JP2005190750A - Membrane electrode assembly for fuel cell, and its manufacturing method - Google Patents

Membrane electrode assembly for fuel cell, and its manufacturing method Download PDF

Info

Publication number
JP2005190750A
JP2005190750A JP2003428616A JP2003428616A JP2005190750A JP 2005190750 A JP2005190750 A JP 2005190750A JP 2003428616 A JP2003428616 A JP 2003428616A JP 2003428616 A JP2003428616 A JP 2003428616A JP 2005190750 A JP2005190750 A JP 2005190750A
Authority
JP
Japan
Prior art keywords
fuel cell
membrane
porous body
electrode assembly
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003428616A
Other languages
Japanese (ja)
Inventor
Mitsutaka Abe
光高 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003428616A priority Critical patent/JP2005190750A/en
Publication of JP2005190750A publication Critical patent/JP2005190750A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane electrode assembly for a fuel cell which prevents an output reduction as the fuel cell by preventing damage of a proton conductive solid polymer membrane due to a gas diffusion layer, and easily positions an electrode catalyst. <P>SOLUTION: A porous material 5 which functions as a reinforcing layer are interposed between a gas diffusion layer 4 in a membrane electrode assembly 1 consisting of: a proton conductive solid polyelectrolyte membrane 2; an electrode catalyst layer 3; and a gas diffusion layer 4, and the polyelectrolyte membrane 2. The electrode catalyst layer 3 is formed inside of this porous material, and the outer brim part 5a of the porous material 5 is arranged and installed so that it is arranged farther outside than the outer brim part 4a of the gas diffusion layer 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電解質として、例えばフッ素樹脂系高分子のようなプロトン伝導性固体高分子膜を用いた固体高分子形燃料電池(PEFC)に係わり、さらに詳しくは、プロトン伝導性固体高分子膜と、この固体高分子膜を挟んだ1対の電極触媒層と、さらにこれらをその外側から挟んだ1対のガス拡散層から成る燃料電池用の膜電極接合体(MEA:Membrane Electrode Assembly)と、その製造方法、さらにはこのような膜電極接合体を用いた固体高分子形燃料電池に関するものである。   The present invention relates to a polymer electrolyte fuel cell (PEFC) using a proton conductive solid polymer membrane such as a fluororesin polymer as an electrolyte, and more particularly, a proton conductive solid polymer membrane and A membrane electrode assembly (MEA) for a fuel cell comprising a pair of electrode catalyst layers sandwiching the solid polymer membrane and a pair of gas diffusion layers sandwiching these from the outside, and a membrane electrode assembly (MEA) The present invention also relates to a production method, and further to a polymer electrolyte fuel cell using such a membrane electrode assembly.

プロトン伝導性固体高分子膜を用いた固体高分子形燃料電池は、他のタイプの燃料電池と比較して低温で作動することから、自動車などの移動体用動力源として期待され、その実用も進んでいる。
このような固体高分子形燃料電池においては、プロトン伝導性固体高分子膜を挟んで1対の電極(酸素極と燃料極)に、水素を含有する燃料ガスと酸素を有する酸化ガスとをそれぞれ供給することにより、次式で示される反応が生じ、電気エネルギーが取出される。
カソード反応(酸素極): 2H+2e+(1/2)O → H
アノード反応(燃料極): H → 2H+2e
Solid polymer fuel cells using proton-conducting solid polymer membranes operate at lower temperatures than other types of fuel cells, and are expected to be used as power sources for mobile vehicles such as automobiles. Progressing.
In such a polymer electrolyte fuel cell, a hydrogen-containing fuel gas and an oxygen-containing oxidizing gas are respectively applied to a pair of electrodes (oxygen electrode and fuel electrode) with a proton conductive solid polymer membrane interposed therebetween. By supplying, the reaction represented by the following formula occurs, and electric energy is taken out.
Cathode reaction (oxygen electrode): 2H + + 2e + (1/2) O 2 → H 2 O
Anode reaction (fuel electrode): H 2 → 2H + + 2e

固体高分子形燃料電池に使用されるガス拡散電極は、高分子電解質膜(プロトン伝導性固体高分子膜)と同種あるいは異種のイオン交換樹脂(高分子電解質)で被覆された触媒担持カーボン微粒子を含有する電極触媒層と、この触媒層に反応ガスを供給すると共に触媒層に発生する電荷を集電するガス拡散層から成り、当該ガス拡散層の電極触媒層の側を高分子電解質膜に対向させた状態で、ホットプレスにより接合することによって膜電極接合体が形成される。なお、ガス拡散層には、一般に、カーボン繊維を用いて作成されたカーボンペーパーや織布、不織布が用いられる。
そして、このような膜電極接合体をガス流路を備えたセパレータ(ガス流路形成部材)を介して多数積層することによって燃料電池が構成される。
Gas diffusion electrodes used in polymer electrolyte fuel cells consist of catalyst-supported carbon particles coated with an ion exchange resin (polymer electrolyte) of the same or different type from polymer electrolyte membranes (proton conductive solid polymer membranes). Containing an electrode catalyst layer and a gas diffusion layer that supplies a reaction gas to the catalyst layer and collects charges generated in the catalyst layer, and the electrode catalyst layer side of the gas diffusion layer faces the polymer electrolyte membrane In this state, the membrane / electrode assembly is formed by bonding by hot pressing. The gas diffusion layer is generally made of carbon paper, woven fabric, or non-woven fabric made using carbon fibers.
And a fuel cell is comprised by laminating | stacking many such membrane electrode assemblies through the separator (gas flow path formation member) provided with the gas flow path.

