JP2007087728A - Laminate, method of manufacturing it, as well as fuel cell - Google Patents

Laminate, method of manufacturing it, as well as fuel cell Download PDF

Info

Publication number
JP2007087728A
JP2007087728A JP2005274132A JP2005274132A JP2007087728A JP 2007087728 A JP2007087728 A JP 2007087728A JP 2005274132 A JP2005274132 A JP 2005274132A JP 2005274132 A JP2005274132 A JP 2005274132A JP 2007087728 A JP2007087728 A JP 2007087728A
Authority
JP
Japan
Prior art keywords
catalyst layer
electrolyte membrane
diffusion layer
layer
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005274132A
Other languages
Japanese (ja)
Inventor
Daiyu Yoshikawa
大雄 吉川
Toshiyuki Suzuki
稔幸 鈴木
Kazutomo Kato
千智 加藤
Tsutomu Ochi
勉 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005274132A priority Critical patent/JP2007087728A/en
Publication of JP2007087728A publication Critical patent/JP2007087728A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain an electrolyte film from being degraded due to product water collected at a peripheral edge part of a catalyst layer, in a laminate having an electrolyte film and a catalyst layer for an electrode. <P>SOLUTION: The method of manufacturing the laminate 20, provided with an electrolyte film 11, a catalyst layer for an electrode fitted to either face of the electrolyte film 11, and a diffusion layer 13 jointed to the electrolyte film 11 through the catalyst layer 12, includes a crimping process carrying out crimping in such a condition that a vicinity of an interface (a region A) of the electrolyte film 11 with a peripheral edge part 12a of the catalyst layer 12 is to be nearly a plane. By making the vicinity of the interface of the electrolyte film 11 with the periphery edge part 12a of the catalyst layer 12 nearly plane, product water is restrained from collecting at the periphery edge part 12a of the catalyst layer 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、積層体及びその製造方法並びに燃料電池に関する。   The present invention relates to a laminate, a manufacturing method thereof, and a fuel cell.

固体高分子電解質型の燃料電池は、電解質膜と電極用の触媒層とからなる膜・電極接合体(MEA:Membrane-Electrode Assembly)に拡散層を接合して構成した膜・電極・拡散層接合体(MEGA:Membrane-Electrode-Gas diffusion layer Assembly)を備えている。近年においては、電解質膜と、電極用の触媒層と、カーボン布等の拡散層と、をホットプレス法により圧着接合して膜・電極・拡散層接合体を製造する方法が提案されている(例えば、特許文献1参照。)。
特許第3492385号公報
A solid polymer electrolyte fuel cell is composed of a membrane-electrode assembly (MEA) consisting of an electrolyte membrane and an electrode catalyst layer, and a membrane / electrode / diffusion layer junction formed by joining a diffusion layer to the membrane / electrode assembly (MEA). The body (MEGA: Membrane-Electrode-Gas diffusion layer Assembly) is provided. In recent years, there has been proposed a method for producing a membrane / electrode / diffusion layer assembly by press-bonding an electrolyte membrane, an electrode catalyst layer, and a diffusion layer such as a carbon cloth by a hot press method ( For example, see Patent Document 1.)
Japanese Patent No. 3492385

ところで、膜・電極接合体を構成する電極用の触媒層は、一般に、電解質膜より小面積とされる。従って、膜・電極接合体の周縁部近傍部分は電解質膜のみから構成されることとなり、この周縁部近傍部分の厚さは、電解質膜と触媒層とからなる中央部分よりも薄くなる。   Incidentally, the electrode catalyst layer constituting the membrane-electrode assembly is generally smaller in area than the electrolyte membrane. Therefore, the peripheral portion of the membrane / electrode assembly is composed only of the electrolyte membrane, and the thickness of the peripheral portion is thinner than the central portion formed of the electrolyte membrane and the catalyst layer.

このため、前記した特許文献1に記載されたような従来のホットプレス法を採用して図7に示すように、電解質膜110と触媒層120とからなる膜・電極接合体100に拡散層130を圧着すると、触媒層120の周縁部121に沿って電解質膜110と拡散層130との間に空隙200が形成され、発電により生成された水分(生成水)がこの空隙200に溜まることとなる。このように空隙200に生成水が溜まると、生成水に含まれる過酸化水素やラジカルにより電解質膜110が化学的に劣化し、電解質膜110の耐久性が低下したり燃料電池の発電効率が低下したりする等の問題が生じ得る。   For this reason, the diffusion layer 130 is formed on the membrane-electrode assembly 100 including the electrolyte membrane 110 and the catalyst layer 120 as shown in FIG. , The gap 200 is formed between the electrolyte membrane 110 and the diffusion layer 130 along the peripheral edge 121 of the catalyst layer 120, and moisture (generated water) generated by power generation is accumulated in the gap 200. . When the generated water accumulates in the gap 200 as described above, the electrolyte membrane 110 is chemically deteriorated by hydrogen peroxide and radicals contained in the generated water, so that the durability of the electrolyte membrane 110 is reduced and the power generation efficiency of the fuel cell is reduced. Problems may occur.

本発明は、かかる事情に鑑みてなされたものであり、電解質膜と電極用の触媒層とを有する積層体において、触媒層の周縁部に生成水が溜まり電解質膜が劣化するのを抑制することを目的とする。   The present invention has been made in view of such circumstances, and in a laminate having an electrolyte membrane and a catalyst layer for an electrode, it is possible to suppress the generation of water in the peripheral portion of the catalyst layer and the deterioration of the electrolyte membrane. With the goal.

前記目的を達成するため、本発明に係る積層体は、電解質膜と、この電解質膜の両面に設けられる電極用の触媒層と、電解質膜の両面に触媒層を介して接合される拡散層と、を備える積層体であって、拡散層と触媒層の周縁部との境界近傍が略平面になるように構成されてなるものである。   In order to achieve the above object, a laminate according to the present invention includes an electrolyte membrane, an electrode catalyst layer provided on both surfaces of the electrolyte membrane, and a diffusion layer bonded to both surfaces of the electrolyte membrane via the catalyst layer. , Wherein the vicinity of the boundary between the diffusion layer and the peripheral edge of the catalyst layer is substantially flat.

かかる構成によれば、拡散層と触媒層の周縁部との境界近傍が略平面にされるため、触媒層の周縁部(電解質膜と拡散層との間)に生成水が溜まることを抑制することができる。この結果、電解質膜の化学的劣化を抑制することができるので、電解質膜の耐久性向上や発電効率の増大が可能となる。   According to such a configuration, since the vicinity of the boundary between the diffusion layer and the peripheral portion of the catalyst layer is substantially flat, it is possible to suppress the generation water from being accumulated in the peripheral portion (between the electrolyte membrane and the diffusion layer) of the catalyst layer. be able to. As a result, since chemical degradation of the electrolyte membrane can be suppressed, durability of the electrolyte membrane can be improved and power generation efficiency can be increased.

前記積層体において、拡散層の触媒層側の表面に凹部を設け、触媒層の少なくとも周縁部をこの凹部に埋設させることもできる。   In the laminate, a recess may be provided on the surface of the diffusion layer on the catalyst layer side, and at least the peripheral edge of the catalyst layer may be embedded in the recess.

また、本発明に係る積層体は、電解質膜と、この電解質膜の両面に設けられる電極用の触媒層と、電解質膜の両面に触媒層を介して接合される拡散層と、を備える積層体であって、電解質膜の表面と、拡散層の触媒層側の表面と、に各々凹部が設けられるとともに、これら凹部が対向配置されて空間が形成され、この空間内に触媒層の少なくとも周縁部が充填されてなるものである。   In addition, a laminate according to the present invention includes an electrolyte membrane, a catalyst layer for electrodes provided on both surfaces of the electrolyte membrane, and a diffusion layer bonded to both surfaces of the electrolyte membrane via the catalyst layer. A recess is provided on each of the surface of the electrolyte membrane and the surface of the diffusion layer on the catalyst layer side, and a space is formed by arranging these recesses facing each other, and at least a peripheral portion of the catalyst layer is formed in this space. Is filled.

かかる構成によれば、電解質膜の表面と拡散層の表面とに設けられた凹部を対向配置して形成した空間内に、触媒層の少なくとも周縁部が充填されるため、触媒層の周縁部(電解質膜と拡散層との間)に生成水が溜まることを抑制することができる。この結果、電解質膜の化学的劣化を抑制することができるので、電解質膜の耐久性向上や発電効率の増大が可能となる。   According to such a configuration, since at least the peripheral portion of the catalyst layer is filled in the space formed by disposing the concave portions provided on the surface of the electrolyte membrane and the surface of the diffusion layer so as to face each other, the peripheral portion of the catalyst layer ( It is possible to prevent the generated water from accumulating between the electrolyte membrane and the diffusion layer. As a result, since chemical degradation of the electrolyte membrane can be suppressed, durability of the electrolyte membrane can be improved and power generation efficiency can be increased.

