JP5403491B2 - Membrane electrode assembly and manufacturing method thereof - Google Patents

Membrane electrode assembly and manufacturing method thereof Download PDF

Info

Publication number
JP5403491B2
JP5403491B2 JP2009233369A JP2009233369A JP5403491B2 JP 5403491 B2 JP5403491 B2 JP 5403491B2 JP 2009233369 A JP2009233369 A JP 2009233369A JP 2009233369 A JP2009233369 A JP 2009233369A JP 5403491 B2 JP5403491 B2 JP 5403491B2
Authority
JP
Japan
Prior art keywords
electrode assembly
membrane
water
membrane electrode
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009233369A
Other languages
Japanese (ja)
Other versions
JP2011082022A (en
Inventor
光高 阿部
剣一 豊島
篤史 宮澤
隆了 屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009233369A priority Critical patent/JP5403491B2/en
Publication of JP2011082022A publication Critical patent/JP2011082022A/en
Application granted granted Critical
Publication of JP5403491B2 publication Critical patent/JP5403491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体高分子型燃料電池の発電要素として用いられる膜電極接合体及びその製造方法に関するものである。   The present invention relates to a membrane electrode assembly used as a power generation element of a polymer electrolyte fuel cell and a method for producing the same.

燃料電池には様々な種類があり、なかでも固体高分子型燃料電池は、常温で起動することができ、電解質の散逸の問題が少なく、高電流密度であるなどの利点を有する。この固体高分子型燃料電池の電池要素には、電解質膜をアノード側及びカソード側の電極層で挟持して成る膜電極接合体(MEA:Membrane Electrode Assembly)が用いられる。   There are various types of fuel cells. Among them, polymer electrolyte fuel cells can be started at room temperature, have few problems of electrolyte dissipation, and have a high current density. As a battery element of this polymer electrolyte fuel cell, a membrane electrode assembly (MEA) comprising an electrolyte membrane sandwiched between electrode layers on the anode side and the cathode side is used.

上記の膜電極接合体としては、電解質膜を挟持する一対の電極触媒層と、その一対の電極触媒層を挟持する一対のガス拡散層を備え、ガス拡散層を撥水層とガス拡散基材とで構成して、電極触媒層とガス拡散基材との間に撥水層を配置することにより、ガス拡散層における水の凝縮の抑制・防止を実現したものがある(特許文献1参照)。   The membrane electrode assembly includes a pair of electrode catalyst layers that sandwich an electrolyte membrane, and a pair of gas diffusion layers that sandwich the pair of electrode catalyst layers. The gas diffusion layer is a water repellent layer and a gas diffusion base material. The water repellent layer is disposed between the electrode catalyst layer and the gas diffusion base material, thereby suppressing and preventing water condensation in the gas diffusion layer (see Patent Document 1). .

上記のような膜電極接合体は、その外周にアノード側及びカソード側のガスシール材が設けられ、その後、セパレータと交互に多段積層することにより燃料電池を構成する。この際、膜電極接合体は、ガスシール材付の膜電極接合体として取り扱われるが、電極とガスシール材との間の部分に電解質膜を支持するものが無いので、ガスシール材のエッジにより電解質膜に損傷を与える恐れがある。   The membrane electrode assembly as described above is provided with an anode-side and cathode-side gas seal material on the outer periphery thereof, and then a fuel cell is formed by alternately laminating with separators. At this time, the membrane electrode assembly is handled as a membrane electrode assembly with a gas seal material, but there is nothing to support the electrolyte membrane in the portion between the electrode and the gas seal material. There is a risk of damaging the electrolyte membrane.

そこで、従来の膜電極接合体には、電解質膜の外周部両面側に保護膜を配置し、ガスシール材によって電解質膜の外周部及び保護膜を挟持する構成にして、ガスシール材の近傍部分の電解質膜の機械的強度を高めたものがあった(特許文献2参照)。   Therefore, in the conventional membrane electrode assembly, a protective film is arranged on both sides of the outer periphery of the electrolyte membrane, and the outer periphery of the electrolyte membrane and the protective film are sandwiched by the gas seal material, so that the portion near the gas seal material Some of the electrolyte membranes have increased mechanical strength (see Patent Document 2).

特開2007−165025号公報JP 2007-165025 A 特許第3368907号公報Japanese Patent No. 3368907

しかしながら、上記したような従来の膜電極接合体にあっては、追加の構成要素として電解質膜の両面側に配置する保護膜を採用していたため、その分製造工数やコストが増大するという問題点があり、このような問題点を解決することが課題であった。   However, in the conventional membrane electrode assembly as described above, since the protective film disposed on both sides of the electrolyte membrane is adopted as an additional component, there is a problem in that the manufacturing man-hour and cost increase accordingly. There was a problem to solve such problems.

本発明は、上記従来の課題に着目してなされたものであって、外周部にガスシール材を配置した膜電極接合体において、既存の構成要素を用いてガスシール材の近傍部分の電解質膜を保護することができ、製造工数やコストの低減を実現することができる膜電極接合体及びその製造方法を提供することを目的としている。   The present invention has been made paying attention to the above-described conventional problems, and in a membrane electrode assembly in which a gas seal material is arranged on the outer periphery, an electrolyte membrane in the vicinity of the gas seal material using existing components It is an object of the present invention to provide a membrane electrode assembly and a method for manufacturing the same, which can protect the substrate and realize reduction in manufacturing steps and costs.

本発明の膜電極接合体は、電解質膜のアノード側及びカソード側の各面に、電極触媒層と撥水層を積層状態で有すると共に、これらの外周に沿ってアノード側及びカソード側のガスシール材を配置している。そして、膜電極接合体は、アノード側及びカソード側のガスシール材が、少なくとも一枚のシール素材を折り曲げることにより形成してあると共に、少なくとも電解質膜と撥水層の外周部をアノード側及びカソード側のガスシール材で挟持した構成としており、上記構成をもって従来の課題を解決するための手段としている。 The membrane electrode assembly of the present invention has an electrode catalyst layer and a water repellent layer laminated on each of the anode side and cathode side of the electrolyte membrane, and gas seals on the anode side and cathode side along the outer periphery thereof. The material is arranged. In the membrane electrode assembly, the anode side and cathode side gas seal materials are formed by bending at least one seal material , and at least the outer periphery of the electrolyte membrane and the water repellent layer is formed on the anode side and the cathode side. The structure is sandwiched between the gas seal members on the side, and the above structure is used as means for solving the conventional problems.