このような固体高分子形燃料電池において、プロトン伝導性固体高分子膜は、柔軟であるためにガス拡散層(特に端部)との接触部位において破損し易く、ガスのクロスリークが生じることがないとは言えず、何らかの補強が必要となることから、例えば、特許文献1には、プロトン伝導性固体高分子膜の周縁部を補強部材(炭化フッソ系樹脂シート)で被覆することによって当該高分子膜の機械的強度を向上させることが記載されている。
また、特許文献2には、PTFE(ポリテトラフルオロエチレン)から成る多孔質体にパーフルオロスルホン酸樹脂を充填することにより、プロトン伝導性固体高分子膜自体を補強することが開示されている。
特開平10−308228号公報 特開2003−142122号公報
In such a polymer electrolyte fuel cell, since the proton conductive solid polymer membrane is flexible, the proton conductive solid polymer membrane is easily damaged at the contact portion with the gas diffusion layer (especially the end portion), and gas cross-leakage may occur. However, since some reinforcement is necessary, for example, in Patent Document 1, the peripheral portion of the proton conductive solid polymer membrane is covered with a reinforcing member (carbonized resin-based resin sheet). It is described that the mechanical strength of a molecular film is improved.
Patent Document 2 discloses that a proton conductive solid polymer membrane itself is reinforced by filling a perfluorosulfonic acid resin into a porous body made of PTFE (polytetrafluoroethylene).
JP-A-10-308228 JP 2003-142122 A

しかしながら、上記特許文献1記載の固体高分子形燃料電池においては、プロトン伝導性高分子膜の周縁部を補強する場合、補強部材(炭化フッソ系樹脂シート)の開口部と電極触媒層との位置決めが難しいため、両者が干渉した(補強部材が電極触媒層に重なった)ときには、電極触媒層とガス拡散層との接触状態が悪くなるという問題があった。また、このような干渉を避けるために両者の隙間を大きくした場合には、ガス拡散層の端部がプロトン伝導性固体高分子膜に接触して、破損を引き起こすという問題点があった。
一方、特許文献2に記載されているように、PTFE製多孔質体によってプロトン伝導性固体高分子膜自体を補強する場合、プロトン伝導性固体高分子膜は保護されるものの、電極触媒層は弱い状態であるため、電極触媒層がガス拡散層と接触して破損し、出力が低下してしまうという問題点があった。
However, in the polymer electrolyte fuel cell described in Patent Document 1, when the peripheral portion of the proton conductive polymer membrane is reinforced, the positioning of the opening of the reinforcing member (carbonized resin sheet) and the electrode catalyst layer is performed. Therefore, when the two interfere with each other (the reinforcing member overlaps the electrode catalyst layer), there is a problem that the contact state between the electrode catalyst layer and the gas diffusion layer is deteriorated. In addition, when the gap between the two is increased in order to avoid such interference, there is a problem that the end of the gas diffusion layer comes into contact with the proton conductive solid polymer membrane and causes damage.
On the other hand, as described in Patent Document 2, when the proton conductive solid polymer membrane itself is reinforced by the porous body made of PTFE, the proton conductive solid polymer membrane is protected, but the electrode catalyst layer is weak. Because of the state, the electrode catalyst layer is in contact with the gas diffusion layer and is damaged, resulting in a problem that the output is reduced.

本発明は、従来の燃料電池用膜電極接合体における上記課題に着目してなされたものであって、その目的とするところは、電極触媒層の位置決めが容易であると共に、ガス拡散層によるプロトン伝導性固体高分子膜や電極触媒層の損傷を防止して、燃料電池としての出力低下を未然に防止することができる燃料電池用膜電極接合体及びその製造方法、さらにはこのような膜電極接合体を用いた高性能の固体高分子形燃料電池を提供することにある。   The present invention has been made by paying attention to the above-mentioned problems in conventional membrane electrode assemblies for fuel cells. The object of the present invention is to facilitate positioning of the electrode catalyst layer and to produce protons from the gas diffusion layer. Membrane electrode assembly for fuel cell and method for producing the same, further preventing damage of conductive solid polymer membrane and electrode catalyst layer and preventing output decrease as fuel cell, and such membrane electrode An object of the present invention is to provide a high-performance polymer electrolyte fuel cell using a joined body.

本発明者は、上記目的を達成するために、ガス拡散電極の材料や構造について鋭意検討を重ねた結果、プロトン伝導性固体高分子膜と電極触媒層の間に無機材料あるいは有機材料から成る多孔質体を配置し、この内部に電極触媒層を形成することによって、ガス拡散層の端部エッジ状部分やカーボン繊維の先端部などによる高分子電解質膜の損傷を防止することができることを見出し、本発明を完成するに到った。   In order to achieve the above object, the present inventor has intensively studied the material and structure of the gas diffusion electrode, and as a result, the porous conductive material made of an inorganic material or an organic material is interposed between the proton conductive solid polymer membrane and the electrode catalyst layer. It is found that the polymer electrolyte membrane can be prevented from being damaged by the edge portion of the gas diffusion layer or the tip portion of the carbon fiber by arranging the electrode body and forming the electrode catalyst layer therein. The present invention has been completed.

すなわち、本発明は上記知見に基づくものであって、本発明の燃料電池用膜電極接合体は、プロトン伝導性固体高分子膜を電極触媒層とガス拡散層で挟持した燃料電池用膜電極接合体において、電極触媒層が多孔質体の内部に形成され、この多孔質体の外縁部がガス拡散層の外縁よりも外側に位置するように配設したことを特徴としている。   That is, the present invention is based on the above knowledge, and the membrane electrode assembly for a fuel cell of the present invention is a membrane electrode assembly for a fuel cell in which a proton conductive solid polymer membrane is sandwiched between an electrode catalyst layer and a gas diffusion layer. The electrode catalyst layer is formed inside the porous body, and the outer edge portion of the porous body is disposed outside the outer edge of the gas diffusion layer.

また、本発明の燃料電池用膜電極接合体製造方法は、本発明の上記膜電極接合体の製造に好適に用いられるものであって、プロトン伝導性固体高分子膜に多孔質体を配置する工程と、この多項質体に触媒とプロトン伝導性高分子樹脂と溶媒とを含む溶液を含ませる工程と、多孔質体に含ませた上記溶液の溶媒を除去する工程とを含む構成、またはガス拡散層に多孔質体を配置する工程と、この多項質体に同様の溶液を含ませる工程と、上記ガス拡散層と一体の多孔質体をプロトン伝導性固体高分子膜に配置する工程と、上記溶液の溶媒を除去する工程とを含む構成、あるいは基材シートに多孔質体を配置する工程と、この多項質体に同様の溶液を含ませる工程と、上記基材シートと一体の多孔質体をプロトン伝導性固体高分子膜に配置する工程と、上記溶液から溶媒を除去する工程と、上記固体高分子膜と一体化された多孔質体から基材シートを除去する工程を含む構成としたことを特徴としている。   The method for producing a membrane electrode assembly for a fuel cell of the present invention is preferably used for the production of the membrane electrode assembly of the present invention, and a porous body is disposed on a proton conductive solid polymer membrane. A structure including a step, a step of including a solution containing a catalyst, a proton conductive polymer resin, and a solvent in the polymorph, and a step of removing the solvent of the solution included in the porous body, or a gas A step of disposing a porous body in the diffusion layer; a step of including a similar solution in the multi-molecular body; a step of disposing a porous body integral with the gas diffusion layer in the proton conductive solid polymer membrane; Including a step of removing the solvent of the solution, a step of disposing a porous body on the base material sheet, a step of including the same solution in the multi-material body, and a porous body integrated with the base material sheet To place the body on a proton conducting solid polymer membrane When is characterized in that the arrangement comprising the step of removing the solvent from the solution, the step of removing the base sheet of a porous material which is integrated with the solid polymer membrane.

