発明の MEAに用いられる電解質膜 2としては、少なくとも高いプロトン伝導性を 有する部材であればよい。使用できる高分子電解質は、ポリマー骨格の全部又は一 部にフッ素原子を含むフッ素系電解質と、ポリマー骨格にフッ素原子を含まない炭化 水素系電解質とに大別される。  The electrolyte membrane 2 used in the MEA of the present invention may be a member having at least high proton conductivity. The polymer electrolytes that can be used are broadly classified into fluorine-based electrolytes that contain fluorine atoms in all or part of the polymer skeleton, and hydrocarbon-based electrolytes that do not contain fluorine atoms in the polymer skeleton.
[0014] 前記フッ素系電解質として、具体的には、ナフイオン (デュポン社製)、ァシプレック ス (旭化成株式会社製)、フレミオン (旭硝子株式会社製)等のパーフルォロカーボン スルホン酸系ポリマー、ポリトリフルォロスチレンスルホン酸系ポリマー、パーフルォロ カーボンホスホン酸系ポリマー、トリフルォロスチレンスルホン酸系ポリマー、エチレン テトラフルォロエチレン g—スチレンスルホン酸系ポリマー、エチレンーテトラフルォ 口エチレン共重合体、ポリビ-リデンフルオリドーパーフルォロカーボンスルホン酸系 ポリマーなどが好適な一例として挙げられる。 [0014] Specific examples of the fluorine-based electrolyte include perfluorocarbon sulfonic acid polymers such as naphthion (manufactured by DuPont), Aciplex (manufactured by Asahi Kasei Co., Ltd.), and Flemion (manufactured by Asahi Glass Co., Ltd.), poly Trifluorostyrene sulfonic acid polymer, perfluoro Carbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride perfluorocarbon A suitable example is a sulfonic acid polymer.
[0015] 前記炭化水素系電解質として、具体的には、ポリスルホン、ポリスルホン酸、ポリアリ ールエーテルケトンスルホン酸、ポリべンズイミダゾールアルキルスルホン酸、ポリべ ンズイミダゾーノレアノレキノレホスホン酸、ポリスチレンスノレホン酸、ポリエーテノレエーテ ルケトンスルホン酸、ポリフエ-ルスルホン酸等が好適な一例として挙げられる。  [0015] Specific examples of the hydrocarbon electrolyte include polysulfone, polysulfonic acid, polyaryl ether ketone sulfonic acid, polybenzimidazole alkylsulfonic acid, polybenzimidazolenorenorequinolephosphonic acid, and polystyrene sulphonone. Suitable examples include acid, polyetherol ketone sulfonic acid, and polysulfonic sulfonic acid.
[0016] 高分子電解質は、耐熱性、化学的安定性などに優れることから、フッ素原子を含む のが好ましぐなかでも、ナフイオン、ァシプレックス、フレミオンなどのフッ素系電解質 が好ましく挙げられる。  [0016] Since the polymer electrolyte is excellent in heat resistance, chemical stability, etc., fluorine-based electrolytes such as naphthions, aciplexes, and flemions are preferred among those that preferably contain fluorine atoms.
[0017] また、上記電解質膜としては、デュポン社製の各種のナフイオンゃフレミオンに代表 されるパーフルォロスルホン酸膜、ダウケミカル社製のイオン交換榭脂、エチレン 四フッ化工チレン共重合体榭脂膜、トリフルォロスチレンをベースポリマーとする榭脂 膜などのフッ素系高分子電解質や、スルホン酸基を有する炭化水素系榭脂系膜など 、一般的に市販されている固体高分子型電解質膜を用いてもよい。さらに電解質膜 としては、高分子微多孔膜に液体電解質を含浸させた膜、多孔質体に高分子電解 質を充填させた膜を用いてもよい。また、電解質膜としては、ポリテトラフルォロェチレ ン (PTFE)、ポリフッ化ビ-リデン (PVDF)など力 形成された多孔質状の薄膜に、リ ン酸ゃイオン性液体等の電解質成分を含浸したものを使用してもょ 、。  [0017] Further, as the electrolyte membrane, perfluorosulfonic acid membranes represented by various naphthion ions Flemion manufactured by DuPont, ion-exchange resin manufactured by Dow Chemical Company, ethylene tetrafluoride styrene copolymer Fluoropolymer electrolytes such as resin membranes and resin membranes based on trifluorostyrene, and solid polymer types that are generally available on the market, such as hydrocarbon-based resin membranes with sulfonic acid groups An electrolyte membrane may be used. Further, as the electrolyte membrane, a membrane in which a polymer microporous membrane is impregnated with a liquid electrolyte, or a membrane in which a porous body is filled with a polymer electrolyte may be used. In addition, as an electrolyte membrane, an electrolyte component such as phosphoric acid or ionic liquid is applied to a porous thin film such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF). Use impregnated ones.
[0018] 前記電解質膜の厚さは、得られる MEAの特性を考慮して適宜決定すればよいが、 好ましく ίま 5〜300 μ m、より好ましく ίま 10〜200 μ m、特に好ましく ίま 15〜: LOO μ m である。製膜時の強度や MEA作動時の耐久性の観点から 5 m以上であることが好 ましぐ MEA作動時の出力特性の観点から 300 μ m以下であることが好ましい。  [0018] The thickness of the electrolyte membrane may be appropriately determined in consideration of the properties of the obtained MEA, but is preferably 5 to 300 μm, more preferably 10 to 200 μm, and particularly preferably ί. 15 ~: LOO μm. It is preferably 5 m or more from the viewpoint of strength during film formation and durability during MEA operation. From the viewpoint of output characteristics during MEA operation, it is preferably 300 μm or less.
[0019] そして、本発明の電解質膜—電極接合体 1は、前記アノード触媒層 4aの側面 4b及 び力ソード触媒層 4cの側面 4d、並びに前記電解質膜 2の側面 2bからのガス、特に 水蒸気の漏洩を防止するシール 3を備える。そして、図 1Aの電解質膜—電極接合体 1では、シール 3は、水蒸気シール部材 3a及び接着層 7a, 7cから構成される。 [0020] このようにシール 3を設けることで、電解質膜 2の側面 2bからのガス (酸素、水素及 び水蒸気)の漏洩を水蒸気シール部材 3aにより有効に防止できる。また、アノード触 媒層 4aの側面 4b及びガス拡散層 5aの側面 5bからのガスの漏洩を接着層 7a及びァ ノード側ガスケット 6aにより有効に防止できる。さらに、力ソード触媒層 4cの側面 4d及 びガス拡散層 5cの側面 5dからのガスの漏洩を接着層 7c及び力ソード側ガスケット 6c により有効に防止できる。また電解質膜の厚さ方向力ものガスの漏洩を接着層 7a, 7 cにより防止できる。 [0019] The electrolyte membrane-electrode assembly 1 of the present invention includes a gas, particularly water vapor, from the side surface 4b of the anode catalyst layer 4a, the side surface 4d of the force sword catalyst layer 4c, and the side surface 2b of the electrolyte membrane 2. Seal 3 is provided to prevent leakage. In the electrolyte membrane-electrode assembly 1 shown in FIG. 1A, the seal 3 includes a water vapor seal member 3a and adhesive layers 7a and 7c. By providing the seal 3 in this way, leakage of gas (oxygen, hydrogen, and water vapor) from the side surface 2b of the electrolyte membrane 2 can be effectively prevented by the water vapor seal member 3a. Further, leakage of gas from the side surface 4b of the anode catalyst layer 4a and the side surface 5b of the gas diffusion layer 5a can be effectively prevented by the adhesive layer 7a and the anode side gasket 6a. Further, gas leakage from the side surface 4d of the force sword catalyst layer 4c and the side surface 5d of the gas diffusion layer 5c can be effectively prevented by the adhesive layer 7c and the force sword side gasket 6c. In addition, leakage of gas in the thickness direction of the electrolyte membrane can be prevented by the adhesive layers 7a and 7c.
[0021] 水蒸気シール部材 3aは、ガス拡散層 5a, 5cの外周部分に設けられたアノード側及 び力ソード側ガスケット 6a, 6cの間に、少なくとも一部が形成されている。言い換える と、水蒸気シール部材 3aは、電解質膜の側方外周部の少なくとも一部に配置される 。ここで、「電解質膜の側方外周部」とは、接着層 7a, 7cのいずれか一方と接する電 解質膜部分(図 1Aの矢印 A部分)の全部を意味する。なお、本発明では、力ソード触 媒層及びアノード触媒層が異なる位置に形成される場合には、水蒸気シール部材は 、アノード触媒層及び力ソード触媒層の少なくとも一方の側の接着層と接する電解質 膜部分に配置されればよいが、好ましくは双方の触媒層側の接着層と接する電解質 膜部分に配置される。  [0021] At least a part of the water vapor seal member 3a is formed between the anode side and force sword side gaskets 6a, 6c provided on the outer peripheral portions of the gas diffusion layers 5a, 5c. In other words, the water vapor seal member 3a is disposed on at least a part of the lateral outer periphery of the electrolyte membrane. Here, “the lateral outer periphery of the electrolyte membrane” means the entire electrolyte membrane portion (arrow A portion in FIG. 1A) in contact with one of the adhesive layers 7a and 7c. In the present invention, when the force sword catalyst layer and the anode catalyst layer are formed at different positions, the water vapor seal member is in contact with the adhesive layer on at least one side of the anode catalyst layer and the force sword catalyst layer. However, it is preferably arranged in the electrolyte membrane part in contact with the adhesive layer on both catalyst layers.
[0022] すなわち、本発明における水蒸気シール部材 3aの配置位置としては、図 1Aに示さ れるように、水蒸気シール部材 3aが電解質膜 2の末端 (最外周部)に形成される場合 や、図 1Bに示されるように、水蒸気シール部材 3aがガスケット 6a, 6c中間付近に相 当する位置で電解質膜 2中に形成される場合が挙げられる。また、図 1Cに示される ように、水蒸気シール部材 3aが電解質膜 2の端部から内側に向力つてガスケット 6a, 6cの間に形成される場合や、図 1Dに示されるように、水蒸気シール部材 3aが電解 質膜 2の端部力 ガスケット 6a, 6cとガス拡散層 5a, 5cとの接合面 9a, 9cを超えて、 電解質膜 2の内側に向けて形成される場合も挙げられる。さらに図 1Eに示されるよう に、水蒸気シール部材 3aの一部力 接合面 9a, 9cよりも電解質膜 2の内側に向けて 形成されるが、電解質膜 2の末端を含まない場合も挙げられる。なお、図 1D及び図 1 Eでは、アノード側及び力ソード側のガスケット 6a, 6cとガス拡散層 5a, 5cとの接合面 9a, 9cが、 MEAの厚さ方向に対して、同位置である態様を示した。し力し、これらの 接合面 9a, 9cが MEAの厚さ方向に対して異なる位置にある場合には、水蒸気シー ル部材 3aは、接合面 9a, 9cの少なくともいずれか一方より電解質膜 2の内側に向け て形成されればよい。ただ、少なくとも力ソード側のガス拡散層 5cとガスケット 6cとの 接合面 9cよりも電解質膜 2の内側に向けて、水蒸気シール部材 3aが形成されること が好ましい。特に力ソード側で水が生成するからである。また、図 1A〜Eにおいては 、電解質膜 2と水蒸気シール部材 3aが密接に接触した例が示されているが、図 1Fに 示されるように、これらの間には隙間 11があってもよい。このような場合であっても、電 解質膜 2の厚さ方向のガスリークはガス不透過性のガスケット 6a, 6cにより、また、電 解質膜 2の面方向のガスリークは水蒸気シール部材 3aにより、それぞれ防止できる 力もである。なお本明細書において、「内側」とは、厚さ方向若しくは面方向における 電解質膜 電極接合体の中心側を意味する。 That is, as the arrangement position of the water vapor seal member 3a in the present invention, as shown in FIG. 1A, when the water vapor seal member 3a is formed at the end (outermost peripheral portion) of the electrolyte membrane 2, or FIG. As shown in FIG. 4, there is a case where the water vapor seal member 3a is formed in the electrolyte membrane 2 at a position corresponding to the middle of the gaskets 6a and 6c. In addition, as shown in FIG. 1C, when the water vapor seal member 3a is formed between the gaskets 6a and 6c by urging inward from the end of the electrolyte membrane 2, or as shown in FIG. There may be a case where the member 3a is formed toward the inside of the electrolyte membrane 2 beyond the joint surfaces 9a and 9c of the end force gaskets 6a and 6c of the electrolyte membrane 2 and the gas diffusion layers 5a and 5c. Further, as shown in FIG. 1E, the partial force bonding surface 9a, 9c of the water vapor seal member 3a is formed toward the inner side of the electrolyte membrane 2, but there may be a case where the end of the electrolyte membrane 2 is not included. In FIG. 1D and FIG. 1E, the joining surfaces 9a and 9c of the anode-side and force-sword-side gaskets 6a and 6c and the gas diffusion layers 5a and 5c are at the same position with respect to the MEA thickness direction. An embodiment was shown. Force and these When the joint surfaces 9a and 9c are at different positions with respect to the thickness direction of the MEA, the water vapor seal member 3a is formed from at least one of the joint surfaces 9a and 9c toward the inside of the electrolyte membrane 2. Just do it. However, it is preferable that the water vapor seal member 3a is formed at least on the inner side of the electrolyte membrane 2 from the joint surface 9c between the gas diffusion layer 5c on the force sword side and the gasket 6c. This is because water is generated particularly on the power sword side. 1A to E show an example in which the electrolyte membrane 2 and the water vapor seal member 3a are in close contact with each other, but there may be a gap 11 between them as shown in FIG. 1F. . Even in such a case, the gas leak in the thickness direction of the electrolyte membrane 2 is caused by the gas impermeable gaskets 6a and 6c, and the gas leak in the surface direction of the electrolyte membrane 2 is caused by the water vapor seal member 3a. They can also prevent each. In the present specification, “inside” means the center side of the electrolyte membrane / electrode assembly in the thickness direction or the surface direction.
[0023] 上記例示のうち、水蒸気シール部材 3aは、電解質膜 2の最外周部の少なくとも一 部を含むように配置されることが好ましい。このような構造であれば、電解質膜 2の側 面 2bからの水蒸気の透過を効果的に防止して、電解質膜 2の湿度を良好に維持で きるからである。また、このような構造は、例えば、図 1Bに示されるように、電解質膜 2 の側方外周部の中間に形成する場合に比して、水蒸気シール部材 3aの形成工程を より簡単に行うことができる。なお、本明細書において、「電解質膜の最外周部」とは、 電解質膜 2のうち、最も触媒層 4a, 4cから離れた部分、即ち、図 1A、 1C及び IDに 示されるように、水蒸気シール部材が電解質膜の端部を含むように形成される場合を 包含する。 [0023] Among the above examples, the water vapor sealing member 3a is preferably arranged so as to include at least a part of the outermost peripheral portion of the electrolyte membrane 2. This is because such a structure can effectively prevent the permeation of water vapor from the side surface 2b of the electrolyte membrane 2 and maintain the humidity of the electrolyte membrane 2 well. In addition, such a structure makes it easier to perform the process of forming the water vapor seal member 3a as compared with the case where it is formed in the middle of the lateral outer periphery of the electrolyte membrane 2 as shown in FIG. 1B, for example. Can do. In the present specification, the “outermost peripheral portion of the electrolyte membrane” means the portion of the electrolyte membrane 2 farthest from the catalyst layers 4a and 4c, that is, as shown in FIGS. 1A, 1C and ID, The case where the sealing member is formed so as to include the end portion of the electrolyte membrane is included.
