JP2006310220A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2006310220A
JP2006310220A JP2005134059A JP2005134059A JP2006310220A JP 2006310220 A JP2006310220 A JP 2006310220A JP 2005134059 A JP2005134059 A JP 2005134059A JP 2005134059 A JP2005134059 A JP 2005134059A JP 2006310220 A JP2006310220 A JP 2006310220A
Authority
JP
Japan
Prior art keywords
metal plate
fuel cell
plate
electrode plate
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005134059A
Other languages
Japanese (ja)
Inventor
Masakazu Sugimoto
正和 杉本
Masaya Yano
雅也 矢野
Taiichi Sugita
泰一 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2005134059A priority Critical patent/JP2006310220A/en
Publication of JP2006310220A publication Critical patent/JP2006310220A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell which has a sealing structure of each unit cell and can be made light and thin and can obtain an ample power output, by enhancing the contact pressure of an electrode plate. <P>SOLUTION: The fuel cell has a solid polymer electrolyte plate 1, a cathode electrode plate 2 fixed on one side of the electrolyte plate 1, an anode electrode plate 3 fixed on the other side of the electrolyte plate 1, a cathode metal plate 4 fixed on the surface of the cathode electrode plate 2 and making gas to flow to the inner surface side, and an anode metal plate 5 fixed on the surface of the anode electrode plate 3 and making fuel flow inside. The circumference of both plates 4, 5 are in the electrically insulated and sealed state, passage grooves are formed at least on the inside of the anode metal plate 5 and a convex and curved contact part 5r is formed between the passage grooves 9 that is formed in parallel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一対の金属板によって正負の電極板と固体高分子電解質とを挟持する構造の燃料電池に関し、特に出力を維持しながら厚みを薄くすることのできる高分子型燃料電池に関する。   The present invention relates to a fuel cell having a structure in which a positive and negative electrode plate and a solid polymer electrolyte are sandwiched between a pair of metal plates, and more particularly to a polymer fuel cell capable of reducing the thickness while maintaining output.

ポリマー電解質のような固体高分子電解質を使用した高分子型燃料電池は、高いエネルギー変換効率を持ち、薄型小型・軽量であることから、家庭用コージェネレーションシステムや自動車向けに開発が活発化している。かかる燃料電池の従来技術の構造として、図7に示すものが知られている(例えば、非特許文献1参照)。   Polymer fuel cells that use solid polymer electrolytes such as polymer electrolytes have high energy conversion efficiency, are thin, small, and lightweight, and are therefore being actively developed for household cogeneration systems and automobiles . As a conventional structure of such a fuel cell, one shown in FIG. 7 is known (for example, see Non-Patent Document 1).

即ち、図7に示すように、固体高分子電解質膜100を挟んでアノード101とカソード102とを配設する。さらに、ガスケット103を介して一対のセパレータ104により挟持して単位セル105を構成する。各々のセパレータ104にはガス流路溝が形成されており、アノード101との接触により、還元ガス(例えば、水素ガス)の流路が形成され、カソード102との接触により、酸化ガス(例えば、酸素ガス)の流路が形成される。各々のガスは、単位セル105内の各流路を流通しながら、アノード101又はカソード102の内部に担持された触媒の作用により電極反応(電極における化学反応)に供され、電流の発生とイオン伝導が生じる。   That is, as shown in FIG. 7, the anode 101 and the cathode 102 are disposed with the solid polymer electrolyte membrane 100 interposed therebetween. Further, the unit cell 105 is configured by being sandwiched by a pair of separators 104 via a gasket 103. Each separator 104 is formed with a gas flow path groove. A flow path for reducing gas (for example, hydrogen gas) is formed by contact with the anode 101, and an oxidizing gas (for example, for example, hydrogen gas) is contacted with the cathode 102. Oxygen gas) flow paths are formed. Each gas is supplied to the electrode reaction (chemical reaction at the electrode) by the action of the catalyst supported in the anode 101 or the cathode 102 while flowing through each flow path in the unit cell 105, and the generation of current and ions Conduction occurs.

この単位セル105を多数個積層し、単位セル105どうしを電気的に直列に接続して燃料電池Nを構成し、電極106は、積層した両端の単位セル105から取り出すことができる。このような燃料電池Nは、クリーンかつ高効率という特徴から、種々の用途、特に、電気自動車用電源や家庭用分散型電源として注目されている。   A large number of the unit cells 105 are stacked, and the unit cells 105 are electrically connected in series to constitute the fuel cell N, and the electrode 106 can be taken out from the unit cells 105 at both ends. Such a fuel cell N is attracting attention as a power source for electric vehicles and a distributed power source for home use in various applications because of its clean and high efficiency.

一方、近年のIT技術の活発化に伴い、携帯電話、ノートパソコン、デジカメなどモバイル機器が頻繁に使用される傾向があるが、これらの電源は、ほとんどリチウムイオン二次電池が用いられている。ところが、モバイル機器の高機能化に伴って消費電力がどんどん増大し、その電源用としてクリーンで高効率な燃料電池が注目されてきている。   On the other hand, with the recent activation of IT technology, mobile devices such as mobile phones, notebook computers, and digital cameras tend to be frequently used, but most of these power sources use lithium ion secondary batteries. However, as mobile devices become more sophisticated, power consumption is increasing, and clean and highly efficient fuel cells are attracting attention as power sources.

しかしながら、図7に示すような従来の構造では、構造に自由度が無いため、モバイル機器の電源として求められる薄型小型軽量化や形状の高自由度化に難があり、メンテナス性が悪いという問題もあった。また、燃料電池セル内で酸化還元ガスを相互に混合させないように供給し、かつ、密閉化することが難しく、これらの条件を満たしながら、燃料電池セルの大きさや重量を低減化することは困難であった。   However, in the conventional structure as shown in FIG. 7, there is no degree of freedom in the structure. Therefore, there is a problem in that it is difficult to reduce the thickness and size and increase the degree of freedom of shape required as a power source for mobile devices, and the maintenance property is poor. There was also. In addition, it is difficult to supply the redox gas so as not to mix with each other in the fuel cell and to seal it, and it is difficult to reduce the size and weight of the fuel cell while satisfying these conditions. Met.

ところで、下記の特許文献1には、固体高分子電解質膜/電極接合体と、酸化剤ガスの流路溝を形成したカソード側金属板と、燃料ガスの流路を形成したアノード側金属板とを備え、両側の金属板の周縁を固定ピンで締結しつつ、その内側周囲にガスパッキンを介在させて封止した構造の燃料電池が開示されている。そして、アノード側金属板等に流路溝を形成する際に、プレス成形が用いられている。   By the way, the following Patent Document 1 discloses a solid polymer electrolyte membrane / electrode assembly, a cathode-side metal plate in which a flow channel for an oxidant gas is formed, and an anode-side metal plate in which a flow channel for fuel gas is formed. A fuel cell having a structure in which the peripheral edges of the metal plates on both sides are fastened with fixing pins and sealed with a gas packing around the inside is disclosed. Then, press forming is used when the flow path grooves are formed in the anode side metal plate or the like.