本発明の膜電極接合体の製造方法は、上記の膜電極接合体を製造するに際し、成形用基板上に撥水層を形成した後、撥水層と電極触媒層を接合することを特徴とし、より好ましくは、電極触媒層が、電解質膜に予め形成してあることを特徴としている。   The method for producing a membrane / electrode assembly of the present invention is characterized in that, when the membrane / electrode assembly is produced, the water-repellent layer and the electrode catalyst layer are joined after forming the water-repellent layer on the molding substrate. More preferably, the electrode catalyst layer is preliminarily formed on the electrolyte membrane.

本発明の膜電極接合体は、外周部にガスシール材を配置した膜電極接合体において、既存の構成要素である撥水層の一部を用いてガスシール材の近傍部分の電解質膜を保護することができ、製造工数やコストの低減を実現することができる。
また、上記の膜電極接合体は、アノード側及びカソード側のガスシール材の位置合わせが容易になり、生産効率のさらなる向上や、製造工数及びコストのさらなる低減に貢献することができ、さらに、シール素材の折曲部が存在する部分においては、中央の発電領域から外部への反応ガスの漏洩が完全に阻止されるので、燃料電池の信頼性をより高めることができる。
The membrane electrode assembly of the present invention protects the electrolyte membrane in the vicinity of the gas seal material by using a part of the water repellent layer, which is an existing component, in the membrane electrode assembly in which the gas seal material is arranged on the outer periphery. It is possible to reduce the number of manufacturing steps and costs.
In addition, the membrane electrode assembly described above can easily align the gas seal material on the anode side and the cathode side, and can contribute to further improvement in production efficiency and further reduction in manufacturing man-hours and costs. In the portion where the bent portion of the seal material is present, leakage of the reaction gas from the central power generation region to the outside is completely prevented, so that the reliability of the fuel cell can be further improved.

本発明の膜電極接合体の製造方法は、成形用基板上に撥水層を形成することから、撥水層の加熱温度を高くすることができ、これにより撥水層を強固なものにして電解質膜を確実に保護することができ、製造工数やコストの低減にも貢献することができる。   The method for producing a membrane electrode assembly of the present invention forms a water-repellent layer on a molding substrate, so that the heating temperature of the water-repellent layer can be increased, thereby strengthening the water-repellent layer. The electrolyte membrane can be reliably protected and can contribute to the reduction of manufacturing steps and costs.

本発明に係わる膜電極接合体の一実施形態を説明する平面図(a)、図a中のA−A線に基づく断面図(b)、及び図a中のB−B線に基づく断面図(c)である。The top view (a) explaining one Embodiment of the membrane electrode assembly concerning this invention, sectional drawing (b) based on the AA line in FIG. A, and sectional drawing based on the BB line in FIG. (C). 本発明に係わる膜電極接合体の製造方法の一実施形態を示す図であって、その製造工程を説明する各々断面図(a)〜(c)である。It is a figure which shows one Embodiment of the manufacturing method of the membrane electrode assembly concerning this invention, Comprising: It is each sectional drawing (a)-(c) explaining the manufacturing process. 本発明に係わる膜電極接合体の製造方法の他の実施形態を示す図であって、その製造工程を説明する各々断面図(a)〜(e)である。It is a figure which shows other embodiment of the manufacturing method of the membrane electrode assembly concerning this invention, Comprising: It is each sectional drawing (a)-(e) explaining the manufacturing process. 本発明に係わる膜電極接合体の製造方法のさらに他の実施形態を示す図であって、その製造工程を説明する各々断面図(a)及び(b)である。It is a figure which shows other embodiment of the manufacturing method of the membrane electrode assembly concerning this invention, Comprising: It is each sectional drawing (a) and (b) explaining the manufacturing process. 本発明に係わる膜電極接合体の他の実施形態を説明する平面図(a)、図a中のC−C線に基づく断面図(b)、及び図a中のD−D線に基づく断面図(c)である。The top view explaining other embodiment of the membrane electrode assembly concerning this invention (a), sectional drawing (b) based on the CC line in FIG. A, and the cross section based on the DD line in FIG. It is a figure (c). 本発明に係わる膜電極接合体の他の実施形態を説明する平面図(a)、図a中のE−E線に基づく断面図(b)、及び図a中のF−F線に基づく断面図(c)である。The top view explaining other embodiment of the membrane electrode assembly concerning this invention (a), sectional drawing based on the EE line in FIG. A (b), and the cross section based on the FF line in FIG. It is a figure (c).

以下、図面に基づいて、本発明に係わる膜電極接合体及びその製造方法の実施形態を説明する。   Hereinafter, embodiments of a membrane electrode assembly and a method for manufacturing the same according to the present invention will be described with reference to the drawings.

図1に示す膜電極接合体M1は、電解質膜1のアノード側及びカソード側の各面に、電極触媒層11,12と撥水層21,22を積層状態で有するもので、図示例では、撥水層21,22の外側にガス拡散層31,32を有している。また、膜電極接合体M1は、各層の外周に沿ってアノード側及びカソード側のガスシール材41,42を備えている。そして、膜電極接合体M1は、電解質膜1と撥水層21,22の外周部を両ガスシール材41,42で挟持した構成になっている。このため、膜電極接合体M1は、ガスシール材付膜電極接合体とも言える。   A membrane / electrode assembly M1 shown in FIG. 1 includes electrode catalyst layers 11 and 12 and water-repellent layers 21 and 22 in a laminated state on each surface of the electrolyte membrane 1 on the anode side and the cathode side. Gas diffusion layers 31 and 32 are provided outside the water repellent layers 21 and 22. The membrane electrode assembly M1 includes gas seal materials 41 and 42 on the anode side and the cathode side along the outer periphery of each layer. The membrane electrode assembly M1 has a configuration in which the outer peripheral portions of the electrolyte membrane 1 and the water repellent layers 21 and 22 are sandwiched between the gas seal materials 41 and 42. For this reason, the membrane electrode assembly M1 can also be said to be a membrane electrode assembly with a gas sealant.

この実施形態の膜電極接合体M1は、電極触媒層11,12及びガス拡散層31,32よりも撥水層21,22が一回り大きく、撥水層21,22よりも電解質膜1が一回り大きいものとなっている。全ての層が重合した範囲が発電領域である。そして、発電領域に対して、電解質膜1及び撥水層21,22は、外側に延長した外周部を有しており、この外周部が両ガスシール材41,42により挟持されている。   In the membrane electrode assembly M1 of this embodiment, the water repellent layers 21 and 22 are slightly larger than the electrode catalyst layers 11 and 12 and the gas diffusion layers 31 and 32, and the electrolyte membrane 1 is one larger than the water repellent layers 21 and 22. It is a big thing around. The range where all the layers are polymerized is the power generation region. The electrolyte membrane 1 and the water-repellent layers 21 and 22 have an outer peripheral portion extending outward with respect to the power generation region, and the outer peripheral portion is sandwiched between the gas seal materials 41 and 42.

