JP2004214001A - Jointing method and jointing device for electrode and solid polyelectrolyte membrane - Google Patents

Jointing method and jointing device for electrode and solid polyelectrolyte membrane Download PDF

Info

Publication number
JP2004214001A
JP2004214001A JP2002381479A JP2002381479A JP2004214001A JP 2004214001 A JP2004214001 A JP 2004214001A JP 2002381479 A JP2002381479 A JP 2002381479A JP 2002381479 A JP2002381479 A JP 2002381479A JP 2004214001 A JP2004214001 A JP 2004214001A
Authority
JP
Japan
Prior art keywords
electrode
polymer electrolyte
electrolyte membrane
solid polymer
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002381479A
Other languages
Japanese (ja)
Inventor
Manabu Kaseda
学 加世田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002381479A priority Critical patent/JP2004214001A/en
Publication of JP2004214001A publication Critical patent/JP2004214001A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To form a jointing body (membrane electrode ) of an electrode and a solid polyelectrolyte membrane superior in reliability and durability by suppressing wrinkles of the solid polyelectrolyte membrane that occurs at hot pressing at the jointing of the electrode and the solid polyelectrolyte membrane. <P>SOLUTION: This is a device for jointing electrodes 1, 2 and a solid polyelectrolyte membrane 3 of a solid polymer type fuel cell that has a pair of electrodes 1, 2 and a solid polyelectrolyte membrane 3 to be jointed in a state of being nipped by the pair of the electrodes 1, 2, and is provided with a pair of pressurizing bodies 11, 12 for pressing the pair of electrodes 1, 2 in the direction mutually approaching each other and a hot plate 13 which has the same dimensions as those of the electrodes 1, 2 and heats by contacting only the electrodes 1, 2 is provided on the pair of the pressurizing bodies 11, 12. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気化学反応によって電気エネルギを得る固体高分子型燃料電池の電極と固体高分子電解質膜とを接合する際に用いられる電極と固体高分子電解質膜との接合方法及び接合装置に関するものである。
【0002】
【従来の技術】
【0003】
燃料電池は、電気化学反応による生成物が原理的に水であり、地球環境への悪影響がほとんど無いクリーンな発電システムである。特に、固体高分子型燃料電池は、他の燃料電池と比較して低温で動作することから、自動車等の移動体用の動力源として期待されている。
【0004】
固体高分子型燃料電池は、図9に示すように、プロトン伝導性を有する固体高分子製の電解質膜Aと、酸素電極(カソード)B及び水素電極(アノード)Cを備えている。酸素電極B及び水素電極Cは、撥水性ポリマーを含浸させたカーボンクロスやカーボンペーパー等のポーラスカーボンから成る各々のガス拡散層Ba,Ca、カーボン層Bb,Cb、触媒層Bc,Ccを積層した構成をなしている。
【0005】
ガス拡散層Ba,Caは、カーボン層Bb,Cbを通して触媒層Bc,Ccに反応ガスを供給すると共に、触媒層Bc,Ccで発生した電荷を集電する。触媒層Bc,Ccは、白金等の触媒を担持させ且つ電解質層と同種又は異種のイオン交換樹脂で被覆したカーボン粒子、プロトン伝導性を有するポリマー及び撥水性を有するポリマー等の材料で構成してあり、カーボン粒子の二次粒子間に形成された微小な空隙部が反応ガスの拡散流路として機能する。
【0006】
上記固体高分子型燃料電池は、電解質膜Aと両電極B,Cとを相互に対向させた状態でホットプレスにより接合して膜と電極との接合体(膜電極(MEA:Membrane Electrode Assembly))を形成した後、この膜電極とセパレータDa,Dbとを交互に積層して製造される。
【0007】
そして、この固体高分子型燃料電池において、一方のセパレータDaに設けた酸素供給溝Eから酸素電極Bに酸素ガスを供給すると共に、他方のセパレータDbに設けた水素供給溝Fから水素電極Cに水素ガスを供給するようになっており、この反応ガスの供給によって、次式(1)、(2)に示す電気化学的反応が生じて、その進行に伴って電子が発生し、この電子を電極から外部回路に取り出すことにより、電気エネルギが発生する。
カソード反応(酸素電極):2H+2e+(1/2)O→HO (1)
アノード反応(水素電極):H→2H+2e (2)
【0008】
上記固体高分子型燃料電池の製造に際して、電解質膜Aと両電極B,Cとをホットプレスにより接合して膜電極を形成する場合には、電解質膜Aと両電極B,Cとの接合強度を大きくするために、電解質膜Aを予め湿潤状態にする。この電解質膜Aは、ホットプレス時の加熱によって乾燥して収縮するが、電極B,Cの部分では収縮せずに電極B,Cの周りの部分のみが収縮することとなり、その結果、電解質膜Aにしわが発生する。
【0009】
上記電解質膜Aはその内部に水を包含しており、電解質としての機能とは別に膜電極をセパレータDa,Dbで挟持する際のガスシールの機能をも有している。つまり、電解質膜Aにしわが生じていると、膜電極をセパレータDa,Dbで挟持してなるセルを積層して燃料電池を製造した際に、上記電解質膜A自体が破損したり、ガスシールの不具合が発生しやすくなったりして、燃料電池の性能が低下してしまう。
【0010】
従来において、電解質膜Aにしわが生じるのを回避するべく、固体高分子電解質膜の周縁部を電極よりも厚い弾性体で挟持しつつホットプレスするようにした電極と電解質膜との接合方法(例えば、特許文献1参照)や、電極の周縁から突出する固体高分子電解質膜を耐熱性弾性体で挟持しながらホットプレスするようにした電極と電解質膜との接合方法(例えば、特許文献2参照)が試みられているほか、固体高分子電解質膜の周縁部をカーボンペーパーやカーボンクロスで挟持しつつホットプレスする電極と電解質膜との接合方法(例えば、特許文献3参照)が試みられている。
【0011】
【特許文献1】
特開平3−295171号公報
【特許文献2】
特開2002−260684号公報
【特許文献3】
特開2000−223134号公報
【0012】
【発明が解決しようとする課題】
ところが、上記した特許文献1及び特許文献2に記載された接合方法では、何れの方法においても、弾性体と固体高分子電解質膜との接着強度が弱いため、ホットプレス後における電解質膜のしわの発生を完全に抑えることができないうえ、電極が固体高分子電解質膜から剥離しやすいという問題があった。
【0013】