しかし、この金属板の内面における流路溝の間には、平坦な接触面が形成されており、接触圧力が均等に分散されるため、単位セルごとに封止してセルを薄型化しようとすると、電極板と金属板との接触圧力を十分得られない場合がある。接触圧力が不十分な場合、接触の電気抵抗が増大し、燃料電池の出力が低下するという問題が生じる。   However, a flat contact surface is formed between the flow channel grooves on the inner surface of the metal plate, and the contact pressure is evenly distributed. Then, the contact pressure between the electrode plate and the metal plate may not be obtained sufficiently. When the contact pressure is insufficient, there is a problem that the electrical resistance of the contact increases and the output of the fuel cell decreases.

日経メカニカル別冊「燃料電池開発最前線」発行日2001年6月29日、発行所:日経BP社、第3章PEFC、3.1原理と特徴p46Nikkei Mechanical separate volume "Fuel Cell Development Frontline" Date of issue: June 29, 2001, Publisher: Nikkei BP, Chapter 3, PEFC, 3.1 Principles and Features p46 特開平8−162145号公報JP-A-8-162145

そこで、本発明の目的は、単位セルごとの封止構造を有し、軽量化と薄型化が可能であり、電極板の接触圧力を高めて十分な出力を得ることができる燃料電池を提供することにある。   Therefore, an object of the present invention is to provide a fuel cell that has a sealing structure for each unit cell, can be reduced in weight and thickness, and can obtain a sufficient output by increasing the contact pressure of the electrode plate. There is.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明の燃料電池は、板状の固体高分子電解質と、その固体高分子電解質の一方側に配置されたカソード側電極板と、他方側に配置されたアノード側電極板と、前記カソード側電極板の表面に配置され内面側へのガスの流通を可能とするカソード側金属板と、前記アノード側電極板の表面に配置され内面側への燃料の流通を可能とするアノード側金属板と、を備える燃料電池であって、前記両側の金属板の周縁を電気的に絶縁した状態で封止してあると共に、少なくとも前記アノード側金属板の内面には流路溝を形成してあり、平行に形成された流路溝の間に凸状の曲面接触部を形成してあることを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the fuel cell of the present invention includes a plate-shaped solid polymer electrolyte, a cathode-side electrode plate disposed on one side of the solid polymer electrolyte, an anode-side electrode plate disposed on the other side, and the cathode A cathode-side metal plate that is disposed on the surface of the side electrode plate and allows gas to flow to the inner surface side, and an anode-side metal plate that is disposed on the surface of the anode-side electrode plate and allows fuel to flow to the inner surface side A fuel cell comprising a metal plate on both sides sealed in a state of being electrically insulated, and at least an inner surface of the anode-side metal plate is formed with a flow channel groove. A convex curved contact portion is formed between the channel grooves formed in parallel.

本発明の燃料電池によると、カソード側金属板がカソード側電極板へのガスの流通を可能とし、アノード側金属板がアノード側電極板への燃料の流通を可能とすることで、各々の電極板で電極反応を生じさせることができ、金属板から電流を取り出すことができる。その際、本発明のように薄型化のために金属板を用いると、電極板との接触圧力が維持しにくくなるが、本発明では、金属板の内面に流路溝を形成する際に凸状の曲面接触部を形成してあるため、電極板に対する接触圧力が十分でない場合でも、接触抵抗を低減して出力を向上させることができる。   According to the fuel cell of the present invention, the cathode side metal plate enables the gas to flow to the cathode side electrode plate, and the anode side metal plate enables the fuel to flow to the anode side electrode plate. An electrode reaction can be caused by the plate, and an electric current can be extracted from the metal plate. At that time, if a metal plate is used for thinning as in the present invention, it becomes difficult to maintain the contact pressure with the electrode plate. Since the curved curved contact portion is formed, even when the contact pressure to the electrode plate is not sufficient, the contact resistance can be reduced and the output can be improved.

上記において、前記流路溝はプレス加工により形成され、前記凸状の曲面接触部は曲率半径が0.1〜100mmの曲面接触部を形成してあることが好ましい。流路溝をプレス加工により形成することで、このような曲率半径の曲面接触部を形成するのが容易になり、当該曲率半径の範囲であると、電極板に対する接触圧力が十分でない場合でも、より確実に接触抵抗を低減して出力を向上させることができる。   In the above, it is preferable that the flow path groove is formed by pressing, and the convex curved contact portion has a curved contact portion with a radius of curvature of 0.1 to 100 mm. By forming the flow path groove by press working, it becomes easy to form a curved surface contact portion with such a radius of curvature, and even if the contact pressure on the electrode plate is not sufficient when the radius of curvature is within the range, The contact resistance can be reduced more reliably and the output can be improved.

また、前記両側の金属板の周縁を電気的に絶縁した状態で曲げプレスにより封止してあることが好ましい。この構造によると、金属板の周縁を電気的に絶縁した状態で曲げプレスにより封止しているため、両者の短絡を防止しながら、厚みをさほど増加させずに単位セルごとに確実に封止を行うことができる。これによって、セル部材に剛性が要求されなくなるため、各単位セルを大幅に薄型化することができる。   Further, it is preferable that the metal plates on both sides are sealed by a bending press in a state where the peripheral edges are electrically insulated. According to this structure, the metal plate is sealed with a bending press in a state where the periphery of the metal plate is electrically insulated, so that each unit cell is reliably sealed without increasing the thickness while preventing short circuit between the two. It can be performed. Thereby, since rigidity is not required for the cell member, each unit cell can be significantly reduced in thickness.

また、前記アノード側金属板の厚みが0.05〜1mmであることが好ましい。厚みがこの範囲より薄い場合には、プレス加工による剛性向上を考慮しても、電極板に対する接触圧力が小さくなりすぎ、また、厚みがこの範囲より厚い場合には、軽量化の目的が達成し難く、曲面接触部を形成しなくとも接触面に十分な接触圧力が得られるため、本発明の意義が薄れる。   Moreover, it is preferable that the thickness of the said anode side metal plate is 0.05-1 mm. If the thickness is less than this range, the contact pressure against the electrode plate will be too small even if the rigidity improvement by pressing is taken into account.If the thickness is greater than this range, the purpose of weight reduction will be achieved. It is difficult to obtain a sufficient contact pressure on the contact surface without forming the curved contact portion.

以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、本発明の燃料電池の単位セルの一例を示す組み立て斜視図であり、図2は、本発明の燃料電池の単位セルの一例を示す縦断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an assembled perspective view showing an example of a unit cell of the fuel cell of the present invention, and FIG. 2 is a longitudinal sectional view showing an example of a unit cell of the fuel cell of the present invention.

本発明の燃料電池は、図1〜図2に示すように、板状の固体高分子電解質1と、その固体高分子電解質1の一方側に配置されたカソード側電極板2と、他方側に配置されたアノード側電極板3と、カソード側電極板2の表面に配置され内面側へのガスの流通を可能とするカソード側金属板4と、アノード側電極板3の表面に配置され内面側への燃料の流通を可能とするアノード側金属板5とを備えるものである。本実施形態では、カソード側金属板4には空気を自然供給するための開口部4cが形成されている例を示す。   As shown in FIGS. 1 to 2, the fuel cell of the present invention includes a plate-shaped solid polymer electrolyte 1, a cathode-side electrode plate 2 disposed on one side of the solid polymer electrolyte 1, and the other side. The anode side electrode plate 3 arranged, the cathode side metal plate 4 arranged on the surface of the cathode side electrode plate 2 and allowing the gas to flow to the inner surface side, and the surface of the anode side electrode plate 3 arranged on the inner surface side And an anode-side metal plate 5 that enables the fuel to flow through. In this embodiment, the cathode side metal plate 4 shows an example in which an opening 4c for naturally supplying air is formed.