前記積層体において、触媒層を、アノード電極用触媒層及びカソード電極用触媒層とし、アノード電極用触媒層の面積と、カソード電極用触媒層の面積と、を異ならせることもできる。例えば、カソード電極用触媒層の面積をアノード電極用触媒層の面積よりも小さくする(カソード電極用触媒層の周縁部の位置をアノード電極用触媒層の周縁部の位置よりも平面視で中央寄りにする)ことにより、積層体の耐用期間を長期化することが可能となる。   In the laminate, the catalyst layer may be an anode electrode catalyst layer and a cathode electrode catalyst layer, and the area of the anode electrode catalyst layer may be different from the area of the cathode electrode catalyst layer. For example, the area of the cathode electrode catalyst layer is made smaller than the area of the anode electrode catalyst layer (the position of the periphery of the cathode electrode catalyst layer is closer to the center in plan view than the position of the periphery of the anode electrode catalyst layer). By doing so, it becomes possible to extend the useful life of the laminate.

また、本発明に係る燃料電池は、前記積層体を備えるものである。   Moreover, the fuel cell according to the present invention comprises the laminate.

かかる構成を採用すると、電解質膜の化学的劣化を抑制することが可能な積層体を備えるため、発電効率を増大させることができる。   When such a configuration is adopted, the power generation efficiency can be increased because the laminated body that can suppress the chemical deterioration of the electrolyte membrane is provided.

また、本発明に係る積層体の製造方法は、電解質膜と、この電解質膜の両面に設けられる電極用の触媒層と、を備える積層体の製造方法であって、電解質膜と触媒層の周縁部との境界近傍が略平面になるような条件で圧着を行う圧着工程を含むものである。   Further, the method for producing a laminate according to the present invention is a method for producing a laminate comprising an electrolyte membrane and a catalyst layer for electrodes provided on both surfaces of the electrolyte membrane, the periphery of the electrolyte membrane and the catalyst layer. This includes a crimping process for crimping under the condition that the vicinity of the boundary with the portion is substantially flat.

かかる方法によれば、電解質膜と触媒層の周縁部との境界近傍を略平面にすることができるので、積層体の電解質膜に触媒層を介して拡散層を接合する場合においても、触媒層の周縁部に生成水が溜まることを抑制することができる。この結果、電解質膜の化学的劣化を抑制することができるので、電解質膜の耐久性向上や発電効率の増大が可能となる。   According to this method, since the vicinity of the boundary between the electrolyte membrane and the peripheral edge of the catalyst layer can be made substantially flat, even when the diffusion layer is joined to the electrolyte membrane of the laminate via the catalyst layer, the catalyst layer It can suppress that generated water accumulates in the peripheral part. As a result, since chemical degradation of the electrolyte membrane can be suppressed, durability of the electrolyte membrane can be improved and power generation efficiency can be increased.

前記製造方法において、圧着工程は、電解質膜の両面に触媒層を介して拡散層を接合する拡散層接合工程を含むこともできる。   In the said manufacturing method, a crimping | compression-bonding process can also include the diffusion layer joining process of joining a diffusion layer to both surfaces of an electrolyte membrane via a catalyst layer.

また、本発明に係る積層体の製造方法は、電解質膜と、この電解質膜の両面に設けられる電極用の触媒層と、電解質膜の両面に触媒層を介して接合される拡散層と、を備える積層体の製造方法であって、拡散層と触媒層の周縁部との境界近傍が略平面になるような条件で圧着を行う圧着工程を含むものである。   Further, the method for producing a laminate according to the present invention includes an electrolyte membrane, a catalyst layer for electrodes provided on both surfaces of the electrolyte membrane, and a diffusion layer bonded to both surfaces of the electrolyte membrane via the catalyst layer. It is a manufacturing method of the laminated body provided, Comprising: The crimping | compression-bonding process of crimping | bonding on the conditions that the boundary vicinity of a diffusion layer and the peripheral part of a catalyst layer becomes a substantially plane is included.

かかる方法によれば、拡散層と触媒層の周縁部との境界近傍を略平面にすることができるので、触媒層の周縁部(電解質膜と拡散層との間)に生成水が溜まることを抑制することができる。この結果、電解質膜の化学的劣化を抑制することができるので、電解質膜の耐久性向上や発電効率の増大が可能となる。   According to such a method, the vicinity of the boundary between the diffusion layer and the peripheral portion of the catalyst layer can be made substantially flat, so that the generated water accumulates in the peripheral portion of the catalyst layer (between the electrolyte membrane and the diffusion layer). Can be suppressed. As a result, since chemical degradation of the electrolyte membrane can be suppressed, durability of the electrolyte membrane can be improved and power generation efficiency can be increased.

また、本発明に係る積層体の製造方法は、電解質膜と、この電解質膜の両面に設けられる電極用の触媒層と、電解質膜の両面に触媒層を介して接合される拡散層と、を備える積層体の製造方法であって、電解質膜の表面と、拡散層の触媒層側の表面と、に各々凹部を設けるとともに、これら凹部を対向配置して空間を形成し、この空間内に触媒層の少なくとも周縁部を充填するような条件で圧着を行う圧着工程を含むものである。   Further, the method for producing a laminate according to the present invention includes an electrolyte membrane, a catalyst layer for electrodes provided on both surfaces of the electrolyte membrane, and a diffusion layer bonded to both surfaces of the electrolyte membrane via the catalyst layer. A method of manufacturing a laminate comprising: a concave portion provided on a surface of an electrolyte membrane and a surface of a diffusion layer on a catalyst layer side; and a space is formed by disposing the concave portions facing each other, and a catalyst is formed in the space. It includes a pressure-bonding step in which pressure-bonding is performed under a condition that fills at least the peripheral edge of the layer.

かかる方法によれば、電解質膜の表面と拡散層の表面とに設けた凹部を対向配置して形成した空間内に、触媒層の少なくとも周縁部を充填することができるので、触媒層の周縁部(電解質膜と拡散層との間)に生成水が溜まることを抑制することができる。この結果、電解質膜の化学的劣化を抑制することができるので、電解質膜の耐久性向上や発電効率の増大が可能となる。   According to such a method, since at least the peripheral portion of the catalyst layer can be filled in the space formed by disposing the concave portions provided on the surface of the electrolyte membrane and the surface of the diffusion layer so as to face each other, the peripheral portion of the catalyst layer It can suppress that produced water accumulates (between the electrolyte membrane and the diffusion layer). As a result, since chemical degradation of the electrolyte membrane can be suppressed, durability of the electrolyte membrane can be improved and power generation efficiency can be increased.

本発明によれば、電解質膜と電極用の触媒層とを有する積層体において、触媒層の周縁部に生成水に溜まるのを抑制することができるので、電解質膜の劣化を抑制することができる。   According to the present invention, in a laminate having an electrolyte membrane and an electrode catalyst layer, it is possible to suppress the generation water from accumulating in the peripheral portion of the catalyst layer, and thus it is possible to suppress deterioration of the electrolyte membrane. .

以下、図面を参照して、本発明の実施形態に係る燃料電池について説明する。以下の各実施形態に係る燃料電池は、車載に好適な固体高分子電解質型の燃料電池である。   Hereinafter, a fuel cell according to an embodiment of the present invention will be described with reference to the drawings. The fuel cells according to the following embodiments are solid polymer electrolyte fuel cells suitable for in-vehicle use.

<第1実施形態>
まず、図1〜図3を用いて、本発明の第1実施形態に係る燃料電池1について説明する。
<First Embodiment>
First, the fuel cell 1 which concerns on 1st Embodiment of this invention is demonstrated using FIGS. 1-3.

本実施形態に係る燃料電池1は、図1に示すように、複数の単電池10を積層したスタック本体2を備えており、スタック本体2の両端に位置する単電池10の外側に、出力端子付の集電板3、絶縁板4及び端板5がこの順に配置されて構成されている。各端板5の外側には図示していないテンションプレートが配置され、これらテンションプレートが各々端板5にボルト固定されることにより、単電池10の積層方向に所定の圧縮力が加えられるようになっている。   As shown in FIG. 1, the fuel cell 1 according to the present embodiment includes a stack body 2 in which a plurality of unit cells 10 are stacked, and an output terminal is provided outside the unit cell 10 positioned at both ends of the stack body 2. The attached current collecting plate 3, insulating plate 4 and end plate 5 are arranged in this order. A tension plate (not shown) is arranged outside each end plate 5, and these tension plates are bolted to the end plates 5 so that a predetermined compressive force is applied in the stacking direction of the cells 10. It has become.