[0024] また、水蒸気シール部材 3aは、少なくとも、ガスケット 6a, 6cに反力が力かる部位に 相当する位置に配置されることが好ましい。ここで、「ガスケットに反力が力かる部位」 とは、 MEAの厚さ方向で圧縮圧力が力かる部位をいう。例えば、固体高分子電解質 型燃料電池では、電解質膜—電極接合体 1をセパレータ 10a, 10cで挟持した構造 となっており、セパレータ 10a, 10cから燃料ガス及び酸化剤ガスが供給される。この 場合、図 2Aに示すように、燃料ガス及び酸化剤ガスが独立して流れかつ外部に漏 れないように、 MEAをセパレータ 10a, 10cで挟持する際にシール用の凸部(リップ) 8a, 8cがガスケット 6a, 6c上に配置される。このため、凸部 8a, 8cの配置部位には、 MEAをセパレータ 10a, 10cで挟持する際に圧縮圧力がかかる。ここで、厚さ方向に おいて、凸部配置部位に相当する位置に電解質膜 2があると、電解質膜 2は膜厚が 薄くかつ強度が低いので、圧縮応力により膜がつぶれてアノード触媒層 4aと力ソード 触媒層 4cが接触して短絡が起こるおそれがある。これに対して、以下に詳述するよう に接着剤や圧縮弾性率の高い材料で形成した水蒸気シール部材 3aをガスケット 6a , 6cに反力が力かる部位に配置することによって、セパレータ 10a, 10cにより MEA が挟持された場合にも圧縮応力により電解質膜 2がつぶれることがな 、。このような場 合の水蒸気シール部材 3aの配置位置は、固体高分子電解質型燃料電池の場合に は凸部 8a, 8cの間に少なくとも一部が形成されていればよい。しかし図 2Aに示され るように、水蒸気シール部材 3aは、凸部 8a, 8cの間に完全に形成されていることが 好ましい。また、図 2Bに示されるように、凸部 8a, 8cがアノード及び力ソード側で互い にずれているように配置されている場合には、水蒸気シール部材 3aの範囲内(図 2B の矢印 B部分)に、双方の凸部 8a, 8cが完全に含まれるようにすることが好ましい。 なお、図 2A及び図 2Bでは、凸部 8a, 8cの断面形状が三角形である。しかしこの形 状は、電解質膜—電極接合体のシール性を向上させることが可能であれば特に制 限されず、断面形状が、三角以上の多角形、四辺形、長方形、円柱、円錐台、多角 柱、及び多角錐台なども用いることができる。また、凸部 8a, 8cが形成される部位は 、電解質膜 電極接合体のシール性を向上させることが可能であれば特に制限され ず、ガスケット 6a, 6cの少なくとも一部と接して形成されればよい。また、燃料ガス流 路 10bや酸化剤ガス流路 10d等のセパレータの凹部を埋めるように凸部 8a, 8cが点 在していてもよぐ電解質膜 2上の触媒層 4a, 4cの外周を取り囲むように、額縁状に 凸部 8a, 8cが形成されていてもよい。この他にもガスケット 6a, 6c上に形成された凸 部 8a, 8cが、セパレータ 10a, 10cにも形成された凸部の間に嵌め込まれるように、 ガスケット 6a, 6c上に凸部 8a, 8cが形成されてもよぐ凸部 8a, 8cが Oリング状の形 態をとつてもよい。また、凸部 8a, 8cの材質は、セパレータ 10a, 10cと電解質膜—電 極接合体 1とのシール性を確保できる材料であれば特に制限されない。例えば、フッ 素ゴム、シリコンゴム、エチレンプロピレンゴム(EPDM)、ポリイソブチレンゴム等のゴ ム材料、ポリテトラフルォロエチレン(PTFE)、ポリフッ化ビ-リデン(PVDF)、ポリへ キサフルォロプロピレン、テトラフルォロエチレン一へキサフルォロプロピレン共重合 体 (FEP)等のフッ素系の高分子材料、ポリオレフインやポリエステル等の熱可塑性 榭脂などが好ましく挙げられる。これらの材料であれば、弾性変形により電解質膜一 電極接合体とセパレータとを密着させることができ、ガスシール性が向上する。凸部 8 a, 8cの厚さとしては、 2mm〜50 m、望ましくは lmm〜100 m程度とすればよ い。 [0024] Further, it is preferable that the water vapor seal member 3a is disposed at a position corresponding to at least a portion where a reaction force is applied to the gaskets 6a and 6c. Here, “part where reaction force is applied to the gasket” refers to a part where compression pressure is applied in the thickness direction of the MEA. For example, a solid polymer electrolyte fuel cell has a structure in which an electrolyte membrane-electrode assembly 1 is sandwiched between separators 10a and 10c, and fuel gas and oxidant gas are supplied from the separators 10a and 10c. In this case, as shown in FIG. 2A, when the MEA is sandwiched between the separators 10a and 10c so that the fuel gas and the oxidant gas flow independently and do not leak to the outside, the sealing protrusion (lip) 8a , 8c are arranged on the gaskets 6a, 6c. For this reason, in the arrangement part of convex parts 8a and 8c, Compression pressure is applied when the MEA is sandwiched between the separators 10a and 10c. Here, in the thickness direction, when the electrolyte membrane 2 is located at a position corresponding to the convex portion arrangement site, the electrolyte membrane 2 is thin and low in strength. 4a and force sword catalyst layer 4c may come into contact with each other to cause a short circuit. On the other hand, as described in detail below, the water vapor seal member 3a formed of an adhesive or a material having a high compression elastic modulus is disposed in a portion where a reaction force is applied to the gaskets 6a and 6c, thereby separating the separators 10a and 10c. Even when the MEA is clamped by the electrolyte membrane, the electrolyte membrane 2 will not be crushed by the compressive stress. In such a case, the arrangement position of the water vapor seal member 3a may be at least partially formed between the convex portions 8a and 8c in the case of the solid polymer electrolyte fuel cell. However, as shown in FIG. 2A, the water vapor seal member 3a is preferably formed completely between the convex portions 8a and 8c. In addition, as shown in FIG. 2B, when the convex portions 8a and 8c are arranged so as to be shifted from each other on the anode and force sword sides, they are within the range of the water vapor seal member 3a (arrow B in FIG. 2B). It is preferable that both the convex portions 8a and 8c are completely included in the portion). In FIGS. 2A and 2B, the cross-sectional shapes of the convex portions 8a and 8c are triangular. However, this shape is not particularly limited as long as the sealability of the electrolyte membrane-electrode assembly can be improved, and the cross-sectional shape is a triangle or more polygon, quadrilateral, rectangle, cylinder, truncated cone, Polygonal columns and polygonal frustums can also be used. The portions where the convex portions 8a and 8c are formed are not particularly limited as long as the sealability of the electrolyte membrane / electrode assembly can be improved, and is formed in contact with at least a part of the gaskets 6a and 6c. That's fine. Further, the outer periphery of the catalyst layers 4a and 4c on the electrolyte membrane 2 may be scattered so that the convex portions 8a and 8c may be scattered so as to fill the concave portions of the separator such as the fuel gas flow channel 10b and the oxidant gas flow channel 10d. The convex portions 8a and 8c may be formed in a frame shape so as to surround the frame. In addition, the convex portions 8a, 8c formed on the gaskets 6a, 6c are fitted between the convex portions 8a, 8c formed on the gaskets 6a, 6c. The protrusions 8a and 8c that may be formed may have an O-ring shape. Further, the material of the convex portions 8a and 8c is not particularly limited as long as the material can ensure the sealing property between the separators 10a and 10c and the electrolyte membrane-electrode assembly 1. For example, rubber materials such as fluorine rubber, silicon rubber, ethylene propylene rubber (EPDM), polyisobutylene rubber, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), poly Preferable examples include fluorine-based polymer materials such as xafluoropropylene and tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and thermoplastic resins such as polyolefin and polyester. If these materials are used, the electrolyte membrane-electrode assembly and the separator can be brought into close contact with each other by elastic deformation, and the gas sealability is improved. The thickness of the convex portions 8a and 8c may be about 2mm to 50m, preferably about lmm to 100m.
[0026] 本発明において、水蒸気シール部材 3aは、電解質膜 2の側方外周部の少なくとも 一部に配置されるが、電解質膜 2におけるガス (特に水蒸気)のシール性が可能な限 り高度に保たれていることが好ましいため、水蒸気シール部材 3aは、電解質膜 2の側 方外周部において、途中で中断されないように形成されることが好ましい。この際、水 蒸気シール部材 3aの形状は、途中で中断されないように形成されれば特に制限され ないが、図 3A (図 1Aの場合に相当)や図 3B (図 1Bの場合に相当)のように電解質 膜に対して同心状に配置されても、あるいは図 3Cのように電解質膜 2の側方外周部 を不定形で一周するように配置されても 、ずれでもよ 、が、水蒸気シール部材 3aの 形成のしゃすさなどを考慮すると、電解質膜 2に対して同心状に配置される場合が好 ましい。なお、図 3A〜図 3Cにおいては、電解質膜 2が長方形の場合を記載したが、 本発明による電解質膜 2は上記形状に限定されるものではなく、 、ずれの形状であ つてもよい。また、水蒸気シール部材 3aの幅もまた、一定である必要はなぐ例えば、 水蒸気の透過が起こり易い部位の幅は広くするなど、適宜選択できる。形成のしゃす さなどを考慮すると、水蒸気シール部材 3aの幅は一定であることが好ましい。また、 水蒸気シール部材 3aの大きさは、図 1A〜図 1Fに示されるように、様々な大きさが適 用できる。し力しながら、水蒸気シール部材 3aの厚さは、使用される電解質膜 2の厚 さと同等であることが好ましい。電解質膜 2からの水蒸気の透過を完全に防止できる 力 である。  [0026] In the present invention, the water vapor seal member 3a is disposed at least at a part of the lateral outer peripheral portion of the electrolyte membrane 2, but as high as possible in the gas (especially water vapor) sealability in the electrolyte membrane 2. Since it is preferably maintained, the water vapor sealing member 3a is preferably formed so as not to be interrupted in the middle at the lateral outer periphery of the electrolyte membrane 2. At this time, the shape of the water vapor seal member 3a is not particularly limited as long as it is formed so as not to be interrupted halfway, but as shown in FIG. 3A (corresponding to FIG. 1A) and FIG. 3B (corresponding to FIG. 1B). It may be arranged concentrically with respect to the electrolyte membrane, or it may be arranged so that the lateral outer periphery of the electrolyte membrane 2 makes an uncircular round as shown in FIG. 3C. In consideration of the formation of the member 3a, it is preferable that the member 3a is disposed concentrically with respect to the electrolyte membrane 2. 3A to 3C show the case where the electrolyte membrane 2 has a rectangular shape, the electrolyte membrane 2 according to the present invention is not limited to the above shape, and may have a shifted shape. Further, the width of the water vapor seal member 3a is not necessarily required to be constant. For example, the width of a portion where water vapor permeates easily can be increased. In consideration of the formation of the material, it is preferable that the width of the water vapor seal member 3a is constant. Further, as shown in FIGS. 1A to 1F, various sizes can be applied as the size of the water vapor seal member 3a. However, it is preferable that the thickness of the water vapor seal member 3a is equal to the thickness of the electrolyte membrane 2 to be used. It is a force that can completely prevent permeation of water vapor from the electrolyte membrane 2.
[0027] 本発明にお 、て、水蒸気シール部材 3aは、 、ずれの材料によって形成されてもよ いが、水蒸気透過性や圧縮応力に対する耐性などを考慮すると、接着剤あるいは電 解質膜 2よりも圧縮弾性率の高 ヽ材料で形成されることが好ま ヽ。前者の場合の水 蒸気シール部材 3aの形成方法としては、電解質膜 2の所定の位置に接着剤を含浸 する方法や、電解質膜 2の所定の位置に接着部材を配置する方法などが使用できる 。このような方法を使用することによって、水蒸気シール部材 3aが容易にかつ簡便に 形成でき、かつ水蒸気シール部材 3aの形成位置を正確に制御することができる。こ の際使用できる接着剤としては、水蒸気を透過しな 、ものであれば特に制限されな いが、ポリオレフイン、ポリプロピレン、熱可塑性エラストマ一等のホットメルト系接着剤 、アクリル系接着剤、ポリエステル、ポリオレフイン等のォレフィン系接着剤などが使用 できる。これらのうち、接着のしゃすさ、正確な接着位置及び長時間接着力などを考 慮すると、ホットメルト系接着剤が好ましく使用される。ホットメルト系接着剤を使用す る際のホットメルト系接着剤の溶融温度は、取り扱い性 (電解質膜への含浸のしゃす さ、接着部材の形成しやすさ)、電解質膜 2の劣化温度、燃料電池としての使用温度 での耐久性などを考慮すると、 25〜150°C、より好ましくは 70〜120°Cであることが 好ましい。 In the present invention, the water vapor seal member 3a may be formed of a misaligned material. However, in consideration of water vapor permeability and resistance to compressive stress, the adhesive or the electrolyte membrane 2 is used. It is preferable to be made of a material with a high compression modulus. As a method of forming the water vapor seal member 3a in the former case, an adhesive is impregnated in a predetermined position of the electrolyte membrane 2. And a method of arranging an adhesive member at a predetermined position of the electrolyte membrane 2 can be used. By using such a method, the water vapor seal member 3a can be easily and simply formed, and the formation position of the water vapor seal member 3a can be accurately controlled. The adhesive that can be used at this time is not particularly limited as long as it does not transmit water vapor. However, hot melt adhesives such as polyolefin, polypropylene, and thermoplastic elastomers, acrylic adhesives, polyesters, Olefin adhesives such as polyolefin can be used. Of these, hot melt adhesives are preferably used in consideration of adhesion, precise bonding position, and long-time adhesion. When using a hot melt adhesive, the melting temperature of the hot melt adhesive is the handleability (the impregnation of the electrolyte membrane, the ease of forming an adhesive member), the deterioration temperature of the electrolyte membrane 2, the fuel Considering durability at the use temperature as a battery, it is preferably 25 to 150 ° C, more preferably 70 to 120 ° C.