固体高分子電解質1としては、従来の固体高分子膜型電池に用いられるものであれば何れでもよいが、化学的安定性及び導電性の点から、超強酸であるスルホン酸基を有するパーフルオロカーボン重合体からなる陽イオン交換膜が好適に用いられる。このような陽イオン交換膜としては、ナフィオン(登録商標)が好適に用いられる。   The solid polymer electrolyte 1 may be any solid polymer membrane battery as long as it is used in conventional solid polymer membrane batteries. From the viewpoint of chemical stability and conductivity, a perfluorocarbon having a sulfonic acid group which is a super strong acid. A cation exchange membrane made of a polymer is preferably used. Nafion (registered trademark) is preferably used as such a cation exchange membrane.

その他、例えば、ポリテトラフルオロエチレン等のフッ素樹脂からなる多孔質膜に上記ナフィオンや他のイオン伝導性物質を含浸させたものや、ポリエチレンやポリプロピレン等のポリオレフィン樹脂からなる多孔質膜や不織布に上記ナフィオンや他のイオン伝導性物質を担持させたものでもよい。   In addition, for example, a porous film made of a fluororesin such as polytetrafluoroethylene impregnated with the above Nafion or other ion conductive material, a porous film made of a polyolefin resin such as polyethylene or polypropylene, or a non-woven fabric. A material carrying Nafion or another ion conductive material may be used.

固体高分子電解質1の厚みは、薄くするほど全体の薄型化に有効であるが、イオン伝導機能、強度、ハンドリング性などを考慮すると、10〜300μmが使用可能であるが、25〜50μmが好ましい。   The thinner the solid polymer electrolyte 1 is, the more effective it is to make the whole thinner. However, in consideration of ion conduction function, strength, handling property, etc., 10 to 300 μm can be used, but 25 to 50 μm is preferable. .

電極板2,3は、ガス拡散層としての機能を発揮して、燃料ガスや、酸化ガス及び水蒸気の供給・排出を行なうと同時に、集電の機能を発揮するものが使用できる。電極板2,3としては、同一又は異なるものが使用でき、その基材には電極触媒作用を有する触媒を担持させることが好ましい。触媒は、固体高分子電解質1と接する内面2b,3bに少なくとも担持させるのが好ましい。   The electrode plates 2 and 3 can function as a gas diffusion layer, and can supply and discharge fuel gas, oxidizing gas, and water vapor, and at the same time can exhibit a current collecting function. As the electrode plates 2 and 3, the same or different ones can be used, and it is preferable to support a catalyst having an electrode catalytic action on the base material. The catalyst is preferably supported at least on the inner surfaces 2 b and 3 b in contact with the solid polymer electrolyte 1.

電極基材としては、例えば、カーボンペーパー、カーボン繊維不織布などの繊維質カーボン、導電性高分子繊維の集合体などの電導性多孔質材が使用できる。一般に、電極板2,3は、このような電導性多孔質材にフッ素樹脂等の撥水性物質を添加して作製されるものであって、触媒を担持させる場合、白金微粒子などの触媒とフッ素樹脂等の撥水性物質とを混合し、これに溶媒を混合して、ペースト状或いはインク状とした後、これを固体高分子電解質膜と対向すべき電極基材の片面に塗布して形成される。   As the electrode base material, for example, conductive carbon materials such as carbon paper, fibrous carbon such as carbon fiber nonwoven fabric, and aggregates of conductive polymer fibers can be used. In general, the electrode plates 2 and 3 are prepared by adding a water-repellent substance such as a fluororesin to such a conductive porous material. When the catalyst is supported, a catalyst such as platinum fine particles and fluorine It is formed by mixing a water-repellent substance such as a resin, mixing it with a solvent to form a paste or ink, and then applying this to one side of an electrode substrate that should face the solid polymer electrolyte membrane. The

一般に、電極板2,3や固体高分子電解質1は、燃料電池に供給される還元ガスと酸化ガスに応じた設計がなされる。本発明では、酸化ガスとして空気が用いられると共に、還元ガスとして水素ガスや用いられるのが好ましい。また、還元ガスの代わりに、メタノールやジメチルエーテル等を用いることもできる。   In general, the electrode plates 2 and 3 and the solid polymer electrolyte 1 are designed according to the reducing gas and the oxidizing gas supplied to the fuel cell. In the present invention, it is preferable to use air as the oxidizing gas and hydrogen gas as the reducing gas. In addition, methanol, dimethyl ether, or the like can be used instead of the reducing gas.

例えば、水素ガスと空気を使用する場合、空気が自然供給される側のカソード側電極板2では、酸素と水素イオンの反応が生じて水が生成するため、かかる電極反応に応じた設計をするのが好ましい。特に、低作動温度、高電流密度及び高ガス利用率の運転条件では、特に水が生成する空気極において水蒸気の凝縮による電極多孔体の閉塞(フラッディング)現象が起こりやすい。したがって、長期にわたって燃料電池の安定な特性を得るためには、フラッディング現象が起こらないように電極の撥水性を確保することが有効である。   For example, when hydrogen gas and air are used, the cathode-side electrode plate 2 on the side where air is naturally supplied causes a reaction between oxygen and hydrogen ions, so that water is generated. Is preferred. In particular, under the operating conditions of low operating temperature, high current density, and high gas utilization rate, the electrode porous body is likely to be clogged (flooded) due to the condensation of water vapor, particularly at the air electrode where water is generated. Therefore, in order to obtain stable characteristics of the fuel cell over a long period of time, it is effective to ensure the water repellency of the electrode so that the flooding phenomenon does not occur.

触媒としては、白金、パラジウム、ルテニウム、ロジウム、銀、ニッケル、鉄、銅、コバルト及びモリブデンから選ばれる少なくとも1種の金属か、又はその酸化物が使用でき、これらの触媒をカーボンブラック等に予め担持させたものも使用できる。   As the catalyst, at least one metal selected from platinum, palladium, ruthenium, rhodium, silver, nickel, iron, copper, cobalt and molybdenum, or an oxide thereof can be used. A supported one can also be used.

電極板2,3の厚みは、薄くするほど全体の薄型化に有効であるが、電極反応、強度、ハンドリング性などを考慮すると、50〜500μmが好ましい。   The thickness of the electrode plates 2 and 3 is more effective for reducing the overall thickness as the thickness is reduced, but is preferably 50 to 500 μm in view of electrode reaction, strength, handling properties, and the like.

電極板2,3と固体高分子電解質1とは、予め接着、融着等を行って積層一体化しておいてもよいが、単に積層配置されているだけでもよい。このような積層体は、薄膜電極組立体(Membrane Electrode Assembly:MEA)として入手することもでき、これを使用してもよい。   The electrode plates 2 and 3 and the solid polymer electrolyte 1 may be laminated and integrated in advance by adhesion, fusion, or the like, or may simply be arranged in a stacked manner. Such a laminated body can also be obtained as a thin film electrode assembly (MEA), and may be used.

