JP5645982B2 - Gas diffusion layer element for polymer electrolyte fuel cell, polymer electrolyte fuel cell and production method thereof - Google Patents

Gas diffusion layer element for polymer electrolyte fuel cell, polymer electrolyte fuel cell and production method thereof Download PDF

Info

Publication number
JP5645982B2
JP5645982B2 JP2013021248A JP2013021248A JP5645982B2 JP 5645982 B2 JP5645982 B2 JP 5645982B2 JP 2013021248 A JP2013021248 A JP 2013021248A JP 2013021248 A JP2013021248 A JP 2013021248A JP 5645982 B2 JP5645982 B2 JP 5645982B2
Authority
JP
Japan
Prior art keywords
film
resin
diffusion layer
gas diffusion
sealing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013021248A
Other languages
Japanese (ja)
Other versions
JP2013122929A (en
JP2013122929A5 (en
Inventor
鈴木 陽一
陽一 鈴木
茂 寺島
茂 寺島
井上 裕章
裕章 井上
勝憲 西田
勝憲 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
W.L.Gore&Associates G.K.
W.L.Gore&Associates,Co.,LTD.
Nippo Co Ltd
Original Assignee
W.L.Gore&Associates G.K.
W.L.Gore&Associates,Co.,LTD.
Nippo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by W.L.Gore&Associates G.K., W.L.Gore&Associates,Co.,LTD., Nippo Co Ltd filed Critical W.L.Gore&Associates G.K.
Priority to JP2013021248A priority Critical patent/JP5645982B2/en
Publication of JP2013122929A publication Critical patent/JP2013122929A/en
Publication of JP2013122929A5 publication Critical patent/JP2013122929A5/ja
Application granted granted Critical
Publication of JP5645982B2 publication Critical patent/JP5645982B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体高分子形燃料電池に関し、特にそのガスシール性を向上させることに関する。   The present invention relates to a polymer electrolyte fuel cell, and more particularly to improving its gas sealability.

固体高分子形燃料電池は、高分子電解質膜の片方を燃料ガス(水素など)に、他方を酸化剤ガス(空気など)に暴露し、高分子電解質膜を介した化学反応により水を合成し、これによって生じる反応エネルギーを電気的に取り出すことを基本原理としている。従来の燃料電池の構造を示した模式図を図1に、またその断面を図2に示す。   In a polymer electrolyte fuel cell, one of the polymer electrolyte membranes is exposed to a fuel gas (such as hydrogen) and the other is exposed to an oxidant gas (such as air), and water is synthesized through a chemical reaction via the polymer electrolyte membrane. The basic principle is to electrically extract the reaction energy generated thereby. A schematic diagram showing the structure of a conventional fuel cell is shown in FIG. 1, and a cross section thereof is shown in FIG.

図1および図2において、セパレータ13に形成したガス流路より導入した反応ガスは、高分子電解質膜11を介して多孔質触媒電極12において電気化学反応を起こし、ここで生じた電力はセパレータ13を通して外部に回収される。この構成で明らかなように、高分子電解質膜11と多孔質触媒電極12とは物理的に接合する必要がある。高分子電解質膜11の両面に多孔質触媒電極12を置き、これを熱プレス等で一体形成するのが一般的である。このようにして作成したものを、膜電極接合体(MEA)14と呼び、独立して扱うことが出来る。パッキン15は、膜電極接合体14とセパレータ13との間に配置し、導入ガスの外部への漏洩を防止する。   1 and 2, the reaction gas introduced from the gas flow path formed in the separator 13 causes an electrochemical reaction in the porous catalyst electrode 12 through the polymer electrolyte membrane 11, and the generated electric power is generated in the separator 13. It is collected outside through. As is apparent from this configuration, the polymer electrolyte membrane 11 and the porous catalyst electrode 12 need to be physically joined. In general, porous catalyst electrodes 12 are placed on both sides of the polymer electrolyte membrane 11 and are integrally formed by hot pressing or the like. What was created in this way is called a membrane electrode assembly (MEA) 14 and can be handled independently. The packing 15 is disposed between the membrane electrode assembly 14 and the separator 13 to prevent leakage of introduced gas to the outside.

高分子電解質膜は、イオン伝導性は有するが、通気性と電子伝導性とは有せず、燃料極と酸素極とを物理的かつ電子的に隔絶する働きを持つ。ところが、高分子電解質膜の大きさが多孔質触媒電極より小さい場合には、多孔質触媒電極どうしが電気的に短絡し、また酸化剤ガスと燃料ガスとが混合し、電池としての機能を失う。このため、高分子電解質膜の面方向の大きさは、必ず多孔質触媒電極と同じか、より大きくとる必要がある。   The polymer electrolyte membrane has ionic conductivity but does not have air permeability and electronic conductivity, and has a function of physically and electronically separating the fuel electrode and the oxygen electrode. However, when the size of the polymer electrolyte membrane is smaller than the porous catalyst electrode, the porous catalyst electrodes are electrically short-circuited, and the oxidant gas and the fuel gas are mixed to lose the function as a battery. . For this reason, the size of the polymer electrolyte membrane in the surface direction must be the same as or larger than that of the porous catalyst electrode.

現在使用されている高分子電解質膜は非常に薄く、構造支持材としての物理的強度を有していない。このため、多孔質電極からはみ出した高分子電解質膜部分をパッキンとセパレータとで挟持する支持構造を取ることは困難である。そこで、図2(A)に示すように、多孔質触媒電極12の大きさを、セパレータ13の内室より大きく外寸よりは小さく取り、多孔質触媒電極自体を多孔質触媒電極の支持体とする方法が考えられる。しかしながら、多孔質触媒電極は良好な通気性を持つために、上記の構成では反応ガスが多孔質触媒電極の端部よりセパレータの外に漏洩する。そこで、図2(B)に示したように、多孔質触媒電極に、熱硬化性樹脂材料を含浸したのち、これを熱硬化した樹脂封止部21を設け、これによりガス封止構造を形成する方法が検討されている(特許文献1)。   Currently used polymer electrolyte membranes are very thin and do not have physical strength as a structural support. For this reason, it is difficult to take a support structure in which the polymer electrolyte membrane portion protruding from the porous electrode is sandwiched between the packing and the separator. Therefore, as shown in FIG. 2 (A), the size of the porous catalyst electrode 12 is larger than the inner chamber of the separator 13 and smaller than the outer dimension, and the porous catalyst electrode itself is used as a support for the porous catalyst electrode. A way to do this is conceivable. However, since the porous catalyst electrode has good air permeability, in the above configuration, the reaction gas leaks from the end of the porous catalyst electrode to the outside of the separator. Therefore, as shown in FIG. 2 (B), after the porous catalyst electrode is impregnated with a thermosetting resin material, a resin sealing portion 21 is provided by thermosetting this, thereby forming a gas sealing structure. The method of doing is examined (patent document 1).

特開2001−118592号公報JP 2001-118592 A 特開平11−45729号公報JP-A-11-45729 特開平5−21077号公報Japanese Patent Laid-Open No. 5-21077 特開2005−166597号公報JP 2005-166597 A 特開2004−139828号公報JP 2004-139828 A

上述のガス封止構造には以下の問題が考えられる。樹脂材料を溶媒に溶かし、これを多孔質電極に含浸して樹脂封止部を形成するためには、樹脂溶液の粘度を十分に低くする必要がある。含浸直後は多孔質電極内の細孔が樹脂溶液によって充填されるが、硬化時に溶媒が揮発し、硬化後は封止部分の内側に隙間が生じてしまう。これに加え、通常、樹脂材料は硬化反応において体積収縮を起こす。この体積収縮と溶媒揮発によって多孔質電極内に隙間が残り、充分なシール性を維持することが困難となる。   The following problems can be considered in the above gas sealing structure. In order to dissolve the resin material in a solvent and impregnate the porous electrode to form the resin sealing portion, it is necessary to sufficiently reduce the viscosity of the resin solution. Immediately after the impregnation, the pores in the porous electrode are filled with the resin solution, but the solvent evaporates at the time of curing, and a gap is generated inside the sealed portion after the curing. In addition, the resin material usually undergoes volume shrinkage in the curing reaction. Due to this volume shrinkage and solvent volatilization, gaps remain in the porous electrode, making it difficult to maintain sufficient sealing properties.

この課題を解決するため、無希釈の樹脂材料を圧入する工法、あるいは非収縮性のフィラー(カーボン、タルク等)を樹脂材料に混合する工法が試みられている。しかし、このような工法では樹脂材料で多孔質電極の細孔を埋めること自体が困難であり、完全なシール性を得ることはできない。   In order to solve this problem, a method of press-fitting an undiluted resin material or a method of mixing a non-shrinkable filler (carbon, talc, etc.) into the resin material has been attempted. However, in such a construction method, it is difficult to fill the pores of the porous electrode with a resin material, and a complete sealing property cannot be obtained.

また、特許文献2には、多孔質電極を熱可塑性樹脂フィルムで被覆し、イオン伝導膜との接着シールを行う方法が試行されている。しかしこの方法では、熱間ロールや熱間プレスによって多孔質基材の孔に樹脂を十分に圧入することは非常に困難で、シール性が問題となる。また、MEA全体に熱および圧力がかかるため、材料の変形や材料の線膨張係数の違いにより、しわやゆがみが発生してしまう。   In Patent Document 2, an attempt is made to coat a porous electrode with a thermoplastic resin film and perform an adhesive seal with an ion conductive membrane. However, in this method, it is very difficult to sufficiently press the resin into the pores of the porous base material by a hot roll or a hot press, and sealing performance becomes a problem. In addition, since heat and pressure are applied to the entire MEA, wrinkles and distortion occur due to the deformation of the material and the difference in the linear expansion coefficient of the material.