[0028] 電解質膜 2の所定の位置に接着剤を含浸させることによって水蒸気シール部材 3a を形成する場合の具体的な方法としては、電解質膜 2の所定の部位を、 100〜180 °Cで予め溶融させておいたホットメルト系接着剤中に浸漬する方法が使用できる。ま た、上記と同様にして溶融させたホットメルト系接着剤を、電解質膜 2の所定の部位 に、スクリーン印刷法、沈積法、あるいはスプレー法などの方法によって塗布する方 法が使用できる。  [0028] As a specific method for forming the water vapor seal member 3a by impregnating an adhesive at a predetermined position of the electrolyte membrane 2, a predetermined portion of the electrolyte membrane 2 is preliminarily set at 100 to 180 ° C. A method of dipping in a hot-melt adhesive that has been melted can be used. In addition, a hot melt adhesive melted in the same manner as described above can be applied to a predetermined portion of the electrolyte membrane 2 by a method such as a screen printing method, a deposition method, or a spray method.
[0029] また、電解質膜 2の所定の位置に接着部材を配置することによって水蒸気シール 部材 3aを形成する場合の具体的な方法は、 100〜180°Cで予め溶融させてお!ヽた ホットメルト系接着剤を転写用台紙に所定の厚さに塗布、硬化させて接着部材を形 成し、これを、電解質膜 2の端部に接着する方法が使用できる。  [0029] A specific method for forming the water vapor seal member 3a by disposing an adhesive member at a predetermined position of the electrolyte membrane 2 is previously melted at 100 to 180 ° C! It is possible to use a method in which an adhesive member is formed by applying and curing a hot-melt adhesive on a transfer mount to a predetermined thickness to form an adhesive member, which is then bonded to the end of the electrolyte membrane 2.
[0030] また、まず転写用台紙上にガス拡散層 5a, 5c及びガスケット 6a, 6cを形成し、さら にガス拡散層 5a, 5c上に触媒層 4a, 4cを形成し、ガスケット 6a, 6c上に接着層 7a, 7cを形成して積層体を形成する。この後、この積層体の所定の位置に電解質膜 2を 置き、残りの位置に上記と同様の温度で溶融させた接着剤を塗布して接着部材を形 成することもできる。また、接着層 7a, 7cと接着部材に使用される接着剤が同じであ る場合には、転写用台紙上にガス拡散層 5a, 5c及びガスケット 6a, 6cを形成し、さら にガス拡散層上 5a, 5cに触媒層 4a, 4cを形成し、さらにガスケット 6a, 6c上に接着 層 7a, 7c及び接着部材を同時に形成した後、残りの部分に電解質膜 2をおいてもよ い。 [0030] Further, first, the gas diffusion layers 5a, 5c and the gaskets 6a, 6c are formed on the transfer mount, and further the catalyst layers 4a, 4c are formed on the gas diffusion layers 5a, 5c, and the gaskets 6a, 6c are formed. Adhesive layers 7a and 7c are formed on the substrate to form a laminate. Thereafter, the electrolyte membrane 2 can be placed at a predetermined position of the laminate, and an adhesive melted at the same temperature as described above can be applied to the remaining positions to form an adhesive member. When the adhesive layers 7a and 7c and the adhesive used for the adhesive member are the same, the gas diffusion layers 5a and 5c and the gaskets 6a and 6c are formed on the transfer mount, and further After the catalyst layers 4a and 4c are formed on the gas diffusion layers 5a and 5c, and the adhesive layers 7a and 7c and the adhesive member are simultaneously formed on the gaskets 6a and 6c, the electrolyte membrane 2 is placed on the remaining portion. Good.
[0031] 上述したように、水蒸気シール部材 3aは、電解質膜 2よりも圧縮弾性率の高 ヽ材料  [0031] As described above, the water vapor sealing member 3a has a higher compression elastic modulus than the electrolyte membrane 2.
(即ち、つぶれにくい)材料で形成されていることが好ましい。このような水蒸気シール 部材 3aを、ガスケット 6a, 6cに反力が力かる部位に相当する位置に配置すれば、セ パレータ 10a, 10cによる MEAの挟持時や MEAの各層の接合時も電解質膜 2がつ ぶれることないため、短絡などを防止できる。この際使用できる圧縮弾性率の高い材 料としては、水蒸気を透過せず、また、一般的なセパレータによる挟持や接合時にガ スケットにかかる反力に対して抵抗できるように、電解質膜 2よりへたりにく ヽ材料であ ればよい。具体的には、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート (PET)、ポリテトラフルォロエチレン(PTFE)、ポリフッ化ビ-リデン(PVDF)などの 硬質樹脂が挙げられる。この際、ガスケットを構成する材料と同じ材料を使用すること が好ましい。これは、多種類の材料を用意する必要がなぐ経済的に有利であるのに カロえて、接着剤の選定が不要であるという利点がある。即ち、図 1A〜図 1Fに示され るように、本発明の MEAは、接着層 7a, 7cを介してガスケット 6a, 6cと水蒸気シール 部材 3aが形成されている。この場合、ガスケット 6a, 6cと水蒸気シール部材 3aの材 料が同じであれば、同じ接着剤で同等の接着力が発揮されるため、一の接着剤で M EAを構成する各層が密接に接着しあい、密着性の高い MEAが得られるからである 。なお、水蒸気シール部材 3aがガスケット 6a, 6cを構成する材料と同じ材料で形成さ れる場合には、図 4に示されるように、アノード Z力ソード側いずれかのガスケット 6a, 6cと水蒸気シール部材 3aとが一体的に形成されて 、てもよ 、。  It is preferably formed of a material (that is, not easily crushed). If such a water vapor seal member 3a is disposed at a position corresponding to the portion where the reaction force is applied to the gaskets 6a and 6c, the electrolyte membrane 2 can be used even when the MEA is sandwiched between the separators 10a and 10c and when each layer of MEA is joined. This prevents the occurrence of short circuits. As a material having a high compression elastic modulus that can be used at this time, it does not transmit water vapor, and can be resisted from the reaction force applied to the gasket when sandwiched or joined by a general separator. Any material can be used. Specific examples include hard resins such as polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF). At this time, it is preferable to use the same material as that constituting the gasket. This has the advantage that there is no need to select an adhesive, although it is economically advantageous because there is no need to prepare many types of materials. That is, as shown in FIGS. 1A to 1F, the MEA of the present invention is formed with gaskets 6a and 6c and a water vapor seal member 3a through adhesive layers 7a and 7c. In this case, if the gaskets 6a, 6c and the water vapor seal member 3a are the same, the same adhesive can provide the same adhesive strength, so the layers that make up the MEA are closely bonded with one adhesive. However, this is because a MEA with high adhesion can be obtained. When the water vapor seal member 3a is formed of the same material as that constituting the gaskets 6a and 6c, as shown in FIG. 4, any one of the gaskets 6a and 6c on the anode Z-force sword side and the water vapor seal member is used. 3a is formed integrally.
[0032] 本発明による水蒸気シール部材 3aは、電解質膜 2よりも強度の高い補強部材 3bで あってもよい。この際、補強部材 3bの一部は、接合面 9a, 9cのいすれか一方よりも電 解質膜 2の内側に形成されるように、電解質膜 2の側方外周部に配置され、好ましく は接合面 9a, 9cの両方よりも電解質膜 2の内側に形成されるように、電解質膜 2の側 方外周部に配置される。補強部材 3bの存在により、電解質膜 2よりも圧縮弾性率の 高い材料で説明したのと同様、セパレータ 10a, 10cによる MEAの挟持時や MEA 各構成層のホットプレス時の膜のつぶれを抑制して、短絡の発生を良好に防止でき る。 The water vapor sealing member 3a according to the present invention may be a reinforcing member 3b having higher strength than the electrolyte membrane 2. At this time, a part of the reinforcing member 3b is disposed on the outer periphery of the side of the electrolyte membrane 2 so as to be formed inside the electrolyte membrane 2 rather than either one of the joint surfaces 9a and 9c. Is disposed on the outer periphery of the side of the electrolyte membrane 2 so as to be formed inside the electrolyte membrane 2 with respect to both the joining surfaces 9a and 9c. Due to the presence of the reinforcing member 3b, the MEA is sandwiched between the separators 10a and 10c and the MEA is the same as described for the material having a higher compression modulus than that of the electrolyte membrane 2. It is possible to prevent the occurrence of a short circuit by suppressing the collapse of the film during hot pressing of each constituent layer.
[0033] また、セパレータ 10a, 10cによる MEAの挟持や MEA各構成層のホットプレス時 では、接合面 9a, 9cに特に応力が集中する。このため、図 5Aに示されるように、補 強部材 3bを、電解質膜 2の端部から、応力が集中する接合面 9a, 9cよりも内側に配 置すること〖こよって、電解質膜 2のつぶれを効果的に防止できる。なお、本発明では 、図 5Bに示されるように、アノード側のガス拡散層 5aとガスケット 6aとの接合面 9aと、 力ソード側のガス拡散層 5cとガスケット 6cとの接合面 9cの厚さ方向における位置は、 互 ヽにずれて 、ることが好まし 、。セパレータによる MEAの挟持や MEA各構成層 のホットプレス時に、接合面 9a, 9cにかかる応力が分散して、電解質膜 2の破断がよ り有効に防止できるからである。このような場合には、図 5Bのように、補強部材 3bを、 電解質膜 2の端部力も双方の接合面 9a, 9cよりも内側に配置することが好ましい。  [0033] In addition, when MEA is sandwiched between separators 10a and 10c and each MEA component layer is hot-pressed, stress is particularly concentrated on joint surfaces 9a and 9c. Therefore, as shown in FIG. 5A, the reinforcing member 3b is disposed from the end of the electrolyte membrane 2 to the inside of the joint surfaces 9a and 9c where the stress is concentrated, so that the electrolyte membrane 2 Crushing can be effectively prevented. In the present invention, as shown in FIG. 5B, the thickness of the joining surface 9a between the gas diffusion layer 5a on the anode side and the gasket 6a, and the joining surface 9c between the gas diffusion layer 5c on the force sword side and the gasket 6c. It is preferable that the position in the direction is shifted mutually. This is because the stress applied to the joint surfaces 9a and 9c is dispersed when the MEA is sandwiched between the separators and the MEA constituent layers are hot-pressed, and the breakage of the electrolyte membrane 2 can be more effectively prevented. In such a case, as shown in FIG. 5B, it is preferable to dispose the reinforcing member 3b on the inner side of the joining surfaces 9a and 9c of the end portion force of the electrolyte membrane 2 as well.
[0034] 本発明にお 、て、補強部材 3bを構成する材料は、電解質膜 2よりも強度の高 、材 料が適宜用いられうる。一例を挙げると、補強部材 3bは、電解質膜 2の構成材料とは 異なる材料力も構成されてもよぐ力 うな材料としては、ポリテトラフルォロエチレン( PTFE)、ポリフッ化ビ-リデン(PVDF)、カプトンなどが挙げられる。なかでも、コスト の観点からは、カブトンが好ましく用いられうる。なお、本願において「強度が高い」と は、圧縮強度や引張り強度などの機械的強度が高いことを意味する。  In the present invention, as the material constituting the reinforcing member 3b, a material having higher strength than the electrolyte membrane 2 can be used as appropriate. For example, the reinforcing member 3b is made of polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), which may be composed of a material force different from that of the constituent material of the electrolyte membrane 2. ) And Kapton. Among these, kabuton can be preferably used from the viewpoint of cost. In the present application, “high strength” means high mechanical strength such as compressive strength and tensile strength.
[0035] また、補強部材 3bは、上述する電解質膜 2と同様の高分子電解質を含むものであ つてもよい。例えば、補強部材 3bは、多孔質体に電解質を充填することによって製造 されてもよい。この際使用できる多孔質体は、ポリテトラフルォロエチレン (PTFE)、 ポリフッ化ビ-リデン(PVDF)、ポリイミド、ポリオレフイン、ポリサルフォンなどの高分 子材料から適宜選択されうる。なかでも、ポリテトラフルォロエチレン (PTFE)、ポリフ ッ化ビユリデン (PVDF)等のフッ素系高分子材料力 なる多孔質体が好ましく用いら れる。特に化学耐性と品質安定性という観点からは、ポリテトラフルォロエチレン (PT FE〉力もなる多孔質体がより好ましく用いられる。補強部材 3bを構成する多孔質体の 空隙率は、製造の容易さや所望の強度などを考慮して適宜設定されうるが、 20〜80 %であることが好ましい。 [0036] 補強部材 3bは、接着能、特に熱融着能を有する材料で形成されてもよ!ヽ。つまり本 発明では、補強部材 3b (水蒸気シール部材 3a)と接着層 7a, 7cとが、一体として形 成され、補強部材 3b中に接着部 7a, 7cが形成されていてもよい。このような材料で 形成された補強部材 3bを用いることによって、特に転写法によって MEAを組み立て る場合には、ホットプレス時に補強部材 3bが接着能を発揮するため、補強部材 3bと 、電解質膜 2、触媒層 4a, 4c及びガスケット 6a, 6cとの接着性をより向上することがで きる。このような補強部材 3bは、ホットプレス時に補強部材 3bが接着能を発揮するも のであることが好ましいが、例えば、 100〜200°Cで接着能を発揮するようなものであ ることが好ましい。このような補強部材 3bとしては、具体的には、ォレフィン系榭脂等 の低融点の榭脂による繊維を適宜組み合わせて所望の形状、例えば、シート状に編 んだものなどが使用できる。より具体的には、補強部材 3bとしては、ポリプロピレンに P)繊維、ポリエチレン (PE)繊維、変性ォレフィン系繊維等の低融点榭脂繊維を、ポ リテトラフルォロエチレン (PTFE)繊維、ガラス繊維 (GF)等の他の繊維と組み合わ せてなるものが挙げられる。また、補強部材 3bとしては、ポリテトラフルォロエチレン( PTFE)繊維、ガラス繊維 (GF)及びポリプロピレン (PP)繊維を適宜組み合わせて編 んだもの、例えば、 PTFE : GF: PP = 20 : 30 : 50の質量比で編んだものが特に好ま しい。さらに補強部材 3bとしては、ガラス繊維 (GF)及びポリプロピレン (PP)繊維を 適宜組み合わせて編んだもの、例えば、 GF: PP = 50 : 50の質量比で編んだものが 特に好ましい。このような場合には、補強部材 3bは、図 5Cに示されるように、直接ガ スケット 6a, 6cと接合されてもよい。このような場合であっても、ホットプレスによって十 分補強部材 3bとガスケット 6a, 6cとを接合することができる。 [0035] Further, the reinforcing member 3b may include a polymer electrolyte similar to the electrolyte membrane 2 described above. For example, the reinforcing member 3b may be manufactured by filling a porous body with an electrolyte. The porous material that can be used in this case can be appropriately selected from polymer materials such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyimide, polyolefin, and polysulfone. Of these, a porous material having a fluorine-based polymer material such as polytetrafluoroethylene (PTFE) or poly (vinylidene fluoride) (PVDF) is preferably used. In particular, from the viewpoint of chemical resistance and quality stability, a porous body having a polytetrafluoroethylene (PT FE) force is more preferably used, and the porosity of the porous body constituting the reinforcing member 3b is easy to manufacture. It can be appropriately set in consideration of the desired strength and the like, but is preferably 20 to 80%. [0036] The reinforcing member 3b may be formed of a material having an adhesive ability, particularly a heat-sealing ability! That is, in the present invention, the reinforcing member 3b (water vapor seal member 3a) and the adhesive layers 7a and 7c may be integrally formed, and the adhesive portions 7a and 7c may be formed in the reinforcing member 3b. By using the reinforcing member 3b formed of such a material, particularly when the MEA is assembled by the transfer method, the reinforcing member 3b exhibits the adhesive ability during hot pressing, and therefore the reinforcing member 3b and the electrolyte membrane 2 are used. Thus, the adhesion between the catalyst layers 4a and 4c and the gaskets 6a and 6c can be further improved. Such a reinforcing member 3b is preferably such that the reinforcing member 3b exhibits adhesive ability at the time of hot pressing. For example, the reinforcing member 3b preferably exhibits adhesive ability at 100 to 200 ° C. . As such a reinforcing member 3b, specifically, a fiber knitted into a desired shape, for example, a sheet shape by appropriately combining fibers of low melting point resin such as olefin-based resin can be used. More specifically, as the reinforcing member 3b, low melting point resin fibers such as polypropylene (P) fiber, polyethylene (PE) fiber, modified polyolefin fiber, polytetrafluoroethylene (PTFE) fiber, glass, etc. Examples include those combined with other fibers such as fiber (GF). Further, as the reinforcing member 3b, a material knitted by appropriately combining polytetrafluoroethylene (PTFE) fiber, glass fiber (GF) and polypropylene (PP) fiber, for example, PTFE: GF: PP = 20: 30 : Especially preferred is a braided material with a mass ratio of 50. Further, the reinforcing member 3b is particularly preferably one knitted by appropriately combining glass fibers (GF) and polypropylene (PP) fibers, for example, one knitted at a mass ratio of GF: PP = 50: 50. In such a case, the reinforcing member 3b may be directly joined to the gaskets 6a and 6c as shown in FIG. 5C. Even in such a case, the reinforcing member 3b and the gaskets 6a and 6c can be sufficiently joined by hot pressing.