上記のカソード側電極板2の表面にはカソード側金属板4が配置され、アノード側電極板3の表面にはアノード側金属板5が配置される。   A cathode side metal plate 4 is disposed on the surface of the cathode side electrode plate 2, and an anode side metal plate 5 is disposed on the surface of the anode side electrode plate 3.

カソード側金属板4には、空気中の酸素を供給するための開口部4cが設けられている。開口部4cは、カソード側電極板2が露出可能であれば、その個数、形状、大きさ、形成位置などは何れでもよい。但し、空気中の酸素の供給効率と、カソード側電極板2からの集電効果などを考慮すると、開口部4cの面積はカソード側電極板2の面積の10〜50%であるのが好ましく、特に20〜40%であるのが好ましい。   The cathode side metal plate 4 is provided with an opening 4c for supplying oxygen in the air. As long as the cathode side electrode plate 2 can be exposed, the number, shape, size, formation position, and the like of the opening 4c may be any. However, in consideration of the supply efficiency of oxygen in the air and the current collection effect from the cathode side electrode plate 2, the area of the opening 4c is preferably 10 to 50% of the area of the cathode side electrode plate 2, In particular, 20 to 40% is preferable.

カソード側金属板4の開口部4cは、例えば規則的又はランダムに複数の円孔やスリット等を設けたり、または金属メッシュによって開口部を設けてもよい。   The opening 4c of the cathode side metal plate 4 may be provided with a plurality of circular holes, slits, or the like regularly or randomly, or may be provided with a metal mesh.

金属板4,5としては、電極反応に悪影響がないものであれば何れの金属も使用でき、例えばステンレス板、ニッケル、銅、銅合金などが挙げられる。但し、伸び、重量、弾性率、強度、耐腐食性、プレス加工性などの観点から、ステンレス板、ニッケルなどが好ましい。   As the metal plates 4 and 5, any metal can be used as long as it does not adversely affect the electrode reaction, and examples thereof include stainless steel plates, nickel, copper, and copper alloys. However, from the viewpoints of elongation, weight, elastic modulus, strength, corrosion resistance, press workability, etc., a stainless steel plate, nickel and the like are preferable.

本発明では、図2に示すように、少なくともアノード側金属板5の内面には流路溝9を形成してあり、平行に形成された流路溝9の間に凸状の曲面接触部5rを形成してある。本実施形態では、アノード側金属板5には燃料の注入口5c及び排出口5dが設けられ、その間にプレス加工により流路溝9が設けられている例を示す。   In the present invention, as shown in FIG. 2, at least the inner surface of the anode side metal plate 5 is formed with a flow channel groove 9, and a convex curved contact portion 5r is formed between the flow channel grooves 9 formed in parallel. Is formed. In the present embodiment, an example is shown in which the anode side metal plate 5 is provided with a fuel injection port 5c and a discharge port 5d, and a channel groove 9 is provided between them by pressing.

本発明では、流路溝9の間の曲面接触部5rの形状は、断面が円弧状のものに限定されないが、図3に示すように、曲面接触部5rの断面が円弧状である場合、その内面の曲率半径Rが0.1〜100mmであるのが好ましく、内面の曲率半径Rが0.1〜10mmであるのがより好ましい。曲率半径Rが0.1mm未満であると、加工性や耐久性などの問題が生じ易くなり、曲率半径Rが100mmを超えると、曲面接触部5rが平面に近づくため、電極板に対する接触圧力が十分でない場合、接触抵抗が大きくなり出力の低下が生じ易くなる。   In the present invention, the shape of the curved contact portion 5r between the flow channel grooves 9 is not limited to the one having a circular cross section, but as shown in FIG. 3, when the cross section of the curved contact portion 5r is a circular arc, It is preferable that the curvature radius R of the inner surface is 0.1 to 100 mm, and it is more preferable that the curvature radius R of the inner surface is 0.1 to 10 mm. When the radius of curvature R is less than 0.1 mm, problems such as workability and durability are likely to occur. When the radius of curvature R exceeds 100 mm, the curved contact portion 5r approaches a flat surface, so that the contact pressure against the electrode plate is increased. If it is not sufficient, the contact resistance increases and the output tends to decrease.

アノード側金属板5に設けられる流路溝9は、上記のような曲面接触部5rを形成したものであれば何れの平面形状や断面形状でもよい。但し、流路密度、積層時の積層密度、屈曲性などを考慮すると、金属板5の一辺に平行な縦溝9aと垂直な横溝9bを主に形成するのが好ましい。本実施形態では、複数本(図示した例では3本)の縦溝9aが横溝9bに直列接続されるようにして、流路密度と流路長のバランスを取っている。   The channel groove 9 provided in the anode side metal plate 5 may have any planar shape or cross-sectional shape as long as the curved contact portion 5r as described above is formed. However, in consideration of the channel density, the lamination density at the time of lamination, the flexibility, etc., it is preferable to mainly form the vertical groove 9a parallel to one side of the metal plate 5 and the vertical groove 9b. In this embodiment, a plurality of (three in the illustrated example) vertical grooves 9a are connected in series to the horizontal grooves 9b to balance the flow path density and the flow path length.

なお、このような金属板5の流路溝9の一部(例えば横溝9b)を電極板3の外面に形成してもよい。電極板3の外面に流路溝を形成する方法としては、加熱プレスや切削などの機械的な方法でもよいが、微細加工を好適に行う上で、レーザ照射によって溝加工を行うことが好ましい。レーザ照射を行う観点からも、電極板2,3の基材としては、繊維質カーボンの集合体が好ましい。   A part of the channel groove 9 (for example, the lateral groove 9 b) of the metal plate 5 may be formed on the outer surface of the electrode plate 3. As a method of forming the flow channel groove on the outer surface of the electrode plate 3, a mechanical method such as a hot press or cutting may be used. However, it is preferable to perform groove processing by laser irradiation in order to suitably perform fine processing. From the viewpoint of performing laser irradiation, the base material for the electrode plates 2 and 3 is preferably an aggregate of fibrous carbon.

金属板5の流路溝9に連通する注入口5c及び排出口5dは、それぞれ1個又は複数を形成することができる。なお、金属板4,5の厚みは、薄くするほど全体の薄型化に有効であるが、前述した理由から、0.05〜1mmが好ましく、0.07〜0.7mmがより好ましい。   One or a plurality of inlets 5c and outlets 5d communicating with the channel groove 9 of the metal plate 5 can be formed. In addition, although the thickness of the metal plates 4 and 5 is effective for the whole thickness reduction, so that it is thin, from the reason mentioned above, 0.05-1 mm is preferable and 0.07-0.7 mm is more preferable.