また、特許文献3に記載された接合方法では、ホットプレス後におけるカーボンペーパーやカーボンクロスの取り外しの際に、固体高分子電解質膜から無理に引き剥がそうとすると、固体高分子電解質膜とカーボンペーパーやカーボンクロスとの接着力が強いために、固体高分子電解質膜が破損してしまうことがないとはいえないという問題を有しており、これらの問題を解決することが従来の課題となっていた。
【0014】
【発明の目的】
本発明は、上記した従来の課題に着目してなされたもので、電極と固体高分子電解質膜とを接合する際のホットプレス時に生じる固体高分子電解質膜のしわを抑えることができ、加えて、信頼性及び耐久性に優れた電極と固体高分子電解質膜との接合体(膜電極)を形成することが可能である電極と固体高分子電解質膜との接合方法及び接合装置を提供することを目的としている。
【0015】
【課題を解決するための手段】
上記目的を達成するため、本発明は、一対の電極と、この一対の電極に挟み込まれた状態で接合される固体高分子電解質膜を有する固体高分子型燃料電池の電極と固体高分子電解質膜とを接合するに際して、上記一対の電極で固体高分子電解質膜を挟み込み、一対の加圧体で上記一対の電極を互いに接近する方向に押圧すると共に一対の電極のみを加熱して固体高分子電解質膜と電極とを接合する構成としている。
【0016】
本発明では、電極と固体高分子電解質膜とを接合するに際して、電極と固体高分子電解質膜との接着部分のみを加熱しそして加圧するので、加熱に伴って固体高分子電解質膜の電極周囲が乾燥して収縮することがなくなって、固体高分子電解質膜の電極周囲におけるしわの発生を抑え得ることとなり、その結果、膜電極とセパレータとの間におけるガスシール性の低下が回避されることとなる。
【0017】
【発明の効果】
本発明では、上記した構成としているので、電極と固体高分子電解質膜とを接合するに際して、固体高分子電解質膜の電極周囲にしわが生じるのを防ぐことができ、したがって、膜電極とセパレータとの間におけるシール性能の低下を防いで、燃料電池の発電性能の向上を実現することが可能であるという極めて優れた効果がもたらされる。
【0018】
【発明の実施の形態】
本発明によって電極と固体高分子電解質膜とを接合する場合、固体高分子電解質膜と電極との接合温度を120℃以上160℃未満、接合圧力を20×(9.8×10−2)MPa以上160×(9.8×10−2)MPa未満、接合時間を0.5分以上20分未満(望ましくは1〜5分)とすることが望ましく、接合温度を120〜140℃、接合圧力を50×(9.8×10−2)〜100×(9.8×10−2)MPa、接合時間を1〜5分とすることがより望ましい。
【0019】
上記したように接合条件を設定した理由は、接合温度が120℃よりも低く、接合圧力が20×(9.8×10−2)MPaよりも小さいと、十分な接合力を得ることができないため、燃料電池の発電性能を十分に発揮することがでず、一方、接合温度が160℃よりも高く、接合圧力が160×(9.8×10−2)MPaよりも大きいと、固体高分子電解質膜の変形や破損を生じる可能性があるからである。
【0020】
【実施例】
以下、本発明の実施例を図面に基づいて説明するが、本発明は以下の実施例に限定されるものではない。
【0021】
[実施例1]
本実施例によって電極と固体高分子電解質膜とを接合するのに先立って、まず、白金担持カーボン(田中貴金属製、10V30E:ValcanXc−72に白金を30重量%担持)と純水及び陽イオン交換樹脂(アルドリッチ社製、5重量%ナフィオン溶液)とを混合分散して、電極の触媒層用のスラリー溶液を調製した。
【0022】
電極基材には、厚さ0.27mmのカーボンペーパー(東レ社製TGP−H−090)を60×60mmに切り出したものを用いた。このカーボンペーパーは、テトラフルオロエチレン分散液(ダイキン工業社製D−1E)を純水で希釈した溶液に2分間浸漬するのに続いて、60℃で10分間乾燥させた後、大気雰囲気下において350℃で60分間熱処理を行って得た。この処理後に得られたカーボンペーパーには、テトラフルオロエチレン粒子が25重量%含浸されている。次に、この撥水処理済みのカーボンペーパー上に、カーボンブラック(ファーネスブラック)粒子及びポリテトラフルオロエチレン(PTFE)粒子をイソプロピルアルコール(IPA)に均一に分散させてなるスラリー溶液をダイコーター法により塗布した後、風乾させてカーボンペーパー上にカーボン層を形成した。
【0023】
次に、調製した上記スラリー溶液を処理済みのカーボンペーパー上にダイコーター法により塗布した後、風乾させて厚みが40μmとなる電極を形成し、この電極を50×50mmに切り出して本実施例仕様の電極を得た。そして、この電極で固体高分子電解質膜(デュポン社製、ナフィオン112:膜厚50μm)を両側から挟持してホットプレスすることで、膜と電極との接合体を得る。
【0024】
上記電極と固体高分子電解質膜とを接合する接合装置は、図1に示すように、一対の電極1,2を互いに接近する方向に押圧する一対の加圧体11,12を備えており、これらの一対の加圧体11,12に、電極に向けて10mm程度張出す凸形状の熱盤(押圧部)13を一体で設けた構成をなしている。この熱盤13は、電極1,2と同じ寸法の50×50mmに形成してあり、電極1,2のみに接触して加熱するようになっている。
【0025】
そこで、100×100mmに切断した固体高分子電解質膜3の中央部を上記電極1,2で挟持し、上記接合装置の熱盤11,12を電極1,2のみに接触させて、ホットプレスを行った。この際、接合温度を120℃、接合圧力を50×(9.8×10−2)MPa、接合時間を3分としてホットプレスを行い、これにより、電極と固体高分子電解質膜との接合体4を得た。
【0026】
本実施例によれば、ホットプレス時において、固体高分子電解質膜3の電極接着部のみが加熱されることから、上記電極と固体高分子電解質膜との接合体4における固体高分子電解質膜3にはまったくしわが見られなかった。
【0027】
[実施例2]
図2は本発明の他の実施例による接合装置を示しており、本実施例の接合装置が先の実施例による接合装置と異なるところは、加圧体21,22とは別体に設けた金(熱伝導性金属材料)から成る50×50×10mm、面粗さ10μmのプレート23を押圧部とした点にあり、他の構成は先の実施例による接合装置と同じである。
【0028】
そこで、100×100mmに切断した固体高分子電解質膜3の中央部を上記電極1,2で挟持し、上記接合装置のプレート23を電極1,2のみに接触させて、ホットプレスを行った。この際も、接合温度を120℃、接合圧力を50×(9.8×10−2)MPa、接合時間を3分としてホットプレスを行い、これにより、電極と固体高分子電解質膜との接合体4を得た。
【0029】
本実施例においても、ホットプレス時には固体高分子電解質膜3の電極接着部のみが加熱されることから、上記電極と固体高分子電解質膜との接合体4における固体高分子電解質膜3にはまったくしわが見られなかった。
【0030】
[実施例3]
図3は本発明のさらに他の実施例による接合装置を示しており、本実施例の接合装置が上記実施例2による接合装置と異なるところは、加圧体31,32に、電極1,2の周囲の固体高分子電解質膜3に接触する弾性体としての発泡体ポリ四フッ化エチレンシート(100×100×0.5mm、中央部に51×51mmの開口付き)34を配置した点にあり、他の構成は上記実施例2による接合装置と同じである。
【0031】
そこで、100×100mmに切断した固体高分子電解質膜3の中央部を上記電極1,2で挟持し、上記接合装置のプレート33を電極1,2のみに接触させると共に、発泡体ポリ四フッ化エチレンシート34を固体高分子電解質膜3に接触させて、ホットプレスを行った。この際も、接合温度を120℃、接合圧力を50×(9.8×10−2)MPa、接合時間を3分としてホットプレスを行い、これにより、電極と固体高分子電解質膜との接合体4を得た。
【0032】
本実施例においても、ホットプレス時には固体高分子電解質膜3の電極接着部のみが加熱されることから、上記電極と固体高分子電解質膜との接合体4における固体高分子電解質膜3にはまったくしわが見られなかった。加えて、ホットプレスの間は、発泡体ポリ四フッ化エチレンシート34が固体高分子電解質膜3に接触しているので、固体高分子電解質膜3に対する不純物イオンの付着がほとんど回避され、不純物イオンの付着による悪影響が少なく抑えられることとなる。
【0033】
[実施例4]
図4は本発明のさらに他の実施例による接合装置を示しており、本実施例の接合装置は、一対の電極1,2を互いに接近する方向に押圧する一対の加圧体41,42を備えており、これらの一対の加圧体41,42に、深さが約0.2mmの凹形状をなす熱盤(押圧部)43を一体で設けた構成をなしている。この熱盤43は、電極1,2と同じ寸法の50×50mmに形成してあり、電極1,2と嵌合してこの電極1,2のみを加熱するようになっている。
【0034】