この実施形態のガスシール材41,42は、上記の発電領域を中央に含む長方形状を成し、その発電領域を露出させる中央開口部Hcを有すると共に、その左右に、反応ガス流通用の開口部Hmを3個ずつ有している。   The gas seal materials 41 and 42 of this embodiment have a rectangular shape including the above-described power generation region in the center, and have a central opening Hc that exposes the power generation region. Three parts Hm are provided.

これらの開口部Hmは、当該膜電極接合体M1とセパレータ(図示せず)とを交互に多段積層して燃料電池を構成した際に、セパレータの同様の開口部とともに互いに連通して反応ガス流路を形成する。すなわち、燃料ガスの供給路及び排出路、酸化剤ガス(空気)の供給路及び排出路、及び冷媒の流路などを形成し、膜電極接合体M1のアノード側に燃料ガスを流通させると共に、カソード側に酸化剤ガスを流通させる。   These openings Hm communicate with each other together with the similar openings of the separator when the membrane electrode assembly M1 and separators (not shown) are alternately stacked in multiple stages to constitute a fuel cell. Form a road. That is, a fuel gas supply path and discharge path, an oxidant gas (air) supply path and discharge path, a refrigerant flow path, and the like are formed, and the fuel gas is circulated to the anode side of the membrane electrode assembly M1, An oxidant gas is circulated on the cathode side.

ここで、高分子電解質膜1は、材料がとくに限定されず、公知のものを用いることができるが、少なくとも高いプロトン伝導性を有する材料であればよい。この際、高分子電解質は、高分子骨格の全部又は一部にフッ素原子を含むフッ素系電解質と、高分子骨格にフッ素原子を含まない炭化水素系電解質とに大別される。   Here, the material of the polymer electrolyte membrane 1 is not particularly limited, and a known material can be used, but any material having at least high proton conductivity may be used. At this time, the polymer electrolyte is roughly classified into a fluorine-based electrolyte containing a fluorine atom in the whole or a part of the polymer skeleton and a hydrocarbon electrolyte not containing a fluorine atom in the polymer skeleton.

フッ素系電解質としては、具体的には、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系高分子、ポリトリフルオロスチレンスルフォン酸系高分子、パーフルオロカーボンホスホン酸系高分子、トリフルオロスチレンスルホン酸系高分子、エチレンテトラフルオロエチレン−g−スチレンスルホン酸系高分子、エチレン−テトラフルオロエチレン共重合体、ポリビニリデンフルオリド−パーフルオロカーボンスルホン酸系高分子などが好適な例として挙げられる。   Specific examples of fluorine-based electrolytes include perfluorocarbon sulfonates such as Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), etc. Polymer, polytrifluorostyrene sulfonic acid polymer, perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene Preferred examples include polymers and polyvinylidene fluoride-perfluorocarbon sulfonic acid polymers.

炭化水素系電解質としては、具体的には、ポリスルホンスルホン酸、ポリアリールエーテルケトンスルホン酸、ポリベンズイミダゾールアルキルスルホン酸、ポリベンズイミダゾールアルキルホスホン酸、ポリスチレンスルホン酸、ポリエーテルエーテルケトンスルホン酸、ポリフェニルスルホン酸等が好適な例として挙げられる。   Specific examples of the hydrocarbon electrolyte include polysulfone sulfonic acid, polyaryl ether ketone sulfonic acid, polybenzimidazole alkyl sulfonic acid, polybenzimidazole alkyl phosphonic acid, polystyrene sulfonic acid, polyether ether ketone sulfonic acid, polyphenyl. A sulfonic acid etc. are mentioned as a suitable example.

アノード側電極触媒層11及びカソード側電極触媒層12は、電極触媒及びプロトン伝導性高分子を含み、必要により撥水材料を含む。電極触媒は、触媒成分が導電性材料に担持されてなるものである。電極触媒層11,12におけるプロトン伝導性高分子は、とくに限定されず、公知のものを用いることができるが、高分子電解質膜1に用いられたものと同様の材料が挙げられ、少なくとも高いプロトン伝導性を有する材料であればよい。   The anode side electrode catalyst layer 11 and the cathode side electrode catalyst layer 12 contain an electrode catalyst and a proton conductive polymer, and if necessary, contain a water repellent material. The electrode catalyst is formed by supporting a catalyst component on a conductive material. The proton conductive polymer in the electrode catalyst layers 11 and 12 is not particularly limited, and a known one can be used, but the same materials as those used for the polymer electrolyte membrane 1 can be used, and at least high protons can be used. Any material having conductivity may be used.

電極触媒層11,12に用いる触媒成分は、カソード側電極触媒層12では、酸素の還元反応に触媒作用を有するものであればとくに制限はなく、公知の触媒が使用できる。また、アノード側電極触媒層11に用いられる触媒成分もまた、水素の酸化反応に触媒作用を有するものであればとくに制限はなく、公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属、及びそれらの合金等などから選択される。これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。さらに、触媒成分の形状や大きさは、とくに制限されず、公知の触媒成分と同様の形状及び大きさが使用できるが、触媒成分は、粒状であることが好ましい。   The catalyst component used for the electrode catalyst layers 11 and 12 is not particularly limited as long as it has a catalytic action on the oxygen reduction reaction in the cathode side electrode catalyst layer 12, and a known catalyst can be used. The catalyst component used in the anode-side electrode catalyst layer 11 is not particularly limited as long as it has a catalytic action for the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner. Specifically, selected from platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof, and the like Is done. Among these, those containing at least platinum are preferably used in order to improve catalyst activity, poisoning resistance to carbon monoxide and the like, heat resistance, and the like. Furthermore, the shape and size of the catalyst component are not particularly limited, and the same shape and size as known catalyst components can be used, but the catalyst component is preferably granular.