また、特許文献3には、膜電極接合体の周辺の電解質膜を樹脂フィルムにより補強、保護する方法も提案されているが、樹脂フィルムと拡散層の多孔質基材の重なり部に樹脂フィルムの厚さ分の段差が生じ、積層し、締め付けた際にそこに応力が集中し破損するという恐れがある。   Patent Document 3 also proposes a method of reinforcing and protecting the electrolyte membrane around the membrane-electrode assembly with a resin film. However, the resin film is formed on the overlapping portion of the porous base material of the resin film and the diffusion layer. There is a risk that a step corresponding to the thickness is generated, and when the layers are stacked and tightened, stress is concentrated there and is damaged.

一方、このようなガスシール性を高めるため、必要数の燃料電池を積層し、全体を締結した後、積層電池の外壁部にシール材を塗布する試みも提案されているが、駆動中に出力の低下した単位電池を交換したいとき、このような外部シール型のものから、特定の単位電池を取り出す作業は困難であった。
したがって、本発明は、これらの課題を解決することを目的とする。
On the other hand, in order to improve such gas sealing performance, an attempt to apply a sealing material to the outer wall portion of the laminated battery after laminating the required number of fuel cells and fastening the whole has been proposed. When it is desired to replace a unit cell having a lowered level, it is difficult to take out a specific unit cell from such an external seal type.
Therefore, an object of the present invention is to solve these problems.

本発明によると、
(1)シート状多孔質基材と、該多孔質基材の周縁部の細孔内に含浸された封止用樹脂とを含む固体高分子形燃料電池用ガス拡散層要素であって、該封止用樹脂の含浸を、該周縁部に積層配置されたフィルム状封止用樹脂にレーザー光を照射して該フィルム状封止用樹脂を溶融させることにより行ったことを特徴とする固体高分子形燃料電池用ガス拡散層要素が提供される。
According to the present invention,
(1) A gas diffusion layer element for a polymer electrolyte fuel cell, comprising: a sheet-like porous substrate; and a sealing resin impregnated in the pores at the peripheral edge of the porous substrate, Solid impregnation characterized in that the sealing resin is impregnated by irradiating the film-shaped sealing resin laminated and disposed on the peripheral portion with laser light to melt the film-shaped sealing resin. A gas diffusion layer element for a molecular fuel cell is provided.

さらに本発明によると、
(2)該シート状多孔質基材が、該レーザー光のエネルギーを吸収することにより発熱する、(1)に記載の固体高分子形燃料電池用ガス拡散層要素が提供される。
Furthermore, according to the present invention,
(2) The gas diffusion layer element for a polymer electrolyte fuel cell according to (1), wherein the sheet-like porous substrate generates heat by absorbing the energy of the laser beam.

さらに本発明によると、
(3)該フィルム状封止用樹脂が該レーザー光を実質的に透過する熱可塑性樹脂である、(2)に記載の固体高分子形燃料電池用ガス拡散層要素が提供される。
Furthermore, according to the present invention,
(3) The gas diffusion layer element for a polymer electrolyte fuel cell according to (2), wherein the film-form sealing resin is a thermoplastic resin that substantially transmits the laser beam.

さらに本発明によると、
(4)シート状多孔質基材の周縁部にフィルム状封止用樹脂を積層配置する工程と、
該フィルム状封止用樹脂にレーザー光を照射することにより該フィルム状封止用樹脂を溶融させて該周縁部の細孔内に含浸させる工程と
を含んでなる、該多孔質基材の周縁部の細孔内に含浸された封止用樹脂を含む固体高分子形燃料電池用ガス拡散層要素の製造方法が提供される。
Furthermore, according to the present invention,
(4) a step of laminating and arranging a film-like sealing resin on the periphery of the sheet-like porous substrate;
Irradiating the film-form sealing resin with a laser beam to melt the film-form seal resin and impregnating it into the pores of the peripheral portion. A method for producing a gas diffusion layer element for a polymer electrolyte fuel cell comprising a sealing resin impregnated in the pores of a portion is provided.

さらに本発明によると、
(5)順に、アノード側ガス拡散層、膜電極接合体およびカソード側ガス拡散層を含んでなり、少なくとも一方の側のガス拡散層が(1)〜(3)のいずれか1項に記載のガス拡散層要素を含むことを特徴とする固体高分子形燃料電池が提供される。
Furthermore, according to the present invention,
(5) The anode side gas diffusion layer, the membrane electrode assembly, and the cathode side gas diffusion layer are included in order, and the gas diffusion layer on at least one side is any one of (1) to (3) A polymer electrolyte fuel cell comprising a gas diffusion layer element is provided.

さらに本発明によると、
(6)シート状多孔質基材の周縁部にフィルム状封止用樹脂を積層配置する工程と、
該フィルム状封止用樹脂にレーザー光を照射することにより該フィルム状封止用樹脂を溶融させて該周縁部の細孔内に含浸させ、該多孔質基材の周縁部の細孔内に含浸された封止用樹脂を含むガス拡散層要素を得る工程と、
該ガス拡散層要素を少なくとも一方の側のガス拡散層とし、これに順に膜電極接合体および反対側のガス拡散層を組み合わせる工程と
を含んでなる固体高分子形燃料電池の製造方法が提供される。
Furthermore, according to the present invention,
(6) a step of laminating and arranging a film-like sealing resin on the periphery of the sheet-like porous substrate;
By irradiating the film-form sealing resin with laser light, the film-form seal resin is melted and impregnated in the pores of the peripheral portion, and the pores in the peripheral portion of the porous base material are impregnated. Obtaining a gas diffusion layer element comprising an impregnated sealing resin;
There is provided a method for producing a polymer electrolyte fuel cell comprising the step of using the gas diffusion layer element as a gas diffusion layer on at least one side and combining the membrane electrode assembly and the gas diffusion layer on the opposite side in this order. The

さらに本発明によると、
(7)順に、アノード側ガス拡散層、膜電極接合体およびカソード側ガス拡散層を組み合わせる工程と、
少なくとも一方の側のガス拡散層の周縁部にフィルム状封止用樹脂を積層配置する工程と、
該フィルム状封止用樹脂にレーザー光を照射することにより該フィルム状封止用樹脂を溶融させて該周縁部の細孔内に含浸させる工程と
を含んでなる固体高分子形燃料電池の製造方法が提供される。
Furthermore, according to the present invention,
(7) In order, combining the anode side gas diffusion layer, the membrane electrode assembly, and the cathode side gas diffusion layer,
A step of laminating and arranging a film-like sealing resin on the periphery of the gas diffusion layer on at least one side;
Manufacturing the polymer electrolyte fuel cell comprising a step of irradiating the film-form sealing resin with a laser beam to melt the film-form seal resin and impregnating the resin in the peripheral edge A method is provided.

さらに本発明によると、
(8)さらに反対側のガス拡散層の周縁部にフィルム状封止用樹脂を積層配置する工程と、
該フィルム状封止用樹脂にレーザー光を照射することにより該フィルム状封止用樹脂を溶融させて該周縁部の細孔内に含浸させる工程と
を含む、(7)に記載の製造方法が提供される。
Furthermore, according to the present invention,
(8) a step of laminating and arranging a film-like sealing resin on the periphery of the gas diffusion layer on the opposite side;
A process for melting the film-like sealing resin by irradiating the film-like sealing resin with a laser beam and impregnating the film-like sealing resin in the pores of the peripheral portion. Provided.

本発明によると、固体高分子形燃料電池用ガス拡散層要素の周縁部を、レーザー光照射による封止用樹脂の溶融・含浸により封止したことにより、反応ガスがガス拡散層の端部からセパレータの外に漏洩することが防止される。また、レーザー光照射により封止部分にのみ熱がかかるため、材料の変形や材料の線膨張係数の違いによるしわやゆがみの発生が防止される。また、封止用樹脂フィルムとガス拡散層の重なり部に封止用樹脂フィルムの厚さ分の段差が生じないため、MEAを積層し、締め付けた際にそこに応力が集中し破損するおそれもなくなる。さらに、駆動中に出力の低下した単位電池を交換したい場合に、特定の単位電池を取り出す作業が容易となる。   According to the present invention, the peripheral portion of the gas diffusion layer element for the polymer electrolyte fuel cell is sealed by melting and impregnating the sealing resin by laser light irradiation, so that the reaction gas is discharged from the end of the gas diffusion layer. Leakage outside the separator is prevented. In addition, since heat is applied only to the sealing portion by laser light irradiation, the occurrence of wrinkles and distortion due to the deformation of the material and the difference in the linear expansion coefficient of the material is prevented. In addition, since there is no level difference corresponding to the thickness of the sealing resin film at the overlapping portion of the sealing resin film and the gas diffusion layer, there is a risk that stress will be concentrated and damaged when the MEAs are stacked and tightened. Disappear. Furthermore, when it is desired to replace a unit battery whose output has decreased during driving, it is easy to take out a specific unit battery.