本発明では、金属板5の厚みを抑えて軽量化を図りつつ、流路溝9の形成により補強効果を得る観点から、プレス加工による金属板5の変形により流路溝9を形成するのが好ましい。プレス加工により流路溝9を形成する際、流路溝9としては幅0.1〜10mm、深さ0.1〜10mmが好ましい。また、流路溝9の断面形状は、略四角形、略台形、略半円形、V字形などが好ましい。なお、エッチングや切削加工により流路溝9を形成することも可能であり、その場合も同程度の幅の流路溝9を形成するのが好ましい。   In the present invention, from the viewpoint of obtaining a reinforcing effect by forming the flow channel groove 9 while reducing the thickness by reducing the thickness of the metal plate 5, the flow channel groove 9 is formed by deformation of the metal plate 5 by press working. preferable. When the flow channel 9 is formed by press working, the flow channel 9 preferably has a width of 0.1 to 10 mm and a depth of 0.1 to 10 mm. The cross-sectional shape of the channel groove 9 is preferably substantially square, substantially trapezoidal, substantially semicircular, V-shaped or the like. It is also possible to form the flow channel 9 by etching or cutting, and in this case, it is preferable to form the flow channel 9 having the same width.

金属板4への開口部4cの形成、金属板4,5の外縁部の薄肉化、金属板5への注入口5c等の形成については、エッチング、パンチ、ドリリングなどを利用するのが好ましい。   Etching, punching, drilling, or the like is preferably used for forming the opening 4c in the metal plate 4, thinning the outer edges of the metal plates 4 and 5, and forming the inlet 5c and the like in the metal plate 5.

本発明では、カソード側金属板4又はアノード側金属板5の少なくとも一方の内側面には、貴金属の被覆層を形成してあることが好ましい。被覆層としては、金属板4,5の酸化を防ぎ、カーボンペーパー等の電極板2,3、及び電気取り出し端子との接触抵抗を下げるものであれば、特に限定するものではなく、一般的に、金、白金、パラジウム、ルテニウム、などの金属を挙げることができる。   In the present invention, a noble metal coating layer is preferably formed on at least one inner surface of the cathode side metal plate 4 or the anode side metal plate 5. The coating layer is not particularly limited as long as it prevents oxidation of the metal plates 4 and 5 and lowers the contact resistance with the electrode plates 2 and 3 such as carbon paper and the electrical extraction terminal. , Gold, platinum, palladium, ruthenium, and the like.

貴金属の被覆層の形成方法としては、セルの金属と密着力良く、形成できるものであれば、特に限定するものではなく、様々な種類の形成方法を使うことが出来る。代表例としては、メッキ、スパッタ蒸着、イオンプレーティング、蒸着、CVD、CAT−CVD、などを用いることができる。   The method for forming the coating layer of the noble metal is not particularly limited as long as it can be formed with good adhesion to the metal of the cell, and various types of forming methods can be used. As typical examples, plating, sputter deposition, ion plating, deposition, CVD, CAT-CVD, and the like can be used.

本発明では、前記両側の金属板4,5の周縁を電気的に絶縁した状態で封止してあるが、その際、両側の電極板2,3から固体高分子電解質1の周縁部1aを延出させ、その周縁部1aをこれに対向する前記金属板4,5によって挟持する構造が好ましい。封止は、例えば曲げプレス、即ち所謂カシメなどの機械的な封止により行うことが好ましい。   In the present invention, the periphery of the metal plates 4 and 5 on both sides is sealed in an electrically insulated state. At that time, the periphery 1a of the solid polymer electrolyte 1 is removed from the electrode plates 2 and 3 on both sides. A structure in which the peripheral edge portion 1a is extended and held between the metal plates 4 and 5 opposed thereto is preferable. The sealing is preferably performed by mechanical sealing such as bending press, that is, so-called caulking.

本実施形態では、固体高分子電解質1の周縁部1aが絶縁材料6を介在させつつ金属板4,5によって挟持されると共に、金属板4,5の周縁が、絶縁材料6を介在させつつカシメにより封止されている例を示す。電気的な絶縁は、絶縁材料6や固体高分子電解質1の周縁部、又はその両者を介在させることで行うことができる。   In the present embodiment, the peripheral portion 1 a of the solid polymer electrolyte 1 is sandwiched between the metal plates 4 and 5 with the insulating material 6 interposed therebetween, and the peripheral edge of the metal plates 4 and 5 is caulked with the insulating material 6 interposed. The example sealed by is shown. Electrical insulation can be performed by interposing the insulating material 6, the peripheral edge of the solid polymer electrolyte 1, or both.

本発明では、カシメを行う際、図2に示すように、金属板4,5の外縁によって固体高分子電解質1を挟持する構造が好ましく、絶縁材料6を介在させつつ固体高分子電解質1を挟持する構造がより好ましい。このような構造によると、電極板2,3の一方から他方へのガス等の流入を効果的に防止することができる。絶縁材料6の厚みとしては、薄型化の観点から、0.1mm以下が好ましい。なお、絶縁材料をコーティングすることにより、更なる薄型化が可能である(例えば絶縁材料6の厚み1μmも可能)。   In the present invention, when caulking, as shown in FIG. 2, a structure in which the solid polymer electrolyte 1 is sandwiched between the outer edges of the metal plates 4 and 5 is preferable, and the solid polymer electrolyte 1 is sandwiched with the insulating material 6 interposed. More preferable is the structure. According to such a structure, inflow of gas or the like from one of the electrode plates 2 and 3 to the other can be effectively prevented. The thickness of the insulating material 6 is preferably 0.1 mm or less from the viewpoint of thinning. In addition, it is possible to further reduce the thickness by coating the insulating material (for example, the insulating material 6 can have a thickness of 1 μm).

絶縁材料6としては、シート状の樹脂、ゴム、熱可塑性エラストマー、セラミックスなどが使用できるが、シール性を高める上で、樹脂、ゴム、熱可塑性エラストマーなどが好ましく、特にポリプロピレン、ポリエチレン、ポリエステル、フッ素樹脂、ポリイミドが好ましい。絶縁材料6は、金属板4,5の周縁に直接あるいは粘着剤を介して貼着したり、塗布したりして、予め金属板4,5に一体化しておくことも可能である。   As the insulating material 6, a sheet-like resin, rubber, thermoplastic elastomer, ceramics, and the like can be used. However, in order to improve the sealing performance, resin, rubber, thermoplastic elastomer, and the like are preferable, and in particular, polypropylene, polyethylene, polyester, fluorine Resin and polyimide are preferable. The insulating material 6 can be integrated with the metal plates 4 and 5 in advance by sticking or coating the peripheral edges of the metal plates 4 and 5 directly or via an adhesive.

カシメ構造としては、シール性や製造の容易性、厚み等の観点から図2に示すものが好ましい。つまり、一方の金属板5の外縁部5aを他方の外縁部4aより大きくしておき、絶縁材料6を介在させつつ、一方の金属板5の外縁部5aを他方の金属板4の外縁部4aを挟圧するように折り返したカシメ構造が好ましい。このカシメ構造では、プレス加工等によって、金属板4の外縁部4aに段差を設けておくのが好ましい。このようなカシメ構造自体は金属加工として公知であり、公知のカシメ装置によって、それを形成することができる。   As the caulking structure, the structure shown in FIG. 2 is preferable from the viewpoint of sealing performance, ease of manufacture, thickness, and the like. That is, the outer edge portion 5a of one metal plate 5 is made larger than the other outer edge portion 4a, and the insulating material 6 is interposed, while the outer edge portion 5a of one metal plate 5 is changed to the outer edge portion 4a of the other metal plate 4. A caulking structure that is folded back so as to sandwich pressure is preferable. In this caulking structure, it is preferable to provide a step in the outer edge portion 4a of the metal plate 4 by pressing or the like. Such a caulking structure itself is known as metal processing, and can be formed by a known caulking device.