導電性材料としては、触媒成分を所望の分散状態で担持させるための比表面積を有し、集電体として十分な電子導電性を有しているものであればよく、主成分がカーボンであるのが好ましい。具体的には、カーボンブラック、活性炭、コークス、天然黒鉛、人造黒鉛などからなるカーボン粒子が挙げられる。また、かようなカーボン材料として、より具体的には、アセチレンブラック、バルカン、ケッチェンブラック、ブラックパール、黒鉛化アセチレンブラック、黒鉛化バルカン、黒鉛化ケッチェンブラック、黒鉛化カーボン、黒鉛化ブラックパール、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、及びカーボンフィブリルから選ばれる少なくとも一種を主成分として含むものが挙げられる。なお、「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念である。場合によっては、燃料電池の特性を向上させるために、炭素原子以外の元素が含まれていてもよい。なお、実質的に炭素原子からなるとは、2〜3質量%程度以下の不純物の混入が許容されることを意味する。   Any conductive material may be used as long as it has a specific surface area for supporting the catalyst component in a desired dispersed state and has sufficient electronic conductivity as a current collector. The main component is carbon. Is preferred. Specific examples include carbon particles made of carbon black, activated carbon, coke, natural graphite, artificial graphite and the like. Further, as such carbon materials, more specifically, acetylene black, Vulcan, Ketjen black, black pearl, graphitized acetylene black, graphitized Vulcan, graphitized Ketjen black, graphitized carbon, graphitized black pearl , Carbon nanotubes, carbon nanofibers, carbon nanohorns, and carbon fibrils as main components. “The main component is carbon” means that the main component contains carbon atoms, and is a concept that includes both carbon atoms and substantially carbon atoms. In some cases, elements other than carbon atoms may be included in order to improve the characteristics of the fuel cell. In addition, being substantially composed of carbon atoms means that mixing of impurities of about 2 to 3% by mass or less is allowed.

撥水層21,22は、導電性材料とバインダ材料からなるもので、その材料がとくに限定されず、公知のものを使用することができる。導電性材料としては、触媒層と同様の材料を用いることができる。バインダ材料としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系樹脂、ポリプロピレン、ポリエチレンなどのポリオレフィン樹脂、シリコーン、NBR及びSBRなどのゴムが例として挙げられ、これらのうち、撥水性、電極反応時の耐食性などに優れることから、PTFEがより好ましく使用される。   The water repellent layers 21 and 22 are made of a conductive material and a binder material, and the material is not particularly limited, and a known material can be used. As the conductive material, the same material as the catalyst layer can be used. Binder materials include fluororesins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and polyolefins such as polypropylene and polyethylene. Examples thereof include rubbers such as resin, silicone, NBR, and SBR. Among these, PTFE is more preferably used because of excellent water repellency and corrosion resistance during electrode reaction.

ガス拡散層31,32は、その材料がとくに限定されず、公知のものを使用することができるが、カーボンペーパ、不織布、炭素製の織物、紙状抄紙体、フェルトなどからなるシート状材料や、ステンレス、チタンなどからなる金属多孔質体や織物が挙げられる。ガス拡散層31,32が優れた電子伝導性を有していると、発電反応により生じた電子の効率的な運搬が達成され、燃料電池の性能が向上する。またガス拡散層31,32が優れた撥水性を有していると、生成した水がより効率的に排出される。    The material of the gas diffusion layers 31 and 32 is not particularly limited, and a known material can be used, but a sheet-like material made of carbon paper, nonwoven fabric, carbon fabric, paper-like paper body, felt or the like, Metal porous bodies and fabrics made of stainless steel, titanium and the like. When the gas diffusion layers 31 and 32 have excellent electron conductivity, efficient transport of electrons generated by the power generation reaction is achieved, and the performance of the fuel cell is improved. Further, when the gas diffusion layers 31 and 32 have excellent water repellency, the generated water is discharged more efficiently.

ガスシール材41,42は、その材料がとくに限定されず、公知のものを使用することができ、燃料ガスや酸化剤ガスに対して不透過性を有するものであれば良く、例えば、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、及びポリフッ化ビニリデン(PVDF)などが挙げられる。なお、ガスシール材41,42の密着性を向上させるために、間に熱可塑性樹脂などの接着層を設けても良い。   The gas seal materials 41 and 42 are not particularly limited, and any known material can be used as long as it is impermeable to fuel gas or oxidant gas. Examples include phthalate (PEN), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF). In order to improve the adhesion of the gas seal materials 41 and 42, an adhesive layer such as a thermoplastic resin may be provided therebetween.

この実施形態の膜電極接合体M1は、電解質膜1と撥水層21,22の外周部を両ガスシール材41,42で挟持した構成により、従来の保護層のような追加の構成要素を用いなくても、ガス拡散層31,32のエッジや、ガスシール材41,42のエッジが電解質膜1に損傷を与えるような事態を阻止することができる。すなわち、既存の構成要素である撥水層31,32の一部を用いてガスシール材41,42の近傍部分の電解質膜1を保護することができ、低コスト化と高耐久化を両立させることができる。   The membrane electrode assembly M1 according to this embodiment has an additional component such as a conventional protective layer by the configuration in which the outer peripheral portions of the electrolyte membrane 1 and the water-repellent layers 21 and 22 are sandwiched between the gas seal materials 41 and 42. Even if not used, it is possible to prevent a situation in which the edges of the gas diffusion layers 31 and 32 and the edges of the gas seal materials 41 and 42 damage the electrolyte membrane 1. That is, the electrolyte membrane 1 in the vicinity of the gas seal materials 41 and 42 can be protected by using a part of the water-repellent layers 31 and 32 which are existing components, and both cost reduction and high durability are achieved. be able to.

しかも、当該膜電極接合体M1は、撥水層21,22による機能、すなわちガス拡散層31,32における水の凝縮の抑制・防止機能を備えたうえで、製造工数やコストの低減を実現することができる。   In addition, the membrane electrode assembly M1 has a function of the water repellent layers 21 and 22, that is, a function of suppressing / preventing water condensation in the gas diffusion layers 31 and 32, and realizes reduction in manufacturing man-hours and costs. be able to.

また、この実施形態の膜電極接合体M1は、図1(b)に示すように、電解質膜1及び撥水層11,12の外周端が、ガスシール材41,42の外周端よりも内側(図中で左側)に配置してある。これにより、電解質膜1や撥水層11,12の外周端から外側への反応ガスの漏洩を確実に防止して、燃料電池の信頼性をより高めることができる。   Further, in the membrane electrode assembly M1 of this embodiment, as shown in FIG. 1B, the outer peripheral ends of the electrolyte membrane 1 and the water-repellent layers 11 and 12 are inside the outer peripheral ends of the gas seal materials 41 and 42. (Left side in the figure). Thereby, the leakage of the reaction gas from the outer peripheral ends of the electrolyte membrane 1 and the water repellent layers 11 and 12 to the outside can be reliably prevented, and the reliability of the fuel cell can be further improved.