そして、本発明の固体高分子形燃料電池は、本発明の上記膜電極接合体の複数個をガス流路形成部材を介して積層したことを特徴としている。   The polymer electrolyte fuel cell of the present invention is characterized in that a plurality of the membrane electrode assemblies of the present invention are stacked via a gas flow path forming member.

本発明の燃料電池用膜電極接合体においては、補強部材として機能する多孔質体の内部に電極触媒層が設けられていることから電極触媒層位置決めが容易なものとなり、これによって電極触媒層とガス拡散層との接触状態が良好になる。また、多孔質体の外縁部がガス拡散層の外縁よりも外側に位置しているため、ガス拡散層端部のエッジ状部分がプロトン伝導性固体高分子膜に接触しなくなることから、プロトン伝導性高分子膜の破損を確実に防止することができるという優れた効果がもたらされる。   In the fuel cell membrane electrode assembly of the present invention, since the electrode catalyst layer is provided inside the porous body functioning as a reinforcing member, the electrode catalyst layer can be easily positioned. The contact state with the gas diffusion layer is improved. In addition, since the outer edge of the porous body is located outside the outer edge of the gas diffusion layer, the edge portion at the end of the gas diffusion layer does not come into contact with the proton conductive solid polymer membrane. An excellent effect is obtained that the breakage of the conductive polymer film can be reliably prevented.

そして、本発明の膜電極接合体製造方法によれば、プロトン伝導性固体高分子膜やガス拡散層、あるいは基材シートに多孔質体を配置する工程、この多項質体に触媒とプロトン伝導性高分子樹脂と溶媒とを含む溶液を含ませる工程、多孔質体に含ませた上記溶液中の溶媒を除去する工程などから成るものであるから、本発明の上記燃料電池用膜電極接合体の製造に適用することができる。   According to the method for producing a membrane / electrode assembly of the present invention, a step of arranging a porous body on a proton conductive solid polymer membrane, a gas diffusion layer, or a base sheet, a catalyst and a proton conductive Since it comprises a step of including a solution containing a polymer resin and a solvent, a step of removing the solvent in the solution contained in the porous body, the membrane electrode assembly for a fuel cell of the present invention It can be applied to manufacturing.

さらに、本発明の固体高分子形燃料電池においては、本発明の上記膜電極接合体を複数個使用し、これら膜電極接合体をセパレータとして機能するガス流路形成部材と共に積層して成るものであるから、電極触媒層とガス拡散層との接触抵抗が良好で、しかもプロトン伝導性高分子膜が損傷されることがなく、高性能な燃料電池とすることができる。   Furthermore, in the polymer electrolyte fuel cell of the present invention, a plurality of the membrane electrode assemblies of the present invention are used, and these membrane electrode assemblies are laminated together with a gas flow path forming member that functions as a separator. Therefore, the contact resistance between the electrode catalyst layer and the gas diffusion layer is good, and the proton conductive polymer membrane is not damaged, and a high-performance fuel cell can be obtained.

以下、本発明の燃料電池用膜電極触接合体及びその製造方法について、さらに詳細に説明する。   Hereinafter, the membrane electrode contact assembly for fuel cell of the present invention and the production method thereof will be described in more detail.

図1(a)及び(b)は、本発明の燃料電池用膜電極接合体の構造を示すそれぞれ平面図及び断面図であって、図に示す燃料電池用膜電極接合体1は、基本的に、電解質としてのプロトン伝導性固体高分子膜2を電極触媒層3とガス拡散層4から成るガス拡散電極によって挟持した構造をなすものであるが、電極触媒層3は、上記高分子電解質膜2とガス拡散層4の間に挟持された多孔質体5の内部に形成されている。
このとき、上記多孔質体5は、その外縁部5aがガス拡散層4の外縁部4aよりも外側となるように配置されており、これによってガス拡散層4の端部エッジ状部分が高分子電解質膜2に直接接触するようなことがなくなり、ホットプレスによる接合時や電池の運転時などに当該膜電極接合体1に圧力が加わったとしても、ガス拡散層4の端部エッジ状部分における応力集中が回避され、高分子電解質膜2の損傷が防止されることになる。
FIGS. 1A and 1B are a plan view and a cross-sectional view, respectively, showing the structure of a fuel cell membrane electrode assembly of the present invention. The fuel cell membrane electrode assembly 1 shown in FIG. In addition, the proton conductive solid polymer membrane 2 as an electrolyte has a structure sandwiched by a gas diffusion electrode composed of an electrode catalyst layer 3 and a gas diffusion layer 4, and the electrode catalyst layer 3 is composed of the polymer electrolyte membrane. 2 and the gas diffusion layer 4 are formed inside the porous body 5.
At this time, the porous body 5 is disposed such that the outer edge portion 5a is outside the outer edge portion 4a of the gas diffusion layer 4, whereby the end edge portion of the gas diffusion layer 4 is a polymer. Even if pressure is applied to the membrane / electrode assembly 1 during bonding by hot pressing or battery operation, there is no direct contact with the electrolyte membrane 2. Stress concentration is avoided and damage to the polymer electrolyte membrane 2 is prevented.