単電池10は、図2に示すように、電解質膜11、電解質膜11の両面に設けられた電極用の触媒層12、触媒層12の外側に配設される拡散層13、反応ガス流路が設けられたセパレータ14、拡散層13とセパレータ14との間をシールするシール部材15等から構成されている。   As shown in FIG. 2, the unit cell 10 includes an electrolyte membrane 11, an electrode catalyst layer 12 provided on both surfaces of the electrolyte membrane 11, a diffusion layer 13 disposed outside the catalyst layer 12, a reactive gas flow path. The separator 14 is provided with a seal member 15, the sealing member 15 that seals between the diffusion layer 13 and the separator 14, and the like.

電解質膜11は、固体高分子材料のイオン交換膜から構成され、燃料ガスから供給された水素イオンをアノード側電極からカソード側電極に移動させる機能を有する。触媒層12は、白金等の電極触媒が担持されたシート状成形体であって、電解質膜11に接合されてアノード側電極とカソード側電極とを構成する。燃料ガスから供給された水素(H2)は、触媒層12に到達すると、触媒の表面で活性な2個の水素原子(水素活性種:H*)に解離する。さらに、触媒表面では酸化反応が進行して水素活性種から水素イオン(H+)と電子(e-)とが生じ、これらのうち水素イオンは電解質膜11中に移入する。この触媒層12では、触媒と固体電解質との配合割合を適宜設定することにより、触媒利用効率の低下を抑えて電池性能を向上させることができる。 The electrolyte membrane 11 is composed of an ion exchange membrane made of a solid polymer material, and has a function of moving hydrogen ions supplied from the fuel gas from the anode side electrode to the cathode side electrode. The catalyst layer 12 is a sheet-like molded body on which an electrode catalyst such as platinum is supported, and is joined to the electrolyte membrane 11 to constitute an anode side electrode and a cathode side electrode. When hydrogen (H 2 ) supplied from the fuel gas reaches the catalyst layer 12, it dissociates into two hydrogen atoms (hydrogen active species: H * ) that are active on the surface of the catalyst. Furthermore, an oxidation reaction proceeds on the catalyst surface, and hydrogen ions (H + ) and electrons (e ) are generated from the hydrogen active species. Among these, hydrogen ions are transferred into the electrolyte membrane 11. In the catalyst layer 12, by appropriately setting the blending ratio of the catalyst and the solid electrolyte, it is possible to improve the battery performance while suppressing a decrease in catalyst utilization efficiency.

本実施形態における電解質膜11及び触媒層12は、何れも平面視で矩形形状を呈しており、図2及び図3に示すように、電解質膜11は触媒層12よりも大きい面積を有している。また、本実施形態における電解質膜11は、拡散層13よりも低い剛性を有している。従って、電解質膜11と触媒層12と拡散層13とを圧着接合する際に、図3に示すように電解質膜11の表面に凹部11aが設けられ、この凹部11aに触媒層12が埋設された状態となる。これにより、電解質膜11と触媒層12の周縁部12aとの境界近傍部分(図2及び図3における領域A)が略平面とされる。   The electrolyte membrane 11 and the catalyst layer 12 in the present embodiment both have a rectangular shape in plan view, and the electrolyte membrane 11 has a larger area than the catalyst layer 12 as shown in FIGS. Yes. Further, the electrolyte membrane 11 in the present embodiment has lower rigidity than the diffusion layer 13. Therefore, when the electrolyte membrane 11, the catalyst layer 12, and the diffusion layer 13 are joined by pressure bonding, as shown in FIG. 3, a recess 11 a is provided on the surface of the electrolyte membrane 11, and the catalyst layer 12 is embedded in the recess 11 a. It becomes a state. Thereby, the boundary vicinity part (area | region A in FIG.2 and FIG.3) of the electrolyte membrane 11 and the peripheral part 12a of the catalyst layer 12 is made into a substantially plane.

拡散層13は、カーボン布やカーボンペーパ等の多孔質の素材から構成され、燃料電池1の外部からセパレータ14を介して触媒層12側に供給された反応ガスを拡散させて触媒層12に流す機能を有している。また、拡散層13は、触媒層12とセパレータ14とを導通させる導電機能をも有している。本実施形態における拡散層13は、平面視で矩形形状を呈しており、図2及び図3に示すように、電解質膜11よりも小さく触媒層12よりも大きい面積を有している。また、本実施形態における拡散層13の触媒層12と反対側の表面には、撥水処理が施されている。   The diffusion layer 13 is made of a porous material such as carbon cloth or carbon paper, and diffuses the reaction gas supplied from the outside of the fuel cell 1 to the catalyst layer 12 via the separator 14 and flows to the catalyst layer 12. It has a function. The diffusion layer 13 also has a conductive function for conducting the catalyst layer 12 and the separator 14. The diffusion layer 13 in the present embodiment has a rectangular shape in plan view, and has an area smaller than the electrolyte membrane 11 and larger than the catalyst layer 12 as shown in FIGS. Further, the surface opposite to the catalyst layer 12 of the diffusion layer 13 in this embodiment is subjected to water repellent treatment.

なお、電解質膜11と触媒層12とからなる膜・電極接合体(以下「MEA」という)は、本発明に係る積層体の一実施形態である。また、電解質膜11と触媒層12と拡散層13とからなる膜・電極・拡散層接合体(以下「MEGA」という)20も、本発明に係る積層体の一実施形態である。   A membrane / electrode assembly (hereinafter referred to as “MEA”) composed of the electrolyte membrane 11 and the catalyst layer 12 is an embodiment of the laminate according to the present invention. A membrane / electrode / diffusion layer assembly (hereinafter referred to as “MEGA”) 20 including the electrolyte membrane 11, the catalyst layer 12, and the diffusion layer 13 is also an embodiment of the laminate according to the present invention.

セパレータ14は、積層される各単電池10同士を区切る境界であり、隣接する単電池10間でアノード側電極とカソード側電極とが接触することによるその単電池10同士の短絡を防止する機能と、隣接する単電池10同士を導通させる機能と、を有する。セパレータ14はMEGA20に隣接配置され、図2に示すように、拡散層13と対向する面に反応ガス流路14aが形成されている。また、セパレータ14には、反応ガスの入口及び出口となるマニホールド14bが設けられており、マニホールド14bは反応ガス流路14aに連通するようになっている。セパレータ14は、電子伝導性が高く、耐食性に優れ、かつガス雰囲気において金属イオンを放出しないという特性を有することが好ましい。かかる特性を有する材料としては、カーボン等の炭素質材料やステンレス鋼等の金属材料が挙げられる。   The separator 14 is a boundary that separates the stacked unit cells 10, and has a function of preventing a short circuit between the unit cells 10 due to the contact between the anode side electrode and the cathode side electrode between the adjacent unit cells 10. And a function of electrically connecting adjacent unit cells 10 to each other. The separator 14 is disposed adjacent to the MEGA 20, and as shown in FIG. 2, a reaction gas channel 14 a is formed on the surface facing the diffusion layer 13. The separator 14 is provided with a manifold 14b that serves as an inlet and an outlet for the reaction gas, and the manifold 14b communicates with the reaction gas channel 14a. The separator 14 preferably has characteristics such as high electron conductivity, excellent corrosion resistance, and no release of metal ions in a gas atmosphere. Examples of the material having such characteristics include carbonaceous materials such as carbon and metal materials such as stainless steel.

次に、本実施形態に係る燃料電池1に含まれるMEGA20の製造方法について説明する。   Next, a method for manufacturing the MEGA 20 included in the fuel cell 1 according to this embodiment will be described.

まず、電解質膜11を準備する(電解質膜準備工程)。次いで、白金粒子や炭素粒子を所定の溶媒に混合させたペースト状混合物を電解質膜11の両面に塗布して乾燥させることにより、触媒層12を形成する(触媒層形成工程)。これら電解質膜11及び触媒層12によりMEAが構成される。   First, the electrolyte membrane 11 is prepared (electrolyte membrane preparation process). Next, the catalyst layer 12 is formed by applying a paste mixture obtained by mixing platinum particles and carbon particles in a predetermined solvent on both surfaces of the electrolyte membrane 11 and drying the mixture (catalyst layer forming step). These electrolyte membrane 11 and catalyst layer 12 constitute an MEA.