従来の燃料電池の構造を示した略分解斜視図である。It is a substantially exploded perspective view showing the structure of a conventional fuel cell. 従来の燃料電池の基本構造を示した略横断面図である。It is the substantially cross-sectional view which showed the basic structure of the conventional fuel cell. 本発明によるガス拡散層要素の製法を示す略横断面図である。FIG. 3 is a schematic cross-sectional view showing a method for producing a gas diffusion layer element according to the present invention. 本発明による固体高分子形燃料電池の製法を示す略分解横断面図である。1 is a schematic exploded cross-sectional view showing a method for producing a polymer electrolyte fuel cell according to the present invention. 本発明の別態様による固体高分子形燃料電池の製法を示す略横断面図である。FIG. 6 is a schematic cross-sectional view showing a method for producing a polymer electrolyte fuel cell according to another embodiment of the present invention.

以下、図面を参照しながら、本発明を詳細に説明する。本発明による固体高分子形燃料電池用ガス拡散層要素は、シート状多孔質基材と、該多孔質基材の周縁部の細孔内に含浸された封止用樹脂とを含み、その封止用樹脂の含浸を、該周縁部に積層配置されたフィルム状封止用樹脂にレーザー光を照射して該フィルム状封止用樹脂を溶融させることにより行ったことを特徴とする。図3に、本発明の基本態様を示す。本発明によると、図3(A)に示したように、まずシート状多孔質基材120の周縁部にフィルム状封止用樹脂200を積層配置する。次いで、フィルム状封止用樹脂200にレーザー光を照射することにより該フィルム状封止用樹脂200を溶融させて該周縁部の細孔内に含浸させ、図3(B)に示したように、該多孔質基材の周縁部の細孔内に封止用樹脂が含浸された封止部210を含むガス拡散層要素100を得る。   Hereinafter, the present invention will be described in detail with reference to the drawings. A gas diffusion layer element for a polymer electrolyte fuel cell according to the present invention comprises a sheet-like porous base material and a sealing resin impregnated in pores at the peripheral edge of the porous base material. The resin for sealing is impregnated by irradiating the resin for film sealing laminated on the peripheral edge with a laser beam to melt the resin for sealing film. FIG. 3 shows a basic aspect of the present invention. According to the present invention, as shown in FIG. 3A, first, a film-like sealing resin 200 is laminated and disposed on the peripheral edge of the sheet-like porous substrate 120. Next, the film-form sealing resin 200 is irradiated with a laser beam to melt the film-form seal resin 200 and impregnate the pores in the peripheral portion, as shown in FIG. Then, the gas diffusion layer element 100 including the sealing portion 210 in which the sealing resin is impregnated in the pores at the peripheral portion of the porous base material is obtained.

シート状多孔質基材120としては、固体高分子形燃料電池に適した通気性および導電性を有するシート状材料が用いられる。特に、照射レーザー光のエネルギーを吸収することにより発熱することができるので、カーボンペーパー、カーボン織布、カーボン不織布、カーボンフェルト等のカーボン製の通気性導電性材料をシート状多孔質基材120として用いることが好ましい。シート状多孔質基材120の厚さは、燃料電池の設計に応じて適宜調整すればよく、一般に100〜500μm、好ましくは200〜400μmの範囲内で用いられる。   As the sheet-like porous substrate 120, a sheet-like material having air permeability and conductivity suitable for a polymer electrolyte fuel cell is used. In particular, since heat can be generated by absorbing the energy of the irradiation laser light, a carbon breathable conductive material such as carbon paper, carbon woven fabric, carbon non-woven fabric, or carbon felt is used as the sheet-like porous substrate 120. It is preferable to use it. The thickness of the sheet-like porous substrate 120 may be appropriately adjusted according to the design of the fuel cell, and is generally used in the range of 100 to 500 μm, preferably 200 to 400 μm.

シート状多孔質基材120には、燃料ガスおよび酸化剤ガスとともに供給される加湿水や燃料電池の反応により生成する水を除去するため、少なくとも膜電極接合体(MEA)と接触する部分に撥水処理を施すことが好ましい。このような撥水処理の方法は、当該技術分野で知られている方法を用いることができ、例えば、必要に応じてポリテトラフルオロエチレン(PTFE)等のフッ素樹脂の分散液をシート状多孔質基材に部分的に含浸させればよい。さらに、上記撥水処理が施されたまたは施されていないシート状多孔質基材120のMEAとの接触面に保護層を設け、MEAとの電気的接触を向上し、また、MEAの多孔質基材による損傷を軽減することもできる。このような保護層は、例えばPTFE等のフッ素樹脂とカーボンブラックとの混合物の分散体(ペースト)を塗布し、乾燥し、そして熱処理することにより形成してもよい。保護層を設ける場合、その厚さは、ガス拡散性および導電性との兼ね合いで、5〜20μmの範囲内にあることが好ましい。上記撥水処理および保護層の詳細については、同一出願人による特開平10−261421号公報を参照されたい。   In order to remove the humidified water supplied together with the fuel gas and the oxidant gas and the water generated by the reaction of the fuel cell, the sheet-like porous substrate 120 is repelled at least at the part in contact with the membrane electrode assembly (MEA). It is preferable to perform water treatment. As such a water repellent treatment method, a method known in the art can be used. For example, if necessary, a dispersion of a fluororesin such as polytetrafluoroethylene (PTFE) is made into a sheet-like porous material. The substrate may be partially impregnated. Further, a protective layer is provided on the contact surface of the sheet-like porous substrate 120 with or without the water-repellent treatment with the MEA to improve the electrical contact with the MEA. Damage due to the substrate can also be reduced. Such a protective layer may be formed, for example, by applying a dispersion (paste) of a mixture of a fluororesin such as PTFE and carbon black, drying, and heat-treating. When providing a protective layer, it is preferable that the thickness exists in the range of 5-20 micrometers in balance with gas diffusibility and electroconductivity. For details of the water repellent treatment and the protective layer, refer to JP-A-10-261421 by the same applicant.

フィルム状封止用樹脂200としては、熱で溶融して多孔質基材の細孔内に含浸することができる熱可塑性樹脂を用いればよい。本発明においてはフィルム状封止用樹脂200の溶融をレーザー光照射により行うが、封止用樹脂自体がレーザー光を吸収して発熱することにより溶融する場合も、封止用樹脂はレーザー光を透過するが多孔質基材120がレーザー光を吸収して発熱し、その熱が封止用樹脂に伝わることにより該樹脂が溶融する場合も、本発明に含まれる。しかし、本発明においては、多孔質基材と封止用樹脂との界面のみが加熱されることにより封止用樹脂が多孔質基材により良く含浸され、かつ封止用樹脂の他の部分が熱による影響を受けにくいという点で、レーザー光を実質的に透過する熱可塑性樹脂を用いることが好ましい。レーザー光を実質的に透過する熱可塑性樹脂とは、レーザー光を透過させる透明または半透明の熱可塑性樹脂のことを指し、それ自身がレーザー光の持つエネルギーを吸収し熱へ変換することが起こりにくい熱可塑性樹脂である。そのような熱可塑性樹脂の例として、ポリカーボネート系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリアクリル系樹脂、ポリアクリルアミド系樹脂、ポリジエン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂等が挙げられる。フィルム状封止用樹脂200の厚さは、一般に10〜200μm、好ましくは30〜150μmの範囲内である。また、フィルム状封止用樹脂200の厚さは、上述のシート状多孔質基材120より薄いことが好ましく、特にシート状多孔質基材120の厚さの10〜80%の範囲内であることが好ましい。フィルム状封止用樹脂200の厚さがシート状多孔質基材120の厚さの10%未満であると、多孔質基材の封止が不十分となり、反応ガスがガス拡散層の端部からセパレータの外に漏洩するおそれがある。反対にフィルム状封止用樹脂200の厚さがシート状多孔質基材120の厚さの80%より厚いと、封止用樹脂が過剰となり、封止部に段差が生じ望ましくない。   As the film-form sealing resin 200, a thermoplastic resin that can be melted by heat and impregnated in the pores of the porous substrate may be used. In the present invention, the film-form sealing resin 200 is melted by laser light irradiation. However, even when the sealing resin itself melts by absorbing the laser light and generating heat, the sealing resin does not emit the laser light. The case where the porous substrate 120 absorbs the laser beam and generates heat and the resin is melted by being transmitted to the sealing resin is also included in the present invention. However, in the present invention, only the interface between the porous base material and the sealing resin is heated so that the sealing resin is well impregnated into the porous base material, and other portions of the sealing resin are In view of being hardly affected by heat, it is preferable to use a thermoplastic resin that substantially transmits laser light. A thermoplastic resin that substantially transmits laser light refers to a transparent or translucent thermoplastic resin that transmits laser light, which itself absorbs the energy of laser light and converts it into heat. It is a difficult thermoplastic resin. Examples of such thermoplastic resins include polycarbonate resins, polyolefin resins, polystyrene resins, polyvinyl chloride resins, polyvinylidene chloride resins, polyacryl resins, polyacrylamide resins, polydiene resins, polyamide resins. Examples thereof include resins and polyester resins. The thickness of the film-form sealing resin 200 is generally in the range of 10 to 200 μm, preferably 30 to 150 μm. Further, the thickness of the film-like sealing resin 200 is preferably thinner than the above-mentioned sheet-like porous substrate 120, and particularly within the range of 10 to 80% of the thickness of the sheet-like porous substrate 120. It is preferable. If the thickness of the film-like sealing resin 200 is less than 10% of the thickness of the sheet-like porous substrate 120, sealing of the porous substrate becomes insufficient, and the reaction gas is at the end of the gas diffusion layer. May leak out of the separator. On the other hand, if the thickness of the film-like sealing resin 200 is greater than 80% of the thickness of the sheet-like porous base material 120, the sealing resin becomes excessive and a step is generated in the sealing portion, which is not desirable.