そして、上記膜電極接合体1のさらに外側にガス流路を設けた導電性材料から成るセパレータ、すなわちガス流路形成部材(図示せず)を配置して、複数個の膜電極接合体1を積層することによって、本発明の固体酸化物形燃料電池が形成される。
なお、上記構造例において、多孔質体5の大きさは、プロトン伝導性固体高分子膜2よりも小さなものとなっており、多孔質体5の外縁部5aが上記固体高分子膜2の外縁よりも内側に位置し、当該固体高分子膜2の外周部の露出部分には、ガスケット6が配設され、ガスシールがなされるようになっている。
Then, a separator made of a conductive material having a gas flow path provided on the outer side of the membrane electrode assembly 1, that is, a gas flow path forming member (not shown), is arranged, and a plurality of membrane electrode assemblies 1 are formed. By laminating, the solid oxide fuel cell of the present invention is formed.
In the above structural example, the size of the porous body 5 is smaller than that of the proton conductive solid polymer membrane 2, and the outer edge portion 5a of the porous body 5 is the outer edge of the solid polymer membrane 2. A gasket 6 is disposed on the exposed portion of the outer peripheral portion of the solid polymer film 2 so as to be gas sealed.

上記多孔質体5は、例えばシリカのような無機材料や、例えばポリイミド、架橋ポリエチレン、PTFEなどのような有機材料から成るものを用いることができ、上記したようにガス拡散層4の端部エッジ状部分による応力集中を緩和すると共に、ガス拡散層4を形成する炭素繊維がプロトン伝導性固体高分子膜2に到達するのを防止するに足る強度(剛性)、気孔率、厚さを備えていることが必要となる。   The porous body 5 can be made of an inorganic material such as silica or an organic material such as polyimide, cross-linked polyethylene, or PTFE. As described above, the end edge of the gas diffusion layer 4 can be used. Strength (rigidity), porosity and thickness sufficient to prevent the carbon fibers forming the gas diffusion layer 4 from reaching the proton-conducting solid polymer membrane 2 while relieving stress concentration due to the shaped portion. It is necessary to be.

電極触媒層3は、上記高分子電解質膜2と同種又は異種の高分子電解質(プロトン伝導性固体高分子樹脂)と触媒粒子を含有しており、上記多孔質体5の周縁部を残した中央部分にプロトン伝導性固体高分子樹脂と触媒と溶媒を含む溶液(スラリー)を含浸させた後、乾燥して上記溶媒を除去することによって多孔質体5の内部に形成される。
このとき、当該多孔質体5の内部における電極触媒層3が形成された領域がガス拡散層4の外縁4aよりも内側となるように含浸することが望ましく、これによって電極触媒層3がその機能を十分に発揮できる部分のみに設置されるようになり、高価な触媒の使用量が低減されることになる。
The electrode catalyst layer 3 contains the same or different polymer electrolyte (proton conductive solid polymer resin) and catalyst particles as the polymer electrolyte membrane 2, and the center of the porous body 5 leaving the peripheral portion. The portion is impregnated with a solution (slurry) containing a proton conductive solid polymer resin, a catalyst, and a solvent, and then dried to remove the solvent to form the porous body 5.
At this time, it is desirable to impregnate the region where the electrode catalyst layer 3 is formed inside the porous body 5 so as to be inside the outer edge 4a of the gas diffusion layer 4, whereby the electrode catalyst layer 3 has its function. It will be installed only in the part which can fully exhibit, and the usage-amount of an expensive catalyst will be reduced.

図2(a)及び(b)は、本発明の燃料電池用膜電極接合体の他の構造例を示すそれぞれ平面図及び断面図であって、図に示す燃料電池用膜電極接合体1においては、多孔質体5が高分子電解質膜2とほぼ同じ大きさを有し、当該多孔質体5における電極触媒層3が形成された領域よりも外側の外周部分に高分子樹脂から成るシール層7が形成されており、この点以外は、図1に示した膜電極接合体と基本的に同じ構造を有している。
このようなシール層7を形成することによって、多孔質体5の外縁部でガスが遮断され、高分子電解質膜2を損傷することなく電極触媒層3を通過するガスの外部への流出が抑制されることになる。
FIGS. 2A and 2B are a plan view and a cross-sectional view, respectively, showing another structural example of the membrane electrode assembly for a fuel cell of the present invention, in the membrane electrode assembly 1 for a fuel cell shown in the drawing. The porous body 5 has substantially the same size as the polymer electrolyte membrane 2, and a sealing layer made of a polymer resin on the outer peripheral portion of the porous body 5 outside the region where the electrode catalyst layer 3 is formed. Except for this point, it has basically the same structure as the membrane electrode assembly shown in FIG.
By forming such a seal layer 7, the gas is blocked at the outer edge of the porous body 5, and the outflow of the gas passing through the electrode catalyst layer 3 is suppressed without damaging the polymer electrolyte membrane 2. Will be.

なお、上記シール層7を構成する高分子樹脂材料としては、ガスのシール作用を発揮するものでありさえすれば、特に限定されるものではないが、高分子電解質膜2や電極触媒層3を構成する樹脂材料に対する反応などによる悪影響が生じることがないように、これらの高分子樹脂と同種の樹脂材料を用いることが望ましい。   The polymer resin material constituting the sealing layer 7 is not particularly limited as long as it exhibits a gas sealing function, but the polymer electrolyte membrane 2 and the electrode catalyst layer 3 are not limited. It is desirable to use a resin material of the same type as these polymer resins so as not to cause an adverse effect due to a reaction to the constituent resin material.

上記電極触媒層3に含まれる触媒成分としては、例えば、Pt(白金)、Ir(イリジウム)、金(Au)、銀(Ag)、Pd(パラジウム)、Ru(ルテニウム)、ロジウム(Rh)などの金属や、これらの合金から選択することができる。
なお、これら触媒金属粒子は、通常、カーボンブラックやグラファイトなどの導電性担体に担持された状態で使用され、上記のようにプロトン伝導性固体高分子樹脂や、必要に応じて撥水性ポリマー等と共に電極触媒層3を構成する。
Examples of the catalyst component contained in the electrode catalyst layer 3 include Pt (platinum), Ir (iridium), gold (Au), silver (Ag), Pd (palladium), Ru (ruthenium), rhodium (Rh), and the like. These metals and their alloys can be selected.
These catalytic metal particles are usually used in a state where they are supported on a conductive carrier such as carbon black or graphite, and as described above, together with a proton conductive solid polymer resin or, if necessary, a water repellent polymer. The electrode catalyst layer 3 is configured.