次いで、MEAの両面に拡散層13となるカーボン布やカーボンペーパ等を隣接配置し、特定の温度及び圧力で拡散層13の全面にわたってホットプレスを行うことにより、電解質膜11及び触媒層12に拡散層13を圧着接合してMEGA20を構成する(圧着工程)。   Next, carbon cloth, carbon paper, or the like that becomes the diffusion layer 13 is adjacently disposed on both surfaces of the MEA, and is diffused into the electrolyte membrane 11 and the catalyst layer 12 by performing hot pressing on the entire surface of the diffusion layer 13 at a specific temperature and pressure. The MEGA 20 is configured by pressure bonding the layer 13 (pressure bonding process).

かかる圧着工程においては、電解質膜11の表面に凹部11aを設け、触媒層12をこの凹部11aに埋設させるようにして電解質膜11と触媒層12の周縁部12aとの境界近傍(図2及び図3における領域A)が略平面になるような条件でホットプレスを行う。   In the pressure bonding step, a recess 11a is provided on the surface of the electrolyte membrane 11, and the catalyst layer 12 is embedded in the recess 11a so that the vicinity of the boundary between the electrolyte membrane 11 and the peripheral portion 12a of the catalyst layer 12 (FIGS. 2 and 2). The hot pressing is performed under the condition that the area A) in FIG.

MEAを構成する触媒層12は、図2に示すように電解質膜11より小面積とされるため、MEAの周縁部近傍部分は電解質膜11のみから構成されることとなり、この周縁部近傍部分の厚さは、電解質膜11と触媒層12とからなる中央部分よりも薄くなる。このため、MEAに拡散層13を単に圧着するだけでは、触媒層12の周縁部12aに沿って電解質膜11と拡散層13との間に空隙が形成されてしまう。本実施形態においては、このような空隙の容積を可及的に低減させるような条件(電解質膜11と触媒層12の周縁部12aとの境界近傍における領域Aが略平面になるような条件)でホットプレスを行うこととしている。   Since the catalyst layer 12 constituting the MEA has a smaller area than the electrolyte membrane 11 as shown in FIG. 2, the peripheral portion of the MEA is composed only of the electrolyte membrane 11. The thickness is thinner than the central portion composed of the electrolyte membrane 11 and the catalyst layer 12. For this reason, if the diffusion layer 13 is simply pressure-bonded to the MEA, a gap is formed between the electrolyte membrane 11 and the diffusion layer 13 along the peripheral edge portion 12 a of the catalyst layer 12. In the present embodiment, conditions for reducing the void volume as much as possible (conditions in which the region A in the vicinity of the boundary between the electrolyte membrane 11 and the peripheral edge portion 12a of the catalyst layer 12 is substantially flat) I am going to do a hot press.

図4(a)は、一定圧力下におけるホットプレス時の温度Tと、触媒層12の周縁部12aに形成される空隙の容積Vと、の関係を示すグラフである。このグラフに示されるように、ホットプレス時の圧力が一定の場合には、温度Tを上昇させるほど空隙の容積Vが低減することが知られている。また、図4(b)は、一定温度下におけるホットプレス時の圧力Pと、触媒層12の周縁部12aに形成される空隙の容積Vと、の関係を示すグラフである。このグラフに示されるように、ホットプレス時の温度が一定の場合には、圧力Pを上昇させるほど空隙の容積Vが低減することが知られている。   FIG. 4A is a graph showing the relationship between the temperature T during hot pressing under a constant pressure and the volume V of the void formed in the peripheral edge portion 12a of the catalyst layer 12. As shown in this graph, it is known that when the pressure during hot pressing is constant, the volume V of the air gap decreases as the temperature T increases. FIG. 4B is a graph showing the relationship between the pressure P at the time of hot pressing at a constant temperature and the volume V of the void formed in the peripheral edge portion 12a of the catalyst layer 12. As shown in this graph, it is known that when the temperature during hot pressing is constant, the volume V of the air gap decreases as the pressure P increases.

従って、本実施形態においては、これら図4に示されるような温度T(圧力P)と空隙容積Vとの間の相関関係、電解質膜11と触媒層12と拡散層13の各々の材料特性(剛性、組成変化、溶融温度等)や厚さ、等を総合的に考慮して、圧着工程で採用する条件(ホットプレス時の温度及び圧力)を決定する。   Accordingly, in the present embodiment, the correlation between the temperature T (pressure P) and the void volume V as shown in FIG. 4 and the material characteristics of the electrolyte membrane 11, the catalyst layer 12, and the diffusion layer 13 ( The conditions (temperature and pressure at the time of hot pressing) to be adopted in the crimping process are determined by comprehensively considering the rigidity, composition change, melting temperature, etc.) and thickness.

例えば、厚さt1μmの電解質膜11と、厚さt2mmの拡散層13と、を採用した場合に、ホットプレス時の温度をT1〜T2℃に設定し、圧力をP1〜P2MPaに設定することにより、電解質膜11と触媒層12の周縁部12aとの境界近傍が略平面になるようにする。ここで、T1、T2、P1、P2は、電解質膜11及び拡散層13の厚さ(t1、t2)や材料特性から決定される数値である。 For example, when the electrolyte membrane 11 having a thickness of t 1 μm and the diffusion layer 13 having a thickness of t 2 mm are employed, the temperature at the time of hot pressing is set to T 1 to T 2 ° C., and the pressure is set to P 1. By setting it to ~ P 2 MPa, the vicinity of the boundary between the electrolyte membrane 11 and the peripheral edge portion 12a of the catalyst layer 12 is made substantially flat. Here, T 1 , T 2 , P 1 , and P 2 are values determined from the thickness (t 1 , t 2 ) and material characteristics of the electrolyte membrane 11 and the diffusion layer 13.

以上の工程群(電解質膜準備工程、触媒層形成工程及び圧着工程)を経て、MEGA20が製造されることとなる。本実施形態における圧着工程には、本発明における拡散層接合工程の一実施形態が含まれる。なお、MEGA20を、シール部材15を介してセパレータ14で挟持することにより単電池10を構成することができる。そして、このように構成した単電池10を複数積層してスタック本体2を構成し、このスタック本体2の端部に集電板3、絶縁板4及びエンドプレート5を配置し、エンドプレート5にテンションプレートをボルト固定することにより、燃料電池1を得ることができる。   The MEGA 20 is manufactured through the above process group (electrolyte membrane preparation process, catalyst layer forming process, and pressure bonding process). One embodiment of the diffusion layer bonding step in the present invention is included in the crimping step in the present embodiment. The unit cell 10 can be configured by sandwiching the MEGA 20 with the separator 14 via the seal member 15. A plurality of unit cells 10 configured as described above are stacked to form the stack body 2, and the current collector plate 3, the insulating plate 4 and the end plate 5 are disposed at the end of the stack body 2. The fuel cell 1 can be obtained by bolting the tension plate.

以上説明した実施形態に係る積層体(MEGA20)の製造方法においては、電解質膜11と触媒層12の周縁部12aとの境界近傍(領域A)を略平面にすることができるので、触媒層12の周縁部12aに生成水が溜まることを抑制することができる。この結果、電解質膜11の化学的劣化を抑制することができるので、電解質膜11の耐久性を向上させることができるとともに、燃料電池1の発電効率を増大させることができる。   In the method for manufacturing the laminate (MEGA 20) according to the embodiment described above, the vicinity of the boundary (region A) between the electrolyte membrane 11 and the peripheral edge portion 12a of the catalyst layer 12 can be made substantially flat, so that the catalyst layer 12 It is possible to prevent the generated water from collecting on the peripheral edge portion 12a. As a result, chemical degradation of the electrolyte membrane 11 can be suppressed, so that the durability of the electrolyte membrane 11 can be improved and the power generation efficiency of the fuel cell 1 can be increased.

<第2実施形態>
次に、図5等を参照して、本発明の第2実施形態に係る燃料電池について説明する。本実施形態に係る燃料電池は、第1実施形態に係る燃料電池1のMEGA20の構成を変更したものであり、その他の構成については第1実施形態と実質的に同一である。このため、変更した構成を中心に説明することとし、第1実施形態と共通する部分については同一符号を付してその説明を省略する。
Second Embodiment
Next, a fuel cell according to a second embodiment of the present invention will be described with reference to FIG. The fuel cell according to the present embodiment is obtained by changing the configuration of the MEGA 20 of the fuel cell 1 according to the first embodiment, and other configurations are substantially the same as those of the first embodiment. For this reason, it demonstrates centering around the changed structure, and attaches | subjects the code | symbol same about the part which is common in 1st Embodiment, and abbreviate | omits the description.