[0037] また、本発明では、図 5Dに示されるように、電解質膜 2よりも強度の高い補強層 3c 力 電解質膜 電極接合体の厚さ方向に対して、アノード触媒層 4a及び Zまたは力 ソード触媒層 4cの少なくとも一部と重畳するように、前記電解質膜 2の中間に配置さ れることが好ましい。これにより、電解質膜 2自体の強度も向上できる。補強層 3cを構 成する材料としては、プロトン伝導性を有しかつ電解質膜 2の強度を向上できるもの であれば特に制限されないが、多孔質体に電解質を充填することによって製造され るものなどが挙げられ、多孔質体及び電解質にっ 、ては上記補強部材 3bで記載し たのと同様のものが使用できる。補強層 3cの厚さは、電解質膜の厚さや種類、所望 の強度などによって異なり特に制限されないが、電解質膜の厚さの 10〜50%程度で あることが好ましい。また、補強層 3cの位置は、電解質膜の強度などを考慮すると、 図 5Dに示されるように、電解質膜の厚さ方向のほぼ中央に位置することが好ましい。 なお、図 5Dでは、補強層 3cは水蒸気シール部材 3aと端部同士が接合した形態が 示されているが、このような形態に限定されるものではなぐ水蒸気シール部材の端 部と補強層 3cの端部との間に隙間があってもよい。また、補強層 3cが電解質膜 2の 中間に断続的に配置されてもよい。さらに電解質膜 2の面方向において中心部にの み配置されてもよい。ただ電解質膜 2の強度改善を考慮すると、補強層 3cは、図 5D に示されるように、電解質膜 2の全体に設けられ、さらに水蒸気シール部材 3aの端部 と接合するように配置されることが特に好ましい。なお、図 5Bでは、補強層 3cと補強 部材 3bとを組み合わせた場合について示した力 本発明では、上記した他の水蒸気 シール部材 3aとの組み合わせについても同様に適用できる。 [0037] Also, in the present invention, as shown in FIG. 5D, the anode catalyst layers 4a and Z or force are strengthened with respect to the thickness direction of the reinforcing layer 3c force electrolyte membrane electrode assembly as compared with the electrolyte membrane 2. It is preferably disposed in the middle of the electrolyte membrane 2 so as to overlap at least part of the sword catalyst layer 4c. Thereby, the strength of the electrolyte membrane 2 itself can be improved. The material constituting the reinforcing layer 3c is not particularly limited as long as it has proton conductivity and can improve the strength of the electrolyte membrane 2, but is manufactured by filling an electrolyte in a porous body, etc. The porous body and the electrolyte are described in the reinforcing member 3b. You can use the same ones. The thickness of the reinforcing layer 3c varies depending on the thickness and type of the electrolyte membrane, desired strength, etc., and is not particularly limited, but is preferably about 10 to 50% of the thickness of the electrolyte membrane. Further, considering the strength of the electrolyte membrane and the like, the position of the reinforcing layer 3c is preferably located substantially at the center in the thickness direction of the electrolyte membrane as shown in FIG. 5D. In FIG. 5D, the reinforcing layer 3c has a form in which the end portions of the water vapor seal member 3a are joined to each other, but the end of the water vapor seal member and the reinforcing layer 3c are not limited to such a form. There may be a gap between the two ends. Further, the reinforcing layer 3c may be intermittently disposed in the middle of the electrolyte membrane 2. Further, it may be arranged only at the center in the surface direction of the electrolyte membrane 2. However, considering the strength improvement of the electrolyte membrane 2, the reinforcing layer 3c is provided on the entire electrolyte membrane 2 and arranged so as to be joined to the end of the water vapor seal member 3a as shown in FIG. Is particularly preferred. In FIG. 5B, the force shown in the case where the reinforcing layer 3c and the reinforcing member 3b are combined is also applicable to the combination with the other water vapor sealing member 3a described above in the present invention.
図 1A〜図 2B及び図 4〜図 5Aでは、接合面 9aと接合面 9cは、 MEAの厚さ方向に 対して、同位置に配置されている力 これらの接合面は、図 5B〜5Dに示されるよう に、異なる位置に配置されてもよい。上記したように、接合面 9a, 9cが MEAの厚さ方 向に対して異なる位置に配置されると、セパレータ 10a, 10cによる MEAの挟持時や MEA各構成層のホットプレス時に、接合面 9a, 9cにかかる圧縮応力を分散して、応 力が集中するのを緩和できる。このため、電解質膜 2の応力による破断がより有効に 防止できる。接合面 9a, 9cが MEAの厚さ方向に対して異なる位置に配置させる方 法としては、アノード触媒層 4aの面積が力ソード触媒層 4cの面積よりも大きくなるよう に配置させることが好ましい。これにより、アノード下流の空気存在部に対向するカソ ード触媒層 4c領域の面積を低減できる、即ち、力ソード電位と電解質電位との差が 大きい部分を有意に低減できる。そのため、力ソード触媒層 4cのカーボンの腐食が 効果的に抑制できる。また、このような場合には、力ソード触媒層端部での力ソードか らアノードへの酸素のクロスリークがほとんど起こらない構造をとることができるため、 従来重大な問題となっていた電解質膜 2の劣化をも効果的に抑制することができる。 したがって、このような構造を有する MEAを用いた燃料電池は、起動停止 Z連続運 転時及び ocv時の性能を長期間維持でき、燃費も向上できる。 In FIGS. 1A to 2B and FIGS. 4 to 5A, the joining surface 9a and the joining surface 9c are arranged at the same position in the thickness direction of the MEA. These joining surfaces are shown in FIGS. 5B to 5D. As shown, they may be located at different locations. As described above, if the joint surfaces 9a and 9c are arranged at different positions with respect to the thickness direction of the MEA, the joint surfaces 9a and 9c are sandwiched between the separators 10a and 10c and when MEA components are hot pressed. , 9c can be dispersed to alleviate the concentration of stress. For this reason, breakage due to stress of the electrolyte membrane 2 can be more effectively prevented. As a method of disposing the joining surfaces 9a and 9c at different positions with respect to the thickness direction of the MEA, it is preferable to dispose so that the area of the anode catalyst layer 4a is larger than the area of the force sword catalyst layer 4c. As a result, the area of the cathode catalyst layer 4c region facing the air existing portion downstream of the anode can be reduced, that is, the portion where the difference between the force sword potential and the electrolyte potential is large can be significantly reduced. Therefore, carbon corrosion of the force sword catalyst layer 4c can be effectively suppressed. In such a case, a structure in which almost no oxygen cross-leak from the force sword to the anode at the end of the force sword catalyst layer can occur can be obtained. The deterioration of 2 can also be effectively suppressed. Therefore, a fuel cell using an MEA having such a structure cannot be started or stopped. The performance at the time of turning and ocv can be maintained for a long time, and the fuel consumption can be improved.
[0039] また、図 1A〜図 2B及び図 4〜図 5Aでは、接着層 7a及び接着層 7cは、それぞれ、 ガスケット 6a及びガスケット 6cと、 MEAの厚さ方向に対して、完全に重畳するように 配置されている力 図 6に示されるように、接着層及びガスケットは、互いに重畳しな いように配置されてもよい。このような場合においても、図 6Aに示されるように、ァノー ド触媒層 4aの面積が力ソード触媒層 4cの面積よりも大きくなるように、接着層 7a, 7c が配置されることが好ましい。また、この場合には、図 6Aに示されるように、接着層 7a , 7cが、それぞれ接合面 9a, 9cを超えて、ガス拡散層 5a, 5cに接触するように形成 されることが好ましい。この場合には、接着層 7cは、ガス拡散層 5c、ガスケット 6c、水 蒸気シール部材 3a及び電解質膜 2すべてと接し、また、接着層 7aは、ガス拡散層 5a 、ガスケット 6a及び水蒸気シール部材 3aと接しているので、 MEAの各構成部材がよ り高い接合性をもって一体ィ匕することが可能である。なお、上記態様は、補強部材 3b の例をとつて説明したが、他の水蒸気シール部材 3aに対しても同様に適用できる。ま た、接着層 7a, 7cが接合面 9a, 9cを超えてガス拡散層 5a, 5c下にまで形成される 場合には、図 7Bに示されるように、ガスケット 6aとガス拡散層 5aとの間及び Zまたは ガスケット 6cとガス拡散層 5cとの間に、隙間があってもよい。このような場合であって も、ガスの透過は、接着層 7a, 7c及び水蒸気シール部材 3aによって十分抑制できる 力もである。なお、上記説明は、力ソード側についてのみ行った力 アノード側のみあ るいは力ソード及びアノード側双方についても同様の適用される。 [0039] In FIGS. 1A to 2B and FIGS. 4 to 5A, the adhesive layer 7a and the adhesive layer 7c are completely overlapped with the gasket 6a and the gasket 6c, respectively, in the thickness direction of the MEA. As shown in FIG. 6, the adhesive layer and the gasket may be arranged so as not to overlap each other. Even in such a case, as shown in FIG. 6A, the adhesive layers 7a and 7c are preferably arranged so that the area of the anode catalyst layer 4a is larger than the area of the force sword catalyst layer 4c. Further, in this case, as shown in FIG. 6A, the adhesive layers 7a and 7c are preferably formed so as to contact the gas diffusion layers 5a and 5c beyond the joint surfaces 9a and 9c, respectively. In this case, the adhesive layer 7c is in contact with all of the gas diffusion layer 5c, the gasket 6c, the water vapor seal member 3a, and the electrolyte membrane 2, and the adhesive layer 7a is the gas diffusion layer 5a, the gasket 6a, and the water vapor seal member 3a. As a result, the components of the MEA can be joined together with higher bondability. In addition, although the said aspect demonstrated using the example of the reinforcement member 3b, it is applicable similarly to the other water vapor | steam sealing member 3a. In addition, when the adhesive layers 7a and 7c are formed to extend over the joint surfaces 9a and 9c and below the gas diffusion layers 5a and 5c, as shown in FIG. 7B, the gasket 6a and the gas diffusion layer 5a There may be a gap between the Z and the gasket 6c and the gas diffusion layer 5c. Even in such a case, the permeation of gas can be sufficiently suppressed by the adhesive layers 7a and 7c and the water vapor seal member 3a. Note that the above description applies similarly only to the force anode side performed only on the force sword side or to both the force sword and the anode side.
[0040] 本発明の電解質膜—電極接合体は、電解質膜 2上に、アノード触媒層 4a、力ソード 触媒層 4c、ガスケット 6a, 6c及びガス拡散層 5a, 5cを、適当な配列で順次形成する 方法により製造される。本発明に係る電解質膜 電極接合体を転写法により製造す る方法としては、以下の (i)〜 (V)が挙げられる。 [0040] In the electrolyte membrane-electrode assembly of the present invention, an anode catalyst layer 4a, a force sword catalyst layer 4c, gaskets 6a and 6c, and gas diffusion layers 5a and 5c are sequentially formed on the electrolyte membrane 2 in an appropriate arrangement. Manufactured by a method. Examples of the method for producing the electrolyte membrane / electrode assembly according to the present invention by the transfer method include the following (i) to (V).
[0041] (i)アノード側及び力ソード側につ!ヽて、それぞれ、転写用台紙上に触媒インクを塗 布して、触媒層を形成し、これらで、側方外周部が水蒸気シール部材でシールされ た電解質膜を挟持した後、ホットプレスを行い、その後、転写用台紙を剥がすことによ り、アノード触媒層 電解質膜一力ソード触媒層の積層体を得、各触媒層上にガス 拡散層を配置した後、電解質膜上に、接着層及びガスケットをそれぞれ形成して、本 発明の MEAを得る方法。 [0041] (i) The catalyst ink is applied on the transfer mount to form the catalyst layer on the anode side and the force sword side, respectively, and the side outer peripheral portion thereof is a water vapor seal member. After sandwiching the electrolyte membrane sealed with, perform hot pressing, and then peel off the transfer mount to obtain a stack of anode catalyst layer and electrolyte membrane first sword catalyst layer, and gas on each catalyst layer After disposing the diffusion layer, an adhesive layer and a gasket are formed on the electrolyte membrane, respectively. Method for obtaining the MEA of the invention.
[0042] (ii)アノード側及び力ソード側につ!ヽて、それぞれ、ガス拡散層上に触媒インクを塗 布して、触媒層を形成し、これらで、側方外周部が水蒸気シール部材でシールされ た電解質膜を挟持した後、ホットプレスを行い、ガス拡散層、触媒層及び電解質膜の 積層体を得た後、電解質膜上に、接着層及びガスケットをそれぞれ形成して、本発 明の MEAを得る方法。 (Ii) A catalyst ink is formed on the gas diffusion layer by forming a catalyst layer on each of the anode side and the force sword side. After sandwiching the electrolyte membrane sealed with, hot pressing is performed to obtain a laminate of the gas diffusion layer, catalyst layer and electrolyte membrane, and then an adhesive layer and a gasket are formed on the electrolyte membrane, respectively. How to get Ming MEA.