本発明によると、図3(A)に示したように、シート状多孔質基材120の周縁部にフィルム状封止用樹脂200を積層配置した後、フィルム状封止用樹脂200にレーザー光を照射する。レーザー光を照射した部分の封止用樹脂が溶融してシート状多孔質基材120に含浸し、レーザー光の照射が停止する(例えば、走査されるレーザー光が通過する)ことにより含浸樹脂が冷却固化し、図3(B)に示したように封止部210を形成する。多孔質基材に樹脂封止部を形成するため従来行われていた樹脂溶液の含浸や溶融樹脂の熱圧封入では、樹脂の含浸または封入の程度を制御することが困難である。レーザーを使用すると、熱で溶融する樹脂部分が極めて限定され、レーザーの照射条件(強度、照射時間または走査速度等)によって樹脂の溶融を精密に制御することができ、ひいては樹脂の含浸をコントロールすることが容易となる。また、ガラス転移点が高い耐熱性材料を多孔質基材に溶融含浸させるためには、一般に200℃以上の高温が必要である。その場合、フィルム状樹脂を高温で熱プレスしたときには、常温に戻した際にフィルム状樹脂が収縮して変形する可能性があるが、レーザーでは熱の影響が局部に限定されるため、ほとんど変形が生じることなく溶融含浸を行うことができる。さらに、電解質膜に比べて融点やガラス転移点が高く、耐久性、耐熱性その他の性能に優れるエンジニアリングプラスチックを封止用樹脂として用い、熱プレス等の従来方法で樹脂を多孔質基材に含浸させる場合には、電解質膜の耐熱温度以上の加熱を必要とするため、実質的に実施困難である。しかし、レーザーを用いた場合にはレーザー照射部分のみが加熱され、電解質膜その他の部分に熱による悪影響を与えないため、エンジニアリングプラスチックを用いることもできる。   According to the present invention, as shown in FIG. 3 (A), a film-like sealing resin 200 is laminated on the periphery of the sheet-like porous substrate 120, and then laser light is applied to the film-like sealing resin 200. Irradiate. The sealing resin in the portion irradiated with the laser light is melted and impregnated into the sheet-like porous substrate 120, and the irradiation of the laser light stops (for example, the scanned laser light passes), so that the impregnating resin becomes It cools and solidifies and forms the sealing part 210 as shown in FIG.3 (B). It is difficult to control the degree of resin impregnation or encapsulation in the conventional resin solution impregnation or hot-pressure encapsulation of molten resin for forming the resin sealing portion on the porous substrate. When a laser is used, the resin part that is melted by heat is extremely limited, and the melting of the resin can be precisely controlled according to the laser irradiation conditions (intensity, irradiation time, scanning speed, etc.), and thus the impregnation of the resin is controlled. It becomes easy. Further, in order to melt and impregnate a porous base material with a heat-resistant material having a high glass transition point, a high temperature of 200 ° C. or higher is generally required. In that case, when the film-like resin is hot-pressed at a high temperature, the film-like resin may shrink and deform when it is returned to room temperature. Melt impregnation can be performed without the occurrence of. In addition, engineering plastics, which have higher melting points and glass transition points than electrolyte membranes and are superior in durability, heat resistance, and other performances, are used as sealing resins, and porous substrates are impregnated with conventional methods such as hot pressing. In this case, it is necessary to heat the electrolyte membrane at a temperature higher than the heat-resistant temperature, which is substantially difficult to implement. However, when a laser is used, only the laser-irradiated portion is heated, and the electrolyte membrane and other portions are not adversely affected by heat, and therefore engineering plastics can also be used.

本発明によるレーザー光照射に使用可能なレーザーとしては、半導体レーザー、気体(He−Ne、Ar、CO)レーザー、固体(ルビー、ガラス)レーザー、液体(有機、色素)レーザー、YAGレーザー等が挙げられる。上記レーザーは、汎用レーザー樹脂溶着機に用いられるものとしてよく知られている。レーザー光照射の条件については、当業者であれば、使用する具体的な多孔質基材や封止用樹脂に応じて適宜設定することができるが、一例として、COレーザー(波長940nm)を出力3〜15W、レーザースポット径1.5〜2.7mm、走査速度3〜10mm/秒で照射することが挙げられる。 Lasers usable for laser light irradiation according to the present invention include semiconductor lasers, gas (He—Ne, Ar + , CO 2 ) lasers, solid (ruby, glass) lasers, liquid (organic, dye) lasers, YAG lasers, and the like. Is mentioned. The laser is well known as one used in general-purpose laser resin welding machines. Regarding the conditions for laser light irradiation, those skilled in the art can appropriately set the conditions according to the specific porous substrate and sealing resin to be used. As an example, a CO 2 laser (wavelength 940 nm) is used. Irradiation is performed at an output of 3 to 15 W, a laser spot diameter of 1.5 to 2.7 mm, and a scanning speed of 3 to 10 mm / sec.

本発明によりフィルム状封止用樹脂200にレーザー光を照射する際には、シート状多孔質基材120への含浸を促進するため、封止用樹脂200を多孔質基材120に対して押し当てることが好ましい。押し当ては、適当な台(図示なし)の上にシート状多孔質基材120を載せ、その上にフィルム状封止用樹脂200を積層配置し、さらにその上にガラス板等のレーザー光透過性の基板(図示なし)を載せて、適当な締結治具で台と基板の間に最大9.8×10Pa(10kgf/cm)程度の圧力を加えることにより行うことができる。レーザー光照射により加熱・溶融された封止用樹脂は、多孔質基材に対して押し当てられるので、多孔質基材の細孔内への含浸が促進される。 When irradiating the film-form sealing resin 200 with laser light according to the present invention, the sealing resin 200 is pressed against the porous base material 120 in order to promote the impregnation of the sheet-like porous base material 120. It is preferable to apply. For pressing, a sheet-like porous substrate 120 is placed on a suitable base (not shown), a film-like sealing resin 200 is laminated thereon, and a laser beam such as a glass plate is further transmitted thereon. The substrate can be mounted by applying a pressure of up to about 9.8 × 10 5 Pa (10 kgf / cm 2 ) between the base and the substrate with an appropriate fastening jig. Since the sealing resin heated and melted by laser light irradiation is pressed against the porous substrate, the impregnation of the porous substrate into the pores is promoted.

図4に、本発明によるガス拡散層要素100を膜電極接合体300の両側に組み合わせた、本発明による好ましい固体高分子形燃料電池の略分解構成図を示す。膜電極接合体300に用いられる高分子電解質膜310は、プロトン(H)伝導性が高く、電子絶縁性であり、かつ、ガス不透過性であるものであれば、特に限定はされず、公知の高分子電解質膜であればよい。代表例として、含フッ素高分子を骨格とし、スルホン酸基、カルボキシル基、リン酸基、ホスホン基等の基を有する樹脂が挙げられる。高分子電解質膜310の厚さは、抵抗に大きな影響を及ぼすため、電子絶縁性およびガス不透過性を損なわない限りにおいてより薄いものが求められ、具体的には、5〜50μm、好ましくは10〜30μmの範囲内に設定される。高分子電解質膜310の代表例としては、側鎖にスルホン酸基を有するパーフルオロポリマーであるナフィオン(登録商標)膜(デュポン社製)およびフレミオン(登録商標)膜(旭硝子社製)が挙げられる。また、延伸多孔質ポリテトラフルオロエチレン膜にイオン交換樹脂を含浸させた補強型高分子電解質膜であるGORE−SELECT(登録商標)(ジャパンゴアテックス社製)を好適に用いることもできる。 FIG. 4 is a schematic exploded view of a preferred polymer electrolyte fuel cell according to the present invention in which the gas diffusion layer element 100 according to the present invention is combined on both sides of the membrane electrode assembly 300. The polymer electrolyte membrane 310 used for the membrane electrode assembly 300 is not particularly limited as long as it has high proton (H + ) conductivity, is electronically insulating, and is gas impermeable. Any known polymer electrolyte membrane may be used. A typical example is a resin having a fluorine-containing polymer as a skeleton and a group such as a sulfonic acid group, a carboxyl group, a phosphoric acid group, or a phosphonic group. Since the thickness of the polymer electrolyte membrane 310 greatly affects the resistance, a thinner one is required as long as the electronic insulation and gas impermeability are not impaired. Specifically, the thickness is 5 to 50 μm, preferably 10 It is set within a range of ˜30 μm. Typical examples of the polymer electrolyte membrane 310 include Nafion (registered trademark) membrane (manufactured by DuPont) and Flemion (registered trademark) membrane (manufactured by Asahi Glass Co., Ltd.), which are perfluoropolymers having a sulfonic acid group in the side chain. . Also, GORE-SELECT (registered trademark) (manufactured by Japan Gore-Tex), which is a reinforced polymer electrolyte membrane in which an expanded porous polytetrafluoroethylene membrane is impregnated with an ion exchange resin, can be suitably used.