本実施形態に係る燃料電池に含まれるMEGA20Aは、図5に示すように、電解質膜11A、電解質膜11Aの両面に設けられた電極用の触媒層12、触媒層12の外側に配設される拡散層13A等から構成されている。触媒層12は第1実施形態で説明したものと実質的に同一であるので、説明を省略する。   As shown in FIG. 5, the MEGA 20A included in the fuel cell according to the present embodiment is disposed on the outside of the electrolyte membrane 11A, the electrode catalyst layer 12 provided on both surfaces of the electrolyte membrane 11A, and the catalyst layer 12. It is composed of a diffusion layer 13A and the like. Since the catalyst layer 12 is substantially the same as that described in the first embodiment, the description thereof is omitted.

本実施形態における電解質膜11Aは、第1実施形態における電解質膜11と同様に固体高分子材料のイオン交換膜から構成され、燃料ガスから供給された水素イオンをアノード側電極からカソード側電極に移動させる機能を有する。本実施形態における拡散層13Aは、第1実施形態における拡散層13と同様にカーボン布やカーボンペーパ等の多孔質の素材から構成され、燃料電池の外部からセパレータを介して触媒層12側に供給された反応ガスを拡散させて触媒層12に流す機能と、触媒層12とセパレータとを導通させる導電機能と、を有している。これら電解質膜11A及び拡散層13Aの形状も第1実施形態における電解質膜11及び拡散層13の形状と同様である。   11 A of electrolyte membranes in this embodiment are comprised from the solid polymer material ion exchange membrane similarly to the electrolyte membrane 11 in 1st Embodiment, and move the hydrogen ion supplied from fuel gas from an anode side electrode to a cathode side electrode It has a function to make it. The diffusion layer 13A in the present embodiment is made of a porous material such as carbon cloth or carbon paper like the diffusion layer 13 in the first embodiment, and is supplied from the outside of the fuel cell to the catalyst layer 12 side via a separator. A function of diffusing the reacted gas to flow through the catalyst layer 12 and a conductive function of conducting the catalyst layer 12 and the separator. The shapes of the electrolyte membrane 11A and the diffusion layer 13A are the same as the shapes of the electrolyte membrane 11 and the diffusion layer 13 in the first embodiment.

本実施形態における電解質膜11Aは、拡散層13Aよりも高い剛性を有している。従って、電解質膜11Aと触媒層12と拡散層13Aとを圧着接合する際に、電解質膜11Aの表面に凹部が設けられることはなく、図5に示すように拡散層13Aの触媒層12側の表面に凹部13Aaが設けられ、この凹部13Aaに触媒層12が埋設された状態となる。これにより、拡散層13Aと触媒層12の周縁部12aとの境界近傍部分(図5における領域B)が略平面とされる。なお、電解質膜11Aと触媒層12と拡散層13AとからなるMEGA20Aは、本発明に係る積層体の一実施形態である。   The electrolyte membrane 11A in the present embodiment has higher rigidity than the diffusion layer 13A. Therefore, when the electrolyte membrane 11A, the catalyst layer 12, and the diffusion layer 13A are joined by pressure bonding, no recess is provided on the surface of the electrolyte membrane 11A, and as shown in FIG. 5, the diffusion layer 13A on the catalyst layer 12 side is not provided. A recess 13Aa is provided on the surface, and the catalyst layer 12 is buried in the recess 13Aa. Thereby, the boundary vicinity part (area | region B in FIG. 5) of 13 A of diffusion layers and the peripheral part 12a of the catalyst layer 12 is made into a substantially plane. The MEGA 20A including the electrolyte membrane 11A, the catalyst layer 12, and the diffusion layer 13A is an embodiment of the laminate according to the present invention.

次に、本実施形態に係るMEGA20Aの製造方法について説明する。   Next, a method for manufacturing MEGA 20A according to this embodiment will be described.

まず、電解質膜11Aを準備する(電解質膜準備工程)。次いで、白金粒子や炭素粒子を所定の溶媒に混合させたペースト状混合物を電解質膜11Aの両面に塗布して乾燥させることにより、触媒層12を形成する(触媒層形成工程)。次いで、電解質膜11Aの両面に拡散層13Aとなるカーボン布やカーボンペーパ等を隣接配置し、特定の温度及び圧力で拡散層13Aの全面にわたってホットプレスを行うことにより、電解質膜11A及び触媒層12に拡散層13Aを圧着接合してMEGA20Aを構成する(圧着工程)。   First, the electrolyte membrane 11A is prepared (electrolyte membrane preparation step). Next, the catalyst layer 12 is formed by applying a paste-like mixture in which platinum particles and carbon particles are mixed in a predetermined solvent to both surfaces of the electrolyte membrane 11A and drying the catalyst layer 12 (catalyst layer forming step). Next, carbon cloth, carbon paper, or the like that becomes the diffusion layer 13A is disposed adjacent to both surfaces of the electrolyte membrane 11A, and hot pressing is performed on the entire surface of the diffusion layer 13A at a specific temperature and pressure, whereby the electrolyte membrane 11A and the catalyst layer 12 are obtained. The diffusion layer 13A is pressure bonded to the MEGA 20A to form a pressure bonding process.

かかる圧着工程においては、拡散層13Aの表面に凹部13Aaを設け、触媒層12をこの凹部13Aaに埋設させるようにして拡散層13Aと触媒層12の周縁部12aとの境界近傍(図5における領域B)が略平面になるような条件でホットプレスを行う。この際、図4に示されるような温度T(圧力P)と空隙容積Vとの間の相関関係、電解質膜11Aと触媒層12と拡散層13Aの各々の材料特性(剛性、組成変化、溶融温度等)や厚さ等を総合的に考慮して、圧着工程で採用する条件(ホットプレス時の温度及び圧力)を決定する。   In this crimping step, a recess 13Aa is provided on the surface of the diffusion layer 13A, and the catalyst layer 12 is embedded in the recess 13Aa so that the vicinity of the boundary between the diffusion layer 13A and the peripheral edge 12a of the catalyst layer 12 (region in FIG. 5). Hot pressing is performed under the condition that B) is substantially flat. At this time, the correlation between the temperature T (pressure P) and the void volume V as shown in FIG. 4 and the material characteristics (stiffness, composition change, melting) of the electrolyte membrane 11A, the catalyst layer 12 and the diffusion layer 13A are shown. The conditions (temperature and pressure at the time of hot pressing) to be adopted in the crimping process are determined by comprehensively considering the temperature and the like) and the thickness.

例えば、厚さt3μmの電解質膜11Aと、厚さt4mmの拡散層13Aと、を採用した場合に、ホットプレス時の温度をT3〜T4℃に設定し、圧力をP3〜P4MPaに設定することにより、拡散層13Aと触媒層12の周縁部12aとの境界近傍が略平面になるようにする。ここで、T3、T4、P3、P4は、電解質膜11A及び拡散層13Aの厚さ(t3、t4)や材料特性から決定される数値である。 For example, when an electrolyte membrane 11A having a thickness of t 3 μm and a diffusion layer 13A having a thickness of t 4 mm are employed, the temperature during hot pressing is set to T 3 to T 4 ° C. and the pressure is set to P 3 By setting to ~ P 4 MPa, the vicinity of the boundary between the diffusion layer 13A and the peripheral edge portion 12a of the catalyst layer 12 is made to be substantially flat. Here, T 3 , T 4 , P 3 , and P 4 are values determined from the thickness (t 3 , t 4 ) and material characteristics of the electrolyte membrane 11A and the diffusion layer 13A.

以上の工程群(電解質膜準備工程、触媒層形成工程及び圧着工程)を経て、MEGA20Aが製造されることとなる。本実施形態における圧着工程には、本発明における拡散層接合工程の一実施形態が含まれる。   The MEGA 20A is manufactured through the above process group (electrolyte membrane preparation process, catalyst layer forming process, and pressure bonding process). One embodiment of the diffusion layer bonding step in the present invention is included in the crimping step in the present embodiment.

以上説明した実施形態に係る積層体(MEGA20A)においては、拡散層13Aと触媒層12の周縁部12aとの境界近傍(領域B)が略平面にされているため、触媒層12の周縁部12a(電解質膜11Aと拡散層13Aとの間)に生成水が溜まることを抑制することができる。この結果、電解質膜11Aの化学的劣化を抑制することができるので、電解質膜11Aの耐久性を向上させることができるとともに、燃料電池の発電効率を増大させることができる。   In the laminated body (MEGA 20A) according to the embodiment described above, the vicinity of the boundary (region B) between the diffusion layer 13A and the peripheral edge 12a of the catalyst layer 12 is substantially flat, and therefore the peripheral edge 12a of the catalyst layer 12 is. It is possible to suppress the generation water from being accumulated (between the electrolyte membrane 11A and the diffusion layer 13A). As a result, chemical deterioration of the electrolyte membrane 11A can be suppressed, so that the durability of the electrolyte membrane 11A can be improved and the power generation efficiency of the fuel cell can be increased.