そこで、100×100mmに切断した固体高分子電解質膜3の中央部を上記電極1,2で挟持し、上記接合装置の凹形状をなす熱盤43に電極を嵌合してホットプレスを行った。この際も、接合温度を120℃、接合圧力を50×(9.8×10−2)MPa、接合時間を3分としてホットプレスを行い、これにより、電極と固体高分子電解質膜との接合体4を得た。
【0035】
本実施例においても、ホットプレス時には固体高分子電解質膜3の電極接着部のみが加熱されることから、上記電極と固体高分子電解質膜との接合体4における固体高分子電解質膜にはまったくしわが見られなかった。
【0036】
[実施例5]
図5は本発明のさらに他の実施例による接合装置を示しており、本実施例の接合装置は、一対の電極1,2を互いに接近する方向に押圧する一対の加圧体51,52を備えており、一対の加圧体51,52のうちの一方の加圧体51(図示上側の加圧体)には、電極1に向けて10mm程度張出す凸形状の熱盤(押圧部)53を一体で設けると共に、他方の加圧体52(図示下側の加圧体)には、深さが約0.2mmの凹形状をなす熱盤(押圧部)53を一体で設けた構成をなしている。一方の加圧体51側の熱盤53は、電極1と同じ寸法の50×50mmに形成することで電極1のみに接触して加熱するようになっており、他方の加圧体52側の熱盤53は、電極2と同じ寸法の50×50mmに形成することで電極2と嵌合してこの電極2のみを加熱するようになっている。
【0037】
そこで、100×100mmに切断した固体高分子電解質膜3の中央部を上記電極1,2で挟持し、上記接合装置の一方の加圧体51側の熱盤53を電極1のみに接触させると共に、他方の加圧体52側の熱盤53を電極2と嵌合させて、ホットプレスを行った。この際も、接合温度を120℃、接合圧力を50×(9.8×10−2)MPa、接合時間を3分としてホットプレスを行い、これにより、電極と固体高分子電解質膜との接合体4を得た。
【0038】
本実施例においても、ホットプレス時には固体高分子電解質膜3の電極接着部のみが加熱されることから、上記電極と固体高分子電解質膜との接合体4における固体高分子電解質膜3にはまったくしわが見られなかった。
【0039】
[実施例6]
図6は本発明のさらに他の実施例による接合装置を示しており、本実施例の接合装置が上記実施例5による接合装置と異なるところは、一方の加圧体61(図示上側の加圧体)とは別体に設けた金(熱伝導性金属材料)から成る50×50×10mm、面粗さ10μmのプレート63を押圧部とすると共に、他方の加圧体62(図示下側の加圧体)に一体で設けた深さが約0.2mmの凹形状をなす熱盤64を押圧部とした点にあり、他の構成は上記実施例5による接合装置と同じである。
【0040】
そこで、100×100mmに切断した固体高分子電解質膜3の中央部を上記電極1,2で挟持し、上記接合装置のプレート63を電極1のみに接触させると共に、他方の加圧体62側の熱盤64を電極2と嵌合させて、ホットプレスを行った。この際も、接合温度を120℃、接合圧力を50×(9.8×10−2)MPa、接合時間を3分としてホットプレスを行い、これにより、電極と固体高分子電解質膜との接合体4を得た。
【0041】
本実施例においても、ホットプレス時には固体高分子電解質膜3の電極接着部のみが加熱されることから、上記電極と固体高分子電解質膜との接合体4における固体高分子電解質膜3にはまったくしわが見られなかった。
【0042】
[実施例7]
図7は本発明のさらに他の実施例による接合装置によって接合された電極と固体高分子電解質膜との接合体4Aを示している。図示は省略するが、本実施例の接合装置は、一対の電極を互いに接近する方向に押圧する一対の加圧体に、電極に向けて10mm程度張出す凸形状の熱盤(押圧部)を6個ずつそれぞれ一体で設けた構成をなしている。これらの熱盤は、いずれも電極と同じ寸法の50×50mmに形成してあり、電極のみに接触して加熱するようになっている(図1参照)。
【0043】
そこで、300×200mmに切断した固体高分子電解質膜3の中央部に、この固体高分子電解質膜の縁から25mm、電極1(2)同士の間隔を50mmとして6組の電極1(2)を配置し、上記接合装置の6組の熱盤を電極1(2)のみに接触させて、ホットプレスを行った。この際も、接合温度を120℃、接合圧力を50×(9.8×10−2)MPa、接合時間を3分としてホットプレスを行い、これにより、電極と固体高分子電解質膜との接合体4Aを得た。
【0044】
本実施例においても、ホットプレス時には固体高分子電解質膜3の電極接着部のみが加熱されることから、上記電極と固体高分子電解質膜との接合体4Aにおける固体高分子電解質膜3にはまったくしわが見られなかった。また、ホットプレスの後に、固体高分子電解質膜3の周端部から縦横100mm離れた部位を切断すれば、電極と固体高分子電解質膜との接合体4が6個得られることから、すなわち、一度のホットプレスで多数の接合体4が得られることから、接合体製造コストの低減が図られることとなる。
【0045】
[比較例]
図8は比較例の接合装置を示しており、この比較例の接合装置は、一対の電極1,2を互いに接近する方向に押圧しつつ加熱する一対の加圧体101,102を備えている。そこで、100×100mmに切断した固体高分子電解質膜3の中央部を電極1,2で挟持し、この比較例の接合装置の加圧体101,102を電極1,2に接触させて、ホットプレスを行った。この際も、接合温度を120℃、接合圧力を50×(9.8×10−2)MPa、接合時間を3分としてホットプレスを行い、これにより、電極と固体高分子電解質膜との接合体4を得た。
【0046】
この比較例によれば、電極周縁部の固体高分子電解質膜3が、加圧体101,102による加熱に伴って乾燥しそして収縮するため、作製された電極と固体高分子電解質膜との接合体4の固体高分子電解質膜3の電極1,2の周辺にしわが発生した。これにより、上記実施例では、信頼性及び耐久性に優れた電極と固体高分子電解質膜との接合体4(膜電極)を形成し得ることが実証できた。
【0047】
続いて、上記の実施例1〜7で作製した電極と固体高分子電解質膜との接合体4をそれぞれセパレータ及びエンドプレートで挟持して、本発明の固体高分子型燃料電池を製造し、この固体高分子型燃料電池の単セル評価を行った。
【0048】
この場合、セル温度を70℃とし、燃料に水素ガスを用いると共に酸化剤に空気ガスを用い、ガス圧力は大気圧とし、水素ガス及び空気ガスのいずれのガスに対しても70℃で加湿を行ってセルへ供給した。この条件下において、500時間の発電を行ったが、固体高分子電解質膜の破傷やガスリークなどの不具合は発生しなかった。
【0049】
つまり、固体高分子電解質膜にしわのない電極と固体高分子電解質膜との接合体を用いた上記固体高分子型燃料電池では、電池性能が低下することのない信頼性に優れた運転が実現となる。
【図面の簡単な説明】
【図1】本発明の電極と固体高分子電解質膜との接合装置の一実施例を示す部分断面説明図である。
【図2】本発明の電極と固体高分子電解質膜との接合装置の他の実施例を示す部分断面説明図である。
【図3】本発明の電極と固体高分子電解質膜との接合装置のさらに他の実施例を示す部分断面説明図である。
【図4】本発明の電極と固体高分子電解質膜との接合装置のさらに他の実施例を示す部分断面説明図である。
【図5】本発明の電極と固体高分子電解質膜との接合装置のさらに他の実施例を示す部分断面説明図である。
【図6】本発明の電極と固体高分子電解質膜との接合装置のさらに他の実施例を示す部分断面説明図である。
【図7】本発明のさらに他の実施例による電極と固体高分子電解質膜との接合装置によって接合された電極と固体高分子電解質膜との接合体の平面説明図である。
【図8】比較例による電極と固体高分子電解質膜との接合装置を示す部分断面説明図である。
【図9】固体高分子型燃料電池の一構造例を示す断面説明図である。
【符号の説明】
1,2 電極固体電解質型燃料電池
3 固体高分子電解質膜
4,4A 電極と固体高分子電解質膜との接合体
11,21,31,41,51,61 一方の加圧体
12,22,32,42,52,62 他方の加圧体
13,43,53,64 熱盤(押圧部)
23,33,63 プレート(押圧部)
34 発泡体ポリ四フッ化エチレンシート(弾性体)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for bonding an electrode and a polymer electrolyte membrane used when bonding an electrode of a polymer electrolyte fuel cell that obtains electric energy by an electrochemical reaction and the polymer electrolyte membrane. It is.
