JP2011198681A - Membrane electrode assembly for solid polymer fuel cell, method for manufacturing of membrane electrode assembly, and fuel cell - Google Patents

Membrane electrode assembly for solid polymer fuel cell, method for manufacturing of membrane electrode assembly, and fuel cell Download PDF

Info

Publication number
JP2011198681A
JP2011198681A JP2010066146A JP2010066146A JP2011198681A JP 2011198681 A JP2011198681 A JP 2011198681A JP 2010066146 A JP2010066146 A JP 2010066146A JP 2010066146 A JP2010066146 A JP 2010066146A JP 2011198681 A JP2011198681 A JP 2011198681A
Authority
JP
Japan
Prior art keywords
electrode assembly
polymer electrolyte
membrane
electrolyte membrane
membrane electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010066146A
Other languages
Japanese (ja)
Inventor
Naoko Uehara
直子 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010066146A priority Critical patent/JP2011198681A/en
Publication of JP2011198681A publication Critical patent/JP2011198681A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a membrane electrode assembly that has no wrinkle at an outer edge of polyelectrolyte membrane, while securing durability and gas sealing property.SOLUTION: The membrane electrode assembly is manufactured so that at the edge of the polyelectrolyte membrane 1, shape of a surface in a perpendicular direction against an edge of electrocatalyst layer 22 produces the maximum peak height of an undulating curve obtained by a contour curve filter with cut-off value of λf 1.25 mm and λc 0.25 mm which becomes ≤20 μm. By this arrangement, the membrane electrode assembly can be obtained in which there is no wrinkle in the polyelectrolyte membrane 1 in the vicinity of the electrocatalyst layer 22, and there is no problem in the initial power generation performance and the long term durability.

Description

本発明は、固体高分子型燃料電池用の膜電極接合体と、その製造方法、膜電極接合体を備えた燃料電池に関する。   The present invention relates to a membrane electrode assembly for a polymer electrolyte fuel cell, a manufacturing method thereof, and a fuel cell including the membrane electrode assembly.

燃料電池は、水素と酸素の電気化学反応から発電する発電機関であり、発電効率が高く、発電時には水のみを排出することから、次世代の電源として期待されている。固体高分子型燃料電池の膜電極接合体は、高分子電解質膜の両面に一対の電極触媒層を接合させた構造である。膜電極接合体の電極触媒層の外側にガス拡散層を配置し、さらにセパレーターで挟んだものが、燃料電池として使用される。   A fuel cell is a power generation engine that generates electricity from an electrochemical reaction between hydrogen and oxygen, has high power generation efficiency, and discharges only water during power generation, and is expected as a next-generation power source. A membrane electrode assembly of a polymer electrolyte fuel cell has a structure in which a pair of electrode catalyst layers are bonded to both surfaces of a polymer electrolyte membrane. A fuel cell is used in which a gas diffusion layer is disposed outside the electrode catalyst layer of the membrane electrode assembly and is further sandwiched between separators.

膜電極接合体の製造方法として、転写法が知られている。転写法は、触媒担持カーボンとアイオノマーと溶媒を含む触媒インクを、高分子フィルムなどの基材上に塗工および乾燥させ電極触媒層を形成した転写シートを作製し、転写シートを電極の大きさに切り抜いて高分子電解質膜へ加熱および加圧して熱圧着する方法である。基材に高分子フィルムなどを用いた場合は、熱圧着の後に基材を剥離する必要があるが、ガス拡散層を用いた場合は基材を剥離する必要はない。   A transfer method is known as a method for producing a membrane electrode assembly. In the transfer method, a catalyst sheet containing catalyst-carrying carbon, an ionomer, and a solvent is coated on a substrate such as a polymer film and dried to produce a transfer sheet, and the transfer sheet is sized to the size of the electrode. And thermocompression-bonding by heating and pressurizing the polymer electrolyte membrane. When a polymer film or the like is used for the base material, it is necessary to peel the base material after thermocompression bonding, but when the gas diffusion layer is used, it is not necessary to peel the base material.

転写法では、加熱および加圧の際に高分子電解質膜が熱収縮したり、軟化して変形しやすくなるため、電極触媒層と接していない外縁部の高分子電解質膜にしわや傷などが起こりやすい。高分子電解質にしわや傷が発生すると、しわの部分から空気や水素ガスが漏出してガスシール性が低下する問題があった。ガスシール性が低下し反応ガスが十分に供給されないと、発電の初期性能が低下してしまうおそれがあった。   In the transfer method, the polymer electrolyte membrane heat shrinks or softens during heating and pressurization, and is easily deformed, so that the polymer electrolyte membrane on the outer edge not in contact with the electrode catalyst layer is wrinkled or scratched. It is easy to happen. When wrinkles and scratches are generated in the polymer electrolyte, there is a problem that air and hydrogen gas leak from the wrinkle portion and gas sealing performance is deteriorated. If the gas sealability is lowered and the reaction gas is not sufficiently supplied, the initial performance of power generation may be lowered.

高分子電解質膜の外縁部のしわを解消する手段として、特許文献1では、高分子電解質膜と転写シートの積層体に接する型の中央部に、断面が凹形状の溝部を設けた装置が開示されている。特許文献1の装置によれば、転写シートの部分と外縁部の高分子電解質膜とを均等に加圧できるため、高分子電解質膜の中央部と外縁部との熱収縮の差を抑えることができ、しわの発生を防ぐことができる。   As means for eliminating wrinkles at the outer edge of the polymer electrolyte membrane, Patent Document 1 discloses an apparatus in which a groove having a concave cross section is provided at the center of a mold that is in contact with the laminate of the polymer electrolyte membrane and the transfer sheet. Has been. According to the apparatus of Patent Document 1, since the portion of the transfer sheet and the polymer electrolyte membrane at the outer edge portion can be evenly pressurized, the difference in thermal shrinkage between the central portion and the outer edge portion of the polymer electrolyte membrane can be suppressed. Can prevent wrinkling.