<第3実施形態>
次に、図6等を参照して、本発明の第3実施形態に係る燃料電池について説明する。本実施形態に係る燃料電池は、第1実施形態に係る燃料電池1のMEGA20の構成を変更したものであり、その他の構成については第1実施形態と実質的に同一である。このため、変更した構成を中心に説明することとし、第1実施形態と共通する部分については同一符号を付してその説明を省略する。
<Third Embodiment>
Next, a fuel cell according to a third embodiment of the present invention will be described with reference to FIG. The fuel cell according to the present embodiment is obtained by changing the configuration of the MEGA 20 of the fuel cell 1 according to the first embodiment, and other configurations are substantially the same as those of the first embodiment. For this reason, it demonstrates centering around the changed structure, and attaches | subjects the code | symbol same about the part which is common in 1st Embodiment, and abbreviate | omits the description.

本実施形態に係る燃料電池に含まれるMEGA20Bは、図6に示すように、電解質膜11B、電解質膜11Bの両面に設けられた電極用の触媒層12、触媒層12の外側に配設される拡散層13B等から構成されている。触媒層12は第1実施形態で説明したものと実質的に同一であるので、説明を省略する。   As shown in FIG. 6, the MEGA 20B included in the fuel cell according to the present embodiment is disposed on the outside of the electrolyte membrane 11B, the electrode catalyst layer 12 provided on both surfaces of the electrolyte membrane 11B, and the catalyst layer 12. It is composed of a diffusion layer 13B and the like. Since the catalyst layer 12 is substantially the same as that described in the first embodiment, the description thereof is omitted.

本実施形態における電解質膜11Bは、第1実施形態における電解質膜11と同様に固体高分子材料のイオン交換膜から構成され、燃料ガスから供給された水素イオンをアノード側電極からカソード側電極に移動させる機能を有する。本実施形態における拡散層13Bは、第1実施形態における拡散層13と同様にカーボン布やカーボンペーパ等の多孔質の素材から構成され、燃料電池の外部からセパレータを介して触媒層12側に供給された反応ガスを拡散させて触媒層12に流す機能と、触媒層12とセパレータとを導通させる導電機能と、を有している。これら電解質膜11B及び拡散層13Bの形状も第1実施形態における電解質膜11及び拡散層13の形状と同様である。   The electrolyte membrane 11B in the present embodiment is composed of an ion exchange membrane made of a solid polymer material like the electrolyte membrane 11 in the first embodiment, and moves hydrogen ions supplied from the fuel gas from the anode side electrode to the cathode side electrode. It has a function to make it. The diffusion layer 13B in the present embodiment is made of a porous material such as carbon cloth or carbon paper like the diffusion layer 13 in the first embodiment, and is supplied from the outside of the fuel cell to the catalyst layer 12 side via a separator. A function of diffusing the reacted gas to flow through the catalyst layer 12 and a conductive function of conducting the catalyst layer 12 and the separator. The shapes of the electrolyte membrane 11B and the diffusion layer 13B are the same as the shapes of the electrolyte membrane 11 and the diffusion layer 13 in the first embodiment.

本実施形態における電解質膜11Bは、拡散層13Bと同等の剛性を有している。従って、電解質膜11Bと触媒層12と拡散層13Bとを圧着接合する際に、図6に示すように電解質膜11Bの表面に凹部11Baが設けられるとともに、拡散層13bの表面にも凹部13Baが設けられる。そして、これら凹部11Ba、13Baが対向配置されて形成された空間に触媒層12全体(特に周縁部12a)が充填されるようになっている。なお、電解質膜11Bと触媒層12と拡散層13BとからなるMEGA20Bは、本発明に係る積層体の一実施形態である。   The electrolyte membrane 11B in the present embodiment has the same rigidity as the diffusion layer 13B. Accordingly, when the electrolyte membrane 11B, the catalyst layer 12, and the diffusion layer 13B are pressure-bonded, the recess 11Ba is provided on the surface of the electrolyte membrane 11B as shown in FIG. 6, and the recess 13Ba is also provided on the surface of the diffusion layer 13b. Provided. And the catalyst layer 12 whole (especially peripheral part 12a) is filled in the space formed by these recessed parts 11Ba and 13Ba opposingly arranged. In addition, MEGA20B which consists of electrolyte membrane 11B, the catalyst layer 12, and the diffusion layer 13B is one Embodiment of the laminated body which concerns on this invention.

次に、本実施形態に係るMEGA20Bの製造方法について説明する。   Next, the manufacturing method of MEGA20B which concerns on this embodiment is demonstrated.

まず、電解質膜11Bを準備する(電解質膜準備工程)。次いで、白金粒子や炭素粒子を所定の溶媒に混合させたペースト状混合物を電解質膜11Bの両面に塗布して乾燥させることにより、触媒層12を形成する(触媒層形成工程)。次いで、電解質膜11Bの両面に拡散層13Bとなるカーボン布やカーボンペーパ等を隣接配置し、特定の温度及び圧力で拡散層13Bの全面にわたってホットプレスを行うことにより、電解質膜11B及び触媒層12に拡散層13Bを圧着接合してMEGA20Bを構成する(圧着工程)。   First, the electrolyte membrane 11B is prepared (electrolyte membrane preparation step). Next, the catalyst layer 12 is formed by applying and drying a paste-like mixture obtained by mixing platinum particles and carbon particles in a predetermined solvent on both surfaces of the electrolyte membrane 11B (catalyst layer forming step). Next, a carbon cloth, carbon paper, or the like that becomes the diffusion layer 13B is adjacently disposed on both surfaces of the electrolyte membrane 11B, and hot pressing is performed on the entire surface of the diffusion layer 13B at a specific temperature and pressure, whereby the electrolyte membrane 11B and the catalyst layer 12 are performed. The diffusion layer 13B is pressure bonded to the MEGA 20B (pressure bonding process).

かかる圧着工程においては、電解質膜11Bの表面に凹部11Baを設けるとともに、拡散層13Bの表面に凹部13Baを設け、これら凹部11Ba、13Baが対向配置されて形成された空間に触媒層12全体を充填するような条件でホットプレスを行う。この際、図4に示されるような温度T(圧力P)と空隙容積Vとの間の相関関係、電解質膜11Bと触媒層12と拡散層13Bの各々の材料特性(剛性、組成変化、溶融温度等)や厚さ等を総合的に考慮して、圧着工程で採用する条件(ホットプレス時の温度及び圧力)を決定する。   In this crimping step, the recess 11Ba is provided on the surface of the electrolyte membrane 11B, and the recess 13Ba is provided on the surface of the diffusion layer 13B, and the entire catalyst layer 12 is filled in the space formed by these recesses 11Ba and 13Ba facing each other. Hot press is performed under such conditions. At this time, the correlation between the temperature T (pressure P) and the void volume V as shown in FIG. 4 and the material characteristics (stiffness, composition change, melting) of the electrolyte membrane 11B, the catalyst layer 12 and the diffusion layer 13B are shown. The conditions (temperature and pressure at the time of hot pressing) to be adopted in the crimping process are determined by comprehensively considering the temperature and the like) and the thickness.

例えば、厚さt5μmの電解質膜11Bと、厚さt6mmの拡散層13Bと、を採用した場合に、ホットプレス時の温度をT5〜T6℃に設定し、圧力をP5〜P6MPaに設定する。ここでT5、T6、P5、P6は、電解質膜11B及び拡散層13bの厚さ(t5、t6)や材料特性から決定される数値である。以上の工程群(電解質膜準備工程、触媒層形成工程及び圧着工程)を経て、MEGA20Bが製造されることとなる。 For example, when an electrolyte membrane 11B having a thickness of t 5 μm and a diffusion layer 13B having a thickness of t 6 mm are employed, the temperature during hot pressing is set to T 5 to T 6 ° C. and the pressure is set to P 5 Set to ~ P 6 MPa. Here, T 5 , T 6 , P 5 , and P 6 are numerical values determined from the thickness (t 5 , t 6 ) and material characteristics of the electrolyte membrane 11B and the diffusion layer 13b. The MEGA 20B is manufactured through the above process group (electrolyte membrane preparation process, catalyst layer forming process, and pressure bonding process).