さらに、この実施形態の膜電極接合体M1は、図1(c)に示すように、ガスシール材41,42が、反応ガス流通用の開口部Hmを有しており、電解質膜1及び撥水層11,12の外周端が、ガスシール材41,42の開口部Hmよりも内側(図中で左側)に配置してある。これにより、電解質膜1や撥水層11,12の外周端から開口部Hmへの反応ガスの漏洩を確実に防止して、燃料電池の信頼性をより高めることができる。   Further, in the membrane electrode assembly M1 of this embodiment, as shown in FIG. 1 (c), the gas seal materials 41 and 42 have an opening Hm for reaction gas circulation, and the electrolyte membrane 1 and the repellent material are repelled. The outer peripheral ends of the water layers 11 and 12 are arranged on the inner side (left side in the drawing) than the opening Hm of the gas seal materials 41 and 42. Thereby, the leakage of the reaction gas from the outer peripheral ends of the electrolyte membrane 1 and the water-repellent layers 11 and 12 to the opening Hm can be reliably prevented, and the reliability of the fuel cell can be further improved.

そしてさらに、この実施形態の膜電極接合体M1は、図1(b)(c)に示すように、電解質膜1の外周端が、撥水層11,12の外周端よりも外側(図中で右側)に配置してある。これにより、外部に対して、アノード側及びカソード側の撥水層11,12の外周端が確実に遮断され、アノード側及びカソード側の反応ガスが漏洩したり電気が短絡したりことを未然に阻止して、燃料電池の信頼性をさらに高めることができる。   Further, in the membrane electrode assembly M1 of this embodiment, as shown in FIGS. 1B and 1C, the outer peripheral end of the electrolyte membrane 1 is outside the outer peripheral ends of the water-repellent layers 11 and 12 (in the drawing). On the right). As a result, the outer peripheral ends of the anode-side and cathode-side water-repellent layers 11 and 12 are reliably cut off from the outside, and the reaction gas on the anode-side and cathode-side leaks or electricity is short-circuited beforehand. In this way, the reliability of the fuel cell can be further increased.

上記の膜電極接合体M1は、図2〜図4に示す製造方法により得ることができる。
図2に示す膜電極接合体の製造方法は、耐熱性の剥離テープなどから成る成形用基板51,52を用いており、成形用基板51,52上に撥水層21,22を形成した後、撥水層21,22と電極触媒層11,21を接合する。
Said membrane electrode assembly M1 can be obtained with the manufacturing method shown in FIGS.
The membrane electrode assembly manufacturing method shown in FIG. 2 uses molding substrates 51 and 52 made of a heat-resistant release tape or the like, and after forming the water-repellent layers 21 and 22 on the molding substrates 51 and 52. The water repellent layers 21 and 22 and the electrode catalyst layers 11 and 21 are joined.

すなわち、図2(a)に示すように、アノード側及びカソード側の成形用基板51,52上に夫々の撥水層21,22を形成する。具体的には、例えば、成形用基板51,52上にペースト状の撥水層材料を塗布し、これを加熱・加圧してフィルム状シートにして夫々の撥水層21,22とする。   That is, as shown in FIG. 2A, the water-repellent layers 21 and 22 are formed on the anode-side and cathode-side molding substrates 51 and 52, respectively. Specifically, for example, a paste-like water-repellent layer material is applied onto the molding substrates 51 and 52, and this is heated and pressurized to form film-like sheets, which are respectively formed as the water-repellent layers 21 and 22.

その後、図2(b)に示すように、加圧及び加熱等により、各撥水層21,22と各電極触媒層11.12とを夫々接合する。この場合、夫々の電極触媒層11,12を電解質膜1に予め形成しておき、成形用基板51,52及び撥水層21,22と、電解質膜1及び電極触媒層11,12とを夫々接合するようにしても良い。そして、図2(c)に示すように、各成形用基板51,52を剥離除去する。   Thereafter, as shown in FIG. 2B, the water-repellent layers 21 and 22 and the electrode catalyst layers 11 and 12 are bonded to each other by pressurization and heating. In this case, the respective electrode catalyst layers 11 and 12 are formed in advance on the electrolyte membrane 1, and the forming substrates 51 and 52 and the water repellent layers 21 and 22, and the electrolyte membrane 1 and the electrode catalyst layers 11 and 12 are respectively formed. You may make it join. Then, as shown in FIG. 2C, the respective molding substrates 51 and 52 are peeled and removed.

上記の膜電極接合体の製造方法では、予め成形用基板51,52上に撥水層21,22を形成することから、この段階では電解質膜1の耐熱温度の制約を何ら受けないので、撥水層21,22の加熱温度及び加圧圧力を高くすることができる。これにより撥水層21,22の構造が強固になり、電解質膜1をより確実に保護し得るものとなる。また、予め電解質膜1に電極触媒層11,12を形成しておけば、電極触媒層の転写基板が不要であり、製造工数やコストのさらなる低減に貢献することができる。   In the manufacturing method of the membrane electrode assembly described above, since the water-repellent layers 21 and 22 are formed in advance on the molding substrates 51 and 52, at this stage, the heat-resistant temperature of the electrolyte membrane 1 is not restricted at all. The heating temperature and pressurizing pressure of the water layers 21 and 22 can be increased. As a result, the structure of the water repellent layers 21 and 22 is strengthened, and the electrolyte membrane 1 can be more reliably protected. Moreover, if the electrode catalyst layers 11 and 12 are formed in advance on the electrolyte membrane 1, a transfer substrate for the electrode catalyst layer is not necessary, which can contribute to further reduction in manufacturing steps and costs.

図3に示す膜電極接合体の製造方法は、同じくアノード側及びカソード側の成形用基板51,52を用い、成形用基板51,52上に撥水層21,22を夫々形成した後、各撥水層21,22上に電極触媒層11,12を夫々形成し、その後、電極触媒層11,12と電解質膜1を接合する。   The membrane electrode assembly shown in FIG. 3 is manufactured using the anode-side and cathode-side molding substrates 51 and 52, and after forming the water-repellent layers 21 and 22 on the molding substrates 51 and 52, respectively. Electrode catalyst layers 11 and 12 are formed on the water-repellent layers 21 and 22, respectively, and then the electrode catalyst layers 11 and 12 and the electrolyte membrane 1 are joined.

すなわち、図2に示す製造方法と同様に、各成形用基板51,52上に撥水層21,22を形成した後、図3(a)に示すように、スプレーSpにより電極触媒インクInを噴射して塗布し、図3(b)に示すように、電極触媒層11(12)を形成する。   That is, like the manufacturing method shown in FIG. 2, after forming the water repellent layers 21 and 22 on the respective molding substrates 51 and 52, as shown in FIG. 3A, the electrocatalyst ink In is applied by the spray Sp. As shown in FIG. 3B, the electrode catalyst layer 11 (12) is formed by spraying and coating.