特開2006−164887号公報Japanese Patent Laid-Open No. 2006-164887

しかしながら、上記の方法では、熱収縮以外の方法で起こるしわや傷を防ぐことができないという問題があった。高分子電解質膜のしわには、熱収縮で起こる、高分子電解質膜の外縁部全体に発生するしわがある。その他に、外縁部の高分子電解質膜に、電極触媒層に沿った形状の、しわならびに薄膜化が起こることがある。
電極触媒層に沿った形状のしわならびに薄膜化は、転写シートの基材の端部が高分子電解質膜へくい込むことが原因で起こる。片方の基材がくい込むと折れ曲がってしわになり、両面の基材がくい込むと、押しつぶされて薄膜化する。高分子電解質膜が薄膜化すると、反応ガスのクロスリークが起こりやすくなるという問題がある。クロスリークが起こると、発電の長期耐久性にも問題が生じるおそれがあった。したがって、電極触媒層に沿った形状のしわならびに薄膜化が起こると、しわによるガスシール性の低下に加えて、薄膜化によるクロスリークが起こり、発電の初期性能および長期耐久性に問題が生じるおそれがあった。
本発明は、外縁部の高分子電解質膜に電極触媒層に沿った形状のしわや薄膜化がなく、発電の初期性能および長期耐久性に問題のない膜電極接合体、その製造方法および膜電極接合体を備えた燃料電池の提供を目的とする。
However, the above method has a problem that wrinkles and scratches caused by methods other than heat shrinkage cannot be prevented. The wrinkles of the polymer electrolyte membrane include wrinkles that occur on the entire outer edge of the polymer electrolyte membrane, which are caused by heat shrinkage. In addition, wrinkles and thinning of the shape along the electrode catalyst layer may occur in the polymer electrolyte membrane at the outer edge.
The wrinkles and thinning of the shape along the electrode catalyst layer occur because the end portion of the transfer sheet base material penetrates into the polymer electrolyte membrane. When one of the substrates is bitten, it bends and becomes wrinkled, and when both sides of the substrate bite, it is crushed and thinned. When the polymer electrolyte membrane is thinned, there is a problem that cross leak of the reaction gas is likely to occur. When the cross leak occurs, there is a possibility that a problem occurs in the long-term durability of the power generation. Therefore, when wrinkles and thinning of the shape along the electrode catalyst layer occur, in addition to deterioration of gas sealability due to wrinkles, cross leaks may occur due to thinning, which may cause problems in initial power generation performance and long-term durability. was there.
The present invention relates to a membrane electrode assembly in which there is no wrinkle or thinning of the shape along the electrode catalyst layer in the polymer electrolyte membrane at the outer edge, and there is no problem in the initial performance and long-term durability of power generation, its production method and membrane electrode An object of the present invention is to provide a fuel cell including the joined body.

上記課題を解決するため、本発明による膜電極接合体の製造方法は、高分子電解質膜の両面に、基材上に電極触媒層を形成した転写シートを配置し、加熱および加圧して接着する膜電極接合体の製造方法であって、前記高分子電解質膜と、前記高分子電解質膜より面積が小さくかつ前記高分子電解質膜の中央部分を覆う前記転写シートと、前記高分子電解質膜の、前記転写シートが覆っていない外縁部に配置した保護部材とを含む積層体を形成し、該積層体を加熱および加圧して接着することを特徴とする。この製造方法により、電極触媒層の近傍の高分子電解質膜にしわがなく、発電の初期性能および長期耐久性に問題のない膜電極接合体を得ることができる。   In order to solve the above-mentioned problems, a method for producing a membrane electrode assembly according to the present invention is such that a transfer sheet having an electrode catalyst layer formed on a substrate is disposed on both sides of a polymer electrolyte membrane, and is bonded by heating and pressing. A method for producing a membrane electrode assembly, comprising the polymer electrolyte membrane, the transfer sheet having a smaller area than the polymer electrolyte membrane and covering a central portion of the polymer electrolyte membrane, and the polymer electrolyte membrane, A laminate including a protective member disposed on an outer edge portion not covered by the transfer sheet is formed, and the laminate is heated and pressed to be bonded. By this production method, a polymer electrode membrane in the vicinity of the electrode catalyst layer is free from wrinkles, and a membrane / electrode assembly having no problem in initial power generation performance and long-term durability can be obtained.

前記積層体は、前記転写シートを含む中心部の厚みよりも保護部材を含む外縁部の厚みの方が大であり、その差が30μm以下であるのが好ましい。これにより、熱圧着工程において電極触媒層に圧力が適切にかかり、確実に接合できる。
また、前記積層体において、保護部材と転写シートと間の距離は0.2mm以下であるのが好ましい。これにより、基材が高分子電解質膜に接触する可能性を低く保つことができる。
前記積層体を加熱および加圧して接着する際、該積層体と熱圧着装置との間に緩衝材を配置してもよい。緩衝材によって圧力を分散させることができ、熱圧着工程において電極触媒層に圧力が適切にかかり、確実に接合できる。
In the laminate, the thickness of the outer edge portion including the protective member is larger than the thickness of the central portion including the transfer sheet, and the difference is preferably 30 μm or less. Thereby, a pressure is appropriately applied to the electrode catalyst layer in the thermocompression bonding step, and bonding can be reliably performed.
In the laminate, the distance between the protective member and the transfer sheet is preferably 0.2 mm or less. Thereby, possibility that a base material will contact a polymer electrolyte membrane can be kept low.
When bonding the laminated body by heating and pressing, a buffer material may be disposed between the laminated body and the thermocompression bonding apparatus. The pressure can be dispersed by the buffer material, and the pressure is appropriately applied to the electrode catalyst layer in the thermocompression bonding step, so that the bonding can be reliably performed.