本発明では、図2に示すような単位セルを1個又は複数個使用することができるが、固体高分子電解質1、一対の電極板2,3、及び一対の金属板4,5で単位セルを構成し、この単位セルを複数積層したり、同一面に配列して使用することも可能である。このようにすると、ボルト及びナットの締結部品で相互結合して、セル部品に一定の圧力を加えなくても、高出力の燃料電池を提供することができる。   In the present invention, one or a plurality of unit cells as shown in FIG. 2 can be used. The unit cell is composed of a solid polymer electrolyte 1, a pair of electrode plates 2, 3, and a pair of metal plates 4, 5. It is also possible to stack a plurality of unit cells or arrange them on the same surface. By doing so, it is possible to provide a high-power fuel cell without the need to apply a certain pressure to the cell parts by mutually coupling with the fastening parts of the bolts and nuts.

使用の際、金属板5の燃料の注入口5c及び排出口5dには、直接、燃料供給用のチューブを接合することも可能であるが、燃料電池の薄型化を行う上で、厚みが小さく、金属板5の表面に平行なパイプを有するチューブジョイントを設けるのが好ましい。   In use, a fuel supply tube can be directly joined to the fuel inlet 5c and the outlet 5d of the metal plate 5, but the thickness of the fuel cell is reduced in order to reduce the thickness of the fuel cell. A tube joint having a pipe parallel to the surface of the metal plate 5 is preferably provided.

本発明の燃料電池は、薄型化が可能で小型軽量かつ自由な形状設計が可能なため、特に、携帯電話、ノートPC等のモバイル機器に好適に使用することができる。   Since the fuel cell of the present invention can be thinned and can be designed to be small, light and free, it can be suitably used particularly for mobile devices such as mobile phones and notebook PCs.

[他の実施形態]
(1)前述の実施形態では、図2に示すカシメ構造を採用する例を示したが、本発明では、図4(a)〜(b)に示すようなカシメ構造を採用してもよい。
[Other Embodiments]
(1) In the above-described embodiment, an example in which the caulking structure shown in FIG. 2 is adopted is shown. However, in the present invention, a caulking structure as shown in FIGS. 4A to 4B may be adopted.

図4(a)に示すカシメ構造は、両方の金属板4,5の外縁部4a,5aを折り返したカシメ構造である。この例では、金属板5には段差部を設けずに、金属板4のみに段差部を設けてある。なお、この単位セルでは、各々の電極板2,3から拡散したガスが混合しないように、金属板4,5の各々と固体高分子電解質1との間に、シール部材Sを介在させている。   The crimped structure shown in FIG. 4A is a crimped structure in which the outer edge portions 4a and 5a of both the metal plates 4 and 5 are folded back. In this example, the metal plate 5 is not provided with a step portion, but the metal plate 4 is provided with a step portion. In this unit cell, a sealing member S is interposed between each of the metal plates 4 and 5 and the solid polymer electrolyte 1 so that the gas diffused from each of the electrode plates 2 and 3 is not mixed. .

更に、図4(b)に示すカシメ構造は、両方の金属板4,5の外縁部4a,5aを折り返さずに、別の金属板7によって、各々の金属板4,5を絶縁する絶縁材料6a,6bを介して、挟圧したカシメ構造である。この例では、金属板4および金属板5に、緩やかに傾斜する段差部を設けてある。なお、カシメ構造では、両者の金属板4,5をプレス加工せずに平板のまま使用することも可能である。   Further, the caulking structure shown in FIG. 4B is an insulating material that insulates each of the metal plates 4 and 5 by another metal plate 7 without folding the outer edge portions 4a and 5a of both the metal plates 4 and 5. It is the crimping structure clamped via 6a, 6b. In this example, the metal plate 4 and the metal plate 5 are provided with stepped portions that are gently inclined. In the caulking structure, both the metal plates 4 and 5 can be used as they are without being pressed.

(2)前述の実施形態では、両側の金属板の周縁を電気的に絶縁した状態で曲げプレスにより封止してある例を示したが、本発明では、封止方法は特に限定されず、リベットやボルトナット等の締結手段などを用いた機械的な封止や、接着剤、封止材の融着等による封止などでもよい。   (2) In the above-described embodiment, an example in which the peripheral edges of the metal plates on both sides are electrically insulated and sealed by a bending press is shown, but in the present invention, the sealing method is not particularly limited, Mechanical sealing using fastening means such as rivets and bolts and nuts, or sealing by fusion of an adhesive or a sealing material may be used.

(3)前述の実施形態では、カソード側金属板に空気を自然供給するための開口部が形成されている例を示したが、アノード側金属板と同様に、エッチングやプレス加工により、空気等の酸素含有ガスの流路溝、注入口、排出口を形成してもよい。その場合、アノード側金属板と同様に、カソード側金属板の注入口から空気等を供給しつつ発電を行う。   (3) In the above-described embodiment, an example in which an opening for naturally supplying air to the cathode side metal plate is shown. However, as with the anode side metal plate, air or the like is obtained by etching or pressing. The oxygen-containing gas channel groove, inlet, and outlet may be formed. In that case, as with the anode side metal plate, power generation is performed while supplying air or the like from the inlet of the cathode side metal plate.

(4)前述の実施形態では、カソード側金属板の開口部から、そのままカソード側電極板を露出させる例を示したが、本発明では、カソード側金属板に、前記開口部を覆うように疎水性の高分子多孔質膜を積層してもよい。高分子多孔質膜の積層は、カソード側金属板の内側でも外側でもよい。   (4) In the above-described embodiment, the cathode side electrode plate is exposed as it is from the opening of the cathode side metal plate. However, in the present invention, the cathode side metal plate is hydrophobic so as to cover the opening. A porous polymer porous membrane may be laminated. The polymer porous membrane may be laminated inside or outside the cathode side metal plate.

高分子多孔質膜の平均孔径は、通気性を維持しながら水滴の漏出を防止する上で、0.01〜3μmが好ましい。また、高分子多孔質膜の厚みは10〜100μmが好ましい。高分子多孔質膜の材質としては、ポリテトラフルオロエチレン等のフッ素樹脂、ポリプロピレンやポリエチレン等のポリオレフィン、ポリウレタン、シリコーン樹脂などが挙げられる。   The average pore diameter of the polymer porous membrane is preferably 0.01 to 3 μm in order to prevent water droplets from leaking while maintaining air permeability. The thickness of the polymer porous membrane is preferably 10 to 100 μm. Examples of the material for the polymer porous membrane include fluororesins such as polytetrafluoroethylene, polyolefins such as polypropylene and polyethylene, polyurethane, and silicone resins.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。   Examples and the like specifically showing the configuration and effects of the present invention will be described below.

〔実施例1〕
耐食性を有するSUS(50mm×26mm×0.1mm厚)に溝(幅0.5mm、深さ0.2mm、間隔1.0mm、曲面接触部の曲率半径0.2mm)をプレス加工により21個設けた。得られた金属板には、全面に金メッキ(メッキ厚0.3μm)を施した。
そして絶縁シート(50mm×26mm×2mm幅、厚み80μm)をSUSに張り合わせた。
[Example 1]
Twenty-one grooves (width 0.5 mm, depth 0.2 mm, spacing 1.0 mm, radius of curvature of curved contact portion 0.2 mm) are provided by press working on corrosion-resistant SUS (50 mm x 26 mm x 0.1 mm thickness) It was. The obtained metal plate was gold-plated (plating thickness 0.3 μm) on the entire surface.
Then, an insulating sheet (50 mm × 26 mm × 2 mm width, thickness 80 μm) was bonded to SUS.