[0002]
[Prior art]
[0003]
A fuel cell is a clean power generation system in which the product of an electrochemical reaction is water in principle, and has almost no adverse effect on the global environment. In particular, a polymer electrolyte fuel cell operates at a lower temperature than other fuel cells, and is therefore expected as a power source for a mobile body such as an automobile.
[0004]
As shown in FIG. 9, the polymer electrolyte fuel cell includes a solid polymer electrolyte membrane A having proton conductivity, an oxygen electrode (cathode) B, and a hydrogen electrode (anode) C. The oxygen electrode B and the hydrogen electrode C were formed by laminating gas diffusion layers Ba, Ca, carbon layers Bb, Cb, and catalyst layers Bc, Cc each made of porous carbon such as carbon cloth or carbon paper impregnated with a water-repellent polymer. It has a configuration.
[0005]
The gas diffusion layers Ba and Ca supply a reaction gas to the catalyst layers Bc and Cc through the carbon layers Bb and Cb, and collect electric charges generated in the catalyst layers Bc and Cc. The catalyst layers Bc and Cc are made of a material such as carbon particles carrying a catalyst such as platinum and coated with the same or different ion exchange resin as the electrolyte layer, a polymer having proton conductivity, and a polymer having water repellency. In addition, the minute gaps formed between the secondary particles of the carbon particles function as reaction gas diffusion channels.
[0006]
In the polymer electrolyte fuel cell, a membrane-electrode assembly (MEA: Membrane Electrode Assembly) is formed by joining the electrolyte membrane A and the electrodes B and C by hot pressing in a state where they are opposed to each other. ), The membrane electrodes and the separators Da and Db are alternately laminated.
[0007]
In this polymer electrolyte fuel cell, oxygen gas is supplied from the oxygen supply groove E provided on one separator Da to the oxygen electrode B, and from the hydrogen supply groove F provided on the other separator Db to the hydrogen electrode C. Hydrogen gas is supplied, and by the supply of the reaction gas, an electrochemical reaction represented by the following formulas (1) and (2) occurs, and electrons are generated as the reaction proceeds. Extraction from the electrode to an external circuit generates electric energy.
Cathode reaction (oxygen electrode): 2H + + 2e + (1/2) O 2 → H 2 O (1)
Anode reaction (hydrogen electrode): H 2 → 2H + + 2e (2)
[0008]
In the case where the electrolyte membrane A and the electrodes B and C are joined by hot pressing to form the membrane electrodes in the production of the polymer electrolyte fuel cell, the bonding strength between the electrolyte membrane A and the electrodes B and C is set. In order to increase the value, the electrolyte membrane A is brought into a wet state in advance. The electrolyte membrane A dries and shrinks due to heating during hot pressing, but does not shrink at the electrodes B and C, but shrinks only around the electrodes B and C. As a result, the electrolyte membrane A A wrinkles occur.
[0009]
The electrolyte membrane A contains water therein, and has a gas sealing function when the membrane electrode is sandwiched between the separators Da and Db, separately from the function as an electrolyte. That is, if the electrolyte membrane A is wrinkled, the electrolyte membrane A itself may be damaged or the gas seal may be damaged when a fuel cell is manufactured by stacking cells each having the membrane electrode sandwiched between separators Da and Db. Failures are likely to occur, and the performance of the fuel cell is reduced.
[0010]
Conventionally, in order to avoid the occurrence of wrinkles in the electrolyte membrane A, a method of joining the electrode and the electrolyte membrane (for example, by hot pressing while sandwiching the periphery of the solid polymer electrolyte membrane with an elastic body thicker than the electrode) (for example, , Patent Document 1), and a method for bonding an electrode and an electrolyte membrane in which a solid polymer electrolyte membrane projecting from the periphery of the electrode is hot-pressed while being sandwiched by a heat-resistant elastic body (see Patent Document 2, for example) In addition, a method of joining an electrode and an electrolyte membrane, which is hot-pressed while sandwiching the periphery of a solid polymer electrolyte membrane with carbon paper or carbon cloth, has been attempted (for example, see Patent Document 3).
[0011]
[Patent Document 1]
JP-A-3-295171 [Patent Document 2]
JP 2002-260684 A [Patent Document 3]
JP 2000-223134 A
[Problems to be solved by the invention]
However, in the bonding methods described in Patent Literature 1 and Patent Literature 2, the adhesive strength between the elastic body and the solid polymer electrolyte membrane is weak in any of the methods, so that wrinkles of the electrolyte membrane after hot pressing are reduced. There is a problem that the generation cannot be completely suppressed and the electrode is easily peeled off from the solid polymer electrolyte membrane.
[0013]
Further, in the joining method described in Patent Document 3, when the carbon paper or carbon cloth is removed after hot pressing, if the solid polymer electrolyte membrane is forcibly peeled off, the solid polymer electrolyte membrane and the carbon paper are removed. Has a problem that it cannot be said that the solid polymer electrolyte membrane will not be damaged due to the strong adhesive force between the polymer electrolyte and the carbon cloth. I was
[0014]
[Object of the invention]
The present invention has been made by paying attention to the conventional problems described above, and can suppress wrinkles of the solid polymer electrolyte membrane generated at the time of hot pressing when joining the electrode and the solid polymer electrolyte membrane. To provide a bonding method and a bonding apparatus for an electrode and a solid polymer electrolyte membrane capable of forming a bonded body (membrane electrode) between the electrode and the solid polymer electrolyte membrane excellent in reliability and durability. It is an object.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a polymer electrolyte fuel cell electrode and a polymer electrolyte membrane having a pair of electrodes and a polymer electrolyte membrane joined while being sandwiched between the pair of electrodes. When joining the solid polymer electrolyte, the solid polymer electrolyte membrane is sandwiched between the pair of electrodes, the pair of electrodes is pressed in a direction in which the pair of electrodes approach each other, and only the pair of electrodes is heated. The structure is such that the membrane and the electrode are joined.
[0016]
In the present invention, when the electrode and the solid polymer electrolyte membrane are joined, only the bonding portion between the electrode and the solid polymer electrolyte membrane is heated and pressurized. Drying and shrinkage are eliminated, and the occurrence of wrinkles around the electrodes of the solid polymer electrolyte membrane can be suppressed, and as a result, a decrease in gas sealing property between the membrane electrode and the separator is avoided. Become.
[0017]
【The invention's effect】
In the present invention, since the above-described configuration is used, it is possible to prevent wrinkles from being generated around the electrodes of the solid polymer electrolyte membrane when joining the electrodes and the solid polymer electrolyte membrane. An extremely excellent effect that it is possible to prevent the sealing performance from deteriorating between the spaces and improve the power generation performance of the fuel cell.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
When joining an electrode and a solid polymer electrolyte membrane according to the present invention, the joining temperature between the solid polymer electrolyte membrane and the electrode is 120 ° C. or more and less than 160 ° C., and the joining pressure is 20 × (9.8 × 10 −2 ) MPa. It is preferable that the bonding time is not less than 160 × (9.8 × 10 −2 ) MPa, the bonding time is not less than 0.5 minute and less than 20 minutes (preferably 1 to 5 minutes), the bonding temperature is 120 to 140 ° C., and the bonding pressure is More preferably, the bonding time is set to 50 × (9.8 × 10 −2 ) to 100 × (9.8 × 10 −2 ) MPa and the bonding time is set to 1 to 5 minutes.