また、本発明による膜電極接合体は、一対の電極触媒層で高分子電解質膜を挟持した構造を備え、電極触媒層の外縁部に高分子電解質膜が露出している膜電極接合体であって、前記外縁部に露出している高分子電解質膜の、前記電極触媒層の辺に対して垂直方向に沿った表面形状は、カットオフ値λf1.25mm、λc0.25mmの輪郭曲線フィルタにより得られるうねり曲線の最大山高さが20μm以下であることを特徴とする。このような構成によれば、電極触媒層の近傍の高分子電解質膜にしわがなく、発電の初期性能および長期耐久性に問題のない膜電極接合体を得ることができる。
上記課題を解決するための膜電極接合体は、上記膜電極接合体の製造方法により製造され、燃料電池に用いられる。これにより、適切な特性を有する燃料電池を得ることができる。
The membrane / electrode assembly according to the present invention is a membrane / electrode assembly having a structure in which a polymer electrolyte membrane is sandwiched between a pair of electrode catalyst layers, and the polymer electrolyte membrane is exposed at the outer edge of the electrode catalyst layer. The surface shape of the polymer electrolyte membrane exposed at the outer edge portion along the direction perpendicular to the side of the electrode catalyst layer is obtained by a contour curve filter having cutoff values λf 1.25 mm and λc 0.25 mm. The maximum peak height of the undulation curve is 20 μm or less. According to such a configuration, it is possible to obtain a membrane / electrode assembly free from wrinkles in the polymer electrolyte membrane in the vicinity of the electrode catalyst layer and having no problem in the initial performance and long-term durability of power generation.
A membrane / electrode assembly for solving the above problems is produced by the method for producing a membrane / electrode assembly and used in a fuel cell. Thereby, a fuel cell having appropriate characteristics can be obtained.

本発明によれば、電極触媒層の近傍の高分子電解質膜にしわがなく、発電の初期性能および長期耐久性に問題のない膜電極接合体を得ることができる。   According to the present invention, it is possible to obtain a membrane / electrode assembly free from wrinkles in the polymer electrolyte membrane in the vicinity of the electrode catalyst layer and having no problem in the initial performance and long-term durability of power generation.

(a)は、電極触媒層の近傍にしわのない膜電極接合体の断面模式図、(b)は、電極触媒層の近傍にしわのある膜電極接合体の断面模式図である。(A) is a cross-sectional schematic diagram of a membrane electrode assembly without wrinkles in the vicinity of the electrode catalyst layer, and (b) is a schematic cross-sectional diagram of a membrane electrode assembly with wrinkles in the vicinity of the electrode catalyst layer. 本発明による膜電極接合体の製造方法の熱圧着工程の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the thermocompression bonding process of the manufacturing method of the membrane electrode assembly by this invention. 図2中の積層体の積層状態を示す斜視図であるIt is a perspective view which shows the lamination | stacking state of the laminated body in FIG. 本発明による膜電極接合体の製造方法の熱圧着工程の他の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the other example of the thermocompression-bonding process of the manufacturing method of the membrane electrode assembly by this invention. 固体高分子型燃料電池の分解模式図である。It is a decomposition | disassembly schematic diagram of a polymer electrolyte fuel cell.

以下、本発明の実施の形態について、図面を参照して説明する。なお、以下の説明において参照する各図では、他の図と同等部分は同一符号によって示されている。
(膜電極接合体)
図1(a)は本実施形態による膜電極接合体12の断面模式図である。同図において、膜電極接合体12は、高分子電解質膜1の両側に電極触媒層22が配置され、電極触媒層22の外縁部に高分子電解質膜1が露出した構造である。高分子電解質膜1の外縁部Aはしわがなく平坦で厚みが一定である。
Embodiments of the present invention will be described below with reference to the drawings. In the drawings referred to in the following description, the same parts as those in the other drawings are denoted by the same reference numerals.
(Membrane electrode assembly)
FIG. 1A is a schematic sectional view of the membrane electrode assembly 12 according to the present embodiment. In the figure, the membrane electrode assembly 12 has a structure in which the electrode catalyst layer 22 is disposed on both sides of the polymer electrolyte membrane 1 and the polymer electrolyte membrane 1 is exposed at the outer edge of the electrode catalyst layer 22. The outer edge A of the polymer electrolyte membrane 1 is flat without wrinkles and has a constant thickness.

一方、高分子電解質膜1の外縁部Aのうち、電極触媒層22近傍の領域Bにしわや厚みの不均一な部分が生じることがある。
図1(b)は高分子電解質膜1の電極触媒層22近傍の領域Bに損傷がある膜電極接合体12の断面模式図である。電極触媒層22近傍に、しわや厚みが薄い部分がある。しわがあるとガスシール性が低くなり、また高分子電解質膜1の厚みが薄いと耐久性が低くなるおそれがある。
On the other hand, in the outer edge portion A of the polymer electrolyte membrane 1, wrinkles or uneven thickness portions may occur in the region B near the electrode catalyst layer 22.
FIG. 1B is a schematic cross-sectional view of the membrane electrode assembly 12 in which the region B in the vicinity of the electrode catalyst layer 22 of the polymer electrolyte membrane 1 is damaged. There are wrinkles and thin portions in the vicinity of the electrode catalyst layer 22. If wrinkles are present, the gas sealing property is lowered, and if the thickness of the polymer electrolyte membrane 1 is thin, the durability may be lowered.