[0043] (iii)転写用台紙上にガス拡散層及びガスケットを形成した後、ガス拡散層上に触媒 インクを塗布して触媒層を形成すると共に、ガスケット上に接着層を形成して積層体 を得、このようにして得られたアノード用積層体及び力ソード用積層体 2枚で、側方外 周部が水蒸気シール部材でシールされた電解質膜を挟持した後、ホットプレスを行 い、その後、転写用台紙を剥がして、本発明の MEAを得る方法。  (Iii) After forming the gas diffusion layer and the gasket on the transfer mount, the catalyst ink is applied on the gas diffusion layer to form the catalyst layer, and the adhesive layer is formed on the gasket to form a laminate. The anode laminate and the force sword laminate obtained in this way were sandwiched between the electrolyte membranes whose lateral outer peripheral portions were sealed with a water vapor seal member, and then hot-pressed, Thereafter, the transfer mount is peeled off to obtain the MEA of the present invention.
[0044] (iv)転写用台紙上にガス拡散層を形成した後、ガス拡散層上に触媒インクを塗布 して、触媒層を形成した後、上記転写用台紙の残りの部位上にガスケット及び接着 層を順次形成して積層体を得、このようにして得られたアノード用積層体及びカソー ド用積層体 2枚で、側方外周部が水蒸気シール部材でシールされた電解質膜を挟 持した後、ホットプレスを行い、その後、転写用台紙を剥がして、本発明の MEAを得 る方法。  [0044] (iv) After forming the gas diffusion layer on the transfer mount, the catalyst ink is applied on the gas diffusion layer to form the catalyst layer, and then the gasket and the remaining portion of the transfer mount are formed. Adhesive layers are sequentially formed to obtain a laminate, and the anode laminate and the cathode laminate obtained in this manner sandwich an electrolyte membrane whose lateral outer periphery is sealed with a water vapor seal member. Then, hot pressing is performed, and then the transfer mount is peeled off to obtain the MEA of the present invention.
[0045] (V)転写用台紙上にガスケット及び接着層を順次形成した後、上記転写用台紙の 残りの部位上にガス拡散層を形成し、さらにこのガス拡散層上に触媒インクを塗布し て、触媒層を形成して積層体を得、このようにして得られたアノード用積層体及びカソ 一ド用積層体 2枚で、側方外周部が水蒸気シール部材でシールされた電解質膜を 挟持した後、ホットプレスを行い、その後、転写用台紙を剥がして、本発明の MEAを 得る方法。  (V) After sequentially forming a gasket and an adhesive layer on the transfer mount, a gas diffusion layer is formed on the remaining portion of the transfer mount, and a catalyst ink is applied onto the gas diffusion layer. Thus, a catalyst layer is formed to obtain a laminate, and an electrolyte membrane having two anode laminates and cathode laminates obtained in this manner and having a lateral outer periphery sealed with a water vapor seal member is formed. A method of obtaining the MEA of the present invention by performing hot pressing after nipping and then peeling off the transfer mount.
[0046] 以下、上記 (i)の方法につ 、て詳述する。 (i)の方法では、(a)アノード側及びカソ ード側について、それぞれ、転写用台紙上に触媒インクを塗布して、触媒層を形成し て、アノード用及び力ソード用転写シートを得、 (b) (a)で形成されたアノード用及び 力ソード用転写シートで、側方外周部が水蒸気シール部材でシールされた電解質膜 を挟持した後、ホットプレスを行い、その後、転写用台紙を剥がすことにより、アノード 触媒層 電解質膜一力ソード触媒層の積層体を得、 (c)各触媒層上にガス拡散層( GDL)を配置して、ガス拡散層、触媒層及び電解質膜の積層体を得た後、(d)電解 質膜上に、接着層及びガスケットをそれぞれ形成して、本発明の MEAを得る。 Hereinafter, the method (i) will be described in detail. In the method (i), (a) for the anode side and the cathode side, a catalyst ink is applied on a transfer mount to form a catalyst layer, whereby anode and force sword transfer sheets are obtained. (B) The anode and force sword transfer sheet formed in (a) is sandwiched between the electrolyte membranes whose outer periphery is sealed with a water vapor seal member, and then hot-pressed, and then a transfer mount By stripping the anode Catalyst layer After obtaining a laminate of electrolyte sword catalyst layer (c) Disposing a gas diffusion layer (GDL) on each catalyst layer to obtain a laminate of gas diffusion layer, catalyst layer and electrolyte membrane (D) An adhesive layer and a gasket are respectively formed on the electrolyte membrane to obtain the MEA of the present invention.
[0047] まず、工程 (a)において、触媒インクを調製し、この触媒インクを転写用台紙上に塗 布 ·乾燥して、転写用台紙上に触媒層を形成した転写シートを得る。この際、転写用 台紙としては、 PTFE (ポリテトラフルォロエチレン)シート、 PET (ポリエチレンテレフ タレート)シート、ポリエステルシートなどが使用できる。なお、転写用台紙は、使用す る触媒インク (特にインク中のカーボン等の導電性担体)の種類に応じて適宜選択さ れる。 [0047] First, in step (a), a catalyst ink is prepared, and this catalyst ink is coated on a transfer mount and dried to obtain a transfer sheet having a catalyst layer formed on the transfer mount. In this case, a PTFE (polytetrafluoroethylene) sheet, a PET (polyethylene terephthalate) sheet, a polyester sheet, or the like can be used as a transfer mount. The transfer mount is appropriately selected according to the type of catalyst ink to be used (particularly, a conductive carrier such as carbon in the ink).
[0048] 上記方法で使用される触媒インクは、溶媒、電解質及び触媒成分を含む。力ソード 触媒層に用いられる触媒成分は、酸素の還元反応に触媒作用を有するものであれ ば特に制限はない。また、アノード触媒層に用いられる触媒成分もまた、水素の酸化 反応に触媒作用を有するものであれば特に制限はない。具体的には、白金、ルテニ ゥム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、クロム、コバ ルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属及 びそれらの合金等などから選択される。これらのうち、触媒活性、一酸化炭素等に対 する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好まし い。前記合金の組成は、合金化する金属の種類にもよる力 白金が 30〜90原子%、 合金化する金属が 10〜70原子%とするのがよい。力ソード触媒において合金を使 用する場合、合金の組成は、合金化する金属の種類などによって異なり、当業者が 適宜選択できる力 白金が 30〜90原子%、合金化する他の金属が 10〜70原子% とすることが好ましい。なお、合金とは、一般に金属元素に 1種以上の他の金属元素 または非金属元素をカ卩えたものであって、金属的性質をもって 、るものの総称である 。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成 分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または 金属と非金属との化合物を形成しているものなどがあり、本願ではいずれであっても よい。この際、力ソード触媒層に用いられる触媒成分及びアノード触媒層に用いられ る触媒成分は、上記の中から適宜選択できる。以下の説明では、特記しない限り、力 ソード触媒層及びアノード触媒層用の触媒成分についての説明は、両者について同 様であり、一括して、「触媒成分」と称する。し力しながら、力ソード触媒層及びァノー ド触媒層用の触媒成分は同一である必要はなぐ上記したような所望の作用を奏す るように、適宜選択される。 [0048] The catalyst ink used in the above method includes a solvent, an electrolyte, and a catalyst component. The catalyst component used in the force sword catalyst layer is not particularly limited as long as it has a catalytic action in the oxygen reduction reaction. Further, the catalyst component used in the anode catalyst layer is not particularly limited as long as it has a catalytic action for the oxidation reaction of hydrogen. Specifically, metals such as platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof Etc. are selected. Of these, those containing at least platinum are preferred in order to improve catalyst activity, poisoning resistance to carbon monoxide, and the like, and heat resistance. The composition of the alloy is such that the force depending on the type of metal to be alloyed is 30 to 90 atomic% for platinum and 10 to 70 atomic% for the metal to be alloyed. When an alloy is used in a force sword catalyst, the composition of the alloy varies depending on the type of metal to be alloyed, etc., and can be appropriately selected by those skilled in the art. 70 atomic% is preferable. In general, an alloy is a generic term for a metal element having one or more kinds of other metal elements or non-metal elements and having metallic properties. The alloy structure includes eutectic alloys, which are so-called mixtures in which the constituent elements become separate crystals, those in which the constituent elements are completely melted into a solid solution, and the constituent elements are intermetallic compounds or compounds of metals and nonmetals. In the present application, any of them may be used. At this time, the catalyst component used for the force sword catalyst layer and the catalyst component used for the anode catalyst layer can be appropriately selected from the above. In the following description, unless otherwise noted The descriptions of the catalyst components for the sword catalyst layer and the anode catalyst layer are the same for both, and are collectively referred to as “catalyst components”. However, the catalyst components for the force sword catalyst layer and the anode catalyst layer do not need to be the same, and are appropriately selected so as to exhibit the desired action as described above.
[0049] 触媒成分の形状は、粒状であることが好ましい。この際、触媒インクに用いられる触 媒粒子の平均粒子径は、小さ 、ほど電気化学反応が進行する有効電極面積が増加 するため酸素還元活性も高くなり好ましいが、実際には平均粒子径カ 、さすぎると却 つて酸素還元活性が低下する現象が見られる。従って、触媒インクに含まれる触媒 粒子の平均粒子径は、 l〜30nm、より好ましくは 1. 5〜20nm、さらにより好ましくは 2〜: LOnm、特に好ましくは 2〜5nmの粒状であることが好ましい。担持の容易さとい う観点から lnm以上であることが好ましぐ触媒利用率の観点から 30nm以下である ことが好ましい。なお、本発明における「触媒粒子の平均粒径」は、 X線回折における 触媒成分の回折ピークの半値幅より求められる結晶子径あるいは透過型電子顕微 鏡像より調べられる触媒成分の粒子径の平均値により測定することができる。  [0049] The shape of the catalyst component is preferably granular. At this time, the smaller the average particle diameter of the catalyst particles used in the catalyst ink, the higher the effective electrode area where the electrochemical reaction proceeds, which is preferable because the oxygen reduction activity increases. On the other hand, there is a phenomenon that the oxygen reduction activity decreases. Therefore, the average particle diameter of the catalyst particles contained in the catalyst ink is preferably 1 to 30 nm, more preferably 1.5 to 20 nm, even more preferably 2 to: LOnm, particularly preferably 2 to 5 nm. . From the viewpoint of easy loading, it is preferably 1 nm or more, and from the viewpoint of catalyst utilization, it is preferably 30 nm or less. The “average particle diameter of the catalyst particles” in the present invention is the average value of the particle diameter of the catalyst component determined from the crystallite diameter or transmission electron microscopic image obtained from the half width of the diffraction peak of the catalyst component in X-ray diffraction. Can be measured.
[0050] 本発明にお ヽて、上述した触媒粒子は導電性担体に担持され、電極触媒として触 媒インク中に含まれる。  [0050] In the present invention, the catalyst particles described above are supported on a conductive carrier and are included in the catalyst ink as an electrode catalyst.
[0051] 前記導電性担体としては、触媒粒子を所望の分散状態で担持させるための比表面 積を有し、集電体として十分な電子導電性を有しているものであればよぐ主成分が カーボンであるのが好ましい。具体的には、カーボンブラック、活性炭、コータス、天 然黒鉛、人造黒鉛など力 なるカーボン粒子が挙げられる。なお、本発明において「 主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子 のみからなる、実質的に炭素原子からなる、の双方を含む概念である。場合によって は、燃料電池の特性を向上させるために、炭素原子以外の元素が含まれていてもよ い。なお、実質的に炭素原子力 なるとは、 2〜3質量%程度以下の不純物の混入が 許容されることを意味する。  [0051] The conductive carrier is not particularly limited as long as it has a specific surface area for supporting the catalyst particles in a desired dispersed state and has sufficient electronic conductivity as a current collector. The component is preferably carbon. Specific examples include powerful carbon particles such as carbon black, activated carbon, coatus, natural graphite, and artificial graphite. In the present invention, “the main component is carbon” refers to containing a carbon atom as a main component, and is a concept including both a carbon atom and substantially a carbon atom. In some cases, elements other than carbon atoms may be included to improve the characteristics of the fuel cell. Note that “substantially carbon nuclear power” means that the inclusion of impurities of about 2 to 3% by mass or less is allowed.
[0052] 前記導電性担体の BET比表面積は、触媒成分を高分散担持させるのに十分な比 表面積であればよいが、好ましくは 20〜1600m2Zg、より好ましくは 80〜1200m2 Zgである。前記比表面積が 20m2Zg以上の方が前記導電性担体における触媒成 分及び後述する電解質成分の分散性が低下せず充分な発電性能が得られ、 1600 m2Zg以下であると触媒成分及び電解質成分の有効利用率がかえって低下すること が避けられる。 [0052] The BET specific surface area of the conductive carrier may be a specific surface area sufficient to carry the catalyst component in a highly dispersed state, but is preferably 20 to 1600 m 2 Zg, more preferably 80 to 1200 m 2 Zg. . When the specific surface area is 20 m 2 Zg or more, the catalyst component in the conductive support is formed. Therefore, sufficient power generation performance can be obtained without lowering the dispersibility of the electrolyte component and the electrolyte component described later, and if it is 1600 m 2 Zg or less, the effective utilization rate of the catalyst component and the electrolyte component can be avoided from decreasing.
[0053] また、前記導電性担体の大きさは、担持の容易さ、触媒利用率、触媒層の厚さを適 切な範囲で制御するなどの観点からは、平均粒子径が 5〜200nm、好ましくは 10〜 lOOnm程度とするのがよ!/、。  [0053] In addition, the size of the conductive carrier is preferably 5 to 200 nm in average particle diameter from the viewpoint of easy loading, catalyst utilization, and catalyst layer thickness control within an appropriate range. Should be around 10 ~ lOOnm! /.
[0054] 前記導電性担体に触媒成分が担持された電極触媒にお!ヽて、触媒成分の担持量 は、電極触媒の全量に対して、好ましくは 10〜80質量%、より好ましくは 30〜70質 量%とするのがよい。前記担持量が 80質量%以下であると、導電性担体上での触媒 成分の分散度が低下せず、担持量が増加すると発電性能の向上も大きく経済上で の利点が低下することはない。また、前記担持量が 10質量%以上であると、単位質 量あたりの触媒活性が低下することなく所望の発電性能を得るために多量の電極触 媒が必要となることはない。なお、触媒成分の担持量は、誘導結合プラズマ発光分 光法 (ICP)によって測定可能である。  [0054] In the electrode catalyst in which the catalyst component is supported on the conductive support, the supported amount of the catalyst component is preferably 10 to 80% by mass, more preferably 30 to 30%, based on the total amount of the electrode catalyst. 70% by mass is recommended. When the loading amount is 80% by mass or less, the degree of dispersion of the catalyst component on the conductive carrier does not decrease, and when the loading amount increases, the power generation performance is greatly improved and the economic advantage does not decrease. . In addition, when the supported amount is 10% by mass or more, a large amount of electrode catalyst is not required to obtain a desired power generation performance without lowering the catalytic activity per unit mass. The amount of catalyst component supported can be measured by inductively coupled plasma emission spectroscopy (ICP).