このような構造を備えた燃料電池用膜電極接合体1は、例えば、プロトン伝導性固体高分子膜2の両面に多孔質体5を配置したのち、この多項質体5の中央部分であって、ガス拡散層4が配置される範囲よりも狭い領域に、触媒とプロトン伝導性高分子樹脂と溶媒とを含む溶液を含ませ、乾燥することによってこの溶液から溶媒を蒸発除去して多孔質体5の内部に電極触媒層3を形成し、得られた積層体をホットプレスすることにより接合体を得る。この両面にカーボンペーパーやカーボン織布又は不織布から成るガス拡散層4を設置する。   The fuel cell membrane electrode assembly 1 having such a structure is, for example, a structure in which a porous body 5 is disposed on both surfaces of a proton conductive solid polymer membrane 2 and then a central portion of the multi-molecular body 5. A solution containing a catalyst, a proton conductive polymer resin, and a solvent is contained in a region narrower than the range in which the gas diffusion layer 4 is disposed, and the solvent is removed from the solution by evaporation to dry the porous body. The electrode catalyst layer 3 is formed inside 5 and the resulting laminate is hot pressed to obtain a joined body. A gas diffusion layer 4 made of carbon paper, carbon woven fabric or non-woven fabric is installed on both sides.

また、上記多孔質体5をガス拡散層4に載置した状態で触媒を含む上記溶液を多孔質体5に同様に含浸させ、これをプロトン伝導性固体高分子膜2の両面に配置したのち、同様に乾燥し、溶媒を除去して多孔質体5の内部に電極触媒層3を形成し、ホットプレスにより接合体にするようになすこともできる。   Further, after the porous body 5 is placed on the gas diffusion layer 4, the porous body 5 is impregnated with the solution containing the catalyst in the same manner, and this is disposed on both surfaces of the proton conductive solid polymer membrane 2. Similarly, it is possible to dry, remove the solvent, form the electrode catalyst layer 3 inside the porous body 5, and form a bonded body by hot pressing.

あるいは、基材シートに多孔質体5を配置し、この多項質体5に上記触媒溶液を同様に含浸させたのち、触媒溶液から溶媒を除去すべく乾燥させ、これらをプロトン伝導性固体高分子膜2の両面に配置した状態でホットプレスして、得られた積層体から上記基材シートを剥がすことによっても製造することができる。
なお、上記基材シートとしては、例えばPTFEを用いることができる。
Alternatively, the porous body 5 is disposed on the base material sheet, and the polycrystalline body 5 is impregnated with the catalyst solution in the same manner, and then dried to remove the solvent from the catalyst solution. It can also be manufactured by hot pressing in a state of being disposed on both surfaces of the film 2 and peeling off the substrate sheet from the obtained laminate.
In addition, as said base material sheet, PTFE can be used, for example.

さらに、図2(a)及び(b)に示したように、多孔質体5の外周部分にシール層7を形成するには、当該多孔質体5に上記触媒溶液を含浸させた後、当該含浸領域の外側部分に上記のような高分子材料を含浸する。なお、その時期は触媒溶液の含浸後であっても、ホットプレス後であってもよい。   Further, as shown in FIGS. 2A and 2B, in order to form the seal layer 7 on the outer peripheral portion of the porous body 5, the porous body 5 is impregnated with the catalyst solution, The outer portion of the impregnation region is impregnated with the polymer material as described above. The timing may be after impregnation with the catalyst solution or after hot pressing.

以下、本発明を実施例に基づいて具体的に説明する。なお、本発明は、これらの実施例のみに限定されないことは言うまでもない。また、この実施例において、「%」は、特記されない限り、質量百分率を意味するものとする。   Hereinafter, the present invention will be specifically described based on examples. Needless to say, the present invention is not limited to these examples. In this example, “%” means mass percentage unless otherwise specified.

(実施例1)
まず、多孔質体5の内部に電極触媒層3を形成するための触媒溶液(スラリー)として、触媒金属としてPt(白金)微粒子を担持させたカーボンブラック粉末(Vulcan XC72)及びプロトン伝導性の固体高分子樹脂溶液(ナフィオン(登録商標)の5%溶液)と共に、溶剤としてのアルコール溶液及び水を用いて、Pt使用量が0.3mg/cm、乾燥後の触媒担持カーボンブラック粉末と高分子樹脂の質量比が1対1となるようなスラリーを調製した。
(Example 1)
First, as a catalyst solution (slurry) for forming the electrode catalyst layer 3 in the porous body 5, carbon black powder (Vulcan XC72) carrying Pt (platinum) fine particles as a catalyst metal and a proton conductive solid Using a polymer resin solution (5% solution of Nafion (registered trademark)), an alcohol solution as a solvent and water, the amount of Pt used is 0.3 mg / cm 2 , and the catalyst-supported carbon black powder and polymer after drying A slurry in which the mass ratio of the resin was 1: 1 was prepared.

次に、プロトン伝導性固体高分子膜としてナフィオン112を使用し、当該固体高分子膜2の上にポリイミドから成る多孔質体5(厚さ:18μm、気孔率:85%)を載置し、当該多孔質体5の中央部分であって、後述するガス拡散層4が配設される領域よりも内側の部分に上記スラリーを含浸させると共に、上記固体高分子膜2の裏面側にも同様の多孔質体5を載置し、同様にスラリーを含浸させたのち、乾燥して溶媒成分をスラリーから除去して上記多孔質体5の内部に電極触媒層3を形成した。   Next, Nafion 112 is used as the proton conductive solid polymer membrane, and the porous body 5 (thickness: 18 μm, porosity: 85%) made of polyimide is placed on the solid polymer membrane 2. The slurry is impregnated in the central portion of the porous body 5 and inside the region where the gas diffusion layer 4 described later is disposed, and the same is applied to the back side of the solid polymer membrane 2 as well. After the porous body 5 was placed and similarly impregnated with the slurry, it was dried to remove the solvent component from the slurry, and the electrode catalyst layer 3 was formed inside the porous body 5.

さらに、電極触媒層3を備えた多孔質体5によって固体高分子膜2を挟持した状態をなす上記積層体の両側にカーボンペーパーから成るガス拡散層4を設置したのち、140℃の温度、10MPaの圧力のもとで120秒間ホットプレスすることによって、これらを接合し、図1に示すような膜電極接合体1を得た。   Furthermore, after the gas diffusion layer 4 made of carbon paper is installed on both sides of the above-mentioned laminate in which the solid polymer membrane 2 is sandwiched by the porous body 5 provided with the electrode catalyst layer 3, the temperature of 140 ° C., 10 MPa These were joined by hot pressing for 120 seconds under a pressure of 1 to obtain a membrane electrode assembly 1 as shown in FIG.