[0019]
The reason for setting the bonding conditions as described above is that if the bonding temperature is lower than 120 ° C. and the bonding pressure is lower than 20 × (9.8 × 10 −2 ) MPa, a sufficient bonding force cannot be obtained. Therefore, the power generation performance of the fuel cell cannot be sufficiently exhibited. On the other hand, when the joining temperature is higher than 160 ° C. and the joining pressure is higher than 160 × (9.8 × 10 −2 ) MPa, the solid height is increased. This is because the molecular electrolyte membrane may be deformed or damaged.
[0020]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
[0021]
[Example 1]
Prior to joining the electrode and the solid polymer electrolyte membrane according to this embodiment, first, platinum-supported carbon (manufactured by Tanaka Kikinzoku, 10V30E: Valcan Xc-72 loaded with 30% by weight of platinum), pure water and cation exchange A resin (manufactured by Aldrich Inc., 5% by weight Nafion solution) was mixed and dispersed to prepare a slurry solution for a catalyst layer of an electrode.
[0022]
The electrode base material used was a 0.27 mm-thick carbon paper (TGP-H-090 manufactured by Toray Industries, Inc.) cut out to 60 × 60 mm. This carbon paper was immersed in a solution obtained by diluting a tetrafluoroethylene dispersion (D-1E manufactured by Daikin Industries, Ltd.) with pure water for 2 minutes, then dried at 60 ° C. for 10 minutes, and then dried under air atmosphere. It was obtained by performing a heat treatment at 350 ° C. for 60 minutes. The carbon paper obtained after this treatment is impregnated with 25% by weight of tetrafluoroethylene particles. Next, a slurry solution obtained by uniformly dispersing carbon black (furnace black) particles and polytetrafluoroethylene (PTFE) particles in isopropyl alcohol (IPA) on the water-repellent treated carbon paper by a die coater method. After the application, it was air-dried to form a carbon layer on the carbon paper.
[0023]
Next, the prepared slurry solution was applied on the treated carbon paper by a die coater method, and then air-dried to form an electrode having a thickness of 40 μm. Electrodes were obtained. A solid polymer electrolyte membrane (manufactured by DuPont, Nafion 112: film thickness 50 μm) is sandwiched from both sides with the electrodes and hot-pressed to obtain a bonded body of the membrane and the electrodes.
[0024]
As shown in FIG. 1, the bonding apparatus for bonding the electrode and the solid polymer electrolyte membrane includes a pair of pressure bodies 11 and 12 for pressing the pair of electrodes 1 and 2 in a direction approaching each other. The pair of pressurizing members 11 and 12 are integrally provided with a convex hot plate (pressing portion) 13 projecting about 10 mm toward the electrode. The hot platen 13 is formed in the same size as the electrodes 1 and 2 and has a size of 50 × 50 mm, and is heated by contacting only the electrodes 1 and 2.
[0025]
Then, the center portion of the solid polymer electrolyte membrane 3 cut into 100 × 100 mm is sandwiched between the electrodes 1 and 2, and the hot plates 11 and 12 of the bonding apparatus are brought into contact with only the electrodes 1 and 2 to perform hot pressing. went. At this time, hot pressing was performed at a bonding temperature of 120 ° C., a bonding pressure of 50 × (9.8 × 10 −2 ) MPa, and a bonding time of 3 minutes, thereby forming a bonded body of the electrode and the solid polymer electrolyte membrane. 4 was obtained.
[0026]
According to this embodiment, since only the electrode bonding portion of the solid polymer electrolyte membrane 3 is heated during hot pressing, the solid polymer electrolyte membrane 3 in the joined body 4 of the electrode and the solid polymer electrolyte membrane is heated. Had no wrinkles.
[0027]
[Example 2]
FIG. 2 shows a joining device according to another embodiment of the present invention. The difference between the joining device of the present embodiment and the joining device of the previous embodiment is that the joining device is provided separately from the pressing bodies 21 and 22. The pressing portion is a plate 23 made of gold (a heat conductive metal material) having a size of 50 × 50 × 10 mm and a surface roughness of 10 μm. Other configurations are the same as those of the bonding apparatus according to the previous embodiment.
[0028]
Therefore, the center portion of the solid polymer electrolyte membrane 3 cut into 100 × 100 mm was sandwiched between the electrodes 1 and 2, and the plate 23 of the bonding device was brought into contact with only the electrodes 1 and 2 and hot pressed. Also in this case, hot pressing is performed at a joining temperature of 120 ° C., a joining pressure of 50 × (9.8 × 10 −2 ) MPa, and a joining time of 3 minutes, thereby joining the electrode and the solid polymer electrolyte membrane. Obtained body 4.
[0029]
Also in this embodiment, since only the electrode bonding portion of the solid polymer electrolyte membrane 3 is heated at the time of hot pressing, the solid polymer electrolyte membrane 3 in the joined body 4 of the electrode and the solid polymer electrolyte membrane is completely No wrinkles were seen.
[0030]
[Example 3]
FIG. 3 shows a joining apparatus according to still another embodiment of the present invention. The difference between the joining apparatus according to the present embodiment and the joining apparatus according to the second embodiment is that the pressing members 31 and 32 have electrodes 1 and 2 attached thereto. In that a foamed polytetrafluoroethylene sheet (100 × 100 × 0.5 mm, with a 51 × 51 mm opening at the center) 34 as an elastic body in contact with the solid polymer electrolyte membrane 3 around The other configuration is the same as that of the bonding apparatus according to the second embodiment.
[0031]
Therefore, the center portion of the solid polymer electrolyte membrane 3 cut into 100 × 100 mm is sandwiched between the electrodes 1 and 2, and the plate 33 of the bonding apparatus is brought into contact with only the electrodes 1 and 2, and the foamed polytetrafluoride is formed. Hot pressing was performed by bringing the ethylene sheet 34 into contact with the solid polymer electrolyte membrane 3. Also in this case, hot pressing is performed at a joining temperature of 120 ° C., a joining pressure of 50 × (9.8 × 10 −2 ) MPa, and a joining time of 3 minutes, thereby joining the electrode and the solid polymer electrolyte membrane. Obtained body 4.
[0032]
Also in this embodiment, since only the electrode bonding portion of the solid polymer electrolyte membrane 3 is heated at the time of hot pressing, the solid polymer electrolyte membrane 3 in the joined body 4 of the electrode and the solid polymer electrolyte membrane is completely No wrinkles were seen. In addition, during hot pressing, since the foamed polytetrafluoroethylene sheet 34 is in contact with the solid polymer electrolyte membrane 3, adhesion of impurity ions to the solid polymer electrolyte membrane 3 is substantially avoided, and As a result, the adverse effect due to the adhesion of the particles is reduced.
[0033]
[Example 4]
FIG. 4 shows a joining apparatus according to still another embodiment of the present invention. The joining apparatus of the present embodiment includes a pair of pressurizing members 41 and 42 for pressing a pair of electrodes 1 and 2 in a direction approaching each other. The pair of pressurizing members 41 and 42 are provided integrally with a hot plate (pressing portion) 43 having a concave shape with a depth of about 0.2 mm. The hot platen 43 is formed in the same size as the electrodes 1 and 2 and has a size of 50 × 50 mm, and is fitted to the electrodes 1 and 2 to heat only the electrodes 1 and 2.
[0034]
Therefore, the center portion of the solid polymer electrolyte membrane 3 cut into 100 × 100 mm was sandwiched between the electrodes 1 and 2, and the electrodes were fitted to the concave hot platen 43 of the joining device and hot pressed. . Also in this case, hot pressing is performed at a joining temperature of 120 ° C., a joining pressure of 50 × (9.8 × 10 −2 ) MPa, and a joining time of 3 minutes, thereby joining the electrode and the solid polymer electrolyte membrane. Obtained body 4.