ここで、膜電極接合体12は、電極触媒層22の辺に対して垂直な方向Cの表面形状が、うねり曲線の最大山高さが20μm以下であれば、ガスシール性に問題が少ない。うねり曲線の最大山高さは、より望ましくは5μm以下である。うねり曲線は、粗さ曲線断面曲線から波長が短い表面粗さの成分と、波長が長い成分を、それぞれ除去することで得られる曲線で、本実施形態ではそれぞれの成分の分岐点の波長であるカットオフ値を、λf1.25mm、λc0.25mmとした。
なお、円形や楕円形など、辺が無い形状の電極触媒層の場合、上記の「方向C」は、その形状の輪郭線上の接線に対する垂直方向である。
Here, if the membrane electrode assembly 12 has a surface shape in the direction C perpendicular to the side of the electrode catalyst layer 22 and the maximum peak height of the undulation curve is 20 μm or less, there are few problems in gas sealing properties. The maximum peak height of the waviness curve is more desirably 5 μm or less. The waviness curve is a curve obtained by removing the surface roughness component having a short wavelength and the component having a long wavelength from the roughness curve cross-sectional curve, and in this embodiment, is a wavelength of a branch point of each component. Cut-off values were λf 1.25 mm and λc 0.25 mm.
In the case of an electrode catalyst layer having a shape such as a circle or an ellipse that does not have a side, the “direction C” is a direction perpendicular to a tangent line on the contour line of the shape.

(膜電極接合体の製造方法)
本実施形態による膜電極接合体の製造方法は、高分子電解質膜の両面に、基材上に電極触媒層を形成した転写シートと保護部材とを配置し、加熱および加圧して接着する熱圧着工程を備えている。この熱圧着工程では、高分子電解質膜の、転写シートが覆っていない外縁部に保護部材を配置した積層体を形成し、この積層体を加熱および加圧して接着する。
(Method for producing membrane electrode assembly)
The manufacturing method of the membrane electrode assembly according to the present embodiment includes a thermocompression bonding in which a transfer sheet having an electrode catalyst layer formed on a substrate and a protective member are disposed on both sides of a polymer electrolyte membrane and bonded by heating and pressing. It has a process. In this thermocompression bonding step, a laminated body in which a protective member is disposed on the outer edge portion of the polymer electrolyte membrane that is not covered by the transfer sheet is formed, and this laminated body is heated and pressurized to be bonded.

(膜電極接合体の熱圧着工程)
図2に、上記膜電極接合体の熱圧着工程の断面模式図を示す。熱圧着工程では、高分子電解質膜1の両面に基材21上に電極触媒層22を形成した転写シート2を配置する。転写シート2は、高分子電解質膜1より面積が小さく、かつ、高分子電解質膜1の一部(中央部分)を覆っている。本例では、このほかに保護部材3が配置されている。積層体12aの斜視図である図3を参照すると、本例では、保護部材3が高分子電解質膜1の外縁部を覆うように配置してある。
(Thermocompression bonding process of membrane electrode assembly)
In FIG. 2, the cross-sectional schematic diagram of the thermocompression bonding process of the said membrane electrode assembly is shown. In the thermocompression bonding process, the transfer sheet 2 in which the electrode catalyst layer 22 is formed on the base material 21 is disposed on both surfaces of the polymer electrolyte membrane 1. The transfer sheet 2 has a smaller area than the polymer electrolyte membrane 1 and covers a part (central portion) of the polymer electrolyte membrane 1. In this example, a protective member 3 is arranged in addition to this. Referring to FIG. 3 which is a perspective view of the laminate 12a, in this example, the protective member 3 is arranged so as to cover the outer edge portion of the polymer electrolyte membrane 1.

このほかに、圧力を分散させるなどの目的で、積層体12aと熱圧着装置60との間に緩衝材等を配置する構成にしてもよい。図4の構成例では、積層体12aの両面において、熱圧着装置60との間に緩衝材50を設けている。
ここで、保護部材3がない状態で積層体を加熱および加圧すると、基材21の端部が高分子電解質膜1に接触し、それを押して変形させてしまうことがある。このため、図2または図4においては保護部材3を設けており、この保護部材3によって基材21の端部が高分子電解質膜1にくい込むことを防ぐ。
In addition, a buffer material or the like may be disposed between the laminated body 12a and the thermocompression bonding device 60 for the purpose of dispersing the pressure. In the configuration example of FIG. 4, the cushioning material 50 is provided between the laminated body 12 a and the thermocompression bonding device 60.
Here, when the laminate is heated and pressurized in the absence of the protective member 3, the end portion of the base material 21 may come into contact with the polymer electrolyte membrane 1 and be deformed by pushing it. For this reason, the protective member 3 is provided in FIG. 2 or FIG. 4, and the protective member 3 prevents the end portion of the base material 21 from getting into the polymer electrolyte membrane 1.

本例では、図2または図4のような配置において、積層体12aを加熱および加圧して、高分子電解質膜1と電極触媒層22とを接着させる。基材21には、剥離性の良いフィルムを用い、熱圧着工程の後に基材21のみを剥離して、膜電極接合体12とする。基材21にはガス拡散層を用いることもできる。この場合は、熱圧着工程の後に基材を剥離する必要はない。   In this example, in the arrangement as shown in FIG. 2 or FIG. 4, the laminate 12 a is heated and pressurized to adhere the polymer electrolyte membrane 1 and the electrode catalyst layer 22. A film having good peelability is used for the base material 21, and only the base material 21 is peeled after the thermocompression bonding step to form the membrane electrode assembly 12. A gas diffusion layer can also be used for the base material 21. In this case, it is not necessary to peel off the substrate after the thermocompression bonding step.

本実施形態では高分子電解質膜1と転写シート2と保護部材3とをあわせた積層体12aは、電極触媒層を含む領域D(すなわち中心部)と、電極触媒層を含まない領域E(すなわち外縁部)との厚みの差が30μm以下とする。領域Eより領域Dの厚みが小さいと、熱圧着工程での構成によっては電極触媒層に圧力がかかりにくく、接合できないことがあるため、領域Eより領域Dの厚みを大きくすることが望ましい。   In the present embodiment, the laminated body 12a including the polymer electrolyte membrane 1, the transfer sheet 2, and the protective member 3 includes a region D (that is, the central portion) that includes the electrode catalyst layer and a region E that does not include the electrode catalyst layer (that is, The difference in thickness from the outer edge portion is 30 μm or less. If the thickness of the region D is smaller than that of the region E, it is difficult to apply pressure to the electrode catalyst layer depending on the configuration in the thermocompression bonding process and bonding may not be possible.