そして、このようにして得られた膜電極接合体1を図示しないガス流路形成部材及び集電体で挟み、燃料電池の単セルとした。
次いで、この単セルの性能を評価するため、1A/cmにおける出力電圧を計測した。
The membrane electrode assembly 1 thus obtained was sandwiched between a gas flow path forming member and a current collector (not shown) to form a single cell of a fuel cell.
Subsequently, in order to evaluate the performance of this single cell, the output voltage at 1 A / cm 2 was measured.

(実施例2)
上記実施例1で使用したガス拡散層4としてのカーボンペーパーの上に、上記多孔質体5を載置し、当該多孔質体5の中央部分に上記スラリーを同様に含浸させたのち、乾燥してスラリーに含まれる溶媒成分を除去し、多孔質体5の内部に電極触媒層3を形成した。
(Example 2)
The porous body 5 is placed on the carbon paper as the gas diffusion layer 4 used in Example 1, and the slurry is similarly impregnated in the central portion of the porous body 5 and then dried. Thus, the solvent component contained in the slurry was removed, and the electrode catalyst layer 3 was formed inside the porous body 5.

次に、このようにして作製したガス拡散層4と電極触媒層3を備えた多孔質体5から成る積層体を実施例1と同様のプロトン伝導性固体高分子膜2の両側に設置し、同様の条件のもとにホットプレスしてこれらを接合し、図1に示すような膜電極接合体1を得た。   Next, a laminate composed of the porous body 5 provided with the gas diffusion layer 4 and the electrode catalyst layer 3 thus prepared was installed on both sides of the same proton conductive solid polymer membrane 2 as in Example 1, These were joined by hot pressing under the same conditions to obtain a membrane electrode assembly 1 as shown in FIG.

そして、上記実施例1と同様に、ガス流路形成部材及び集電体を用いて燃料電池の単セルとし、この単セルの出力電圧を同様に計測した。   In the same manner as in Example 1, a single cell of the fuel cell was formed using the gas flow path forming member and the current collector, and the output voltage of this single cell was measured in the same manner.

(実施例3)
PTFEから成る基材シートを用意し、当該基材シートの上に、上記実施例と同様の多孔質体5を載置し、当該多孔質体5の中央部分に上記スラリーを同様に含浸させたのち、乾燥し、多孔質体5の内部に電極触媒層3を形成した。
(Example 3)
A base sheet made of PTFE was prepared, and the porous body 5 similar to that of the above example was placed on the base sheet, and the slurry was similarly impregnated in the central portion of the porous body 5. After that, the electrode catalyst layer 3 was formed inside the porous body 5 by drying.

次いで、このような電極触媒層3を備えた多孔質体5と基材シートとの積層体を上記プロトン伝導性固体高分子膜2の両側に設置し、同様の条件のもとにホットプレスしたのち、基材シートを剥がし、さらにその両側にガス拡散層4としてのカーボンペーパーを設置して、これらを接合し、図1に示すような膜電極接合体1を得た。   Next, a laminate of the porous body 5 and the base sheet provided with such an electrode catalyst layer 3 was placed on both sides of the proton conductive solid polymer membrane 2 and hot-pressed under the same conditions. After that, the base sheet was peeled off, and carbon paper as the gas diffusion layer 4 was installed on both sides thereof, and these were joined to obtain a membrane electrode assembly 1 as shown in FIG.

そして、上記実施例と同様に、ガス流路形成部材及び集電体を用いて燃料電池の単セルを形成し、この単セルの出力電圧を同様に計測した。   As in the above example, a single cell of the fuel cell was formed using the gas flow path forming member and the current collector, and the output voltage of this single cell was measured in the same manner.

(実施例4)
上記実施例2と同様に、ガス拡散層4としてのカーボンペーパーの上に載置した多孔質体5の中央部分に上記スラリーを同様に含浸させたのち、乾燥してスラリーに含まれる溶媒成分を除去し、多孔質体5の内部に電極触媒層3を形成した。
次に、上記多孔質体5の電極触媒層3の形成領域の外側に、高分子樹脂材料としてナフィオン溶液を含浸させて、多孔質体5の外周部分にシール層7を形成した。
Example 4
Similarly to Example 2 above, the slurry was similarly impregnated in the central portion of the porous body 5 placed on the carbon paper as the gas diffusion layer 4 and then dried to remove the solvent component contained in the slurry. The electrode catalyst layer 3 was formed inside the porous body 5 by removing.
Next, the outer surface of the porous body 5 where the electrode catalyst layer 3 was formed was impregnated with a Nafion solution as a polymer resin material to form a seal layer 7 on the outer periphery of the porous body 5.

次いで、このようにして得られたガス拡散層4と電極触媒層3及びシール層7を備えた多孔質体5との積層体を上記プロトン伝導性固体高分子膜2の両側に設置し、同様にホットプレスしてこれらを接合し、図2に示すような膜電極接合体1を得た。   Next, the laminate of the gas diffusion layer 4 thus obtained and the porous body 5 provided with the electrode catalyst layer 3 and the seal layer 7 was placed on both sides of the proton conductive solid polymer membrane 2, and the same These were joined by hot pressing to obtain a membrane electrode assembly 1 as shown in FIG.

そして、上記実施例と同様に、ガス流路形成部材及び集電体を用いて燃料電池の単セルとし、この単セルの出力電圧を同様に計測した。   In the same manner as in the above example, a single cell of the fuel cell was formed using the gas flow path forming member and the current collector, and the output voltage of this single cell was measured in the same manner.

(比較例)
多孔質体5を用いることなく、プロトン伝導性固体高分子膜であるナフィオン112の両面に、カーボンペーパー(ガス拡散層)に上記スラリーを用いて電極触媒層を付着させたものをホットプレスすることによって、当該比較例の膜電極接合体を得た。
そして、同様にガス流路形成部材及び集電体を用いて燃料電池の単セルとし、この単セルの出力電圧を同様に計測した。
(Comparative example)
Without using the porous body 5, hot pressing is performed on both surfaces of the Nafion 112, which is a proton conductive solid polymer membrane, with the electrode catalyst layer attached to the carbon paper (gas diffusion layer) using the slurry. Thus, a membrane electrode assembly of the comparative example was obtained.
And similarly, it was set as the single cell of a fuel cell using the gas flow path formation member and the electrical power collector, and the output voltage of this single cell was measured similarly.