[0035]
Also in this embodiment, since only the electrode bonding portion of the solid polymer electrolyte membrane 3 is heated at the time of hot pressing, the solid polymer electrolyte membrane in the joined body 4 of the electrode and the solid polymer electrolyte membrane is not attached at all. I couldn't see.
[0036]
[Example 5]
FIG. 5 shows a joining apparatus according to still another embodiment of the present invention. The joining apparatus of the present embodiment includes a pair of pressurizing members 51 and 52 for pressing a pair of electrodes 1 and 2 in a direction approaching each other. One of the pressing members 51 (the pressing member on the upper side in the drawing) of the pair of pressing members 51 and 52 has a convex hot plate (pressing portion) projecting about 10 mm toward the electrode 1. 53 is provided integrally, and the other pressing body 52 (the lower pressing body in the figure) is integrally provided with a hot plate (pressing portion) 53 having a concave shape having a depth of about 0.2 mm. I am doing. The hot platen 53 on the one pressing body 51 side is formed to have the same size as the electrode 1 and has a size of 50 × 50 mm so as to contact and heat only the electrode 1, and the heating plate 53 on the other pressing body 52 side The hot platen 53 is formed to have the same size as the electrode 2 and has a size of 50 × 50 mm, and is fitted to the electrode 2 to heat only the electrode 2.
[0037]
Therefore, the center portion of the solid polymer electrolyte membrane 3 cut into 100 × 100 mm is sandwiched between the electrodes 1 and 2, and the hot platen 53 on one pressurizing body 51 side of the joining device is brought into contact with only the electrode 1. The hot platen 53 on the other pressurizing body 52 side was fitted to the electrode 2 and hot pressing was performed. Also in this case, hot pressing is performed at a joining temperature of 120 ° C., a joining pressure of 50 × (9.8 × 10 −2 ) MPa, and a joining time of 3 minutes, thereby joining the electrode and the solid polymer electrolyte membrane. Obtained body 4.
[0038]
Also in this embodiment, since only the electrode bonding portion of the solid polymer electrolyte membrane 3 is heated at the time of hot pressing, the solid polymer electrolyte membrane 3 in the joined body 4 of the electrode and the solid polymer electrolyte membrane is completely No wrinkles were seen.
[0039]
[Example 6]
FIG. 6 shows a joining apparatus according to still another embodiment of the present invention. The difference between the joining apparatus according to the present embodiment and the joining apparatus according to the fifth embodiment is that one pressing member 61 (the upper pressing member in the drawing). A plate 63 of 50 × 50 × 10 mm and a surface roughness of 10 μm made of gold (a heat conductive metal material) provided separately from the pressing body 62 is used as a pressing portion, and the other pressing body 62 (lower side in the figure) is used. The hot plate 64 having a concave shape with a depth of about 0.2 mm provided integrally with the pressurizing body is used as the pressing portion, and the other configuration is the same as that of the bonding apparatus according to the fifth embodiment.
[0040]
Therefore, the center portion of the solid polymer electrolyte membrane 3 cut into 100 × 100 mm is sandwiched between the electrodes 1 and 2, the plate 63 of the joining device is brought into contact with only the electrode 1, and the other pressing body 62 side The hot plate was fitted with the electrode 2 and hot pressed. Also in this case, hot pressing is performed at a joining temperature of 120 ° C., a joining pressure of 50 × (9.8 × 10 −2 ) MPa, and a joining time of 3 minutes, thereby joining the electrode and the solid polymer electrolyte membrane. Obtained body 4.
[0041]
Also in this embodiment, since only the electrode bonding portion of the solid polymer electrolyte membrane 3 is heated at the time of hot pressing, the solid polymer electrolyte membrane 3 in the joined body 4 of the electrode and the solid polymer electrolyte membrane is completely No wrinkles were seen.
[0042]
[Example 7]
FIG. 7 shows a joined body 4A of an electrode and a solid polymer electrolyte membrane joined by a joining apparatus according to still another embodiment of the present invention. Although not shown, the joining apparatus of this embodiment includes a convex hot plate (pressing portion) projecting about 10 mm toward the electrodes on a pair of pressing bodies that press the pair of electrodes in a direction approaching each other. The configuration is such that six are provided integrally. Each of these hot plates is formed in a size of 50 × 50 mm which is the same size as the electrodes, and is heated by contacting only the electrodes (see FIG. 1).
[0043]
Thus, six sets of electrodes 1 (2) were placed at the center of the solid polymer electrolyte membrane 3 cut into 300 × 200 mm, 25 mm from the edge of the solid polymer electrolyte membrane and 50 mm between the electrodes 1 (2). The hot press was performed by disposing the six hot plates of the above-mentioned joining apparatus in contact with only the electrode 1 (2). Also in this case, hot pressing is performed at a joining temperature of 120 ° C., a joining pressure of 50 × (9.8 × 10 −2 ) MPa, and a joining time of 3 minutes, thereby joining the electrode and the solid polymer electrolyte membrane. A body 4A was obtained.
[0044]
Also in this embodiment, since only the electrode bonding portion of the solid polymer electrolyte membrane 3 is heated during hot pressing, the solid polymer electrolyte membrane 3 in the joined body 4A of the electrode and the solid polymer electrolyte membrane is completely No wrinkles were seen. Also, after hot pressing, if a portion 100 mm vertically and horizontally away from the peripheral end of the solid polymer electrolyte membrane 3 is cut, six joined bodies 4 of the electrode and the solid polymer electrolyte membrane are obtained, that is, Since a large number of joined bodies 4 can be obtained by one hot pressing, the joined body manufacturing cost can be reduced.
[0045]
[Comparative example]
FIG. 8 shows a joining device of a comparative example. The joining device of the comparative example includes a pair of pressurizing bodies 101 and 102 for heating the pair of electrodes 1 and 2 while pressing them in a direction approaching each other. . Therefore, the center portion of the solid polymer electrolyte membrane 3 cut into 100 × 100 mm is sandwiched between the electrodes 1 and 2, and the pressurized bodies 101 and 102 of the bonding apparatus of this comparative example are brought into contact with the electrodes 1 and 2 and Pressed. Also in this case, hot pressing is performed at a joining temperature of 120 ° C., a joining pressure of 50 × (9.8 × 10 −2 ) MPa, and a joining time of 3 minutes, thereby joining the electrode and the solid polymer electrolyte membrane. Obtained body 4.
[0046]
According to this comparative example, since the solid polymer electrolyte membrane 3 at the periphery of the electrode dries and shrinks due to the heating by the pressurizing members 101 and 102, the bonding between the manufactured electrode and the solid polymer electrolyte membrane is performed. Wrinkles occurred around the electrodes 1 and 2 of the solid polymer electrolyte membrane 3 of the body 4. Thus, in the above example, it was demonstrated that a joined body 4 (membrane electrode) of an electrode having excellent reliability and durability and a solid polymer electrolyte membrane could be formed.
[0047]
Subsequently, the joined body 4 of the electrode and the solid polymer electrolyte membrane produced in the above Examples 1 to 7 was sandwiched by a separator and an end plate, respectively, to produce a polymer electrolyte fuel cell of the present invention. Single cell evaluation of the polymer electrolyte fuel cell was performed.
[0048]
In this case, the cell temperature is set to 70 ° C., hydrogen gas is used as the fuel, air gas is used as the oxidizing agent, the gas pressure is set to the atmospheric pressure, and both the hydrogen gas and the air gas are humidified at 70 ° C. And supplied to the cell. Under these conditions, power generation was performed for 500 hours, but no problems such as breakage of the solid polymer electrolyte membrane and gas leak occurred.
[0049]
In other words, the solid polymer electrolyte fuel cell using the joined body of the solid polymer electrolyte membrane and the electrode having no wrinkles in the solid polymer electrolyte membrane realizes highly reliable operation without lowering the cell performance. It becomes.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional explanatory view showing one embodiment of a device for bonding an electrode and a solid polymer electrolyte membrane of the present invention.