[0055] また、導電性担体への触媒成分の担持としては、含浸法、液相還元担持法、蒸発 乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル (マイクロエマルジヨン法)などの方 法が使用できる。  [0055] In addition, catalyst components supported on a conductive carrier include impregnation method, liquid phase reduction support method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method), etc. The method can be used.
[0056] 本発明の力ソード触媒層及びアノード触媒層には、電極触媒の他に、高分子電解 質が含まれ得る。前記高分子電解質としては、上記電解質膜に用いたものと同様の 高分子電解質が使用できる。前記電解質膜に用いられる高分子電解質と、各触媒層 に用いられる高分子電解質とは、同じであっても異なっていてもよいが、各触媒層と 電解質膜との密着性を向上させる観点から、同じものを用いるのが好ましい。すなわ ち、前記高分子電解質としては、少なくとも高いプロトン伝導性を有する部材であれ ばよい。この際使用できる高分子電解質は、ポリマー骨格の全部又は一部にフッ素 原子を含むフッ素系電解質と、ポリマー骨格にフッ素原子を含まな 、炭化水素系電 解質とに大別される。  [0056] The force sword catalyst layer and the anode catalyst layer of the present invention may contain a polymer electrolyte in addition to the electrode catalyst. As the polymer electrolyte, the same polymer electrolyte as that used for the electrolyte membrane can be used. The polymer electrolyte used for the electrolyte membrane and the polymer electrolyte used for each catalyst layer may be the same or different, but from the viewpoint of improving the adhesion between each catalyst layer and the electrolyte membrane. It is preferable to use the same one. In other words, the polymer electrolyte may be a member having at least high proton conductivity. The polymer electrolyte that can be used in this case is roughly classified into a fluorine-based electrolyte containing fluorine atoms in all or part of the polymer skeleton and a hydrocarbon-based electrolyte containing no fluorine atoms in the polymer skeleton.
[0057] 前記フッ素系電解質として、具体的には、ナフイオン (デュポン社製)、ァシプレック ス (旭化成株式会社製)、フレミオン (旭硝子株式会社製)等のパーフルォロカーボン スルホン酸系ポリマー、ポリトリフルォロスチレンスルホン酸系ポリマー、パーフルォロ カーボンホスホン酸系ポリマー、トリフルォロスチレンスルホン酸系ポリマー、エチレン テトラフルォロエチレン g—スチレンスルホン酸系ポリマー、エチレンーテトラフルォ 口エチレン共重合体、ポリビ-リデンフルオリドーパーフルォロカーボンスルホン酸系 ポリマーなどが好適な一例として挙げられる。 [0057] Specific examples of the fluorine-based electrolyte include perfluorocarbons such as naphthion (manufactured by DuPont), Aciplex (manufactured by Asahi Kasei Co., Ltd.), and Flemion (manufactured by Asahi Glass Co., Ltd.). Sulfonic acid polymer, polytrifluorostyrene sulfonic acid polymer, perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene g-styrene sulfonic acid polymer, ethylene tetrafluoro Preferable examples include an ethylene copolymer and a polyvinylidene fluoride perfluorocarbon sulfonic acid polymer.
[0058] 前記炭化水素系電解質として、具体的には、ポリスルホンスルホン酸、ポリアリール エーテルケトンスルホン酸、ポリべンズイミダゾールアルキルスルホン酸、ポリべンズィ ミダゾールアルキルホスホン酸、ポリスチレンスルホン酸、ポリエーテルエーテルケトン スルホン酸、ポリフエニルスルホン酸等が好適な一例として挙げられる。  [0058] Specific examples of the hydrocarbon electrolyte include polysulfone sulfonic acid, polyaryl ether ketone sulfonic acid, poly benzimidazole alkyl sulfonic acid, poly benzimidazole alkyl phosphonic acid, polystyrene sulfonic acid, polyether ether ketone. Examples of suitable examples include sulfonic acid and polyphenyl sulfonic acid.
[0059] 高分子電解質は、耐熱性、化学的安定性などに優れることから、フッ素原子を含む のが好ましぐなかでも、ナフイオン、ァシプレックス、フレミオンなどのフッ素系電解質 が好ましく挙げられる。  [0059] Since the polymer electrolyte is excellent in heat resistance, chemical stability and the like, it is preferable to include a fluorine atom, among which fluorine-based electrolytes such as naphthion, aciplex, and flemion are preferable.
[0060] 本発明の方法では、上記したような電極触媒、高分子電解質及び溶剤からなる触 媒インクを、ガス拡散層に塗布することによって、触媒層が形成される。この際、溶剤 としては、触媒層を形成するのに使用される通常の溶剤が同様にして使用できる。具 体的には、水、シクロへキサノールやエタノールや 2—プロパノール等の低級アルコ ールが使用できる。また、溶剤の使用量は、触媒インクにおいて、電極触媒が水素酸 化反応 (アノード側)及び酸素還元反応 (力ソード側)に対する所望の触媒作用を十 分発揮できる量であれば、いずれの量でもよい。具体的には、電極触媒が、触媒イン ク中、 5〜30質量%、より好ましくは 9〜20質量%となるような量で存在することが好 ましい。  [0060] In the method of the present invention, a catalyst layer is formed by applying a catalyst ink comprising the above-described electrode catalyst, polymer electrolyte and solvent to the gas diffusion layer. In this case, as the solvent, a normal solvent used for forming the catalyst layer can be used in the same manner. Specifically, water, lower alcohols such as cyclohexanol, ethanol and 2-propanol can be used. The amount of the solvent used is any amount in the catalyst ink as long as the electrode catalyst can sufficiently exhibit the desired catalytic action for the hydrogenation reaction (anode side) and the oxygen reduction reaction (power sword side). But you can. Specifically, it is preferable that the electrode catalyst is present in an amount such that it is 5 to 30% by mass, more preferably 9 to 20% by mass in the catalyst ink.
[0061] 本発明の触媒インクは、増粘剤を含んでもょ ヽ。増粘剤の使用は、触媒インクがガ ス拡散層上にうまく塗布できな!、場合などに有効である。この際使用できる増粘剤は 、グリセリン、エチレングリコール(EG)、ポリビュルアルコール(PVA)、プロピレングリ コール (PG)などが挙げられる。増粘剤の添加量は、本発明の上記効果を妨げない 程度の量であればよぐ触媒インクの全質量に対して、好ましくは 5〜20質量%であ る。  [0061] The catalyst ink of the present invention may contain a thickener. The use of a thickener is effective in cases where the catalyst ink cannot be successfully applied onto the gas diffusion layer! Examples of the thickener that can be used in this case include glycerin, ethylene glycol (EG), polybulal alcohol (PVA), and propylene glycol (PG). The addition amount of the thickener is preferably 5 to 20% by mass with respect to the total mass of the catalyst ink as long as it is an amount that does not hinder the above effect of the present invention.
[0062] 本発明の触媒インクは、電極触媒、電解質及び溶剤、ならびに必要であれば撥水 性高分子及び zまたは増粘剤、が適宜混合されたものであればその調製方法は特 に制限されない。例えば、電解質を極性溶媒に添加し、この混合液を加熱'攪拌して 、電解質を極性溶媒に溶解した後、これに電極触媒を添加することによって、触媒ィ ンクが調製できる。または、電解質を、溶剤中に一旦分散 Z懸濁された後、上記分散 Z懸濁液を電極触媒と混合して、触媒インクを調製してもよい。また、電解質が予め 上記他の溶媒中に調製されて ヽる市販の電解質溶液 (例えば、デュポン製の Nafio n溶液: 1 プロパノール中に 5wt%の濃度で Nafionが分散 Z懸濁したもの)をその まま上記方法に使用してもよい。 [0062] The catalyst ink of the present invention comprises an electrode catalyst, an electrolyte and a solvent, and water repellent if necessary. The preparation method is not particularly limited as long as a functional polymer and z or a thickener are appropriately mixed. For example, a catalyst ink can be prepared by adding an electrolyte to a polar solvent, heating and stirring the mixture, dissolving the electrolyte in the polar solvent, and then adding an electrode catalyst thereto. Alternatively, after the electrolyte is once dispersed and suspended in a solvent, the dispersion Z suspension may be mixed with an electrode catalyst to prepare a catalyst ink. In addition, a commercially available electrolyte solution (for example, a DuPont Nafion solution: Nafion dispersed and suspended at a concentration of 5 wt% in 1 propanol) is prepared in advance in the above-mentioned other solvent. You may use for the said method as it is.
[0063] 上記したような触媒インクを、転写用台紙上に塗布して、各触媒層が形成される。こ の際、転写用台紙上への力ソード Zアノード触媒層の形成条件として、触媒インクを 転写用台紙上に、乾燥後の厚さが 5〜20 /ζ πιになるように、塗布し、真空乾燥機内 にてまたは減圧下で乾燥する。この時、乾燥温度は 25〜150°C、できれば 60〜 120 °Cが好ましぐ乾燥時間は 5〜30分間、できれば 10〜20分間が好ましい。なお、上 記工程において、触媒層の厚さが十分でない場合には、所望の厚さになるまで、上 記塗布 ·乾燥工程を繰り返す。  [0063] The catalyst ink as described above is applied onto a transfer mount to form each catalyst layer. At this time, as a condition for forming the force sword Z anode catalyst layer on the transfer mount, the catalyst ink was applied on the transfer mount so that the thickness after drying was 5 to 20 / ζ πι, Dry in a vacuum dryer or under reduced pressure. At this time, the drying temperature is preferably 25 to 150 ° C, preferably 60 to 120 ° C, and the drying time is preferably 5 to 30 minutes, preferably 10 to 20 minutes. In the above step, if the thickness of the catalyst layer is not sufficient, the coating / drying step is repeated until the desired thickness is reached.
[0064] 次に、工程 (b)では、上記 (a)で形成されたアノード用及び力ソード用転写シートで 、側方外周部が水蒸気シール部材でシールされた電解質膜を挟持した後、ホットプ レスを行い、その後、転写用台紙を剥がすことにより、アノード触媒層—電解質膜— 力ソード触媒層の積層体を得る。この際、ホットプレス条件は、触媒層、接着層及び 電解質膜が十分密接に接合できる条件であれば特に制限されないが、 100-200 。C、より好ましくは 110〜170°Cで、電極面に対して l〜5MPaのプレス圧力で行うの が好ましい。これにより高分子電解質膜と触媒層との接合性を高めることができる。ホ ットプレスを行った後、転写用台紙を剥がすことにより、触媒層及び電解質膜の積層 体を得ることができる。  [0064] Next, in the step (b), the anode and force sword transfer sheet formed in the above (a) is sandwiched between the electrolyte membranes whose lateral outer peripheral portions are sealed with a water vapor seal member, Then, the transfer mount is peeled off to obtain an anode catalyst layer-electrolyte membrane-forced sword catalyst layer laminate. At this time, the hot press conditions are not particularly limited as long as the catalyst layer, the adhesive layer, and the electrolyte membrane can be joined sufficiently closely, but 100-200. C, more preferably 110 to 170 ° C., and preferably 1 to 5 MPa with respect to the electrode surface. Thereby, the bondability between the polymer electrolyte membrane and the catalyst layer can be enhanced. After performing the hot press, a laminate of the catalyst layer and the electrolyte membrane can be obtained by removing the transfer mount.
[0065] さら〖こ、工程 (c)において、アノード及び力ソード触媒層上にそれぞれガス拡散層( GDL)を配置して、ガス拡散層、触媒層及び電解質膜の積層体を得る。具体的には 、(b)の積層体をさらにガス拡散層で挟持し、必要であればこれをホットプレスにより 挟持'接合する。この際、ガス拡散層としては、炭素製の織物、紙状抄紙体、フェルト 、不織布と 、つた導電性及び多孔質性を有するシート状材料を基材とするものなど が挙げられる。前記基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定 すればよいが、機械的強度やガスや水の透過性を考慮すると、好ましくは 30〜500 μ mであり、より好ましくは 50〜300 μ mである。 [0065] In step (c), a gas diffusion layer (GDL) is disposed on each of the anode and the force sword catalyst layer to obtain a laminate of the gas diffusion layer, the catalyst layer, and the electrolyte membrane. Specifically, the laminate (b) is further sandwiched between gas diffusion layers, and if necessary, sandwiched and joined by hot pressing. At this time, as the gas diffusion layer, carbon fabric, paper-like paper, felt, etc. Non-woven fabrics, and materials based on sheet-like materials having electrical conductivity and porosity are exemplified. The thickness of the substrate may be appropriately determined in consideration of the characteristics of the gas diffusion layer to be obtained, but is preferably 30 to 500 μm in view of mechanical strength and gas and water permeability. More preferably, it is 50-300 micrometers.
[0066] 前記ガス拡散層は、撥水性をより高めてフラッデイング現象などを防ぐことを目的と して、前記基材に撥水剤を含ませることが好ましい。前記撥水剤としては、ポリテトラ フルォロエチレン(PTFE)、ポリフッ化ビ-リデン(PVDF)、ポリへキサフルォロプロ ピレン、テトラフルォロエチレン一へキサフルォロプロピレン共重合体(FEP)などのフ ッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。  [0066] The gas diffusion layer preferably contains a water repellent in the base material for the purpose of further improving water repellency and preventing a flooding phenomenon or the like. Examples of the water repellent include fluorine such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyhexafluoropropylene, and tetrafluoroethylene monohexafluoropropylene copolymer (FEP). Polymer materials such as polypropylene, polypropylene, and polyethylene.
[0067] また、撥水性をより向上させるために、前記ガス拡散層は、前記基材上に撥水剤を 含むカーボン粒子の集合体力 なるカーボン粒子層を有するものであってもよい。  [0067] Further, in order to further improve the water repellency, the gas diffusion layer may have a carbon particle layer having an aggregate strength of carbon particles containing a water repellent on the substrate.
[0068] 前記カーボン粒子としては、カーボンブラック、黒鉛、膨張黒鉛などが使用できる。  [0068] As the carbon particles, carbon black, graphite, expanded graphite and the like can be used.
なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック 、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカー ボンブラックが好ましく挙げられる。前記カーボン粒子の粒径は、 10〜: LOOnm程度と するのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層と の接触性も向上させることが可能となる。  Of these, carbon blacks such as oil furnace black, channel black, lamp black, thermal black, and acetylene black are preferred because of their excellent electron conductivity and large specific surface area. The particle size of the carbon particles is preferably about 10 to: LOOnm. As a result, high drainage by capillary force is obtained, and contact with the catalyst layer can be improved.
[0069] 前記カーボン粒子層に用いられる撥水剤としては、前記基材に用いられる上述した 撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに 優れることから、フッ素系の高分子材料が好ましく用いられる。  [0069] Examples of the water repellent used in the carbon particle layer include the same water repellents as those used in the substrate. Of these, fluorine-based polymer materials are preferably used because of their excellent water repellency and corrosion resistance during electrode reaction.