保護部材3と転写シート2との隙間が広すぎる場合は、基材21が高分子電解質膜に接触してしまうため、基材21の接触を防ぐ効果が低くなる。基材21の厚みが50〜300μmであれば、保護部材3と転写シート2との隙間(すなわち距離)は0.2mm以下であることが望ましい。
保護部材3は、耐熱性、耐クリープ性にすぐれ、かつ、上記の条件を満たすものであればどのようなものでもよいが、基材21が高分子フィルムであれば、同じ材質の高分子フィルムを用いてもよい。
When the gap between the protective member 3 and the transfer sheet 2 is too wide, the base material 21 comes into contact with the polymer electrolyte membrane, so that the effect of preventing the base material 21 from contacting is reduced. If the thickness of the base material 21 is 50 to 300 μm, the gap (that is, the distance) between the protective member 3 and the transfer sheet 2 is preferably 0.2 mm or less.
The protective member 3 may be any material as long as it is excellent in heat resistance and creep resistance and satisfies the above conditions. If the substrate 21 is a polymer film, the polymer film of the same material is used. May be used.

(転写シート)
転写シート2は、触媒を担持したカーボン粒子と高分子電解質とを少なくとも含む触媒インクを、基材21に塗布することで製造できる。基材21には、ガス拡散層のほかに高分子フィルムを用いることができる。高分子フィルムとしては、転写性がよい材質であればよく、例えばエチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂を用いることができる。また、ポリイミド、ポリエチレンテレフタラート、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレートなどの高分子フィルムも用いることができる。これらの基材に、離形層などの処理をしたものを用いても良い。
(Transfer sheet)
The transfer sheet 2 can be produced by applying a catalyst ink containing at least carbon particles carrying a catalyst and a polymer electrolyte to the substrate 21. As the base material 21, a polymer film can be used in addition to the gas diffusion layer. As the polymer film, any material having good transferability may be used. For example, ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer Fluorine resins such as coalescence (PFA) and polytetrafluoroethylene (PTFE) can be used. Polymer films such as polyimide, polyethylene terephthalate, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, and polyethylene naphthalate can also be used. You may use what processed the release layer etc. to these base materials.

また、ガス拡散層としては、通常の燃料電池に用いられているものを用いることができる。具体的にはガス拡散層としてはカーボンクロス、カーボンペーパー、不織布などのポーラスカーボン材を用いることができる。ガス拡散層は基材として用いることもできる。ガス拡散層と電極触媒層の間に目処め層を形成させたものでもよい。目処め層は、触媒インクがガス拡散層の中に染み込むことを防止する層であり、その塗布量が少ない場合でも目処め層上に堆積して三相界面を形成する。このような目処め層は、例えばカーボン粒子とフッ素系樹脂を混練してフッ素系樹脂の融点以上の温度で焼結させることにより形成することができる。フッ素系樹脂としては、ポリテトラフルオロエチレン(PTFE)等が利用できる。   Moreover, as a gas diffusion layer, what is used for the normal fuel cell can be used. Specifically, porous carbon materials such as carbon cloth, carbon paper, and non-woven fabric can be used as the gas diffusion layer. The gas diffusion layer can also be used as a substrate. A material layer may be formed between the gas diffusion layer and the electrode catalyst layer. The mesh layer is a layer that prevents the catalyst ink from penetrating into the gas diffusion layer, and deposits on the mesh layer to form a three-phase interface even when the coating amount is small. Such a filler layer can be formed, for example, by kneading carbon particles and a fluororesin and sintering them at a temperature equal to or higher than the melting point of the fluororesin. As the fluororesin, polytetrafluoroethylene (PTFE) or the like can be used.

触媒インクの塗布方法としては、ダイコート法、スクリーン印刷法、ロールコーティング法、スプレー法などを用いることができる。
高分子電解質としては、プロトン伝導性を有するものであればよく、フッ素系高分子電解質、炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質としては、例えば、デュポン社製Nafion(登録商標)、旭硝子(株)製Flemion(登録商標)、旭化成(株)製Aciplex(登録商標)、ゴア社製Gore Select(登録商標)などを用いることができる。炭化水素系高分子電解質膜としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等の電解質膜を用いることができる。中でも、高分子電解質膜としてデュポン社製Nafion(登録商標)系材料を好適に用いることができる。
As a method for applying the catalyst ink, a die coating method, a screen printing method, a roll coating method, a spray method, or the like can be used.
The polymer electrolyte is not particularly limited as long as it has proton conductivity, and a fluorine-based polymer electrolyte and a hydrocarbon-based polymer electrolyte can be used. Examples of the fluoropolymer electrolyte include Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., Aciplex (registered trademark) manufactured by Asahi Kasei Co., Ltd., and Gore Select (registered trademark) manufactured by Gore. Etc. can be used. As the hydrocarbon polymer electrolyte membrane, electrolyte membranes such as sulfonated polyetherketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used. Among these, a Nafion (registered trademark) material manufactured by DuPont can be suitably used as the polymer electrolyte membrane.