FIG. 2 is a partial cross-sectional explanatory view showing another embodiment of the device for bonding an electrode and a solid polymer electrolyte membrane of the present invention.
FIG. 3 is a partial cross-sectional explanatory view showing still another embodiment of the device for bonding an electrode and a solid polymer electrolyte membrane according to the present invention.
FIG. 4 is a partial cross-sectional explanatory view showing still another embodiment of the device for bonding an electrode and a solid polymer electrolyte membrane according to the present invention.
FIG. 5 is an explanatory partial sectional view showing still another embodiment of the device for bonding an electrode and a solid polymer electrolyte membrane according to the present invention.
FIG. 6 is a partial cross-sectional explanatory view showing still another embodiment of the device for bonding an electrode and a solid polymer electrolyte membrane according to the present invention.
FIG. 7 is an explanatory plan view of a joined body of an electrode and a solid polymer electrolyte membrane joined by a joining apparatus for an electrode and a solid polymer electrolyte membrane according to still another embodiment of the present invention.
FIG. 8 is an explanatory partial cross-sectional view showing a device for bonding an electrode and a solid polymer electrolyte membrane according to a comparative example.
FIG. 9 is an explanatory sectional view showing one structural example of a polymer electrolyte fuel cell.
[Explanation of symbols]
One, two-electrode solid electrolyte fuel cell 3 Solid polymer electrolyte membranes 4, 4A Assemblies 11, 21, 31, 41, 51, 61 of electrodes and solid polymer electrolyte membrane One of pressure bodies 12, 22, 32 , 42, 52, 62 The other pressing body 13, 43, 53, 64 Hot plate (pressing portion)
23, 33, 63 plate (pressing part)
34 foam polytetrafluoroethylene sheet (elastic body)

Claims (15)

一対の電極と、この一対の電極に挟み込まれた状態で接合される固体高分子電解質膜を有する固体高分子型燃料電池の電極と固体高分子電解質膜とを接合するに際して、上記一対の電極で固体高分子電解質膜を挟み込み、一対の加圧体で上記一対の電極を互いに接近する方向に押圧すると共に一対の電極のみを加熱して固体高分子電解質膜と電極とを接合することを特徴とする電極と固体高分子電解質膜との接合方法。When joining a pair of electrodes and an electrode of a solid polymer electrolyte fuel cell having a solid polymer electrolyte membrane joined in a state sandwiched between the pair of electrodes and the solid polymer electrolyte membrane, Sandwiching the solid polymer electrolyte membrane, pressing the pair of electrodes in a direction approaching each other with a pair of pressurizing bodies, and heating only the pair of electrodes to join the solid polymer electrolyte membrane and the electrodes. Bonding method between the electrode to be formed and the solid polymer electrolyte membrane. 一対の加圧体のうちの少なくとも一方の加圧体に設けられて電極と同じ寸法を有する押圧部で電極のみを加熱する請求項1に記載の電極と固体高分子電解質膜との接合方法。The method for bonding an electrode to a solid polymer electrolyte membrane according to claim 1, wherein only the electrode is heated by a pressing portion provided on at least one of the pair of pressing bodies and having the same size as the electrode. 加圧体に一体で設けられて電極に向けて張出す凸形状をなす押圧部で電極のみを加熱する請求項2に記載の電極と固体高分子電解質膜との接合方法。The method for bonding an electrode and a solid polymer electrolyte membrane according to claim 2, wherein only the electrode is heated by a convex pressing portion that is provided integrally with the pressing body and projects toward the electrode. 加圧体に一体で設けられて電極と嵌合する凹形状をなす押圧部で電極のみを加熱する請求項2に記載の電極と固体高分子電解質膜との接合方法。3. The method for bonding an electrode and a solid polymer electrolyte membrane according to claim 2, wherein only the electrode is heated by a concave pressing portion provided integrally with the pressing body and fitted with the electrode. 加圧体とは別体に設けた熱伝導性金属材料から成る押圧部で電極のみを加熱する請求項2に記載の電極と固体高分子電解質膜との接合方法。3. The method for bonding an electrode and a solid polymer electrolyte membrane according to claim 2, wherein only the electrode is heated by a pressing portion made of a heat conductive metal material provided separately from the pressing body. 一対の電極と、この一対の電極に挟み込まれた状態で接合される固体高分子電解質膜を有する固体高分子型燃料電池の電極と固体高分子電解質膜とを接合するに際して、上記一対の電極で固体高分子電解質膜を挟み込み、一対の加圧体のうちの一方の加圧体に一体で設けられて電極と同じ寸法を有し且つ電極に向けて張出す凸形状をなす押圧部又は電極と嵌合する凹形状をなす押圧部と、一対の加圧体のうちの他方の加圧体に別体で設けられて電極と同じ寸法を有する熱伝導性金属材料から成る押圧部とによって、上記一対の電極を互いに接近する方向に押圧すると共に一対の電極のみを加熱して固体高分子電解質膜と電極とを接合することを特徴とする電極と固体高分子電解質膜との接合方法。When joining a pair of electrodes and an electrode of a solid polymer electrolyte fuel cell having a solid polymer electrolyte membrane joined in a state sandwiched between the pair of electrodes and the solid polymer electrolyte membrane, With a pressing portion or an electrode that sandwiches the solid polymer electrolyte membrane, is provided integrally with one of the pair of pressing members, has the same size as the electrode, and has a convex shape protruding toward the electrode. By the pressing portion having a concave shape to be fitted, and the pressing portion made of a heat conductive metal material having the same size as the electrode, provided separately to the other pressing member of the pair of pressing members, A method for bonding an electrode and a solid polymer electrolyte membrane, comprising: pressing a pair of electrodes in a direction approaching each other and heating only the pair of electrodes to bond the solid polymer electrolyte membrane and the electrode. 電極の周囲の固体高分子電解質膜に接触する弾性体を加圧体と固体高分子電解質膜との間に介在させて、一対の電極を互いに接近する方向に押圧すると共に一対の電極のみを加熱して固体高分子電解質膜と電極とを接合する請求項1〜6のいずれか1つの項に記載の電極と固体高分子電解質膜との接合方法。An elastic body that comes into contact with the solid polymer electrolyte membrane around the electrodes is interposed between the pressurizing body and the solid polymer electrolyte membrane, pressing the pair of electrodes in a direction approaching each other and heating only the pair of electrodes. The method for bonding an electrode and a solid polymer electrolyte membrane according to any one of claims 1 to 6, wherein the solid polymer electrolyte membrane and the electrode are bonded together. 固体高分子電解質膜と電極との接合温度を120℃以上160℃未満、接合圧力を20×(9.8×10−2)MPa以上160×(9.8×10−2)MPa未満、接合時間を0.5分以上20分未満とした請求項1〜7のいずれか1つの項に記載の電極と固体高分子電解質膜との接合方法。The joining temperature between the solid polymer electrolyte membrane and the electrode is 120 ° C. or more and less than 160 ° C., and the joining pressure is 20 × (9.8 × 10 −2 ) MPa or more and less than 160 × (9.8 × 10 −2 ) MPa. The method for bonding an electrode to a solid polymer electrolyte membrane according to any one of claims 1 to 7, wherein the time is 0.5 minutes or more and less than 20 minutes. 一対の電極と、この一対の電極に挟み込まれた状態で接合される固体高分子電解質膜を有する固体高分子型燃料電池の電極と固体高分子電解質膜とを接合する装置であって、一対の電極を互いに接近する方向に押圧する一対の加圧体を備え、一対の加圧体のうちの少なくとも一方の加圧体に、電極と同じ寸法を有して電極のみに接触して加熱する押圧部を設けたことを特徴とする電極と固体高分子電解質膜との接合装置。A device for joining a pair of electrodes and an electrode of a solid polymer electrolyte fuel cell having a solid polymer electrolyte membrane joined in a state sandwiched between the pair of electrodes, and a solid polymer electrolyte membrane, A pair of pressurizing members for pressing the electrodes in a direction of approaching each other, and pressing at least one of the pair of pressurizing members, which has the same size as the electrode and is heated by contacting only the electrode; A bonding apparatus for bonding an electrode and a solid polymer electrolyte membrane, comprising a unit. 