[0070] 前記カーボン粒子層における、カーボン粒子と撥水剤との混合比は、カーボン粒子 が多過ぎると期待するほど撥水性が得られない恐れがあり、撥水剤が多過ぎると十分 な電子伝導性が得られない恐れがある。これらを考慮して、カーボン粒子層における カーボン粒子と撥水剤との混合比は、質量比で、 90 : 10〜40 : 60程度とするのがよ い。  [0070] In the carbon particle layer, the mixing ratio of the carbon particles to the water repellent may not provide water repellency as expected if there are too many carbon particles. Conductivity may not be obtained. Considering these, the mixing ratio of the carbon particles and the water repellent in the carbon particle layer is preferably about 90:10 to 40:60 in terms of mass ratio.
[0071] 前記カーボン粒子層の厚さは、得られるガス拡散層の撥水性を考慮して適宜決定 すればよい。  [0071] The thickness of the carbon particle layer may be appropriately determined in consideration of the water repellency of the obtained gas diffusion layer.
[0072] ガス拡散層に撥水剤を含有させる方法としては、ガス拡散層に用いられる基材を撥 水剤の分散液に浸漬した後、オーブン等で加熱乾燥させる方法などが挙げられる。 [0072] As a method of adding a water repellent to the gas diffusion layer, the base material used for the gas diffusion layer is repellent. For example, a method of heating and drying in an oven or the like after dipping in a liquid dispersion of a liquid medicine.
[0073] ガス拡散層において転写用台紙上にカーボン粒子層を形成する場合には、まず力 一ボン粒子、撥水剤等を、水、パーフルォロベンゼン、ジクロロペンタフルォロプロパ ン、メタノール、エタノール等のアルコール系溶媒などの溶媒中に分散させることによ りスラリーを調製する。そして前記スラリーを転写用台紙上に塗布し乾燥、もしくは、 前記スラリーを一度乾燥させ粉砕することで粉体にし、これを前記ガス拡散層上に塗 布する。その後、マツフル炉ゃ焼成炉を用いて 250〜400°C程度で熱処理を施すの が好ましい。  [0073] In the case of forming a carbon particle layer on a transfer mount in the gas diffusion layer, first, a bonbon particle, a water repellent, etc. are added to water, perfluorobenzene, dichloropentafluoropropan, A slurry is prepared by dispersing in an alcohol solvent such as methanol or ethanol. Then, the slurry is applied on a transfer mount and dried, or the slurry is dried and pulverized to form a powder, which is coated on the gas diffusion layer. Thereafter, heat treatment is preferably performed at about 250 to 400 ° C. using a pine furnace or a baking furnace.
[0074] 続、て、工程 (d)にお 、て、電解質膜の所定の位置に、接着層及びガスケットをそ れぞれ形成する。この際、接着層に使用できる材料は、電解質膜とガスケットとを密 接に接着できるものであれば特に制限されないが、ポリオレフイン、ポリプロピレン、熱 可塑性エラストマ一等のホットメルト系接着剤、アクリル系接着剤、ポリエステル、ポリ ォレフィン等のォレフィン系接着剤などが使用できる。なお、水蒸気シール部材が接 着剤で形成される場合、水蒸気シール部材及び接着層に使用される接着剤は、同 一であってもあるいは異なるものであってもよ 、。水蒸気シール部材及び接着層に使 用される接着剤が同一である場合には、図 7に示されるように、上記 (c)では水蒸気 シール部材を持たない電解質膜を使用して、本工程 (d)で、電解質膜の所定の部位 に水蒸気シール部材を形成する工程及び接着層を形成する工程を行ってもょ ヽ。接 着層の厚さは、電解質膜及びガスケットとの十分な接着が達成できる厚さであれば特 に制限されないが、 5〜30 μ m、より好ましくは 10〜25 μ mの厚さであること好ましい  Subsequently, in step (d), an adhesive layer and a gasket are respectively formed at predetermined positions of the electrolyte membrane. In this case, the material that can be used for the adhesive layer is not particularly limited as long as the electrolyte membrane and the gasket can be adhered closely, but hot melt adhesives such as polyolefin, polypropylene, and thermoplastic elastomer, acrylic adhesives, and the like. Agents, olefin-based adhesives such as polyester and polyolefin can be used. When the water vapor seal member is formed of an adhesive, the water vapor seal member and the adhesive used for the adhesive layer may be the same or different. When the adhesive used for the water vapor seal member and the adhesive layer is the same, as shown in FIG. 7, in the above (c), an electrolyte membrane having no water vapor seal member is used. In step d), a step of forming a water vapor sealing member at a predetermined portion of the electrolyte membrane and a step of forming an adhesive layer may be performed. The thickness of the adhesive layer is not particularly limited as long as sufficient adhesion with the electrolyte membrane and the gasket can be achieved, but it is 5 to 30 μm, more preferably 10 to 25 μm. That is preferable
[0075] その後、接着層の上に、ガスケットが、ガス拡散層の端部と接するように、場合によ つては間隙をあけて、形成される。この際、ガスケットは、気体、特に酸素ガス、水素 ガス及び水蒸気に対して不透過である材料カゝら構成される。使用できるガス不透過 材料は、膜にした際に酸素や水素ガスに対して不透過性を示すものであれば特に制 限されない。具体的には、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレ ート(PET)、ポリテトラフルォロエチレン(PTFE)、ポリフッ化ビ-リデン(PVDF)など が挙げられる。また、ガスケットの形成方法としては、接着層上に、上記したようなガス 不透過材料を所定の厚さになるように塗布し、これを 25〜150°Cで、 10秒〜 10分間 加熱することによって硬化させる方法が使用できる。または、予め、ガス不透過材料 をシート状に成形した後に、このシートを接着層上に貼り合わせたものを電解質膜上 に配置してもよい。この際、ガスケットの厚さは、十分なガスシール性を発揮できるも のであればよい。しかしながら、例えば、高分子電解質型燃料電池では、上述したよ うに、ガスケット上には凸部 8a, 8cが形成され、さらにセパレータで挟持され、この際 、凸部 8a, 8cには圧縮応力がかかる。ここで、セパレータで狭持する前のガスケット の高さをガス拡散層の高さより低く設定することにより、セパレータとガス拡散層との 密着性が向上し、燃料流路及び酸化剤流路が確実に形成でき、かつガス拡散層と セパレータの導電性も確保できる。このため、ガスケットは、ガス拡散層の高さより低く なるように形成されることが好ましい。このため、ガスケットの厚さは、より好ましくは 10 〜200 μ m、特に好ましくは 15〜40 μ mである。 [0075] Thereafter, a gasket is formed on the adhesive layer so as to be in contact with the end portion of the gas diffusion layer, possibly with a gap. At this time, the gasket is composed of a material cover which is impermeable to gas, particularly oxygen gas, hydrogen gas and water vapor. The gas-impermeable material that can be used is not particularly limited as long as it is impermeable to oxygen or hydrogen gas when formed into a film. Specific examples include polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), and poly (vinylidene fluoride) (PVDF). As a method for forming the gasket, the gas as described above is formed on the adhesive layer. A method can be used in which an impermeable material is applied to a predetermined thickness and cured by heating at 25 to 150 ° C. for 10 seconds to 10 minutes. Alternatively, a gas impermeable material may be formed into a sheet shape in advance, and the sheet bonded to the adhesive layer may be disposed on the electrolyte membrane. At this time, the thickness of the gasket is not limited as long as it can exhibit a sufficient gas sealing property. However, for example, in the polymer electrolyte fuel cell, as described above, the convex portions 8a and 8c are formed on the gasket and further sandwiched by the separator. At this time, the convex portions 8a and 8c are subjected to compressive stress. . Here, by setting the height of the gasket before being sandwiched by the separator to be lower than the height of the gas diffusion layer, the adhesion between the separator and the gas diffusion layer is improved, and the fuel flow path and the oxidant flow path are ensured. In addition, the conductivity of the gas diffusion layer and the separator can be secured. For this reason, the gasket is preferably formed so as to be lower than the height of the gas diffusion layer. For this reason, the thickness of the gasket is more preferably 10 to 200 μm, particularly preferably 15 to 40 μm.
[0076] なお、上記では、転写法により、電解質膜にアノード触媒層及び力ソード触媒層を 形成する方法について述べてきたが、本発明の MEAは、電解質膜へ直接触媒イン クを印刷する直接塗布法などの他の方法によって製造されてもよい。すなわち、側方 外周部が水蒸気シール部材でシールされた電解質膜上に、触媒層及びガス拡散層 、ならびに接着層及びガスケットをそれぞれのアノード及び力ソードの面にっ 、て形 成すればよぐ各工程の詳細については、上記と同様の方法が適用できるため、ここ では説明を省略する。 In the above description, the method for forming the anode catalyst layer and the force sword catalyst layer on the electrolyte membrane by the transfer method has been described. However, the MEA of the present invention directly prints the catalyst ink on the electrolyte membrane. It may be manufactured by other methods such as a coating method. That is, it is only necessary to form the catalyst layer, the gas diffusion layer, the adhesive layer, and the gasket on the surfaces of the anode and the force sword on the electrolyte membrane whose lateral outer peripheral portion is sealed with the water vapor seal member. The details of each step can be applied to the same method as described above, and thus the description thereof is omitted here.
[0077] 本発明の電解質膜—電極接合体は、上述した通り、水蒸気透過による電解質膜の 乾燥を抑制し、ガス拡散層とガスケットとの接合面での圧縮応力による膜の破断が有 効に抑制することが可能である。したがって、力 うな電解質膜—電極接合体を用い ることにより、製造工程が容易であり、耐久性にも優れる信頼性の高い燃料電池を提 供することができる。  [0077] As described above, the electrolyte membrane-electrode assembly of the present invention suppresses drying of the electrolyte membrane due to water vapor permeation, and effectively breaks the membrane due to compressive stress at the joint surface between the gas diffusion layer and the gasket. It is possible to suppress. Therefore, by using a strong electrolyte membrane-electrode assembly, it is possible to provide a highly reliable fuel cell that has a simple manufacturing process and excellent durability.
[0078] 前記燃料電池の種類としては、上記では高分子電解質型燃料電池を例に挙げて 説明したが、この他にも、アルカリ型燃料電池、リン酸型燃料電池に代表される酸型 電解質の燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げら れる。なかでも小型かつ高密度 ·高出力化が可能であるから、高分子電解質型燃料 電池が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両 などの移動体用電源の他、定置用電源などとして有用である力 特にシステムの起 動 z停止や出力変動が頻繁に発生する自動車用途で特に好適に使用できる。 [0078] As the type of the fuel cell, the polymer electrolyte fuel cell has been described above as an example, but in addition to this, an acid electrolyte represented by an alkaline fuel cell and a phosphoric acid fuel cell is also used. Fuel cells, direct methanol fuel cells, micro fuel cells, and the like. Above all, the polymer electrolyte fuel is small, high density and high output is possible. A battery is preferable. Also, the fuel cell is a power source that is useful as a stationary power source in addition to a power source for moving vehicles such as vehicles with limited mounting space. Especially in automotive applications where system start-up and output fluctuations frequently occur. It can be particularly preferably used.
[0079] 前記高分子電解質型燃料電池は、定置用電源の他、搭載スペースが限定される 自動車などの移動体用電源などとして有用である。なかでも、比較的長時間の運転 停止後に高い出力電圧が要求されることによるカーボン担体の腐食、及び、運転時 に高い出力電圧が取り出されることにより高分子電解質の劣化が生じやすい自動車 などの移動体用電源として用いられるのが特に好ましい。  [0079] The polymer electrolyte fuel cell is useful as a power source for a mobile object such as an automobile in which a mounting space is limited in addition to a stationary power source. In particular, the movement of automobiles and the like that are susceptible to corrosion of the carbon support due to the high output voltage required after a relatively long shutdown, and the deterioration of the polymer electrolyte due to the high output voltage being taken out during operation. It is particularly preferred to be used as a body power source.
[0080] 前記燃料電池の構成としては、一般的には MEAをセパレータで挟持した構造を有 する。  [0080] The fuel cell generally has a structure in which MEA is sandwiched between separators.
[0081] 前記セパレータとしては、緻密カーボングラファイト、炭素板等のカーボン製や、ス テンレス等の金属製のものなど、制限なく用いることができる。セパレータは、空気と 燃料ガスとを分離する機能を有するものであり、そのようなガスの流路を確保するため の流路溝が形成されてもよい。セパレータの厚さや大きさ、流路溝の形状などについ ては、得られる燃料電池の出力特性などを考慮して適宜決定すればょ 、。  [0081] The separator can be used without limitation, such as those made of carbon such as dense carbon graphite and carbon plate, or made of metal such as stainless steel. The separator has a function of separating air and fuel gas, and a flow channel groove for securing such a gas flow channel may be formed. The thickness and size of the separator, the shape of the channel groove, etc. should be determined appropriately in consideration of the output characteristics of the resulting fuel cell.
[0082] さらに、燃料電池が所望する電圧等を得られるように、セパレータを介して MEAを 複数積層して直列に繋いだスタックを形成してもよい。燃料電池の形状などは、特に 限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよ!ヽ。  [0082] Furthermore, a stack in which a plurality of MEAs are stacked and connected in series via a separator may be formed so that the fuel cell can obtain a desired voltage or the like. The shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
[0083] 特願 2005— 252636号(出願曰: 2005年 8月 31曰)及び特願 2006— 229496 号(出願日: 2006年 8月 25日)の全内容は、ここに援用される。  [0083] The entire contents of Japanese Patent Application No. 2005-252636 (Application No .: August 31, 2005) and Japanese Patent Application No. 2006-229496 (Application Date: Aug. 25, 2006) are incorporated herein by reference.
[0084] 以上、実施の形態及び実施例に沿って本発明の内容を説明したが、本発明はこれ らの記載に限定されるものではなぐ種々の変形及び改良が可能であることは、当業 者には自明である。  The contents of the present invention have been described above in accordance with the embodiments and examples. However, the present invention is not limited to these descriptions, and various modifications and improvements can be made. It is self-evident to the operator.
産業上の利用の可能性  Industrial applicability
[0085] 本発明によれば、電解質膜の面方向からの水蒸気透過を防いで、電解質膜の乾 燥を有効に防止できる。このため、本発明に係る構造を有する電解質膜—電極接合 体は、乾燥したり、また、外部雰囲気の湿度が過度に上がるという現象が起こらない ため、耐久性に優れたものとなる。 また、水蒸気シール部材を圧縮応力の力かりやすい部分に配置することによって、 電解質膜のつぶれや破断を抑制することにより、 MEA各層のホットプレスによる接合 時や電池を組み立てる際の締結圧などによる電解質膜の経時的な劣化を有効に抑 制できる。 [0085] According to the present invention, water vapor permeation from the surface direction of the electrolyte membrane can be prevented, and drying of the electrolyte membrane can be effectively prevented. For this reason, the electrolyte membrane-electrode assembly having the structure according to the present invention is excellent in durability because it does not dry and the phenomenon that the humidity in the external atmosphere rises excessively does not occur. In addition, by disposing the water vapor seal member in the part where the compressive stress is easily applied, the electrolyte membrane is prevented from being crushed or broken, so that the electrolyte can be applied by joining the MEA layers by hot pressing or by the fastening pressure when assembling the battery. It is possible to effectively suppress the deterioration of the film over time.