(固体高分子型燃料電池の構成例)
図5に本実施形態による膜電極接合体を用いた固体高分子型燃料電池の分解模式図を示した。本例の固体高分子型燃料電池にあっては、膜電極接合体12は、固体高分子電解質膜1の両面に電極触媒層22が設けられており、これら両面の電極触媒層22とそれぞれ対向して空気極側ガス拡散層4および燃料極側ガス拡散層5が配置される。これによりそれぞれ空気極6及び燃料極7が構成される。そしてガス流通用のガス流路8を備え、相対する主面に冷却水流通用の冷却水流路9を備えた導電性でかつ不透過性の材料よりなる1組のセパレーター10が配置される。燃料極7側のセパレーター10のガス流路8からは燃料ガスとして、例えば水素ガスが供給される。一方、空気極6側のセパレーター10のガス流路8からは、酸化剤ガスとして、例えば酸素を含むガスが供給される。そして、燃料ガスの水素と酸素ガスとを触媒の存在下で電極反応させることにより、燃料極と空気極の間に起電力を生じることができる。
図5に示した固体高分子型燃料電池は一組のセパレーターに固体高分子電解質膜1、電極触媒層22、ガス拡散層4、5が狭持された、いわゆる単セル構造の固体高分子型燃料電池であるが、本例にあっては、セパレーター10を介して複数のセルを積層して燃料電池とすることもできる。
(Configuration example of polymer electrolyte fuel cell)
FIG. 5 shows an exploded schematic view of a polymer electrolyte fuel cell using the membrane electrode assembly according to the present embodiment. In the polymer electrolyte fuel cell of this example, the membrane electrode assembly 12 is provided with the electrode catalyst layers 22 on both sides of the solid polymer electrolyte membrane 1 and faces the electrode catalyst layers 22 on both sides. Thus, the air electrode side gas diffusion layer 4 and the fuel electrode side gas diffusion layer 5 are arranged. Thereby, the air electrode 6 and the fuel electrode 7 are comprised, respectively. A set of separators 10 made of a conductive and impermeable material is provided, which includes a gas flow path 8 for gas flow and a cooling water flow path 9 for cooling water flow on the opposing main surface. For example, hydrogen gas is supplied as a fuel gas from the gas flow path 8 of the separator 10 on the fuel electrode 7 side. On the other hand, a gas containing oxygen, for example, is supplied as an oxidant gas from the gas flow path 8 of the separator 10 on the air electrode 6 side. An electromotive force can be generated between the fuel electrode and the air electrode by causing an electrode reaction between hydrogen and oxygen gas of the fuel gas in the presence of the catalyst.
The solid polymer fuel cell shown in FIG. 5 is a so-called single cell solid polymer type in which a solid polymer electrolyte membrane 1, an electrode catalyst layer 22, and gas diffusion layers 4 and 5 are sandwiched between a pair of separators. Although it is a fuel cell, in this example, a plurality of cells can be stacked via the separator 10 to form a fuel cell.

(実施例および比較例)
〈転写シートの作製〉
白金担持カーボン触媒(商品名:TEC10E50E、田中貴金属工業製)と、20質量%高分子電解質溶液(ナフィオン:登録商標、Dupont社製)を、水、エタノールの混合溶媒で混合し、遊星型ボールミルで分散処理を行い、触媒インクを調製した。基材にダイコーターを用いて触媒インクを塗布し、オーブンを80℃に設定し、10分間乾燥させることで、転写シートを作製した。
(Examples and Comparative Examples)
<Preparation of transfer sheet>
A platinum-supported carbon catalyst (trade name: TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) and a 20% by mass polymer electrolyte solution (Nafion: registered trademark, manufactured by Dupont) are mixed with a mixed solvent of water and ethanol. Dispersion treatment was performed to prepare a catalyst ink. A transfer sheet was produced by applying the catalyst ink to the substrate using a die coater, setting the oven at 80 ° C., and drying for 10 minutes.

〈熱圧着工程〉
高分子電解質膜(ナフィオン211:登録商標、Dupont社製)の外側に転写シートと各種保護部材を配置して、130℃で10分間ホットプレスを行った後、基材のPTFEフィルムを剥離することで、膜電極接合体を得た。
〈しわの測定〉
顕微鏡レーザー変位計(オプレンス製)を用いて、実施例と比較例の膜電極接合体の高分子電解質膜の外縁部の表面形状を観察した。カットオフ値λf1.25mm、λc0.25mmの輪郭曲線フィルタを用いて得られたうねり曲線の最大山高さを算出した。
<Thermocompression bonding process>
Place the transfer sheet and various protective members on the outside of the polymer electrolyte membrane (Nafion 211: registered trademark, manufactured by Dupont), perform hot pressing at 130 ° C. for 10 minutes, and then peel off the PTFE film of the base material Thus, a membrane electrode assembly was obtained.
<Measure wrinkles>
Using a microscope laser displacement meter (manufactured by Oplens), the surface shape of the outer edge portion of the polymer electrolyte membrane of the membrane electrode assembly of the example and the comparative example was observed. The maximum peak height of the undulation curve obtained using the contour curve filter having the cutoff values λf 1.25 mm and λc 0.25 mm was calculated.

(実施例1)
厚み100μmのPTFEフィルムを基材として作製した転写シートを、正方形に打ち抜いた。高分子電解質膜の両面に転写シートを配置して、高分子電解質膜の露出部に保護部材として厚み100μmのPTFEフィルムを配置した。積層体の中心部と外縁部の厚みの差は10μm、転写シートと保護部材との隙間は0.2mmとした。ホットプレスを行った後、基材のPTFEフィルムを剥離して、膜電極接合体を得た。
Example 1
A transfer sheet prepared using a PTFE film having a thickness of 100 μm as a base material was punched into a square. A transfer sheet was disposed on both surfaces of the polymer electrolyte membrane, and a PTFE film having a thickness of 100 μm was disposed as a protective member on the exposed portion of the polymer electrolyte membrane. The difference in thickness between the center portion and the outer edge portion of the laminate was 10 μm, and the gap between the transfer sheet and the protective member was 0.2 mm. After hot pressing, the base PTFE film was peeled off to obtain a membrane electrode assembly.

(実施例2)
厚み100μmのPTFEフィルムを基材として作製した転写シートを、正方形に打ち抜いた。高分子電解質膜の両面に転写シートを配置して、高分子電解質膜の露出部に保護部材として厚み100μmのPTFEフィルムを配置した。積層体の中心部と外縁部の厚みの差は10μm、転写シートと保護部材との隙間は1.0mmとした。ホットプレスを行った後、基材のPTFEフィルムを剥離して、膜電極接合体を得た。
(Example 2)
A transfer sheet prepared using a PTFE film having a thickness of 100 μm as a base material was punched into a square. A transfer sheet was disposed on both surfaces of the polymer electrolyte membrane, and a PTFE film having a thickness of 100 μm was disposed as a protective member on the exposed portion of the polymer electrolyte membrane. The difference in thickness between the center portion and the outer edge portion of the laminate was 10 μm, and the gap between the transfer sheet and the protective member was 1.0 mm. After hot pressing, the base PTFE film was peeled off to obtain a membrane electrode assembly.