押圧部は、加圧体に一体で設けられて電極に向けて張出す凸形状をなしている請求項9に記載の電極と固体高分子電解質膜との接合装置。The bonding device for an electrode and a solid polymer electrolyte membrane according to claim 9, wherein the pressing portion is provided integrally with the pressing body and has a convex shape protruding toward the electrode. 押圧部は、加圧体に一体で設けられて電極と嵌合する凹形状をなしている請求項9に記載の電極と固体高分子電解質膜との接合装置。The bonding device for an electrode and a solid polymer electrolyte membrane according to claim 9, wherein the pressing portion is formed integrally with the pressing body and has a concave shape to be fitted with the electrode. 押圧部は、熱伝導性金属材料から成り、加圧体とは別体に設けてある請求項9に記載の電極と固体高分子電解質膜との接合装置。The bonding device for an electrode and a solid polymer electrolyte membrane according to claim 9, wherein the pressing portion is made of a heat conductive metal material, and is provided separately from the pressing body. 一対の電極と、この一対の電極に挟み込まれた状態で接合される固体高分子電解質膜の電極と固体高分子電解質膜とを接合する装置であって、一対の電極を互いに接近する方向に押圧する一対の加圧体を備え、一対の加圧体のうちの一方の加圧体には、電極と同じ寸法を有し且つ電極に向けて張出す凸形状をなす押圧部又は電極と嵌合する凹形状をなす押圧部を一体で設けると共に、一対の加圧体のうちの他方の加圧体には、この加圧体とは別体をなして電極と同じ寸法を有する熱伝導性金属材料から成る押圧部を設けたことを特徴とする電極と固体高分子電解質膜との接合装置。An apparatus for joining a pair of electrodes and an electrode of a solid polymer electrolyte membrane to be joined while being sandwiched between the pair of electrodes, and pressing the pair of electrodes in a direction approaching each other. A pair of pressurizing members, and one of the pressurizing members has the same size as the electrode and is fitted with a convex pressing portion or electrode protruding toward the electrode. The pressing portion having a concave shape is provided integrally, and the other pressing member of the pair of pressing members is formed of a heat conductive metal having the same size as the electrode separately from the pressing member. An apparatus for joining an electrode and a solid polymer electrolyte membrane, comprising a pressing portion made of a material. 加圧体に、電極の周囲の固体高分子電解質膜に接触する弾性体を設けた請求項9〜13のいずれか1つの項に記載の電極と固体高分子電解質膜との接合装置。The bonding device for an electrode and a solid polymer electrolyte membrane according to any one of claims 9 to 13, wherein the pressurized body is provided with an elastic body that is in contact with the solid polymer electrolyte membrane around the electrode. 請求項9〜14に記載の電極と固体高分子電解質膜との接合装置で接合した電極と固体高分子電解質膜との接合体をセパレータで挟持したことを特徴とする固体高分子型燃料電池。A polymer electrolyte fuel cell, wherein a joined body of an electrode and a solid polymer electrolyte membrane joined by the apparatus for joining an electrode and a polymer electrolyte membrane according to any one of claims 9 to 14 is sandwiched by a separator.
JP2002381479A 2002-12-27 2002-12-27 Jointing method and jointing device for electrode and solid polyelectrolyte membrane Pending JP2004214001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002381479A JP2004214001A (en) 2002-12-27 2002-12-27 Jointing method and jointing device for electrode and solid polyelectrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002381479A JP2004214001A (en) 2002-12-27 2002-12-27 Jointing method and jointing device for electrode and solid polyelectrolyte membrane

Publications (1)

Publication Number Publication Date
JP2004214001A true JP2004214001A (en) 2004-07-29

Family

ID=32817380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002381479A Pending JP2004214001A (en) 2002-12-27 2002-12-27 Jointing method and jointing device for electrode and solid polyelectrolyte membrane

Country Status (1)

Country Link
JP (1) JP2004214001A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147231A (en) * 2004-11-17 2006-06-08 Nissan Motor Co Ltd Junction device for membrane electrode assembly and junction method for membrane electrode assembly
JP2006156036A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Assembly apparatus for membrane electrode assembly, and assembly method of membrane electrode assembly
JP2006164887A (en) * 2004-12-10 2006-06-22 Nissan Motor Co Ltd Apparatus and method of forming laminate for fuel battery
JP2007173240A (en) * 2005-12-20 2007-07-05 Gm Global Technology Operations Inc Catalyst coated diffusion medium
JP2009206074A (en) * 2008-02-27 2009-09-10 Optodisc Technology Corp Hotpress mold for membrane-electrode assembly of fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147231A (en) * 2004-11-17 2006-06-08 Nissan Motor Co Ltd Junction device for membrane electrode assembly and junction method for membrane electrode assembly
JP2006156036A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Assembly apparatus for membrane electrode assembly, and assembly method of membrane electrode assembly
JP2006164887A (en) * 2004-12-10 2006-06-22 Nissan Motor Co Ltd Apparatus and method of forming laminate for fuel battery
JP2007173240A (en) * 2005-12-20 2007-07-05 Gm Global Technology Operations Inc Catalyst coated diffusion medium
JP2009206074A (en) * 2008-02-27 2009-09-10 Optodisc Technology Corp Hotpress mold for membrane-electrode assembly of fuel cell

Similar Documents

Publication Publication Date Title
JP5363335B2 (en) Gas diffusion layer with built-in gasket
JP4818546B2 (en) Membrane / electrode structure
JP4540316B2 (en) Catalyst coated ionomer membrane with protective film layer and membrane electrode assembly made from the membrane
JP3368907B2 (en) Seal structure of solid polymer electrolyte fuel cell
US20070209758A1 (en) Method and process for unitized mea
JPH07220742A (en) Solid high polymer electrolyte fuel cell and manufacture of electrode-ion exchange film connector for this fuel cell
KR20060090216A (en) Membrane electrode assembly for use in electrochemical devices
US8007949B2 (en) Edge-protected catalyst-coated diffusion media and membrane electrode assemblies
JP5298469B2 (en) Gas diffusion electrode for fuel cell
JP2004303627A (en) Manufacturing method of electrolyte membrane-electrode jointed assembly for direct methanol type fuel cell
JP5165947B2 (en) Membrane / electrode assembly and manufacturing method thereof
EP1429408A1 (en) Electrolyte membrane/electrode union for fuel cell and process for producing the same
JP2004319153A (en) Solid polyelectrolyte fuel cell and its manufacturing method
JP5838570B2 (en) Membrane electrode assembly in polymer electrolyte fuel cell
JP2003303596A (en) Polymer electrolyte type fuel cell and manufacturing method thereof
JP2009163988A (en) Membrane electrode assembly for fuel cell, and method of manufacturing the same
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane
JP2002343377A (en) Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same
JP4163029B2 (en) Method for producing membrane electrode assembly of polymer electrolyte fuel cell
JP3619737B2 (en) Fuel cell and fuel cell
JP5273212B2 (en) Manufacturing method of electrolyte membrane-electrode assembly with gasket for polymer electrolyte fuel cell
JP2010225484A (en) Fuel cell and method for manufacturing the same
JP2010003470A (en) Fuel cell
KR20190037878A (en) Membrane-electrode assembly, method for manufacturing the same, and fuel cell stack comprising the same
JP2006066161A (en) Manufacturing method of fuel cell film/electrode junction