触媒層320としては、触媒粒子とイオン交換樹脂を含むものであれば特に限定はされず、従来公知のものを使用することができる。触媒は、通常、触媒粒子を担持した導電材からなる。触媒粒子としては、水素の酸化反応あるいは酸素の還元反応に触媒作用を有するものであればよく、白金(Pt)その他の貴金属のほか、鉄、クロム、ニッケル等、およびこれらの合金を用いることができる。導電材としては炭素系粒子、例えばカーボンブラック、活性炭、黒鉛等が好適であり、特に微粉末状粒子が好適に用いられる。代表的には、表面積20m/g以上のカーボンブラック粒子に、貴金属粒子、例えばPt粒子またはPtと他の金属との合金粒子を担持したものがある。特に、アノード用触媒については、Ptは一酸化炭素(CO)の被毒に弱いため、メタノールのようにCOを含む燃料を使用する場合には、Ptとルテニウム(Ru)との合金粒子を用いることが好ましい。触媒層320中のイオン交換樹脂は、触媒を支持し、触媒層を形成するバインダーとなる材料であり、触媒によって生じたイオン等が移動するための通路を形成する役割をもつ。このようなイオン交換樹脂としては、先に高分子電解質膜310に関連して説明したものと同様のものを用いることができる。触媒層320は、アノードでは水素、メタノール等の燃料ガスおよびカソードでは酸素、空気等の酸化剤ガスが触媒とできるだけ多く接触することができるように、触媒層320は多孔性であることが好ましい。また、触媒層320中に含まれる触媒量は、0.01〜1mg/cm、好ましくは0.1〜0.5mg/cmの範囲内にあることが好適である。 The catalyst layer 320 is not particularly limited as long as it contains catalyst particles and an ion exchange resin, and conventionally known ones can be used. The catalyst is usually made of a conductive material carrying catalyst particles. The catalyst particles may be any catalyst particles that have a catalytic action in the oxidation reaction of hydrogen or the reduction reaction of oxygen. In addition to platinum (Pt) and other noble metals, iron, chromium, nickel, and alloys thereof may be used. it can. As the conductive material, carbon-based particles such as carbon black, activated carbon, graphite and the like are suitable, and fine powder particles are particularly preferably used. Typically, carbon black particles having a surface area of 20 m 2 / g or more carry noble metal particles such as Pt particles or alloy particles of Pt and other metals. In particular, for anode catalysts, Pt is vulnerable to carbon monoxide (CO) poisoning. Therefore, when a fuel containing CO such as methanol is used, alloy particles of Pt and ruthenium (Ru) are used. It is preferable. The ion exchange resin in the catalyst layer 320 is a material that supports the catalyst and serves as a binder for forming the catalyst layer, and has a role of forming a passage for ions and the like generated by the catalyst to move. As such an ion exchange resin, those similar to those described above in relation to the polymer electrolyte membrane 310 can be used. The catalyst layer 320 is preferably porous so that a fuel gas such as hydrogen and methanol can contact the catalyst as much as possible at the anode and an oxidant gas such as oxygen and air can contact the catalyst as much as possible. Further, the amount of catalyst contained in the catalyst layer 320, 0.01 to 1 mg / cm 2, preferably suitably be in the range of 0.1-0.5 mg / cm 2.

触媒層320を高分子電解質膜310に接合して膜電極接合体300にする方法としては、高分子電解質膜310を損なうことなく接触抵抗が低い緻密な接合が達成されるものであれば、従来公知のいずれの方法でも採用することができる。例えば、スクリーン印刷法、スプレー塗布法、デカール法等、従来公知の方法により触媒層320を高分子電解質膜310に接合することができる。   As a method of joining the catalyst layer 320 to the polymer electrolyte membrane 310 to form the membrane electrode assembly 300, as long as dense joining with low contact resistance is achieved without damaging the polymer electrolyte membrane 310, conventional methods are possible. Any known method can be employed. For example, the catalyst layer 320 can be bonded to the polymer electrolyte membrane 310 by a conventionally known method such as a screen printing method, a spray coating method, or a decal method.

このように触媒層320を高分子電解質膜310と組み合わせて得られた膜電極接合体300の少なくとも一方の側に、本発明によるガス拡散層100を組み合わせることにより、本発明による固体高分子形燃料電池を形成することができる。その際、図4に示したように、ガス拡散層100の一方に接着剤250を配置し、熱プレスで一体化してもよい。接着剤250としては、プリント配線基板用接着シートのような接着シートを用いればよい。熱プレスの条件は、用いる接着剤250の接着条件に応じて、特に高分子電解質膜310を損なわないように設定すればよい。   By combining the gas diffusion layer 100 according to the present invention on at least one side of the membrane electrode assembly 300 obtained by combining the catalyst layer 320 with the polymer electrolyte membrane 310 as described above, the solid polymer fuel according to the present invention is obtained. A battery can be formed. At that time, as shown in FIG. 4, an adhesive 250 may be disposed on one side of the gas diffusion layer 100 and integrated by hot pressing. As the adhesive 250, an adhesive sheet such as a printed wiring board adhesive sheet may be used. What is necessary is just to set the conditions of hot press so that the polymer electrolyte membrane 310 may not be impaired especially according to the adhesion conditions of the adhesive agent 250 to be used.

固体高分子形燃料電池の一体化順序としては、まず触媒層320とガス拡散層100を組み合わせてアノード電極またはカソード電極を形成し、これらを高分子電解質膜310に接合する順序であってもよい。例えば、適当な溶媒を用いて触媒粒子とイオン交換樹脂を含む触媒層形成用コーティング液を調製し、これを本発明によるガス拡散層100に塗工することにより触媒層320を形成し、これを高分子電解質膜310に接合することもできる。   The order of integration of the polymer electrolyte fuel cells may be an order in which the catalyst layer 320 and the gas diffusion layer 100 are first combined to form an anode electrode or a cathode electrode, and these are joined to the polymer electrolyte membrane 310. . For example, a catalyst layer forming coating solution containing catalyst particles and an ion exchange resin is prepared using an appropriate solvent, and this is applied to the gas diffusion layer 100 according to the present invention to form the catalyst layer 320. It can also be joined to the polymer electrolyte membrane 310.

図5に、本発明の別態様による固体高分子形燃料電池の製造方法を説明する略横断面図を示す。この態様では、図5(A)に示したように、まず膜電極接合体の両側(アノード側およびカソード側)にそれぞれのシート状多孔質基材120を組み合わせた後に、少なくとも一方の多孔質基材120の周縁部にフィルム状封止用樹脂200を積層配置する。次いで、フィルム状封止用樹脂200にレーザー光を照射することにより該フィルム状封止用樹脂200を溶融させて該周縁部の細孔内に含浸させ、図5(B)に示したように、該多孔質基材の周縁部の細孔内に封止用樹脂が含浸された封止部210を形成する。さらに反対側の多孔質基材120の周縁部にフィルム状封止用樹脂200を積層配置して、同様にレーザー光を照射することにより反対側の多孔質基材120の周縁部に封止部を形成してもよい(図示なし)。   FIG. 5 is a schematic cross-sectional view for explaining a method for producing a polymer electrolyte fuel cell according to another embodiment of the present invention. In this embodiment, as shown in FIG. 5A, first, after combining the respective sheet-like porous substrates 120 on both sides (the anode side and the cathode side) of the membrane electrode assembly, at least one porous group is obtained. A film-like sealing resin 200 is laminated on the periphery of the material 120. Next, the film-form sealing resin 200 is irradiated with laser light to melt the film-form seal resin 200 and impregnate the pores in the peripheral portion, as shown in FIG. Then, the sealing part 210 in which the sealing resin is impregnated in the pores at the peripheral part of the porous substrate is formed. Further, a sealing resin 200 for film-like sealing is disposed on the periphery of the opposite porous substrate 120, and the sealing portion is formed on the periphery of the opposite porous substrate 120 by irradiating laser light in the same manner. May be formed (not shown).

上述のようにして接合して得られた固体高分子形燃料電池を、アノード側とカソード側が所定の側にくるようにセパレータ板および冷却部を交互に10〜100セル積層することにより、燃料電池スタックを組み立てることができる。燃料電池スタックの組み立ては、従来公知の方法によることができる。   By stacking 10 to 100 cells of the separator plate and the cooling unit alternately so that the anode side and the cathode side are on the predetermined side, the fuel cell obtained by joining the solid polymer fuel cells obtained by joining as described above You can assemble a stack. The assembly of the fuel cell stack can be performed by a conventionally known method.

以下、本発明を実施例により具体的に説明する。
実施例1
拡散層要素の作製
シート状多孔質基材として20×20cm、厚さ200μmの多孔質カーボンペーパー(東レ製、TGP−H−060)を用意した。その片面に、PTFEディスパージョン(ダイキン工業製、ポリフロンPTFE・D−1)を、カーボンペーパーに対して10質量%の量で塗布することにより撥水処理を施した。さらに、そのカーボンペーパーの撥水処理面に、カーボンブラック(デンカ製、デンカブラック)と上記PTFEディスパージョンとの質量比1:1の混合液を厚さ20μmの乾燥被膜が得られるように塗布することにより保護層を形成した。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
Production of Diffusion Layer Element A porous carbon paper (TGP-H-060, manufactured by Toray) having a size of 20 × 20 cm and a thickness of 200 μm was prepared as a sheet-like porous substrate. A water repellent treatment was performed on one surface by applying PTFE dispersion (manufactured by Daikin Industries, Polyflon PTFE · D-1) in an amount of 10% by mass with respect to the carbon paper. Further, a mixed solution of carbon black (Denka, Denka Black) and the PTFE dispersion having a mass ratio of 1: 1 is applied to the water repellent surface of the carbon paper so that a dry film having a thickness of 20 μm is obtained. Thus, a protective layer was formed.