(比較例1)
厚み100μmのPTFEフィルムを基材として作製した転写シートを、正方形に打ち抜いた。高分子電解質膜の両面に転写シートを配置した。この他の保護部材は配置しなかった。積層体の厚みの差は110μmであった。ホットプレスを行った後、基材のPTFEシートを剥離して、膜電極接合体を得た。
(結果)
表1は、本実施例と比較例の結果をまとめた表である。表1を参照すると、最大山高さが、実施例1、2では20μm以下であったのに対し、比較例1では30μm以上であった。
(Comparative Example 1)
A transfer sheet prepared using a PTFE film having a thickness of 100 μm as a base material was punched into a square. Transfer sheets were placed on both sides of the polymer electrolyte membrane. Other protective members were not arranged. The difference in thickness of the laminate was 110 μm. After hot pressing, the base PTFE sheet was peeled off to obtain a membrane electrode assembly.
(result)
Table 1 summarizes the results of this example and the comparative example. Referring to Table 1, the maximum peak height was 20 μm or less in Examples 1 and 2, whereas it was 30 μm or more in Comparative Example 1.

Figure 2011198681
Figure 2011198681

本発明の膜電極接合体は、固体高分子型燃料電池に用いた場合に、発電の初期性能および長期耐久性に問題が少ない。したがって、本発明は高分子電解質膜を用いた燃料電池、特に定置型コジェネレーションシステムや電気自動車などに好適に用いることができる。   When the membrane / electrode assembly of the present invention is used in a polymer electrolyte fuel cell, there are few problems in the initial performance and long-term durability of power generation. Therefore, the present invention can be suitably used for a fuel cell using a polymer electrolyte membrane, particularly a stationary cogeneration system and an electric vehicle.

1 高分子電解質膜
2 転写シート
3 保護部材
4 空気極側ガス拡散層
5 燃料極側ガス拡散層
6 空気極
7 燃料極
8 ガス流路
9 冷却水流路
10 セパレーター
12 膜電極接合体
12a 積層体
21 基材
22 電極触媒層
50 緩衝材
60 熱圧着装置
DESCRIPTION OF SYMBOLS 1 Polymer electrolyte membrane 2 Transfer sheet 3 Protection member 4 Air electrode side gas diffusion layer 5 Fuel electrode side gas diffusion layer 6 Air electrode 7 Fuel electrode 8 Gas flow path 9 Cooling water flow path 10 Separator 12 Membrane electrode assembly 12a Laminate 21 Base material 22 Electrode catalyst layer 50 Buffer material 60 Thermocompression bonding device

Claims (7)

高分子電解質膜の両面に、基材上に電極触媒層を形成した転写シートを配置し、加熱および加圧して接着する膜電極接合体の製造方法であって、
前記高分子電解質膜と、前記高分子電解質膜より面積が小さくかつ前記高分子電解質膜の中央部分を覆う前記転写シートと、前記高分子電解質膜の、前記転写シートが覆っていない外縁部に配置した保護部材とを含む積層体を形成し、該積層体を加熱および加圧して接着することを特徴とする膜電極接合体の製造方法。
A method for producing a membrane electrode assembly in which a transfer sheet having an electrode catalyst layer formed on a base material is disposed on both sides of a polymer electrolyte membrane, and is bonded by heating and pressing,
The polymer electrolyte membrane, the transfer sheet having a smaller area than the polymer electrolyte membrane and covering the central portion of the polymer electrolyte membrane, and the outer periphery of the polymer electrolyte membrane not covered by the transfer sheet A method of manufacturing a membrane electrode assembly, comprising: forming a laminate including the protective member, and heating and pressurizing the laminate.
前記積層体は、前記転写シートを含む中心部の厚みよりも保護部材を含む外縁部の厚みの方が大であり、その差が30μm以下であることを特徴とする請求項1に記載の膜電極接合体の製造方法。   2. The film according to claim 1, wherein the laminated body has a thickness of an outer edge portion including a protective member larger than a thickness of a central portion including the transfer sheet, and a difference thereof is 30 μm or less. Manufacturing method of electrode assembly. 前記積層体において、保護部材と転写シートと間の距離は0.2mm以下であることを特徴とする請求項1または2に記載の膜電極接合体の製造方法。   The method for producing a membrane electrode assembly according to claim 1 or 2, wherein in the laminate, a distance between the protective member and the transfer sheet is 0.2 mm or less. 前記積層体を加熱および加圧して接着する際、該積層体と熱圧着装置との間に緩衝材を配置することを特徴とする請求項1から請求項3までのいずれか1項に記載の膜電極接合体の製造方法。   4. The shock absorber according to claim 1, wherein a buffer material is disposed between the laminate and the thermocompression bonding device when the laminate is bonded by heating and pressing. 5. Manufacturing method of membrane electrode assembly. 請求項1から請求項4までのいずれか1項に記載の製造方法により製造された膜電極接合体。   The membrane electrode assembly manufactured by the manufacturing method of any one of Claim 1- Claim 4. 一対の電極触媒層で高分子電解質膜を挟持した構造を備え、電極触媒層の外縁部に高分子電解質膜が露出している膜電極接合体であって、
前記外縁部に露出している高分子電解質膜の、前記電極触媒層の辺に対して垂直方向に沿った表面形状は、カットオフ値λf1.25mm、λc0.25mmの輪郭曲線フィルタにより得られるうねり曲線の最大山高さが20μm以下であることを特徴とする膜電極接合体。
A membrane electrode assembly comprising a structure in which a polymer electrolyte membrane is sandwiched between a pair of electrode catalyst layers, wherein the polymer electrolyte membrane is exposed at the outer edge of the electrode catalyst layer,
The surface shape of the polymer electrolyte membrane exposed at the outer edge portion along the direction perpendicular to the side of the electrode catalyst layer is a swell obtained by a contour curve filter having cutoff values λf 1.25 mm and λc 0.25 mm. A membrane electrode assembly, wherein the maximum peak height of the curve is 20 μm or less.
請求項5または6に記載の膜電極接合体を備えた燃料電池。   A fuel cell comprising the membrane electrode assembly according to claim 5.
JP2010066146A 2010-03-23 2010-03-23 Membrane electrode assembly for solid polymer fuel cell, method for manufacturing of membrane electrode assembly, and fuel cell Pending JP2011198681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010066146A JP2011198681A (en) 2010-03-23 2010-03-23 Membrane electrode assembly for solid polymer fuel cell, method for manufacturing of membrane electrode assembly, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010066146A JP2011198681A (en) 2010-03-23 2010-03-23 Membrane electrode assembly for solid polymer fuel cell, method for manufacturing of membrane electrode assembly, and fuel cell