その後、図3(c)(d)に示すように、アノード側及びカソード側の積層体で電解質膜1を挟んで、各電極触媒層11,12と電解質膜1を夫々接合し、最終的には、図3(e)に示すように、各成形用基板51,52を剥離除去する。   Thereafter, as shown in FIGS. 3C and 3D, the electrode catalyst layers 11 and 12 and the electrolyte membrane 1 are bonded to each other with the electrolyte membrane 1 sandwiched between the anode-side and cathode-side laminates, and finally, As shown in FIG. 3E, the respective molding substrates 51 and 52 are peeled and removed.

上記の膜電極接合体の製造方法では、図2に示す製造方法と同様に構造が強固な撥水層21,22を得ることができるうえに、成形用基板51,52上に撥水層21,22を形成した後、撥水層21,22上に電極触媒層11,12を形成することから、電極触媒層11,12の転写基板が不要となり、製造工数やコストのさらなる低減を実現することができる。   In the manufacturing method of the membrane electrode assembly, the water-repellent layers 21 and 22 having a strong structure can be obtained as in the manufacturing method shown in FIG. 2 and the water-repellent layer 21 is formed on the molding substrates 51 and 52. , 22 is formed, and the electrode catalyst layers 11 and 12 are formed on the water-repellent layers 21 and 22. Therefore, the transfer substrate for the electrode catalyst layers 11 and 12 is not necessary, and the manufacturing man-hours and costs can be further reduced. be able to.

図4に示す膜電極接合体の製造方法は、成形型P1,P2内に、電解質膜1、電極触媒層11,12、撥水層21,22、ガス拡散層31,32及びガスシール材41,42を配置した後、ホットプレスによりこれらを一体化する。   The method for manufacturing the membrane / electrode assembly shown in FIG. 4 includes the electrolyte membrane 1, the electrode catalyst layers 11 and 12, the water repellent layers 21 and 22, the gas diffusion layers 31 and 32, and the gas seal material 41 in the molds P 1 and P 2. , 42 are arranged, and these are integrated by hot pressing.

上記の膜電極接合体の製造方法では、電解質膜1、電極触媒層11,12、撥水層21,22、ガス拡散層31,32及びガスシール材41,42の夫々の接合が同時に行われることとなり、生産効率の向上や、製造工数及びコストの低減を実現することができる。   In the method for manufacturing a membrane electrode assembly, the electrolyte membrane 1, the electrode catalyst layers 11 and 12, the water repellent layers 21 and 22, the gas diffusion layers 31 and 32, and the gas seal materials 41 and 42 are joined at the same time. As a result, it is possible to improve production efficiency and reduce manufacturing man-hours and costs.

また、上記の膜電極接合体の製造方法では、図2及び図3に示す製造方法に基づいて、電解質膜1、電極触媒層11,12及び撥水層21,22を積層体として予め一体化しておくこともできる。さらに、積層体、ガス拡散層31,32及びガスシール材41,42の互いの接合部に、接触層を介在させることもあり得る。   Further, in the above method for manufacturing a membrane / electrode assembly, the electrolyte membrane 1, the electrode catalyst layers 11, 12 and the water repellent layers 21, 22 are integrated in advance as a laminate based on the manufacturing method shown in FIGS. You can also keep it. Furthermore, a contact layer may be interposed at the joint portion of the laminate, the gas diffusion layers 31 and 32, and the gas seal materials 41 and 42.

図5に示す膜電極接合体M2は、基本的な構成は図1に示すものと同等である。先の実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。図示の膜電極接合体M2は、アノード側及びカソード側のガスシール材41,42が、少なくとも一枚のシール素材40を折り曲げることにより形成してある。   The basic configuration of the membrane electrode assembly M2 shown in FIG. 5 is the same as that shown in FIG. The same components as those of the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The illustrated membrane electrode assembly M2 is formed by bending at least one seal material 40 by anode-side and cathode-side gas seal materials 41,.

この実施形態では、アノード側及びカソード側の中央開口部Hc及び反応ガス流路用の開口部Hmを予め形成したシール素材40を用意し、これを二つ折りにしてアノード側及びカソード側のガスシール材41,42を形成している。このとき、図示例では、シール素材40の折曲部40aが、長方形状を成すガスシール材41,42の長辺側となる。このようにして、膜電極接合体M2は、両ガスシール材41,42により電解質膜1及び撥水層21,22の外周部を挟持した構成になっている。   In this embodiment, a seal material 40 in which a central opening portion Hc on the anode side and a cathode side and an opening portion Hm for a reaction gas flow path are formed in advance is prepared, and this is folded in half to provide gas seals on the anode side and the cathode side. The materials 41 and 42 are formed. At this time, in the illustrated example, the bent portion 40a of the seal material 40 is on the long side of the gas seal materials 41 and 42 having a rectangular shape. In this way, the membrane electrode assembly M2 has a configuration in which the outer peripheral portions of the electrolyte membrane 1 and the water-repellent layers 21 and 22 are sandwiched between the gas seal materials 41 and 42.

上記構成を備えた膜電極接合体M2は、アノード側及びカソード側のガスシール材41,42の位置合わせが容易になり、生産効率のさらなる向上や、製造工数及びコストのさらなる低減に貢献することができる。また、シール素材40の折曲部40aが存在する部分においては、中央の発電領域から外部への反応ガスの漏洩が完全に阻止されるので、燃料電池の信頼性をより高めることができる。   The membrane electrode assembly M2 having the above configuration facilitates the alignment of the anode-side and cathode-side gas seal materials 41, 42, and contributes to further improvement in production efficiency and further reduction in manufacturing man-hours and costs. Can do. Moreover, since the leakage of the reaction gas from the central power generation region to the outside is completely prevented at the portion where the bent portion 40a of the seal material 40 exists, the reliability of the fuel cell can be further improved.

図6に示す膜電極接合体M3は、基本的な構成は図1に示すものと同等である。先の実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。図示の膜電極接合体M3は、アノード側及びカソード側のガスシール材41,42が、少なくとも一枚のシール素材40を折り曲げることにより形成してある。   The basic structure of the membrane electrode assembly M3 shown in FIG. 6 is the same as that shown in FIG. The same components as those of the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The illustrated membrane electrode assembly M3 is formed by bending at least one seal material 40 with gas seal materials 41 and 42 on the anode side and the cathode side.