〔測定結果〕
上記実施例1〜4及び比較例に係わる膜電極接合体を用いた燃料電池単セルにおける開放端での電圧測定結果を図3に示す。
〔Measurement result〕
FIG. 3 shows the voltage measurement results at the open end of the single fuel cell using the membrane electrode assemblies according to Examples 1 to 4 and the comparative example.

図3の結果から明らかなように、多孔質体を使用することなく、高分子電解質膜とガス拡散層の間に電極触媒層を直接形成した比較例の膜電極接合体を用いた単セルにおいては、ガス拡散層の端部エッジ状部分やガス拡散層を構成するカーボン繊維によって高分子電解質膜がホットプレスによる接合時に損傷されると共に、セルの運転時においても、電解質膜の損傷が伸展することから、ガスのクロスリークが発生していると考えられ、初期電圧が低く、しかも運転時間の経過と共に出力電圧が低下する現象認められた。   As is apparent from the results of FIG. 3, in a single cell using a membrane electrode assembly of a comparative example in which an electrode catalyst layer is directly formed between a polymer electrolyte membrane and a gas diffusion layer without using a porous body. The polymer electrolyte membrane is damaged at the time of joining by hot pressing by the edge portion of the gas diffusion layer and the carbon fiber constituting the gas diffusion layer, and the damage to the electrolyte membrane is extended even during the operation of the cell. Therefore, it was considered that gas cross-leak occurred, the initial voltage was low, and the phenomenon that the output voltage decreased with the passage of operation time was recognized.

これに対し、高分子電解質膜とガス拡散層の間に多孔質体を介在させ、この多孔質体の内部に電極触媒層を設けた本発明の膜電極接合体を用いた単セルにおいては、上記ガス拡散層による高分子電解質膜に対するアタックが緩和され、電解質膜の損傷が回避されることから、初期電圧が高いばかりでなく、経時的な性能劣化幅も小さく、特に多孔質体の外周部にシール層を設けた実施例4の膜電極接合体においては、ガスシールがより完全なものとなることから、経時劣化が極めて少なく、長期に亘って良好な電池性能を維持することができることが確認された。   In contrast, in a single cell using the membrane electrode assembly of the present invention in which a porous body is interposed between the polymer electrolyte membrane and the gas diffusion layer and an electrode catalyst layer is provided inside the porous body, Since the attack to the polymer electrolyte membrane by the gas diffusion layer is mitigated and damage to the electrolyte membrane is avoided, not only the initial voltage is high, but also the performance deterioration width with time is small, especially the outer peripheral portion of the porous body In the membrane / electrode assembly of Example 4 provided with a sealing layer, the gas seal becomes more complete, so that there is very little deterioration over time, and good battery performance can be maintained over a long period of time. confirmed.

(a)及び(b)は本発明の燃料電池用膜電極接合体の構造を示すそれぞれ断面図及び平面図である。(A) And (b) is sectional drawing and a top view which respectively show the structure of the membrane electrode assembly for fuel cells of this invention. (a)及び(b)は本発明の燃料電池用膜電極接合体の他の構造を示すそれぞれ断面図及び平面図である。(A) And (b) is sectional drawing and a top view which show the other structure of the membrane electrode assembly for fuel cells of this invention, respectively. 実施例及び比較例に係わる膜電極接合体を用いた燃料電池単セルの出力電圧の経時変化を比較して示すグラフである。It is a graph which compares and shows the time-dependent change of the output voltage of the fuel cell single cell using the membrane electrode assembly concerning an Example and a comparative example.

符号の説明Explanation of symbols

1 燃料電池用膜電極接合体
2 プロトンイオン伝導性固体高分子膜(高分子電解質膜)
3 電極触媒層
4 ガス拡散層
5 多孔質体
7 シール層
1 Fuel Cell Membrane / Electrode Assembly 2 Proton Ion Conductive Solid Polymer Membrane (Polymer Electrolyte Membrane)
3 Electrocatalyst layer 4 Gas diffusion layer
5 Porous material 7 Seal layer

Claims (8)