以上説明した実施形態に係る積層体(MEGA20B)においては、電解質膜11Bの表面と拡散層13Bの表面とに設けられた凹部11Ba、13Baからなる空間内に触媒層12全体(特に周縁部12a)が充填されるため、触媒層12の周縁部12a(電解質膜11Bと拡散層13Bとの間)に生成水が溜まることを抑制することができる。この結果、電解質膜11Bの化学的劣化を抑制することができるので、電解質膜11Bの耐久性を向上させることができるとともに、燃料電池の発電効率を増大させることができる。   In the laminate (MEGA 20B) according to the embodiment described above, the entire catalyst layer 12 (particularly, the peripheral portion 12a) is formed in the space formed by the recesses 11Ba and 13Ba provided on the surface of the electrolyte membrane 11B and the surface of the diffusion layer 13B. Therefore, it is possible to prevent the generated water from accumulating in the peripheral edge portion 12a of the catalyst layer 12 (between the electrolyte membrane 11B and the diffusion layer 13B). As a result, chemical deterioration of the electrolyte membrane 11B can be suppressed, so that the durability of the electrolyte membrane 11B can be improved and the power generation efficiency of the fuel cell can be increased.

なお、以上の各実施形態においては、電解質膜の表面に触媒層を形成し、その後、拡散層を電解質膜に接合してMEGAを製造した例を示したが、拡散層の電解質膜側の表面に触媒層を形成して拡散電極を構成し、この拡散電極を電解質膜に接合する、という工程を経てMEGAを製造することもできる。   In each of the above embodiments, an example in which a MEGA is manufactured by forming a catalyst layer on the surface of the electrolyte membrane and then joining the diffusion layer to the electrolyte membrane has been shown. However, the surface of the diffusion layer on the electrolyte membrane side is shown. The MEGA can also be manufactured through a process of forming a catalyst layer on the substrate to form a diffusion electrode and bonding the diffusion electrode to the electrolyte membrane.

また、以上の各実施形態においては、電解質膜と触媒層と拡散層とを圧着接合してMEGAを製造しているが、この際、加熱加圧ローラを有するホットプレス機を使用した圧着接合(ローラ圧着)を行ってもよく、プレス板を有するホットプレス機を使用した圧着接合(平板圧着)を行ってもよい。   Further, in each of the above embodiments, the MEGA is manufactured by pressure bonding the electrolyte membrane, the catalyst layer, and the diffusion layer. At this time, pressure bonding using a hot press machine having a heating and pressing roller ( (Roller pressure bonding) may be performed, and pressure bonding (flat plate pressure bonding) using a hot press machine having a press plate may be performed.

また、以上の各実施形態においては、拡散層の全面にわたってホットプレスを行うことにより電解質膜と触媒層と拡散層とを圧着接合してMEGAを製造した例を示したが、拡散層の表面の一部(触媒層の周縁部近傍に対応する領域)においてホットプレスを行うことにより電解質膜と触媒層と拡散層とを圧着接合してMEGAを製造することもできる。   Further, in each of the above embodiments, an example was shown in which MEGA was manufactured by pressure bonding the electrolyte membrane, the catalyst layer, and the diffusion layer by performing hot pressing over the entire surface of the diffusion layer. It is also possible to manufacture MEGA by pressure bonding the electrolyte membrane, the catalyst layer, and the diffusion layer by performing hot pressing in a part (region corresponding to the vicinity of the peripheral edge of the catalyst layer).

また、以上の各実施形態においては、触媒層全体が埋設・充填されるように電解質膜及び/又は拡散層に凹部を設けた例を示したが、必ずしも触媒層全体が埋設・充填されるような凹部を設ける必要はなく、触媒層の少なくとも周縁部近傍が埋設されるような凹部を設けて、電解質膜(拡散層)と触媒層の周縁部との境界近傍を略平面にし、触媒層の周縁部における空隙の容積を低減することもできる。   Further, in each of the above embodiments, the example in which the concave portion is provided in the electrolyte membrane and / or the diffusion layer so that the entire catalyst layer is embedded and filled has been described. However, the entire catalyst layer is not necessarily embedded and filled. It is not necessary to provide a concave portion, but a concave portion is provided so that at least the periphery of the catalyst layer is embedded, and the vicinity of the boundary between the electrolyte membrane (diffusion layer) and the peripheral portion of the catalyst layer is made substantially flat, It is also possible to reduce the volume of the gap at the peripheral edge.

また、以上の各実施形態においては、電解質膜の両面に形成した双方の触媒層(アノード電極用触媒層及びカソード電極用触媒層)の面積を同一にした例を示したが、アノード電極用触媒層の面積とカソード電極用触媒層の面積とを異ならせることもできる。例えば、カソード電極用触媒層の面積をアノード電極用触媒層の面積よりも小さくする(カソード電極用触媒層の周縁部の位置をアノード電極用触媒層の周縁部の位置よりも中央寄りにする)と、MEGAの耐用期間を長期化することができるので、好ましい。   Further, in each of the above embodiments, an example in which the areas of both catalyst layers (anode electrode catalyst layer and cathode electrode catalyst layer) formed on both surfaces of the electrolyte membrane are the same is shown. The area of the layer and the area of the catalyst layer for the cathode electrode can be made different. For example, the area of the cathode electrode catalyst layer is made smaller than the area of the anode electrode catalyst layer (the position of the peripheral edge of the cathode electrode catalyst layer is closer to the center than the position of the peripheral edge of the anode electrode catalyst layer). This is preferable because the lifetime of MEGA can be extended.

本発明の第1実施形態に係る燃料電池を示す斜視図である。1 is a perspective view showing a fuel cell according to a first embodiment of the present invention. 図1に示した燃料電池を構成する単電池の分解斜視図である。It is a disassembled perspective view of the single cell which comprises the fuel cell shown in FIG. 図2に示した単電池に含まれるMEGAの断面図である。It is sectional drawing of MEGA contained in the single battery shown in FIG. (a)は図3に示したMEGAの内部に形成される空隙の容積とホットプレス時の温度との関係を示すグラフであり、(b)は、図3に示したMEGAの内部に形成される空隙の容積とホットプレス時の圧力との関係を示すグラフである。(A) is a graph which shows the relationship between the volume of the space | gap formed in the inside of MEGA shown in FIG. 3, and the temperature at the time of a hot press, (b) is formed in the inside of MEGA shown in FIG. It is a graph which shows the relationship between the volume of the space | gap and the pressure at the time of a hot press. 本発明の第2実施形態に係る燃料電池に含まれるMEGAの断面図である。It is sectional drawing of MEGA contained in the fuel cell which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る燃料電池に含まれるMEGAの断面図である。It is sectional drawing of MEGA contained in the fuel cell which concerns on 3rd Embodiment of this invention. 従来の製造方法で製造されたMEGAの断面図である。It is sectional drawing of MEGA manufactured with the conventional manufacturing method.

符号の説明Explanation of symbols

1…燃料電池、11・11A・11B…電解質膜、11a・11Ba…凹部、12…触媒層、12a…周縁部、13・13A・13B…拡散層、13Aa・13Ba…凹部、20・20A・20B…MEGA(積層体)
DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 11 * 11A * 11B ... Electrolyte membrane, 11a * 11Ba ... Recessed part, 12 ... Catalyst layer, 12a ... Peripheral part, 13 * 13A * 13B ... Diffusion layer, 13Aa * 13Ba ... Recessed part, 20 * 20A * 20B ... MEGA (laminate)

Claims (9)