この実施形態では、アノード側及びカソード側の中央開口部Hc及び反応ガス流路用の開口部Hmを予め形成したシール素材40を用意し、これを二箇所で折り曲げるとともに端部同士を接合することによりアノード側及びカソード側のガスシール材41,42を形成している。このとき、図示例では、シール素材40の二箇所の折曲部40a,40aが、長方形状を成すガスシール材41,42の長辺側となる。   In this embodiment, a seal material 40 in which a central opening Hc on the anode side and a cathode side and an opening Hm for a reaction gas flow path are formed in advance is prepared, and this is bent at two locations and the ends are joined together. Thus, the gas seal materials 41 and 42 on the anode side and the cathode side are formed. At this time, in the illustrated example, the two bent portions 40a and 40a of the sealing material 40 are the long sides of the gas sealing materials 41 and 42 having a rectangular shape.

このようにして、膜電極接合体M3は、両ガスシール材41,42により電解質膜1及び撥水層21,22の外周部を挟持した構成になっている。また、膜電極接合体M3は、とくに図6(c)に示すように、シール素材40の接合部40bが、電解質膜1及び撥水層の外周端よりも外側(同図中で左側)に配置してある。   Thus, the membrane electrode assembly M3 has a configuration in which the outer peripheral portions of the electrolyte membrane 1 and the water-repellent layers 21 and 22 are sandwiched between the gas seal materials 41 and 42. Further, in the membrane electrode assembly M3, as shown in FIG. 6C in particular, the joint portion 40b of the sealing material 40 is outside the outer peripheral ends of the electrolyte membrane 1 and the water repellent layer (left side in the figure). It is arranged.

上記構成を備えた膜電極接合体M3は、先の実施形態と同様に、アノード側及びカソード側のガスシール材41,42の位置合わせが容易になり、生産効率のさらなる向上や、製造工数及びコストのさらなる低減に貢献することができる。また、シール素材40の折曲部40a,40aが存在する部分においては、中央の発電領域から外部への反応ガスの漏洩が完全に阻止されるので、燃料電池の信頼性をより高めることができる。   As in the previous embodiment, the membrane electrode assembly M3 having the above configuration facilitates the alignment of the gas seal materials 41 and 42 on the anode side and the cathode side, further improving the production efficiency, This can contribute to further cost reduction. Further, in the portion where the bent portions 40a, 40a of the sealing material 40 are present, the leakage of the reaction gas from the central power generation region to the outside is completely prevented, so that the reliability of the fuel cell can be further improved. .

そしてさらに、上記の膜電極接合体M3は、シール素材40の接合部40bを電解質膜1や撥水層の外周端よりも外側に配置したので、仮に各部材の寸法精度を許容範囲内で低く設定した場合でも、接合部40bと電解質膜1及び撥水層21,22の外周端とが連通することがなく、反応ガスの漏洩をより確実に防止して、燃料電池の信頼性をより高めることができる。なお、接合部40bの隙間は、膜電極接合体M3とセパレータを接合する際に用いる接着剤で埋めても良い。   Furthermore, in the membrane electrode assembly M3, since the joint portion 40b of the sealing material 40 is disposed outside the outer peripheral ends of the electrolyte membrane 1 and the water repellent layer, the dimensional accuracy of each member is temporarily lowered within an allowable range. Even when set, the junction 40b does not communicate with the outer peripheral ends of the electrolyte membrane 1 and the water-repellent layers 21 and 22, and the leakage of the reaction gas is more reliably prevented, thereby improving the reliability of the fuel cell. be able to. In addition, you may fill the clearance gap between the junction parts 40b with the adhesive agent used when joining the membrane electrode assembly M3 and a separator.

なお、本発明に係る膜電極接合体及びその製造方法は、その構成が上記各実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で構成の細部を適宜変更することができる。例えば、電解質膜及び撥水層を含む三層以上の外周部をガスシール材で挟持する構成にすることも可能である。また、とくに図5及び図6に示すような実施形態においては、複数枚のシール素材を用意して、これらを適宜の方向及び回数で折り曲げてアノード側及びカソード側のガスシール材を形成することも可能である。   In addition, the structure of the membrane electrode assembly and the manufacturing method thereof according to the present invention are not limited to the above-described embodiments, and details of the structure can be appropriately changed without departing from the gist of the present invention. . For example, it is possible to adopt a configuration in which three or more outer peripheral portions including the electrolyte membrane and the water repellent layer are sandwiched by a gas seal material. In particular, in the embodiment shown in FIGS. 5 and 6, a plurality of seal materials are prepared, and these are bent in an appropriate direction and number of times to form the anode side and cathode side gas seal materials. Is also possible.

1 電解質膜
11 12 電極触媒層
21 22 撥水層
31 32 ガス拡散層
41 42 ガスシール材
40 シール素材
40b (シール素材の)接合部
51 52 成形用基板
Hm (反応ガス流通用の)開口部
P1 P2 成形型
M1 膜電極接合体
M2 膜電極接合体
M3 膜電極接合体
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 11 12 Electrode catalyst layer 21 22 Water-repellent layer 31 32 Gas diffusion layer 41 42 Gas seal material 40 Seal material 40b Joint part (sealing material) 51 52 Molding substrate Hm (For reaction gas circulation) Opening P1 P2 Mold M1 Membrane / electrode assembly M2 Membrane / electrode assembly M3 Membrane / electrode assembly

Claims (11)