プロトン伝導性固体高分子膜と、電極触媒層と、ガス拡散層を備えた燃料電池用の膜電極接合体において、上記電極触媒層が多孔質体の内部に形成され、当該多孔質体の外縁がガス拡散層の外縁よりも外側に位置することを特徴とする燃料電池用膜電極接合体。   In a membrane electrode assembly for a fuel cell comprising a proton conductive solid polymer membrane, an electrode catalyst layer, and a gas diffusion layer, the electrode catalyst layer is formed inside the porous body, and the outer edge of the porous body Is located outside the outer edge of the gas diffusion layer, a fuel cell membrane electrode assembly. 上記多孔質体における電極触媒層が形成された領域が上記ガス拡散層の外縁よりも内側に位置することを特徴とする請求項1に記載の燃料電池用膜電極接合体。   2. The membrane electrode assembly for a fuel cell according to claim 1, wherein a region in which the electrode catalyst layer is formed in the porous body is located inside an outer edge of the gas diffusion layer. 上記多孔質体における電極触媒層が形成された領域よりも外側に高分子樹脂から成るシール層が形成されていることを特徴とする請求項1又は2に記載の燃料電池用膜電極接合体。   The membrane electrode assembly for a fuel cell according to claim 1 or 2, wherein a sealing layer made of a polymer resin is formed outside a region where the electrode catalyst layer is formed in the porous body. 請求項1〜3のいずれか1つの項に記載の燃料電池用膜電極接合体を製造する方法であって、プロトン伝導性固体高分子膜に多孔質体を配置する工程と、該多項質体に触媒とプロトン伝導性高分子樹脂と溶媒とを含む溶液を含ませる工程と、上記溶液から溶媒を除去する工程を含むことを特徴とする燃料電池用膜電極接合体の製造方法。   A method for producing a membrane electrode assembly for a fuel cell according to any one of claims 1 to 3, comprising a step of disposing a porous body on a proton conductive solid polymer membrane; A method for producing a membrane electrode assembly for a fuel cell, comprising the steps of: adding a solution containing a catalyst, a proton conductive polymer resin, and a solvent; and removing the solvent from the solution. 請求項1〜3のいずれか1つの項に記載の燃料電池用膜電極接合体を製造する方法であって、ガス拡散層に多孔質体を配置する工程と、該多項質体に触媒とプロトン伝導性高分子樹脂と溶媒とを含む溶液を含ませる工程と、上記ガス拡散層及び多孔質体をプロトン伝導性固体高分子膜に配置する工程と、上記溶液から溶媒を除去する工程を含むことを特徴とする燃料電池用膜電極接合体の製造方法。   A method for producing a membrane electrode assembly for a fuel cell according to any one of claims 1 to 3, comprising a step of disposing a porous body in a gas diffusion layer, and a catalyst and a proton in the polymorphic body. Including a step of including a solution containing a conductive polymer resin and a solvent, a step of disposing the gas diffusion layer and the porous body on the proton conductive solid polymer membrane, and a step of removing the solvent from the solution. A method for producing a membrane electrode assembly for a fuel cell. 請求項1〜3のいずれか1つの項に記載の燃料電池用膜電極接合体を製造する方法であって、基材シートに多孔質体を配置する工程と、該多項質体に触媒とプロトン伝導性高分子樹脂と溶媒とを含む溶液を含ませる工程と、上記基材シート及び多孔質体をプロトン伝導性固体高分子膜に配置する工程と、上記溶液から溶媒を除去する工程と、上記多孔質体から基材シートを除去する工程を含むことを特徴とする燃料電池用膜電極接合体の製造方法。   A method for producing a membrane electrode assembly for a fuel cell according to any one of claims 1 to 3, comprising a step of disposing a porous body on a base sheet, and a catalyst and a proton on the polymorphic body. A step of including a solution containing a conductive polymer resin and a solvent, a step of placing the base sheet and the porous body on a proton conductive solid polymer membrane, a step of removing the solvent from the solution, The manufacturing method of the membrane electrode assembly for fuel cells characterized by including the process of removing a base material sheet from a porous body. 上記多孔質体における溶液を含ませた領域よりも外側に高分子樹脂を含ませる工程を含むことを特徴とする請求項4〜6のいずれか1つの項に記載の燃料電池用膜電極接合体の製造方法。   The membrane electrode assembly for a fuel cell according to any one of claims 4 to 6, further comprising a step of including a polymer resin outside the region containing the solution in the porous body. Manufacturing method. 請求項1〜3のいずれか1つの項に記載の燃料電池用膜電極接合体とガス流路形成部材を複数個積層して成ることを特徴とする固体高分子形燃料電池。   A polymer electrolyte fuel cell comprising a plurality of fuel cell membrane electrode assemblies according to any one of claims 1 to 3 and a plurality of gas flow path forming members.
JP2003428616A 2003-12-25 2003-12-25 Membrane electrode assembly for fuel cell, and its manufacturing method Pending JP2005190750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428616A JP2005190750A (en) 2003-12-25 2003-12-25 Membrane electrode assembly for fuel cell, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428616A JP2005190750A (en) 2003-12-25 2003-12-25 Membrane electrode assembly for fuel cell, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005190750A true JP2005190750A (en) 2005-07-14

Family

ID=34787518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428616A Pending JP2005190750A (en) 2003-12-25 2003-12-25 Membrane electrode assembly for fuel cell, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005190750A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707162B1 (en) * 2005-07-22 2007-04-13 삼성에스디아이 주식회사 High temperature fuel cell
JP2009245797A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Membrane-electrode assembly with reinforcing sheet for polymer electrolyte fuel cell
KR101470036B1 (en) * 2009-12-01 2014-12-05 현대자동차주식회사 Structure of membrane electrode assembly and gas diffusion layer for fuel cell and bonding method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707162B1 (en) * 2005-07-22 2007-04-13 삼성에스디아이 주식회사 High temperature fuel cell
JP2009245797A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Membrane-electrode assembly with reinforcing sheet for polymer electrolyte fuel cell
KR101470036B1 (en) * 2009-12-01 2014-12-05 현대자동차주식회사 Structure of membrane electrode assembly and gas diffusion layer for fuel cell and bonding method thereof

Similar Documents

Publication Publication Date Title
JP5326189B2 (en) Electrolyte membrane-electrode assembly and method for producing the same
JP4882314B2 (en) Electrolyte membrane-electrode assembly and method for producing the same
US20120135330A1 (en) Membrane-Electrode Assembly with integrated sealing material
JP5157050B2 (en) Membrane electrode assembly and manufacturing method thereof
WO2009139370A1 (en) Fuel cell and fuel cell layer
JP2007095669A (en) Electrolyte film-electrode assembly
JP2008515137A (en) Membrane electrode assembly
JP2006338938A (en) Electrolyte membrane-electrode assembly, and its manufacturing method
JP2007042348A (en) Membrane electrode assembly and production method therefor
KR101640731B1 (en) Fuel cell system
JP2006338943A (en) Electrolyte membrane-electrode assembly
JP2006338939A (en) Electrolyte membrane-electrode assembly
JP5070817B2 (en) Membrane / electrode assembly of solid polymer electrolyte fuel cell and production method thereof
JP2008135295A (en) Gas diffusion layer element for solid polymer fuel cell, solid polymer fuel cell, and its manufacturing method
JP2007066768A (en) Electrolyte membrane-electrode assembly and fuel cell using the same
JP5165947B2 (en) Membrane / electrode assembly and manufacturing method thereof
JP5239733B2 (en) Manufacturing method of membrane electrode assembly
JP2007273141A (en) Fuel cell and manufacturing method of fuel cell
JP4760027B2 (en) Method for producing membrane / electrode assembly of solid polymer electrolyte fuel cell
JP2007087728A (en) Laminate, method of manufacturing it, as well as fuel cell
JP2005190750A (en) Membrane electrode assembly for fuel cell, and its manufacturing method
JP2010003470A (en) Fuel cell
JP5645982B2 (en) Gas diffusion layer element for polymer electrolyte fuel cell, polymer electrolyte fuel cell and production method thereof
JP2006338941A (en) Electrolyte membrane-electrode assembly
JP5733182B2 (en) Manufacturing method of membrane electrode assembly