フィルム状封止用樹脂として15×15cm、厚さ50μmのポリカーボネートフィルムを用意し、その中央部5.5×5.5cmを切り取り、額縁状のフィルムを作製した。上記シート状多孔質基材を6×6cmの大きさに切り取り、その撥水処理が施されていない面を上にして台に配置した。次いで、その多孔質基材の各周縁部に2.5mmの重なり領域が生じるように、上記額縁状フィルムを積層配置し、さらにそのフィルムの上に厚さ0.8cm、大きさ30×30cmの透明ソーダーガラス板を載せた。そして、上記多孔質基材と上記フィルムとの間に9.8×10Pa(10kgf/cm)の圧力がかかるようにガラス板に対して台を空気圧で押し当てた。 A polycarbonate film having a size of 15 × 15 cm and a thickness of 50 μm was prepared as a film-form sealing resin, and a central portion of 5.5 × 5.5 cm was cut out to produce a frame-shaped film. The sheet-like porous substrate was cut to a size of 6 × 6 cm and placed on a table with the surface not subjected to water repellent treatment facing up. Next, the frame-shaped film is laminated so that an overlap area of 2.5 mm is generated at each peripheral edge of the porous base material, and the thickness is 0.8 cm and the size is 30 × 30 cm on the film. A transparent soda glass plate was placed. Then, a table was pressed against the glass plate with air pressure so that a pressure of 9.8 × 10 5 Pa (10 kgf / cm 2 ) was applied between the porous substrate and the film.

次いで、汎用レーザー樹脂溶着機(株式会社ファインディバイス製、型式FD−200)を用い、COレーザー(波長940nm、スポット径2.7mm、出力15mW)を、走査速度10mm/秒で、ガラス板を通して上記重なり領域に照射した。レーザー照射された領域のポリカーボネートフィルムが溶融して多孔質カーボンペーパーの細孔内に含浸し、ポリカーボネートフィルムと多孔質カーボンフィルムの重なり領域の段差(50μm)が消失した。その後、加圧を解除し、多孔質カーボンフィルムの周縁部がポリカーボネートで封止されたガス拡散層要素を取り出した。 Next, a CO 2 laser (wavelength 940 nm, spot diameter 2.7 mm, output 15 mW) was passed through the glass plate at a scanning speed of 10 mm / sec using a general-purpose laser resin welding machine (manufactured by Fine Devices, model FD-200). The overlap area was irradiated. The polycarbonate film in the region irradiated with the laser melted and impregnated into the pores of the porous carbon paper, and the step (50 μm) in the overlapping region of the polycarbonate film and the porous carbon film disappeared. Thereafter, the pressure was released, and the gas diffusion layer element in which the peripheral edge of the porous carbon film was sealed with polycarbonate was taken out.

膜電極接合体(MEA)の作製
白金ルテニウム合金(白金/ルテニウム質量比1:1)担持カーボン(カーボン:合金質量比1:1)と水を質量比1:3で予め混合した。この混合液と、上記白金ルテニウム合金担持カーボンに対して2.5倍量のナフィオン(登録商標)20質量%溶液(デュポン社製:SE−20092、イオン交換容量:0.9ミリ等量/グラム)と、上記白金ルテニウム合金担持カーボンに対して18倍量のエタノールとを均一に混合することにより、固形分濃度6質量%のアノード用触媒層形成用塗工液を調製した。また、白金担持カーボン(カーボン:白金質量比1:1)と水を質量比1:3で予め混合した。この混合液と、上記白金担持カーボンに対して2.5倍量の上記ナフィオン(登録商標)20質量%溶液と、上記白金担持カーボンに対して18倍量のエタノールとを均一に混合することにより、固形分濃度6質量%のカソード用触媒層形成用塗工液を調製した。高分子電解質膜として、10×10cmの大きさのイオン交換膜GORE−SELECT(登録商標)(ジャパンゴアテックス社製)を用意した。また、中央部に5×5cmの正方形切抜きパターンを含むスクリーンメッシュ(ミノグループ社製:T−70)を用意した。このスクリーンメッシュを、高分子電解質膜の片面に配置し、その上から上記アノード用触媒層形成用塗工液をパターン塗工して80℃で乾燥する塗工・乾燥工程を繰り返すことにより、切抜きに対応する厚さ10μm、白金ルテニウム担持量0.45mg/cmのアノード用触媒層を形成した。次いで、中央部に5×5cmの正方形切抜きパターンを含むスクリーンメッシュ(ミノグループ社製:T−70)を用意した。このスクリーンメッシュを、上記イオン交換膜の上記アノード用触媒層とは反対面に配置し、その上から上記カソード用触媒層形成用塗工液をパターン塗工して80℃で乾燥する塗工・乾燥工程を繰り返すことにより、切抜きに対応する厚さ10μm、白金担持量0.4mg/cmのカソード用触媒層を形成し、MEAを作製した。
Production of Membrane Electrode Assembly (MEA) Platinum ruthenium alloy (platinum / ruthenium mass ratio 1: 1) -supported carbon (carbon: alloy mass ratio 1: 1) and water were previously mixed at a mass ratio of 1: 3. This mixed solution and a 2.5% amount of Nafion (registered trademark) 20% by mass solution with respect to the platinum ruthenium alloy-supported carbon (manufactured by DuPont: SE-20092, ion exchange capacity: 0.9 milliequivalent / gram) And 18 times the amount of ethanol with respect to the platinum-ruthenium alloy-supporting carbon were uniformly mixed to prepare an anode catalyst layer forming coating solution having a solid content of 6% by mass. Further, platinum-supporting carbon (carbon: platinum mass ratio 1: 1) and water were previously mixed at a mass ratio of 1: 3. By uniformly mixing the mixed solution, the Nafion (registered trademark) 20% by mass solution of 2.5 times the platinum-supported carbon, and the ethanol amount 18 times the platinum-supported carbon. A cathode catalyst layer forming coating solution having a solid content concentration of 6% by mass was prepared. An ion exchange membrane GORE-SELECT (registered trademark) (manufactured by Japan Gore-Tex) with a size of 10 × 10 cm was prepared as a polymer electrolyte membrane. Moreover, the screen mesh (Mino group company make: T-70) containing the square cutting pattern of 5x5 cm in the center part was prepared. The screen mesh is placed on one side of the polymer electrolyte membrane, and the coating solution for anode catalyst layer formation is coated on the surface of the screen mesh and dried at 80 ° C. to repeat the coating / drying process. The anode catalyst layer having a thickness of 10 μm and a platinum ruthenium loading of 0.45 mg / cm 2 was formed. Next, a screen mesh (Mino Group: T-70) including a 5 × 5 cm square cutout pattern in the center was prepared. The screen mesh is placed on the surface opposite to the anode catalyst layer of the ion exchange membrane, and the cathode catalyst layer forming coating solution is pattern coated thereon and dried at 80 ° C. By repeating the drying step, a cathode catalyst layer having a thickness of 10 μm corresponding to the cutout and a platinum loading of 0.4 mg / cm 2 was formed, and an MEA was produced.

固体高分子形燃料電池の作製および評価
上記MEAの両面に上記ガス拡散層要素を、その撥水処理が施されている面をMEA側にして貼付することにより固体高分子形燃料電池を作製した。貼付は、ガス拡散層要素の一方に、図4に示したように接着シート(日東シンコー製、FB−ML4)を配置し、これを他方のガス拡散層要素に熱プレス(温度150℃、圧力5.0MPa)で押し当てることにより行った。得られた固体高分子形燃料電池を、アクティブエリア5×5cmの燃料電池用単セルに装着し、セル温度を80℃にし、水素ガスおよび空気の露点を80℃(相対湿度を100%RH)にし、水素および酸素の利用率をそれぞれ80%、40%として発電性能の測定を行った。また、燃料電池のリーク検査を以下のように行った。成形した枠を含むセルサイズを7×7cm、電極サイズを5×5cmとし、周辺部を厚さ0.5mmのシリコンシートで挟みシールした。これをセパレータに組み込み水没させ、セルの片側を空気またはヘリウムで加圧した。加圧面の反対側は解放しておき、セルが空気またはヘリウムを漏洩するとその反対側からバブルが発生するようにした。0MPaから圧力を高めていき、バブルの発生が目視で確認できた時点の圧力をリーク圧力とした。
固体高分子形燃料電池の運転は、リーク等の問題もなく、電流密度0.5A/cmにおいて電圧0.68Vの発電性能が得られた。
Production and Evaluation of Polymer Electrolyte Fuel Cell A polymer electrolyte fuel cell was produced by sticking the gas diffusion layer element on both sides of the MEA with the water-repellent treatment side being the MEA side. . As shown in FIG. 4, an adhesive sheet (manufactured by Nitto Shinko, FB-ML4) is disposed on one of the gas diffusion layer elements, and this is hot-pressed (temperature 150 ° C., pressure) on the other gas diffusion layer element. 5.0 MPa). The obtained polymer electrolyte fuel cell is mounted on a single cell for a fuel cell having an active area of 5 × 5 cm, the cell temperature is set to 80 ° C., and the dew point of hydrogen gas and air is set to 80 ° C. (relative humidity is 100% RH). The power generation performance was measured with hydrogen and oxygen utilization rates of 80% and 40%, respectively. In addition, a fuel cell leak test was performed as follows. The cell size including the molded frame was 7 × 7 cm, the electrode size was 5 × 5 cm, and the periphery was sandwiched and sealed with a silicon sheet having a thickness of 0.5 mm. This was incorporated into a separator and submerged, and one side of the cell was pressurized with air or helium. The other side of the pressurization surface was opened, and when the cell leaked air or helium, a bubble was generated from the other side. The pressure was increased from 0 MPa, and the pressure at the time when the generation of bubbles was confirmed visually was defined as the leak pressure.
In the operation of the polymer electrolyte fuel cell, there was no problem such as leakage, and a power generation performance of 0.68 V was obtained at a current density of 0.5 A / cm 2 .