電解質膜と、この電解質膜の両面に設けられる電極用の触媒層と、前記電解質膜の両面に前記触媒層を介して接合される拡散層と、を備える積層体であって、
前記拡散層と前記触媒層の周縁部との境界近傍が略平面になるように構成されてなる積層体。
A laminate comprising an electrolyte membrane, a catalyst layer for electrodes provided on both surfaces of the electrolyte membrane, and a diffusion layer bonded to both surfaces of the electrolyte membrane via the catalyst layer,
The laminated body comprised so that the boundary vicinity of the said diffusion layer and the peripheral part of the said catalyst layer may become a substantially plane.
前記拡散層の前記触媒層側の表面に凹部が設けられ、
前記触媒層の少なくとも周縁部が前記拡散層の前記凹部に埋設されてなる請求項1に記載の積層体。
A recess is provided on the surface of the diffusion layer on the catalyst layer side,
The laminate according to claim 1, wherein at least a peripheral portion of the catalyst layer is embedded in the concave portion of the diffusion layer.
電解質膜と、この電解質膜の両面に設けられる電極用の触媒層と、前記電解質膜の両面に前記触媒層を介して接合される拡散層と、を備える積層体であって、
前記電解質膜の表面と、前記拡散層の前記触媒層側の表面と、に各々凹部が設けられるとともに、これら凹部が対向配置されて空間が形成され、この空間内に前記触媒層の少なくとも周縁部が充填されてなる積層体。
A laminate comprising an electrolyte membrane, a catalyst layer for electrodes provided on both surfaces of the electrolyte membrane, and a diffusion layer bonded to both surfaces of the electrolyte membrane via the catalyst layer,
The surface of the electrolyte membrane and the surface of the diffusion layer on the catalyst layer side are each provided with a recess, and these recesses are opposed to each other to form a space, and at least the peripheral portion of the catalyst layer is formed in this space. Laminated body filled with
前記触媒層は、アノード電極用触媒層及びカソード電極用触媒層であり、
前記アノード電極用触媒層の面積と、前記カソード電極用触媒層の面積と、が異なるように構成されてなる請求項1から3の何れか一項に記載の積層体。
The catalyst layer is an anode electrode catalyst layer and a cathode electrode catalyst layer,
The laminate according to any one of claims 1 to 3, wherein an area of the anode electrode catalyst layer and an area of the cathode electrode catalyst layer are different from each other.
請求項1から4の何れか一項に記載の積層体を備える燃料電池。   A fuel cell comprising the laminate according to any one of claims 1 to 4. 電解質膜と、この電解質膜の両面に設けられる電極用の触媒層と、を備える積層体の製造方法であって、
前記電解質膜と前記触媒層の周縁部との境界近傍が略平面になるような条件で圧着を行う圧着工程を含む積層体の製造方法。
A method for producing a laminate comprising an electrolyte membrane and a catalyst layer for electrodes provided on both surfaces of the electrolyte membrane,
The manufacturing method of a laminated body including the crimping | compression-bonding process of crimping | bonding on the conditions that the boundary vicinity of the said electrolyte membrane and the peripheral part of the said catalyst layer becomes a substantially plane.
前記圧着工程は、前記電解質膜の両面に前記触媒層を介して拡散層を接合する拡散層接合工程を含む請求項6に記載の積層体の製造方法。   The said crimping | compression-bonding process is a manufacturing method of the laminated body of Claim 6 including the diffusion layer joining process of joining a diffusion layer to the both surfaces of the said electrolyte membrane via the said catalyst layer. 電解質膜と、この電解質膜の両面に設けられる電極用の触媒層と、前記電解質膜の両面に前記触媒層を介して接合される拡散層と、を備える積層体の製造方法であって、
前記拡散層と前記触媒層の周縁部との境界近傍が略平面になるような条件で圧着を行う圧着工程を含む積層体の製造方法。
A method for producing a laminate comprising: an electrolyte membrane; a catalyst layer for electrodes provided on both surfaces of the electrolyte membrane; and a diffusion layer bonded to both surfaces of the electrolyte membrane via the catalyst layer,
The manufacturing method of the laminated body including the crimping | compression-bonding process of crimping | bonding on the conditions that the boundary vicinity of the said diffusion layer and the peripheral part of the said catalyst layer becomes a substantially plane.
電解質膜と、この電解質膜の両面に設けられる電極用の触媒層と、前記電解質膜の両面に前記触媒層を介して接合される拡散層と、を備える積層体の製造方法であって、
前記電解質膜の表面と、前記拡散層の前記触媒層が接合される表面と、に各々凹部を設けるとともに、これら凹部を対向配置して空間を形成し、この空間内に前記触媒層の少なくとも周縁部を充填するような条件で圧着を行う圧着工程を含む積層体の製造方法。

A method for producing a laminate comprising: an electrolyte membrane; a catalyst layer for electrodes provided on both surfaces of the electrolyte membrane; and a diffusion layer bonded to both surfaces of the electrolyte membrane via the catalyst layer,
The surface of the electrolyte membrane and the surface of the diffusion layer to which the catalyst layer is joined are provided with recesses, and the recesses are arranged to face each other to form a space, and at least the periphery of the catalyst layer in the space The manufacturing method of the laminated body including the crimping | compression-bonding process which crimps | bonds on the conditions which fill a part.

JP2005274132A 2005-09-21 2005-09-21 Laminate, method of manufacturing it, as well as fuel cell Pending JP2007087728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274132A JP2007087728A (en) 2005-09-21 2005-09-21 Laminate, method of manufacturing it, as well as fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005274132A JP2007087728A (en) 2005-09-21 2005-09-21 Laminate, method of manufacturing it, as well as fuel cell

Publications (1)

Publication Number Publication Date
JP2007087728A true JP2007087728A (en) 2007-04-05

Family

ID=37974502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274132A Pending JP2007087728A (en) 2005-09-21 2005-09-21 Laminate, method of manufacturing it, as well as fuel cell

Country Status (1)

Country Link
JP (1) JP2007087728A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009916A (en) * 2007-06-29 2009-01-15 Dainippon Printing Co Ltd Electrolyte membrane with catalyst layer
JP2010040513A (en) * 2008-07-10 2010-02-18 Dainippon Printing Co Ltd Catalyst layer-electrolyte membrane laminate with reinforcement film, electrode-electrolyte membrane laminate with reinforcement film, and solid polymer fuel cell
JP2010108908A (en) * 2008-09-30 2010-05-13 Hitachi Ltd Fuel cell
KR20180110460A (en) * 2017-03-29 2018-10-10 류보현 Integrated Molten Carbonate Fuel Cell and Manufacturing Thereof
KR20180110459A (en) * 2017-03-29 2018-10-10 류보현 Molten Carbonate Fuel Cell Module Capable of Block Assembly with Perforated Plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009916A (en) * 2007-06-29 2009-01-15 Dainippon Printing Co Ltd Electrolyte membrane with catalyst layer
JP2010040513A (en) * 2008-07-10 2010-02-18 Dainippon Printing Co Ltd Catalyst layer-electrolyte membrane laminate with reinforcement film, electrode-electrolyte membrane laminate with reinforcement film, and solid polymer fuel cell
JP2010108908A (en) * 2008-09-30 2010-05-13 Hitachi Ltd Fuel cell
KR20180110460A (en) * 2017-03-29 2018-10-10 류보현 Integrated Molten Carbonate Fuel Cell and Manufacturing Thereof
KR20180110459A (en) * 2017-03-29 2018-10-10 류보현 Molten Carbonate Fuel Cell Module Capable of Block Assembly with Perforated Plate
KR101951101B1 (en) 2017-03-29 2019-02-21 류보현 Molten Carbonate Fuel Cell Module Capable of Block Assembly with Perforated Plate
KR102005377B1 (en) 2017-03-29 2019-07-30 류보현 Integrated Molten Carbonate Fuel Cell and Manufacturing Thereof

Similar Documents

Publication Publication Date Title
JP4304101B2 (en) Electrolyte membrane / electrode structure and fuel cell
US8007949B2 (en) Edge-protected catalyst-coated diffusion media and membrane electrode assemblies
US8431284B2 (en) Low electrical resistance bipolar plate-diffusion media assembly
JP7081517B2 (en) Fuel cell separator
US6946214B2 (en) Manufacturing method of fuel cell electrode and fuel cell using thereof
US7867660B2 (en) Fuel cell and method of producing the same
JP2007087728A (en) Laminate, method of manufacturing it, as well as fuel cell
JP2005100970A (en) Polymer electrolyte fuel cell
JP3847311B2 (en) Fuel cell manufacturing method and manufacturing equipment
JP2018055945A (en) Fuel cell stack
JP2009037956A (en) Fuel cell
JP5341321B2 (en) Electrolyte membrane / electrode structure for polymer electrolyte fuel cells
JP4930821B2 (en) Manufacturing method of fuel cell
JP5733182B2 (en) Manufacturing method of membrane electrode assembly
JP2006092891A (en) Manufacturing method of fuel cell and fuel cell
JP2004207082A (en) Fuel cell and separator for fuel cell
JPH06333582A (en) Solid polyelectrolyte fuel cell
US20080090126A1 (en) Preservation Method Of Polymer Electrolyte Membrane Electrode Assembly Technical Field
JP2005190749A (en) Membrane electrode assembly for fuel cell, and solid polymer fuel cell using it
JP2008288068A (en) Fuel cell, anode of fuel cell, and membrane electrode assembly
JP4630029B2 (en) Fuel cell manufacturing method and manufacturing equipment
JP2006012462A (en) Sealing structure for fuel cell
JP2006310220A (en) Fuel cell
JP2022048654A (en) Manufacturing method of fuel battery cell
JP2022128827A (en) Fuel cell