Claims

請求の範囲 The scope of the claims
[1] 電解質膜と、  [1] an electrolyte membrane;
前記電解質膜の一方の面に設けられたアノード触媒層と、  An anode catalyst layer provided on one surface of the electrolyte membrane;
前記電解質膜の他方の面に設けられた力ソード触媒層と、  A force sword catalyst layer provided on the other surface of the electrolyte membrane;
前記アノード触媒層の側面及び力ソード触媒層の側面、並びに前記電解質膜の側 面からの気体の漏洩を防止するシールと、  A seal for preventing gas leakage from the side surface of the anode catalyst layer and the side surface of the force sword catalyst layer, and the side surface of the electrolyte membrane;
前記シールの両面に設けられるガスケットと、を備え、  A gasket provided on both sides of the seal,
前記シールの一部は、前記電解質膜と前記ガスケットとを接着する接着部を形成し 前記接着部は、前記アノード触媒層及び力ソード触媒層の面方向における外周部 分に、前記アノード触媒層の側面及び力ソード触媒層の側面力ゝらのガス漏れを防止 できるように配置される、電解質膜一電極接合体。  A part of the seal forms an adhesive part for adhering the electrolyte membrane and the gasket, and the adhesive part is formed on the outer periphery of the anode catalyst layer and the force sword catalyst layer in the surface direction of the anode catalyst layer. An electrolyte membrane-one-electrode assembly arranged so as to prevent gas leakage due to side force of the side surface and force sword catalyst layer.
[2] 前記シールは、前記電解質膜の最外周部の少なくとも一部を含むように配置される [2] The seal is disposed so as to include at least a part of the outermost peripheral portion of the electrolyte membrane.
、請求項 1に記載の電解質膜 電極接合体。 The electrolyte membrane electrode assembly according to claim 1.
[3] 前記シールは、前記電解質膜の側面力 の気体の漏洩を防止する水蒸気シール 部材と、前記水蒸気シール部材若しくは前記電解質層と前記ガスケットとを接着する 接着層と、からなり、 [3] The seal includes a water vapor seal member that prevents leakage of gas due to side force of the electrolyte membrane, and an adhesive layer that adheres the water vapor seal member or the electrolyte layer and the gasket.
前記水蒸気シール部材は、前記電解質膜 電極接合体の厚さ方向において、前 記ガスケットに対し反力が力かる部位に相当する位置に配置される、請求項 1乃至 2 に記載の電解質膜 電極接合体。  3. The electrolyte membrane electrode joint according to claim 1, wherein the water vapor seal member is disposed at a position corresponding to a portion where a reaction force is applied to the gasket in the thickness direction of the electrolyte membrane electrode assembly. body.
[4] 前記シールは、前記電解質膜の側面力 の気体の漏洩を防止する水蒸気シール 部材と、前記水蒸気シール部材若しくは前記電解質層と前記ガスケットとを接着する 接着層と、からなり、 [4] The seal includes a water vapor seal member that prevents leakage of gas due to side force of the electrolyte membrane, and an adhesive layer that bonds the water vapor seal member or the electrolyte layer and the gasket,
前記水蒸気シール部材は、前記電解質膜に接着剤を含浸することによって形成さ れる、若しくは前記ガスケットの間に接着部材を配置することによって形成される、請 求項 1乃至 3に記載の電解質膜 電極接合体。  The electrolyte membrane electrode according to any one of claims 1 to 3, wherein the water vapor seal member is formed by impregnating the electrolyte membrane with an adhesive, or formed by disposing an adhesive member between the gaskets. Joined body.
[5] 前記シールは、前記電解質膜の側面力 の気体の漏洩を防止する水蒸気シール 部材と、前記水蒸気シール部材若しくは前記電解質層と前記ガスケットとを接着する 接着層と、からなり、 [5] The seal adheres the water vapor seal member for preventing leakage of gas due to side force of the electrolyte membrane, and the water vapor seal member or the electrolyte layer and the gasket. An adhesive layer,
前記水蒸気シール部材は、前記電解質膜よりも圧縮弾性率の高!ゝ材料で構成され る、請求項 1乃至 4に記載の電解質膜 電極接合体。  5. The electrolyte membrane / electrode assembly according to claim 1, wherein the water vapor sealing member is made of a material having a higher compression elastic modulus than the electrolyte membrane.
[6] 前記水蒸気シール部材は、前記ガスケットを構成する材料と同じ材料カゝら構成され る、請求項 5に記載の電解質膜 電極接合体。 6. The electrolyte membrane / electrode assembly according to claim 5, wherein the water vapor seal member is made of the same material as the material constituting the gasket.
[7] 前記水蒸気シール部材と、前記ガスケットとは、一体的に形成される、請求項 6に記 載の電解質膜—電極接合体。 7. The electrolyte membrane-electrode assembly according to claim 6, wherein the water vapor seal member and the gasket are integrally formed.
[8] 前記電解質膜 電極接合体の厚さ方向に対して、前記アノード触媒層上にさらに 形成された第一ガス拡散層と、前記力ソード触媒層上にさらに形成された第二ガス拡 散層と、をさらに備え、 [8] A first gas diffusion layer further formed on the anode catalyst layer and a second gas diffusion further formed on the force sword catalyst layer with respect to the thickness direction of the electrolyte membrane electrode assembly. And further comprising a layer,
前記シールは、前記電解質膜の側面力もの気体の漏洩を防止し、前記電解質膜よ りも強度の高い補強部材と、前記水蒸気シール部材若しくは前記電解質層と前記ガ スケットとを接着する接着層と、からなり、  The seal prevents leakage of gas having a side force of the electrolyte membrane, and has a reinforcing member having higher strength than the electrolyte membrane, and an adhesive layer that bonds the water vapor seal member or the electrolyte layer and the gasket. Consists of
前記補強部材は、前記第一ガス拡散層と前記ガスケットとの接合面若しくは前記第 二ガス拡散層と前記ガスケットとの接合面のいずれか一方よりも、前記電解質膜の内 側に形成される、請求項 1乃至 7に記載の電解質膜 電極接合体。  The reinforcing member is formed on the inner side of the electrolyte membrane than either the joint surface between the first gas diffusion layer and the gasket or the joint surface between the second gas diffusion layer and the gasket. The electrolyte membrane electrode assembly according to claim 1.
[9] 前記電解質膜 電極接合体の厚さ方向に対して、前記アノード触媒層若しくは前 記力ソード触媒層の少なくとも一部と重なるように前記電解質膜の中間に配置され、 前記電解質膜よりも強度の高い補強層をさらに備える、請求項 1乃至 8に記載の電解 質膜—電極接合体。 [9] The electrolyte membrane is arranged in the middle of the electrolyte membrane so as to overlap at least part of the anode catalyst layer or the sword catalyst layer with respect to the thickness direction of the electrode assembly, and more than the electrolyte membrane. The electrolyte membrane-electrode assembly according to claim 1, further comprising a high-strength reinforcing layer.
[10] 前記アノード触媒層の面積が前記力ソード触媒層の面積よりも大きい、請求項 1乃 至 9に記載の電解質膜 電極接合体。  10. The electrolyte membrane / electrode assembly according to claim 1, wherein an area of the anode catalyst layer is larger than an area of the force sword catalyst layer.
[11] 請求項 1乃至 10に記載の電解質膜 電極接合体を使用してなる燃料電池。 [11] A fuel cell comprising the electrolyte membrane electrode assembly according to any one of claims 1 to 10.
PCT/JP2006/317173 2005-08-31 2006-08-31 Electrolytic membrane-electrode assembly WO2007026797A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005252636 2005-08-31
JP2005-252636 2005-08-31
JP2006229496A JP2007095669A (en) 2005-08-31 2006-08-25 Electrolyte film-electrode assembly
JP2006-229496 2006-08-25

Publications (1)

Publication Number Publication Date
WO2007026797A1 true WO2007026797A1 (en) 2007-03-08

Family

ID=37808881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317173 WO2007026797A1 (en) 2005-08-31 2006-08-31 Electrolytic membrane-electrode assembly

Country Status (2)

Country Link
JP (1) JP2007095669A (en)
WO (1) WO2007026797A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226713A (en) * 2007-03-14 2008-09-25 Honda Motor Co Ltd Fuel cell stack
US7794864B2 (en) 2007-04-13 2010-09-14 Panasonic Corporation Fuel cell module, fuel cell, and method of manufacturing fuel cell module
CN108028409A (en) * 2015-09-08 2018-05-11 庄信万丰燃料电池有限公司 The method of film seal assembly for the film seal assembly of manufacture enhancing and for fuel cell
CN111640964A (en) * 2019-03-01 2020-09-08 丰田自动车株式会社 Fuel cell and method for manufacturing the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5125217B2 (en) * 2007-05-15 2013-01-23 トヨタ自動車株式会社 Fuel cell
WO2008153147A1 (en) * 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Assembly of membrane, electrode, gas diffusion layer and gasket, method for producing the same, and solid polymer fuel cell
WO2009017147A1 (en) * 2007-08-02 2009-02-05 Sharp Kabushiki Kaisha Fuel cell stack and fuel cell system
JP5146012B2 (en) 2008-02-29 2013-02-20 日産自動車株式会社 Membrane electrode assembly for fuel cells
JP5181950B2 (en) * 2008-09-10 2013-04-10 トヨタ自動車株式会社 Fuel cell
KR101064225B1 (en) 2008-09-23 2011-09-14 한국과학기술연구원 Membrane-Electrode Assembly including guarding gasket
JP5273541B2 (en) * 2008-12-11 2013-08-28 独立行政法人日本原子力研究開発機構 Polymer fuel cell
JP5594021B2 (en) * 2010-09-28 2014-09-24 凸版印刷株式会社 Membrane electrode assembly and manufacturing method thereof
KR101316865B1 (en) 2011-12-01 2013-10-08 현대자동차주식회사 Membrane-electrode assembly for fuel cell
JP6255720B2 (en) * 2013-06-05 2018-01-10 凸版印刷株式会社 Membrane electrode structure and manufacturing method thereof
JP6218065B2 (en) * 2013-06-13 2017-10-25 パナソニックIpマネジメント株式会社 Fuel cell separator and method for producing the same
JP7151951B1 (en) * 2021-02-10 2022-10-12 大日本印刷株式会社 Gasket member for polymer electrolyte fuel cell, electrode-electrolyte membrane laminate with gasket member, and polymer electrolyte fuel cell
WO2024048586A1 (en) * 2022-08-30 2024-03-07 Toppanホールディングス株式会社 Membrane electrode assembly for water electrolysis tank

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845517A (en) * 1994-07-28 1996-02-16 Tanaka Kikinzoku Kogyo Kk Seal structure for high polymer electrolyte type fuel cell and its manufacture
JPH09199145A (en) * 1996-01-22 1997-07-31 Toyota Motor Corp Fuel cell and manufacture of fuel cell
JP2003331873A (en) * 2003-06-20 2003-11-21 Honda Motor Co Ltd Seal of fuel cell, its mounting method and fuel cell
JP2003335895A (en) * 2002-05-22 2003-11-28 Ube Ind Ltd Composite material comprising polyimide porous membrane and proton-conducting membrane
WO2004055932A2 (en) * 2002-11-14 2004-07-01 3M Innovative Properties Company Fuel cell gasket
JP2006019204A (en) * 2004-07-05 2006-01-19 Toyota Motor Corp Joint structure for two members and fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845517A (en) * 1994-07-28 1996-02-16 Tanaka Kikinzoku Kogyo Kk Seal structure for high polymer electrolyte type fuel cell and its manufacture
JPH09199145A (en) * 1996-01-22 1997-07-31 Toyota Motor Corp Fuel cell and manufacture of fuel cell
JP2003335895A (en) * 2002-05-22 2003-11-28 Ube Ind Ltd Composite material comprising polyimide porous membrane and proton-conducting membrane
WO2004055932A2 (en) * 2002-11-14 2004-07-01 3M Innovative Properties Company Fuel cell gasket
JP2003331873A (en) * 2003-06-20 2003-11-21 Honda Motor Co Ltd Seal of fuel cell, its mounting method and fuel cell
JP2006019204A (en) * 2004-07-05 2006-01-19 Toyota Motor Corp Joint structure for two members and fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226713A (en) * 2007-03-14 2008-09-25 Honda Motor Co Ltd Fuel cell stack
US7794864B2 (en) 2007-04-13 2010-09-14 Panasonic Corporation Fuel cell module, fuel cell, and method of manufacturing fuel cell module
CN108028409A (en) * 2015-09-08 2018-05-11 庄信万丰燃料电池有限公司 The method of film seal assembly for the film seal assembly of manufacture enhancing and for fuel cell
JP2018526795A (en) * 2015-09-08 2018-09-13 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited Process for making a reinforced membrane seal assembly and membrane seal assembly for a fuel cell
CN111640964A (en) * 2019-03-01 2020-09-08 丰田自动车株式会社 Fuel cell and method for manufacturing the same
CN111640964B (en) * 2019-03-01 2023-05-16 丰田自动车株式会社 Fuel cell and method for manufacturing the same

Also Published As

Publication number Publication date
JP2007095669A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4882314B2 (en) Electrolyte membrane-electrode assembly and method for producing the same
WO2007026797A1 (en) Electrolytic membrane-electrode assembly
JP5326189B2 (en) Electrolyte membrane-electrode assembly and method for producing the same
JP5194346B2 (en) Electrolyte membrane-electrode assembly
US8685200B2 (en) Process for manufacturing a catalyst-coated ionomer membrane with protective film layer
JP5157050B2 (en) Membrane electrode assembly and manufacturing method thereof
JP5124273B2 (en) Membrane electrode assembly
JP2007042348A (en) Membrane electrode assembly and production method therefor
JP2006338938A (en) Electrolyte membrane-electrode assembly, and its manufacturing method
JP2006338943A (en) Electrolyte membrane-electrode assembly
JP2006338939A (en) Electrolyte membrane-electrode assembly
JP5153130B2 (en) Membrane electrode assembly
JP2007095582A (en) Manufacturing method of membrane electrode assembly
JP2007287487A (en) Solid electrolyte fuel cell
JP2008135295A (en) Gas diffusion layer element for solid polymer fuel cell, solid polymer fuel cell, and its manufacturing method
JP2007066768A (en) Electrolyte membrane-electrode assembly and fuel cell using the same
JP2007035459A (en) Fuel cell
JP2010073586A (en) Electrolyte membrane-electrode assembly
JP4852894B2 (en) Method for producing electrolyte membrane-electrode assembly
JP2006338941A (en) Electrolyte membrane-electrode assembly
JP2006338942A (en) Electrolyte membrane-electrode assembly, and fuel cell
JP5645982B2 (en) Gas diffusion layer element for polymer electrolyte fuel cell, polymer electrolyte fuel cell and production method thereof
JP5401943B2 (en) Electrolyte membrane, membrane electrode assembly and fuel cell using the same
JP2006338937A (en) Manufacturing method of electrolyte membrane-electrode assembly
JP5403491B2 (en) Membrane electrode assembly and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797133

Country of ref document: EP

Kind code of ref document: A1