実施例2
実施例1と同様に、シート状多孔質基材としての多孔質カーボンペーパーに撥水処理を施し、その撥水処理面に保護層を形成した。また、実施例1と同様にMEAを作製した。このMEAの両面に上記多孔質カーボンペーパーを、その撥水処理が施されている面をMEA側にして貼付することにより固体高分子形燃料電池の基本構造体を作製した。
Example 2
Similarly to Example 1, the water-repellent treatment was performed on the porous carbon paper as the sheet-like porous substrate, and a protective layer was formed on the water-repellent surface. Further, an MEA was produced in the same manner as in Example 1. A basic structure of a polymer electrolyte fuel cell was prepared by attaching the porous carbon paper on both sides of the MEA with the water-repellent treatment side facing the MEA side.

フィルム状封止用樹脂として15×15cm、厚さ50μmのポリエーテルサルフォン(PES)フィルムを用意し、その中央部5.5×5.5cmを切り取り、額縁状のフィルムを作製した。上記基本構造体を6×6cmの大きさに切り取り、台に配置した。次いで、その多孔質カーボンペーパーの各周縁部に2.5mmの重なり領域が生じるように、上記額縁状フィルムを積層配置し、さらにそのフィルムの上に厚さ0.8cm、大きさ30×30cmの透明ソーダーガラス板を載せた。そして、上記多孔質基材と上記フィルムとの間に9.8×10Pa(10kgf/cm)の圧力がかかるようにガラス板に対して台を空気圧で押し当てた。 A polyethersulfone (PES) film having a size of 15 × 15 cm and a thickness of 50 μm was prepared as a film-form sealing resin, and a central portion of 5.5 × 5.5 cm was cut out to produce a frame-shaped film. The basic structure was cut to a size of 6 × 6 cm and placed on a table. Next, the frame-like film is laminated so that an overlap region of 2.5 mm is generated at each peripheral edge of the porous carbon paper, and the thickness is 0.8 cm and the size is 30 × 30 cm on the film. A transparent soda glass plate was placed. Then, a table was pressed against the glass plate with air pressure so that a pressure of 9.8 × 10 5 Pa (10 kgf / cm 2 ) was applied between the porous substrate and the film.

次いで、上記汎用レーザー樹脂溶着機を用い、COレーザー(波長940nm、スポット径2.7mm、出力10mW)を、走査速度5mm/秒で、ガラス板を通して上記重なり領域に照射した。レーザー照射された領域のPESフィルムが溶融して多孔質カーボンペーパーの細孔内に含浸し、PESフィルムと多孔質カーボンフィルムの重なり領域の段差(50μm)が消失し、多孔質カーボンフィルムの周縁部がPESで封止された。 Next, using the general-purpose laser resin welding machine, a CO 2 laser (wavelength 940 nm, spot diameter 2.7 mm, output 10 mW) was irradiated to the overlapping region through a glass plate at a scanning speed of 5 mm / second. The PES film in the region irradiated with the laser melts and impregnates in the pores of the porous carbon paper, the step (50 μm) in the overlapping region of the PES film and the porous carbon film disappears, and the peripheral edge of the porous carbon film Was sealed with PES.

得られた固体高分子形燃料電池を、実施例1と同様に評価セルに装着し、性能を測定した。固体高分子形燃料電池の運転は、リーク等の問題もなく、電流密度0.5A/cmにおいて電圧0.68Vの発電性能が得られた。 The obtained polymer electrolyte fuel cell was attached to an evaluation cell in the same manner as in Example 1, and the performance was measured. In the operation of the polymer electrolyte fuel cell, there was no problem such as leakage, and a power generation performance of 0.68 V was obtained at a current density of 0.5 A / cm 2 .

比較例1
ポリカーボネートフィルムの多孔質カーボンフィルムへの含浸を、レーザー照射の代わりに、150℃、2MPa、2分間の条件で熱プレスを行い接着したことを除き、実施例1と同様に、多孔質カーボンフィルムの周縁部がポリカーボネートで封止されたガス拡散層要素を作製した。この要素を用いて、実施例1と同様に固体高分子形燃料電池を作製し、それを評価セルに装着して性能の評価を行った。しかし、封止が不十分で反応ガスがリークしたため、性能評価をすることができなかった。これは、ポリカーボネートフィルムとカーボンフィルムとの線熱膨張率の違いにより、熱プレス後にゆがみが発生したことに起因する。
Comparative Example 1
The porous carbon film was impregnated with the porous carbon film in the same manner as in Example 1 except that the porous carbon film was impregnated by hot pressing at 150 ° C., 2 MPa for 2 minutes instead of laser irradiation. A gas diffusion layer element having a peripheral edge sealed with polycarbonate was produced. Using this element, a polymer electrolyte fuel cell was produced in the same manner as in Example 1, and the performance was evaluated by mounting it on an evaluation cell. However, since the sealing was insufficient and the reaction gas leaked, performance evaluation could not be performed. This is due to the occurrence of distortion after hot pressing due to the difference in linear thermal expansion coefficient between the polycarbonate film and the carbon film.

比較例2
ポリカーボネートフィルムの多孔質カーボンフィルムへの含浸を、レーザー照射の代わりに、150℃、2MPa、2分間の条件で熱プレスを行い接着したことを除き、実施例2と同様に、多孔質カーボンフィルムの周縁部がポリカーボネートで封止された固体高分子形燃料電池を作製した。この固体高分子形燃料電池を評価セルに装着して性能の評価を行った。しかし、封止が不十分で反応ガスがリークしたため、性能評価をすることができなかった。これは、ポリカーボネートフィルムとカーボンフィルムとの線熱膨張率の違いにより、熱プレス後にゆがみが発生したことに起因する。
Comparative Example 2
The porous carbon film was impregnated with a porous carbon film in the same manner as in Example 2 except that the porous carbon film was impregnated by hot pressing under conditions of 150 ° C., 2 MPa, 2 minutes instead of laser irradiation. A polymer electrolyte fuel cell having a peripheral edge sealed with polycarbonate was produced. This polymer electrolyte fuel cell was mounted in an evaluation cell and performance was evaluated. However, since the sealing was insufficient and the reaction gas leaked, performance evaluation could not be performed. This is due to the occurrence of distortion after hot pressing due to the difference in linear thermal expansion coefficient between the polycarbonate film and the carbon film.

11 高分子電解質膜
12 多孔質触媒電極
13 セパレータ
14 膜電極接合体(MEA)
15 パッキン
21 樹脂封止部
100 ガス拡散層要素
120 シート状多孔質基材
200 フィルム状封止用樹脂
210 封止部
250 接着剤
300 膜電極接合体
310 高分子電解質膜
320 触媒層
11 Polymer Electrolyte Membrane 12 Porous Catalyst Electrode 13 Separator 14 Membrane Electrode Assembly (MEA)
DESCRIPTION OF SYMBOLS 15 Packing 21 Resin sealing part 100 Gas diffusion layer element 120 Sheet-like porous base material 200 Film-like sealing resin 210 Sealing part 250 Adhesive 300 Membrane electrode assembly 310 Polymer electrolyte membrane 320 Catalyst layer

Claims (7)