また、薄膜電極組立体(49.3mm×25.3mm)は、下記のようにして作製した。白金触媒は、米国エレクトロケム社製20%白金担持カーボン触媒(EC−20−PTC)を用いた。この白金触媒と、カーボンブラック(アクゾ社ケッチェンブラックEC)、ポリフッ化ビニリデン(カイナー)を、それぞれ75重量%、15重量%、10重量%の割合で混合し、ジメチルホルムアミドを、2.5重量%のポリフッ化ビニリデン溶液となるような割合で、上記白金触媒、カーボンブラック、ポリフッ化ビニリデンの混合物中に加え、乳鉢中で溶解・混合して、触媒ペーストを作製した。カーボンペーパー(東レ製TGP−H−90、厚み370μm)を20mm×43mmに切断し、この上に、上記のようにして作製した触媒ペースト約20mgをスパチュラにて塗布し、80℃の熱風循環式乾燥機中で乾燥した。このようにして4mgの触媒組成物が担持されたカーボンペーパーを作製した。白金担持量は、0.6mg/cm2 である。 A thin film electrode assembly (49.3 mm × 25.3 mm) was prepared as follows. As the platinum catalyst, a 20% platinum-supported carbon catalyst (EC-20-PTC) manufactured by US Electrochem Co., Ltd. was used. The platinum catalyst, carbon black (Akzo Ketjen Black EC), and polyvinylidene fluoride (Kayner) were mixed at a ratio of 75% by weight, 15% by weight, and 10% by weight, respectively, and dimethylformamide was added by 2.5% by weight. The catalyst paste was prepared by adding to the mixture of the platinum catalyst, carbon black, and polyvinylidene fluoride in such a ratio as to give a% polyvinylidene fluoride solution, and dissolving and mixing in a mortar. Carbon paper (TGP-H-90 manufactured by Toray, thickness 370 μm) is cut into 20 mm × 43 mm, and about 20 mg of the catalyst paste prepared as described above is applied with a spatula and heated at 80 ° C. Dried in the dryer. Thus, a carbon paper carrying 4 mg of the catalyst composition was produced. The amount of platinum supported is 0.6 mg / cm 2 .

上記のようにして作製した白金触媒担持カーボンペーパーと、固体高分子電解質(陽イオン交換膜)としてナフィオンフィルム(デュポン社製ナフィオン112)(25.3mm×49.3mm、厚み50μm)を用い、その両面に、金型を用いて、135℃、2MPaの条件にて2分間ホットプレスした。こうして得られた薄膜電極組立体を上記のSUS板2枚の中央で挟み込み、図2に示すようにカシメ合わせることで、外寸50mm×26mm×1.4mm厚という薄型小型のマイクロ燃料電池を得る事ができた。なお、セル全体の質量は、2.72gであった。   Using the platinum catalyst-supported carbon paper produced as described above and a Nafion film (Nafion 112 manufactured by DuPont) (25.3 mm × 49.3 mm, thickness 50 μm) as a solid polymer electrolyte (cation exchange membrane), On both sides, hot pressing was performed for 2 minutes using a mold at 135 ° C. and 2 MPa. The thin-film electrode assembly thus obtained is sandwiched between the two SUS plates in the center and crimped as shown in FIG. 2 to obtain a thin and small micro fuel cell having an outer dimension of 50 mm × 26 mm × 1.4 mm. I was able to do things. In addition, the mass of the whole cell was 2.72g.

このマイクロ燃料電池の電池特性を評価した。燃料電池特性は、東陽テクニカ製燃料電池評価システムを用い、室温下、純水素ガス、純酸素ガスを用いて評価した。ガス流量は、0.2L/minとした。その際の電流密度と電圧との関係を示すグラフを図5に、電流密度とセル抵抗との関係を示すグラフを図6に、それぞれ示した。   The battery characteristics of the micro fuel cell were evaluated. The fuel cell characteristics were evaluated using a fuel cell evaluation system manufactured by Toyo Technica at room temperature using pure hydrogen gas and pure oxygen gas. The gas flow rate was 0.2 L / min. A graph showing the relationship between current density and voltage at that time is shown in FIG. 5, and a graph showing the relationship between current density and cell resistance is shown in FIG.

〔比較例1〕
実施例1において、カソード側金属板及びアノード側金属板を作製する際に、厚み0.3mmの金属板を用いて、その内面だけをエッチングして、平行な流路溝の間に幅0.5mmの平面接触部を形成したこと以外は、実施例1と全く同様にして燃料電池を作製し、同様にして評価を行った。その結果を図5〜図6に夫々併せて示す。このグラフから明らかなように、金属板の厚みが増加して接触圧力が高くなったため、電池特性は実施例1と同等であったが、セル全体の質量は、4.65gと大きく増加しており、軽量化を図る上で問題であった。
[Comparative Example 1]
In Example 1, when producing a cathode side metal plate and an anode side metal plate, a metal plate having a thickness of 0.3 mm was used to etch only the inner surface, and a width of 0. A fuel cell was produced in the same manner as in Example 1 except that a 5 mm flat contact portion was formed, and evaluated in the same manner. The results are also shown in FIGS. As is clear from this graph, the thickness of the metal plate increased and the contact pressure increased, so the battery characteristics were the same as in Example 1. However, the mass of the entire cell was greatly increased to 4.65 g. This is a problem in reducing weight.

〔比較例2〕
実施例1において、カソード側金属板及びアノード側金属板を作製する際に、厚み0.3mmの金属板を用いて、セル全体の質量が実施例1と同じになるように、内面及び外面をエッチングして、実施例1と略同じ断面凹凸形状で、平行な流路溝の間に幅0.5mmの平面接触部を形成したこと以外は、実施例1と全く同様にして燃料電池を作製し、同様にして評価を行った。その結果を図5〜図6に夫々併せて示す。このグラフから明らかなように、金属板の曲げ剛性が低下して接触圧力が低くなったため、平面接触部によりセル抵抗が増加し、電池特性が実施例1より大きく低下した。なお、セル全体の質量は、2.81gであった。
[Comparative Example 2]
In Example 1, when producing the cathode side metal plate and the anode side metal plate, the inner surface and the outer surface were formed using a metal plate having a thickness of 0.3 mm so that the mass of the entire cell was the same as in Example 1. A fuel cell was fabricated in exactly the same manner as in Example 1, except that a plane contact portion having a width of 0.5 mm was formed between the parallel channel grooves with the same concavo-convex shape as in Example 1 by etching. Then, the evaluation was performed in the same manner. The results are also shown in FIGS. As apparent from this graph, the bending rigidity of the metal plate was lowered and the contact pressure was lowered, so that the cell resistance was increased by the flat contact portion, and the battery characteristics were greatly deteriorated as compared with Example 1. In addition, the mass of the whole cell was 2.81g.