電解質膜のアノード側及びカソード側の各面に、電極触媒層と撥水層を積層状態で有すると共に、これらの外周に沿ってアノード側及びカソード側のガスシール材を配置した膜電極接合体であって、アノード側及びカソード側のガスシール材が、少なくとも一枚のシール素材を折り曲げることにより形成してあると共に、少なくとも電解質膜と撥水層の外周部をアノード側及びカソード側のガスシール材で挟持したことを特徴とする膜電極接合体。 A membrane electrode assembly in which an electrode catalyst layer and a water repellent layer are laminated on each surface of the electrolyte membrane on the anode side and cathode side, and gas seal materials on the anode side and cathode side are disposed along the outer periphery thereof. The anode-side and cathode-side gas seal materials are formed by bending at least one seal material , and at least the outer periphery of the electrolyte membrane and the water-repellent layer is formed on the anode-side and cathode-side gas seal materials. A membrane electrode assembly, characterized by being sandwiched between. 電解質膜及び撥水層の外周端が、ガスシール材の外周端よりも内側に配置してあることを特徴とする請求項1に記載の膜電極接合体。   The membrane electrode assembly according to claim 1, wherein the outer peripheral ends of the electrolyte membrane and the water-repellent layer are disposed inside the outer peripheral end of the gas seal material. ガスシール材が、反応ガス流通用の開口部を有しており、電解質膜及び撥水層の外周端が、ガスシール材の開口部よりも内側に配置してあることを特徴とする請求項2に記載の膜電極接合体。   The gas seal material has an opening for circulating a reaction gas, and the outer peripheral ends of the electrolyte membrane and the water-repellent layer are arranged inside the opening of the gas seal material. 2. The membrane electrode assembly according to 2. 電解質膜の外周端が、撥水層の外周端よりも外側に配置してあることを特徴とする請求項1〜3のいずれか1項に記載の膜電極接合体。   The membrane electrode assembly according to any one of claims 1 to 3, wherein the outer peripheral end of the electrolyte membrane is disposed outside the outer peripheral end of the water repellent layer. アノード側及びカソード側のガスシール材が、一枚のシール素材を二つ折りにすることにより形成してあることを特徴とする請求項1〜4のいずれか1項に記載の膜電極接合体。   The membrane electrode assembly according to any one of claims 1 to 4, wherein the gas sealing material on the anode side and the cathode side is formed by folding a single sealing material in half. アノード側及びカソード側のガスシール材が、一枚のシール素材を二箇所で折り曲げるとともに端部同士を接合することにより形成してあることを特徴とする1〜4のいずれか1項に記載の膜電極接合体。   5. The gas seal material on the anode side and the cathode side is formed by bending one seal material at two locations and joining the end portions to each other. Membrane electrode assembly. シール素材の接合部が、電解質膜及び撥水層の外周端よりも外側に配置してあることを特徴とする請求項6に記載の膜電極接合体。   7. The membrane electrode assembly according to claim 6, wherein the joint portion of the sealing material is disposed outside the outer peripheral ends of the electrolyte membrane and the water repellent layer. 請求項1〜7のいずれか1項に記載の膜電極接合体を製造するに際し、
成形用基板上に撥水層を形成した後、撥水層と電極触媒層を接合することを特徴とする膜電極接合体の製造方法。
In manufacturing the membrane electrode assembly according to any one of claims 1 to 7,
A method for producing a membrane / electrode assembly, comprising forming a water-repellent layer on a molding substrate and then joining the water-repellent layer and the electrode catalyst layer.
電極触媒層が、電解質膜に予め形成してあることを特徴とする請求項8に記載の膜電極接合体の製造方法。   The method for producing a membrane electrode assembly according to claim 8, wherein the electrode catalyst layer is formed in advance on the electrolyte membrane. 請求項1〜7のいずれか1項に記載の膜電極接合体を製造するに際し、
成形用基板上に撥水層を形成した後、撥水層上に電極触媒層を形成し、その後、電極触媒層と電解質膜を接合することを特徴とする膜電極接合体の製造方法。
In manufacturing the membrane electrode assembly according to any one of claims 1 to 7,
A method for producing a membrane / electrode assembly, comprising: forming a water-repellent layer on a molding substrate; then forming an electrode catalyst layer on the water-repellent layer; and then joining the electrode catalyst layer and the electrolyte membrane.
成形型内に、電解質膜、電極触媒層、撥水層及びガスシール材を配置した後、ホットプレスによりこれらを一体化することを特徴とする請求項8〜10に記載の膜電極接合体の製造方法。   The membrane electrode assembly according to any one of claims 8 to 10, wherein an electrolyte membrane, an electrode catalyst layer, a water repellent layer, and a gas seal material are disposed in a mold, and then integrated by hot pressing. Production method.
JP2009233369A 2009-10-07 2009-10-07 Membrane electrode assembly and manufacturing method thereof Active JP5403491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009233369A JP5403491B2 (en) 2009-10-07 2009-10-07 Membrane electrode assembly and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233369A JP5403491B2 (en) 2009-10-07 2009-10-07 Membrane electrode assembly and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011082022A JP2011082022A (en) 2011-04-21
JP5403491B2 true JP5403491B2 (en) 2014-01-29

Family

ID=44075876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009233369A Active JP5403491B2 (en) 2009-10-07 2009-10-07 Membrane electrode assembly and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5403491B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6171480B2 (en) * 2013-03-28 2017-08-02 凸版印刷株式会社 Electrolyte membrane manufacturing apparatus with gasket and electrolyte membrane manufacturing method with gasket

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4105421B2 (en) * 2001-10-31 2008-06-25 株式会社日立製作所 Electrode for polymer electrolyte fuel cell, polymer electrolyte fuel cell using the same, and power generation system
JP4929647B2 (en) * 2005-08-18 2012-05-09 トヨタ自動車株式会社 Fuel cell
JP2007165025A (en) * 2005-12-09 2007-06-28 Nissan Motor Co Ltd Membrane electrode assembly

Also Published As

Publication number Publication date
JP2011082022A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
US9806354B2 (en) Method for manufacturing reinforced membrane electrode assembly and reinforced membrane electrode assembly
JP5326189B2 (en) Electrolyte membrane-electrode assembly and method for producing the same
US20090104507A1 (en) Electrolyte membrane-electrode assembly and production method thereof
JP5157050B2 (en) Membrane electrode assembly and manufacturing method thereof
JP2007095669A (en) Electrolyte film-electrode assembly
JP2004134392A (en) Ionomer film with protection layer coated by catalyst, and film assembly made of the same
JP5877504B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells
JP4940575B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2006338943A (en) Electrolyte membrane-electrode assembly
JP2006338939A (en) Electrolyte membrane-electrode assembly
JP2010282940A (en) Fuel cell
JP5403491B2 (en) Membrane electrode assembly and manufacturing method thereof
JP5273207B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP4700140B2 (en) Polymer electrolyte fuel cell stack
JP5909961B2 (en) Membrane / electrode assembly manufacturing method, catalyst layer forming substrate, and polymer electrolyte fuel cell
JP2006338937A (en) Manufacturing method of electrolyte membrane-electrode assembly
JP2008053167A (en) Manufacturing method of fuel cell
JP2007184141A (en) Electrolyte membrane-electrode assembly and its manufacturing method
JP2010009797A (en) Gas diffusion electrode, membrane electrode conjugant, and solid polymer fuel cell
JP5569303B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell, and catalyst layer forming substrate used for production
JP2010182636A (en) Method of manufacturing fuel cell
JP2010238581A (en) Fuel battery cell, fuel cell, and methods of manufacturing them
JP2011198681A (en) Membrane electrode assembly for solid polymer fuel cell, method for manufacturing of membrane electrode assembly, and fuel cell
JP2010140682A (en) Fuel battery, fuel battery cell, and component unit thereof
JP2010146977A (en) Fuel battery, fuel battery cell, and constituting member unit of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5403491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131020