Publications (1)

Publication Number Publication Date
JP2011198681A true JP2011198681A (en) 2011-10-06

Family

ID=44876610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066146A Pending JP2011198681A (en) 2010-03-23 2010-03-23 Membrane electrode assembly for solid polymer fuel cell, method for manufacturing of membrane electrode assembly, and fuel cell

Country Status (1)

Country Link
JP (1) JP2011198681A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015127A (en) * 1999-06-28 2001-01-19 Fuji Electric Co Ltd Electrolytic film/electrode bonded body and solid polyelectrolyte type fuel cell
JP2007141674A (en) * 2005-11-18 2007-06-07 Nissan Motor Co Ltd Manufacturing method of membrane-electrode assembly and method of assembling fuel cell
JP2010040515A (en) * 2008-07-10 2010-02-18 Dainippon Printing Co Ltd Electrolyte membrane for solid alkali type fuel cell, electrolyte membrane-catalyst layer assembly for solid alkali type fuel cell, electrolyte membrane-electrode assembly for solid alkali type fuel cell, and solid alkali type fuel cell
US20100062308A1 (en) * 2008-09-11 2010-03-11 Toppan Printing Co., Ltd. Membrane Electrode Assembly, Manufacturing Method Thereof and Fuel Cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015127A (en) * 1999-06-28 2001-01-19 Fuji Electric Co Ltd Electrolytic film/electrode bonded body and solid polyelectrolyte type fuel cell
JP2007141674A (en) * 2005-11-18 2007-06-07 Nissan Motor Co Ltd Manufacturing method of membrane-electrode assembly and method of assembling fuel cell
JP2010040515A (en) * 2008-07-10 2010-02-18 Dainippon Printing Co Ltd Electrolyte membrane for solid alkali type fuel cell, electrolyte membrane-catalyst layer assembly for solid alkali type fuel cell, electrolyte membrane-electrode assembly for solid alkali type fuel cell, and solid alkali type fuel cell
US20100062308A1 (en) * 2008-09-11 2010-03-11 Toppan Printing Co., Ltd. Membrane Electrode Assembly, Manufacturing Method Thereof and Fuel Cell

Similar Documents

Publication Publication Date Title
US8512907B2 (en) Membrane catalyst layer assembly with reinforcing films, membrane electrode assembly with reinforcing films, and polymer electrolyte fuel cells
JP4700612B2 (en) Integrated membrane electrode assembly and manufacturing method thereof
US20140011116A1 (en) Manufacturing method and apparatus for membrane electrode assembly, and polymer electrolyte fuel cell
JP2009193860A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and method of manufacturing the same
JP2007109576A (en) Membrane electrode assembly and solid polymer fuel cell
JP4940575B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP7027704B2 (en) Membrane-electrode assembly
JP5099091B2 (en) Electrolyte membrane-catalyst layer laminate with reinforcing sheet and polymer electrolyte fuel cell having the same
JP2007141674A (en) Manufacturing method of membrane-electrode assembly and method of assembling fuel cell
JP6641812B2 (en) Manufacturing method of membrane electrode assembly
JP2010067493A (en) Manufacturing method for membrane-electrode assembly, membrane-electrode assembly, and solid polymer fuel cell
JP5387059B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5273207B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2012190720A (en) Membrane electrode assembly in solid polymer fuel cell and method for manufacturing the same
CA2893553C (en) Method for producing fuel cell electrode sheet
JP2010073587A (en) Membrane-electrode assembly and method of manufacturing the same, and polymer electrolyte fuel cell
JP2009230964A (en) Catalyst layer transcription sheet, manufacturing method of electrolyte membrane-catalyst layer assembly using the same, manufacturing method of electrolyte membrane-electrode assembly, and manufacturing method of solid polymer fuel cell
JP5239434B2 (en) Catalyst layer transfer sheet, method for producing electrolyte membrane-catalyst layer assembly using the same, method for producing electrolyte membrane-electrode assembly, method for producing electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell Manufacturing method
JP2016201175A (en) Method of manufacturing catalyst layer sheet for fuel battery, catalyst layer sheet for fuel battery, membrane electrode assembly and solid polymer type fuel battery
JP2011198681A (en) Membrane electrode assembly for solid polymer fuel cell, method for manufacturing of membrane electrode assembly, and fuel cell
JP2011198682A (en) Membrane electrode assembly for polymer electrolyte fuel cell, method for manufacturing of membrane electrode assembly, and fuel cell
JP6201398B2 (en) Transfer sheet with mask film / base film, method for producing transfer sheet with mask film / base film, and method for producing catalyst layer sheet
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane
JP5403491B2 (en) Membrane electrode assembly and manufacturing method thereof
JP2010257669A (en) Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311