本発明の燃料電池(単位セル)の一例を示す組み立て斜視図Assembly perspective view showing an example of the fuel cell (unit cell) of the present invention 本発明の燃料電池(単位セル)の一例を示す縦断面図The longitudinal cross-sectional view which shows an example of the fuel cell (unit cell) of this invention 本発明の燃料電池(単位セル)の一例の要部を示す断面図Sectional drawing which shows the principal part of an example of the fuel cell (unit cell) of this invention 本発明の燃料電池におけるカシメ構造の他の例を示す要部断面図Sectional drawing of the principal part which shows the other example of the crimping structure in the fuel cell of this invention 本発明の実施例等で得られた燃料電池の電流密度と電圧の関係を示すグラフThe graph which shows the relationship between the current density and voltage of the fuel cell obtained by the Example of this invention, etc. 本発明の実施例等で得られた燃料電池の電流密度とセル抵抗の関係を示すグラフThe graph which shows the relationship between the current density and cell resistance of the fuel cell obtained by the Example of this invention, etc. 従来の燃料電池の一例を示す組み立て斜視図Assembly perspective view showing an example of a conventional fuel cell

符号の説明Explanation of symbols

1 固体高分子電解質
2 カソード側電極板
2a カソード側電極板の周縁部
3 アノード側電極板
3a アノード側電極板の周縁部
4 カソード側金属板
4c 開口部
5 アノード側金属板
5c 注入口
5d 排出口
5r 曲面接触部
6 絶縁材料
9 流路溝
R 曲面接触部の内面の曲率半径
DESCRIPTION OF SYMBOLS 1 Solid polymer electrolyte 2 Cathode side electrode plate 2a Peripheral part of cathode side electrode plate 3 Anode side electrode plate 3a Peripheral part of anode side electrode plate 4 Cathode side metal plate 4c Opening part 5 Anode side metal plate 5c Inlet 5d Outlet 5r Curved surface contact portion 6 Insulating material 9 Channel groove R Curvature radius of the inner surface of curved surface contact portion

Claims (4)

板状の固体高分子電解質と、その固体高分子電解質の一方側に配置されたカソード側電極板と、他方側に配置されたアノード側電極板と、前記カソード側電極板の表面に配置され内面側へのガスの流通を可能とするカソード側金属板と、前記アノード側電極板の表面に配置され内面側への燃料の流通を可能とするアノード側金属板と、を備える燃料電池であって、
前記両側の金属板の周縁を電気的に絶縁した状態で封止してあると共に、少なくとも前記アノード側金属板の内面には流路溝を形成してあり、平行に形成された流路溝の間に凸状の曲面接触部を形成してある燃料電池。
A plate-shaped solid polymer electrolyte, a cathode side electrode plate disposed on one side of the solid polymer electrolyte, an anode side electrode plate disposed on the other side, and an inner surface disposed on the surface of the cathode side electrode plate A fuel cell comprising: a cathode-side metal plate that allows gas to flow to the side; and an anode-side metal plate that is disposed on the surface of the anode-side electrode plate and allows fuel to flow to the inner surface side. ,
The peripheral edges of the metal plates on both sides are sealed in an electrically insulated state, and at least the inner surface of the anode side metal plate is formed with a flow channel groove, and the flow channel grooves formed in parallel are formed. A fuel cell having a convex curved contact portion formed therebetween.
前記流路溝はプレス加工により形成され、前記凸状の曲面接触部は曲率半径が0.1〜100mmの曲面接触部を形成してある請求項1記載の燃料電池。   2. The fuel cell according to claim 1, wherein the flow path groove is formed by pressing, and the convex curved contact portion forms a curved contact portion having a radius of curvature of 0.1 to 100 mm. 前記両側の金属板の周縁を電気的に絶縁した状態で曲げプレスにより封止してある請求項1又は2に記載の燃料電池。   The fuel cell according to claim 1, wherein the metal plates on both sides are sealed by a bending press in a state where the peripheral edges of the metal plates are electrically insulated. 前記アノード側金属板の厚みが0.05〜1mmである請求項1〜3いずれかに記載の燃料電池。   The fuel cell according to any one of claims 1 to 3, wherein the anode side metal plate has a thickness of 0.05 to 1 mm.
JP2005134059A 2005-05-02 2005-05-02 Fuel cell Pending JP2006310220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134059A JP2006310220A (en) 2005-05-02 2005-05-02 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134059A JP2006310220A (en) 2005-05-02 2005-05-02 Fuel cell

Publications (1)

Publication Number Publication Date
JP2006310220A true JP2006310220A (en) 2006-11-09

Family

ID=37476864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134059A Pending JP2006310220A (en) 2005-05-02 2005-05-02 Fuel cell

Country Status (1)

Country Link
JP (1) JP2006310220A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218054A (en) * 2007-02-28 2008-09-18 Toshiba Corp Fuel cell and fuel cell system
JP2008282586A (en) * 2007-05-08 2008-11-20 Sony Corp Fuel cell, manufacturing method of fuel cell, and electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298874A (en) * 2001-04-02 2002-10-11 Kemitsukusu:Kk Separator for flat fuel cell and flat fuel cell
JP2004296199A (en) * 2003-03-26 2004-10-21 Nissan Motor Co Ltd Separator for fuel cell, fuel cell using it, fuel cell vehicle with it mounted thereon, and manufacturing method of separator for fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298874A (en) * 2001-04-02 2002-10-11 Kemitsukusu:Kk Separator for flat fuel cell and flat fuel cell
JP2004296199A (en) * 2003-03-26 2004-10-21 Nissan Motor Co Ltd Separator for fuel cell, fuel cell using it, fuel cell vehicle with it mounted thereon, and manufacturing method of separator for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218054A (en) * 2007-02-28 2008-09-18 Toshiba Corp Fuel cell and fuel cell system
JP2008282586A (en) * 2007-05-08 2008-11-20 Sony Corp Fuel cell, manufacturing method of fuel cell, and electronic equipment

Similar Documents

Publication Publication Date Title
JP4420960B2 (en) Fuel cell and fuel cell layer
JP3696230B1 (en) Fuel cell
JPWO2004075331A1 (en) Fuel cell and manufacturing method thereof
JP2005150008A (en) Fuel cell
US7862954B2 (en) Fuel cell
US9281534B2 (en) Fuel cell and vehicle including the fuel cell
KR102163539B1 (en) Membrane-electrode assembly, method for manufacturing the same, and fuel cell stack comprising the same
JP4477910B2 (en) Fuel cell
JP2006196328A (en) Method and apparatus for manufacturing battery cell
JP2006066323A (en) Cell of fuel cell
JP2006236740A (en) Fuel cell
JP2006310220A (en) Fuel cell
JP4660151B2 (en) Fuel cell
JP4440088B2 (en) Fuel cell
JP2006066339A (en) Cell of fuel cell
JP4381857B2 (en) Fuel cell
JP3115434U (en) Fuel cell
JP2006004754A (en) Fuel cell
JP4643178B2 (en) Fuel cell
JP3946228B2 (en) Fuel cell
JP2006092783A (en) Fuel cell
JP2006092842A (en) Fuel cell and power generating apparatus using same
JP4381887B2 (en) Fuel cell
JP2006107819A (en) Power source device
JP2007066918A (en) Power generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110804