シート状多孔質基材の周縁部に、該シート状多孔質基材の厚さの10〜80%の範囲内にある厚さを有するフィルム状封止用樹脂を積層配置する工程と、
該フィルム状封止用樹脂にレーザー光を照射することにより該フィルム状封止用樹脂を溶融させて該周縁部の細孔内に含浸させる工程と
を含んでなり、該レーザー光を照射する際に、該フィルム状封止用樹脂を該シート状多孔質基材に対して押し当てる、該多孔質基材の周縁部の細孔内に含浸された封止用樹脂を含む固体高分子形燃料電池用ガス拡散層要素の製造方法。
A step of laminating and arranging a film-like sealing resin having a thickness in the range of 10 to 80% of the thickness of the sheet-like porous substrate on the periphery of the sheet-like porous substrate;
Irradiating the film-form sealing resin with a laser beam to melt the film-form seal resin and impregnating the film-form seal resin into the pores of the peripheral portion. Solid polymer fuel containing a sealing resin impregnated in pores at the peripheral edge of the porous substrate, wherein the resin for sealing the film is pressed against the porous substrate. A method for producing a gas diffusion layer element for a battery.
該レーザー光を照射する際に、レーザー光透過性の基板により圧力を加えることで、該フィルム状封止用樹脂を該シート状多孔質基材に対して押し当てる、請求項1に記載の製造方法。   2. The production according to claim 1, wherein, when irradiating the laser beam, the resin for sealing the film is pressed against the porous sheet-like substrate by applying a pressure with a laser-transmissive substrate. Method. シート状多孔質基材の周縁部に、該シート状多孔質基材の厚さの10〜80%の範囲内にある厚さを有するフィルム状封止用樹脂を積層配置する工程と、
該フィルム状封止用樹脂にレーザー光を照射することにより該フィルム状封止用樹脂を溶融させて該周縁部の細孔内に含浸させ、該多孔質基材の周縁部の細孔内に含浸された封止用樹脂を含むガス拡散層要素を得る工程と、
該ガス拡散層要素を少なくとも一方の側のガス拡散層とし、これに順に膜電極接合体および反対側のガス拡散層を組み合わせる工程と
を含んでなり、該レーザー光を照射する際に、該フィルム状封止用樹脂を該シート状多孔質基材に対して押し当てる、固体高分子形燃料電池の製造方法。
A step of laminating and arranging a film-like sealing resin having a thickness in the range of 10 to 80% of the thickness of the sheet-like porous substrate on the periphery of the sheet-like porous substrate;
By irradiating the film-form sealing resin with laser light, the film-form seal resin is melted and impregnated in the pores of the peripheral portion, and the pores in the peripheral portion of the porous base material are impregnated. Obtaining a gas diffusion layer element comprising an impregnated sealing resin;
The gas diffusion layer element as a gas diffusion layer on at least one side, and a step of combining the membrane electrode assembly and the gas diffusion layer on the opposite side in order with the gas diffusion layer element. A method for producing a polymer electrolyte fuel cell, in which a resin for encapsulating is pressed against the sheet-like porous substrate.
該レーザー光を照射する際に、レーザー光透過性の基板により圧力を加えることで、該フィルム状封止用樹脂を該シート状多孔質基材に対して押し当てる、請求項3に記載の製造方法。   4. The production according to claim 3, wherein, when irradiating the laser light, the resin for sealing the film is pressed against the sheet-like porous base material by applying a pressure with a laser light transmitting substrate. Method. 順に、アノード側ガス拡散層、膜電極接合体およびカソード側ガス拡散層を組み合わせる工程と、
少なくとも一方の側のガス拡散層の周縁部に、該ガス拡散層の厚さの10〜80%の範囲内にある厚さを有するフィルム状封止用樹脂を積層配置する工程と、
該フィルム状封止用樹脂にレーザー光を照射することにより該フィルム状封止用樹脂を溶融させて該周縁部の細孔内に含浸させる工程と
を含んでなり、該レーザー光を照射する際に、該フィルム状封止用樹脂を該ガス拡散層に対して押し当てる、固体高分子形燃料電池の製造方法。
In order, combining the anode side gas diffusion layer, the membrane electrode assembly and the cathode side gas diffusion layer,
A step of laminating and arranging a film-like sealing resin having a thickness in the range of 10 to 80% of the thickness of the gas diffusion layer on the periphery of the gas diffusion layer on at least one side;
Irradiating the film-form sealing resin with a laser beam to melt the film-form seal resin and impregnating the film-form seal resin into the pores of the peripheral portion. The method for producing a polymer electrolyte fuel cell, wherein the film-like sealing resin is pressed against the gas diffusion layer.
さらに反対側のガス拡散層の周縁部に、該ガス拡散層の厚さの10〜80%の範囲内にある厚さを有するフィルム状封止用樹脂を積層配置する工程と、
該フィルム状封止用樹脂にレーザー光を照射することにより該フィルム状封止用樹脂を溶融させて該周縁部の細孔内に含浸させる工程と
を含み、該レーザー光を照射する際に、該フィルム状封止用樹脂を該ガス拡散層に対して押し当てる、請求項5に記載の製造方法。
Further, a step of laminating and arranging a film-like sealing resin having a thickness in the range of 10 to 80% of the thickness of the gas diffusion layer on the peripheral portion of the gas diffusion layer on the opposite side;
A step of melting the film-form sealing resin by irradiating the film-form sealing resin with a laser beam and impregnating it in the pores of the peripheral portion, The manufacturing method according to claim 5, wherein the film-form sealing resin is pressed against the gas diffusion layer.
該レーザー光を照射する際に、レーザー光透過性の基板により圧力を加えることで、該フィルム状封止用樹脂を該ガス拡散層に対して押し当てる、請求項5又は6に記載の製造方法。   The manufacturing method according to claim 5 or 6, wherein when irradiating the laser beam, the resin for sealing the film is pressed against the gas diffusion layer by applying a pressure with a substrate transparent to the laser beam. .
JP2013021248A 2013-02-06 2013-02-06 Gas diffusion layer element for polymer electrolyte fuel cell, polymer electrolyte fuel cell and production method thereof Expired - Fee Related JP5645982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013021248A JP5645982B2 (en) 2013-02-06 2013-02-06 Gas diffusion layer element for polymer electrolyte fuel cell, polymer electrolyte fuel cell and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013021248A JP5645982B2 (en) 2013-02-06 2013-02-06 Gas diffusion layer element for polymer electrolyte fuel cell, polymer electrolyte fuel cell and production method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006320669A Division JP2008135295A (en) 2006-11-28 2006-11-28 Gas diffusion layer element for solid polymer fuel cell, solid polymer fuel cell, and its manufacturing method

Publications (3)

Publication Number Publication Date
JP2013122929A JP2013122929A (en) 2013-06-20
JP2013122929A5 JP2013122929A5 (en) 2013-08-01
JP5645982B2 true JP5645982B2 (en) 2014-12-24

Family

ID=48774757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013021248A Expired - Fee Related JP5645982B2 (en) 2013-02-06 2013-02-06 Gas diffusion layer element for polymer electrolyte fuel cell, polymer electrolyte fuel cell and production method thereof

Country Status (1)

Country Link
JP (1) JP5645982B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6572665B2 (en) * 2015-08-03 2019-09-11 日産自動車株式会社 Membrane electrode assembly and fuel cell including the same
JP7020284B2 (en) * 2018-05-14 2022-02-16 トヨタ自動車株式会社 Jig for joining

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269642A (en) * 1979-10-29 1981-05-26 United Technologies Corporation Method of forming densified edge seals for fuel cell components
JP2001118592A (en) * 1999-10-18 2001-04-27 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell and stack thereof
JP2002324556A (en) * 2001-04-26 2002-11-08 Kanegafuchi Chem Ind Co Ltd Solid polymer fuel cell
GB0319780D0 (en) * 2003-08-22 2003-09-24 Johnson Matthey Plc Membrane electrode assembly
JP2005158690A (en) * 2003-10-27 2005-06-16 Mitsubishi Electric Corp Fuel cell and manufacturing method of same
JP2005297288A (en) * 2004-04-08 2005-10-27 Honda Motor Co Ltd Method for joining laser beam transmittable resin member and porous member together

Also Published As

Publication number Publication date
JP2013122929A (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5326189B2 (en) Electrolyte membrane-electrode assembly and method for producing the same
JP4540316B2 (en) Catalyst coated ionomer membrane with protective film layer and membrane electrode assembly made from the membrane
JP4882314B2 (en) Electrolyte membrane-electrode assembly and method for producing the same
US8394551B2 (en) Membrane electrode assembly for use in electrochemical devices
EP1671388B1 (en) Catalyst-coated membrane with integrated sealing material and membrane-electrode assembly produced therefrom
WO2006025335A1 (en) Membrane electrode assembly for solid polymer fuel cell and solid polymer fuel cell
JP2009514144A (en) Membrane electrode assembly for electrochemical devices
JP2007095669A (en) Electrolyte film-electrode assembly
JP2006338938A (en) Electrolyte membrane-electrode assembly, and its manufacturing method
JP2008515137A (en) Membrane electrode assembly
JP2008135295A (en) Gas diffusion layer element for solid polymer fuel cell, solid polymer fuel cell, and its manufacturing method
US9331345B2 (en) Bonded sheet and sheet-member bonding method
JP2006338939A (en) Electrolyte membrane-electrode assembly
JP2006338943A (en) Electrolyte membrane-electrode assembly
JP5165947B2 (en) Membrane / electrode assembly and manufacturing method thereof
JP2009105009A (en) Fuel cell and manufacturing method for fuel cell
JP5645982B2 (en) Gas diffusion layer element for polymer electrolyte fuel cell, polymer electrolyte fuel cell and production method thereof
JP5838570B2 (en) Membrane electrode assembly in polymer electrolyte fuel cell
JP2007250468A (en) Electrolyte film
JP5245440B2 (en) Manufacturing method of membrane-electrode assembly for fuel cell
JP5087216B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2006338941A (en) Electrolyte membrane-electrode assembly
JP2009080976A (en) Method of sealing fuel cell unit cell
JP2006338937A (en) Manufacturing method of electrolyte membrane-electrode assembly
JP2005190750A (en) Membrane electrode assembly for fuel cell, and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141104

R150 Certificate of patent or registration of utility model

Ref document number: 5645982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees