JP3368907B2 - Seal structure of solid polymer electrolyte fuel cell - Google Patents

Seal structure of solid polymer electrolyte fuel cell

Info

Publication number
JP3368907B2
JP3368907B2 JP17563191A JP17563191A JP3368907B2 JP 3368907 B2 JP3368907 B2 JP 3368907B2 JP 17563191 A JP17563191 A JP 17563191A JP 17563191 A JP17563191 A JP 17563191A JP 3368907 B2 JP3368907 B2 JP 3368907B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
electrolyte membrane
electrode
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17563191A
Other languages
Japanese (ja)
Other versions
JPH0521077A (en
Inventor
智弘 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP17563191A priority Critical patent/JP3368907B2/en
Publication of JPH0521077A publication Critical patent/JPH0521077A/en
Application granted granted Critical
Publication of JP3368907B2 publication Critical patent/JP3368907B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、固体高分子電解質型
燃料電池における単電池のガスシ−ル構造、ことに固体
高分子電解質膜のガスシ−ル構造の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas seal structure of a single cell in a solid polymer electrolyte fuel cell, and more particularly to improvement of the gas seal structure of a solid polymer electrolyte membrane.

【0002】[0002]

【従来の技術】図3は従来の固体高分子電解質型燃料電
池を左右方向に展開して示す断面図であり、単電池は、
固体高分子電解質膜1と、その両面に触媒層が密着する
よう電子導電性を有する多孔質電極基材に支持されたア
ノ−ド電極2およびカソ−ド電極3と、この一対の電極
の両側に配され,燃料ガス通路6および酸化剤通路7を
有する一対のガス不透過性板4との積層体からなり、固
体高分子電解質膜1の面積が一対の電極2および3より
大きく形成され、固体高分子電解質膜1とガス不透過性
板4との間に介装され,隙間8を保持して電極を額縁状
に包囲するガスシ−ル材5により反応ガス通路6および
7内の燃料ガスおよび酸化剤ガスが積層面を介して外部
に漏れないようガスシ−ルされる。また、このように構
成された単電池の出力電圧は1V以下と低いので、単電
池複数層を積層して所望の出力電圧の燃料電池スタック
が形成される。
2. Description of the Related Art FIG. 3 is a cross-sectional view showing a conventional solid polymer electrolyte fuel cell in a laterally developed manner.
Solid polymer electrolyte membrane 1, anode electrode 2 and cathode electrode 3 supported by a porous electrode substrate having electronic conductivity so that the catalyst layers adhere to both surfaces thereof, and both sides of this pair of electrodes Is formed of a laminated body with a pair of gas impermeable plates 4 having a fuel gas passage 6 and an oxidant passage 7, and the area of the solid polymer electrolyte membrane 1 is formed larger than the pair of electrodes 2 and 3. The fuel gas in the reaction gas passages 6 and 7 is provided by the gas seal material 5 which is interposed between the solid polymer electrolyte membrane 1 and the gas impermeable plate 4 and holds the gap 8 to surround the electrodes in a frame shape. And the oxidant gas is gas-sealed so as not to leak outside through the laminated surface. In addition, since the output voltage of the unit cell thus configured is as low as 1 V or less, a plurality of unit cell layers are stacked to form a fuel cell stack having a desired output voltage.

【0003】固体高分子電解質膜1としては、スルホン
酸基を持つポリスチレン系の陽イオン交換膜をカチオン
導電性膜として使用したもの、フロロカ−ボンスルホン
酸とポリビニリデンフロライドとの混合膜、フロロカ−
ボンマトリックスにトリフロロエチレンをグラフト化し
たもの、あるいはパ−フロロカ−ボンスルホン酸膜(米
国,デュポン社,商品名ナフィオン膜)などが知られて
おり、分子中にプロトン(水素イオン)交換基を持ち、
飽和含水することにより常温で20Ω-cm 以下の比抵抗
を示し、プロトン導電性電解質として機能するととも
に、燃料ガスと酸化剤ガスの混合を防ぐ隔膜としても機
能する。なお、飽和含水量は温度によって可逆的に変化
する。
As the solid polymer electrolyte membrane 1, a polystyrene cation exchange membrane having a sulfonic acid group is used as a cation conductive membrane, a mixed membrane of fluorocarbon sulfonic acid and polyvinylidene fluoride, and a fluorocarbon membrane. −
It is known that trifluoroethylene is grafted to Bonmatrix, or perfluorocarbon sulfonic acid membrane (Nafion membrane, trade name, DuPont, USA) is used, and a proton (hydrogen ion) exchange group is present in the molecule. Have,
When saturated with water, it exhibits a specific resistance of 20 Ω-cm or less at room temperature, functions as a proton conductive electrolyte, and also functions as a diaphragm that prevents mixing of fuel gas and oxidant gas. The saturated water content changes reversibly with temperature.

【0004】一対の電極としてのアノ−ド電極2および
カソ−ド電極3は、触媒活物質を含む触媒層を電子導電
性を有する多孔質の電極基材で支持したものからなり、
複数の並列な溝からなる燃料ガス通路6から電極基材を
透過してアノ−ドに供給される燃料としての水素と、酸
化剤通路7からカソ−ドに供給される酸化剤としての酸
素がそれぞれの触媒層で3相界面を形成し、アノ−ド側
では水素分子を水素イオンと電子に分解する電気化学反
応が、カソ−ド側では酸素と水素イオンと電子から水を
生成する電気化学反応がそれぞれ行われ、アノ−ドから
カソ−ドに向かって外部回路を移動する電子により発電
電力が負荷に供給される。
The anode electrode 2 and the cathode electrode 3 as a pair of electrodes are composed of a catalyst layer containing a catalyst active material supported by a porous electrode base material having electronic conductivity,
Hydrogen as a fuel supplied to the anode through the electrode base material from the fuel gas passage 6 formed of a plurality of parallel grooves and oxygen as an oxidant supplied to the cathode from the oxidant passage 7 are provided. An electrochemical reaction that forms a three-phase interface in each catalyst layer and decomposes hydrogen molecules into hydrogen ions and electrons on the anode side, and an electrochemical reaction that produces water from oxygen, hydrogen ions and electrons on the cathode side Each reaction is performed, and the generated power is supplied to the load by the electrons moving from the anode to the cathode in the external circuit.

【0005】[0005]

【発明が解決しようとする課題】上述のように構成され
た固体高分子電解質型燃料電池において、電極2または
3と,これを額縁状に包囲するガスシ−ル材5との間の
隙間8の部分では、固体高分子電解質膜1を支持するも
のが無いため、燃料ガスと酸化材ガスの圧力差(以下差
圧と呼ぶ)が異常に上昇すると、固体高分子電解質膜が
この差圧に耐えきれなくなって破れて固体高分子電解質
膜のガスシ−ル機能が失われ、両ガスが混合する事態が
発生することがあった。また、単電池を積層する際固体
高分子電解質膜に加わる機械的ストレスや,運転中の熱
応力による構成部材の変歪などによっても固体高分子電
解質膜が破れる事態が発生することがあった。燃料ガス
と酸化剤ガスが直接混合すると、爆鳴気となって燃焼
し、電池が燃損する等の重大事故に発展する危険性が高
いために、固体高分子電解質膜の破損事故の回避が重要
な課題になっている。
In the solid polyelectrolyte fuel cell constructed as described above, the gap 8 between the electrode 2 or 3 and the gas seal material 5 surrounding the electrode 2 or 3 in a frame shape is formed. Since there is nothing to support the solid polymer electrolyte membrane 1 in the part, if the pressure difference between the fuel gas and the oxidant gas (hereinafter referred to as differential pressure) rises abnormally, the solid polymer electrolyte membrane will withstand this differential pressure. There was a case in which the solid polymer electrolyte membrane lost its gas seal function due to being unable to be cut off, and the two gases were mixed. Further, the solid polymer electrolyte membrane may sometimes be broken due to mechanical stress applied to the solid polymer electrolyte membrane when stacking the unit cells, distortion of components due to thermal stress during operation, and the like. When fuel gas and oxidant gas are directly mixed, there is a high risk of burning into explosion noise and burning, resulting in serious accidents such as battery burnout.Therefore, it is important to avoid damage accidents of solid polymer electrolyte membrane. Has become a problem.

【0006】この発明の目的は、固体高分子電解質膜に
加わる反応ガスの差圧,および機械的ストレスにより、
固体高分子電解質膜が破損することの無い固体高分子電
解質型燃料電池のシ−ル構造を得ることにある。
The object of the present invention is to reduce the differential pressure of the reaction gas applied to the solid polymer electrolyte membrane and the mechanical stress.
It is to obtain a seal structure of a solid polymer electrolyte fuel cell in which the solid polymer electrolyte membrane is not damaged.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明によれば、固体高分子電解質膜と、その両面
に配置される一対の電極と、この一対の電極の両側に配
された反応ガス通路を有する一対のガス不透過性板との
積層体からなり、前記固体高分子電解質膜の面積が前記
電極より大きく形成され、前記固体高分子電解質膜とガ
ス不透過性板との間に介装されて前記電極を隙間を保持
して額縁状に包囲するガスシ−ル材によりガスシ−ルさ
れてなるものにおいて、前記固体高分子電解質膜の少な
くとも一方の面の周縁部分に保護膜が前記電極に重なり
を有するように額縁状に配され、前記固体高分子電解質
膜,保護膜,および電極が、熱圧加工により一体化され
たものとする。
In order to solve the above-mentioned problems, according to the present invention, a solid polymer electrolyte membrane, a pair of electrodes arranged on both surfaces thereof, and a pair of electrodes arranged on both sides of the pair of electrodes. And a pair of gas impermeable plates having a reaction gas passage, the area of the solid polymer electrolyte membrane is formed larger than the electrode, the solid polymer electrolyte membrane and the gas impermeable plate A protective film is provided on the peripheral portion of at least one surface of the solid polymer electrolyte membrane, in which the electrode is gas-sealed by a gas-seal material that is interposed between the electrodes and surrounds the electrode in a frame shape while holding a gap. Are arranged in a frame shape so as to have an overlap with the electrode, and the solid polymer electrolyte membrane, the protective membrane, and the electrode are integrated by thermocompression processing.

【0008】[0008]

【0009】[0009]

【0010】[0010]

【作用】この発明の構成において、固体高分子電解質膜
の少なくとも一方の面の周縁部分に保護膜が前記電極に
重なりを有するように額縁状に配され、前記固体高分子
電解質膜,保護膜,および電極が、熱圧加工により一体
化されたことにより、固体高分子電解質膜および額縁状
の保護膜が互いに重なって、その外周側が一対のガスシ
−ル材に挟持され、内周側が一対の電極間に挟持され
て、両挟持部分の間の隙間部分で保護膜が固体高分子電
解質膜を補強するよう作用するので、この部分に加わる
差圧の増大や機械的ストレスに耐える強度を大幅に高め
る機能が得られ、固体高分子電解質膜のガスシ−ル機能
が失われることによる爆鳴気の生成を排除し、固体高分
子電解質型燃料電池の安全運転性能を高めることができ
る。
In the structure of the present invention, the protective film is arranged in a frame shape on the peripheral portion of at least one surface of the solid polymer electrolyte membrane so as to overlap the electrode, and the solid polymer electrolyte membrane, the protective film, Since the electrodes and the electrodes are integrated by thermocompression processing, the solid polymer electrolyte membrane and the frame-shaped protective film are overlapped with each other, the outer peripheral side is sandwiched between the pair of gas seal materials, and the inner peripheral side is the pair of electrodes. It is sandwiched between them, and the protective film acts to reinforce the solid polymer electrolyte membrane in the gap between both sandwiched parts, so the strength to withstand the increase in differential pressure and mechanical stress applied to this part is greatly increased. It is possible to obtain the function, eliminate the generation of detonation due to the loss of the gas seal function of the solid polymer electrolyte membrane, and enhance the safe operation performance of the solid polymer electrolyte fuel cell.

【0011】[0011]

【0012】[0012]

【0013】[0013]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる固体高分子電解質型
燃料電池を左右方向に展開して示す断面図、図2は実施
例になる固体高分子電解質型燃料電池の要部の断面図で
あり、従来技術と同じ構成部分には同一参照符号を付す
ことにより、重複した説明を省略する。図において、固
体高分子電解質膜1の周縁部分の両面には額縁状のフッ
素樹脂系シ−トからなる保護膜11が介装される。保護
膜11に用いるフッ素樹脂系シ−トとしては、例えば厚
み25μm程度の4フッ化エチレン−ペルフロロアルキ
ルビニルエ−テル共重合体シ−ト(PFAシ−ト)が適
しており、その額縁状の幅Wはアノ−ド電極2およびカ
ソ−ド電極3の周縁部分に5mm程度の重なりを有する
幅に形成される。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a sectional view showing a solid polymer electrolyte fuel cell according to an embodiment of the present invention when developed in the left-right direction, and FIG. 2 is a sectional view of a main part of the solid polymer electrolyte fuel cell according to the embodiment. The same components as those of the conventional technique are designated by the same reference numerals, and duplicated description will be omitted. In the figure, a protective film 11 made of a frame-shaped fluororesin sheet is provided on both sides of the peripheral portion of the solid polymer electrolyte membrane 1. As the fluororesin sheet used for the protective film 11, for example, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer sheet (PFA sheet) having a thickness of about 25 μm is suitable, and its frame is suitable. The width W is formed so as to overlap the peripheral portions of the anode electrode 2 and the cathode electrode 3 by about 5 mm.

【0014】このように形成された保護膜11は固体高
分子電解質膜1と電極2および3を熱圧加工により複合
化する際、一緒に複合化される。すなわち、固体高分子
電解質膜,保護膜,および電極2および3を重ねてヒ−
トプレスに挟み、150°C,30kg/ cm2 の熱圧条件
でプレス処理することにより、3者が一体化した複合膜
が形成される。また、保護膜と電極の重なり部分は多孔
質の電極基材が収縮して段差が吸収され、単電池の積層
寸法に及ぼす影響が排除される。なお、電極を包囲する
額縁状のガスシ−ル材5および隙間8に相応する部分に
間隔片を介装した状態でプレス処理することにより、保
護膜11が固体高分子電解質膜に全面的に固着し、より
強固な複合膜が得られる。
The protective film 11 thus formed is combined together when the solid polymer electrolyte membrane 1 and the electrodes 2 and 3 are combined by hot pressing. That is, the solid polymer electrolyte membrane, the protective membrane, and the electrodes 2 and 3 are superposed and
It is sandwiched between top presses and subjected to press treatment under the heat and pressure condition of 150 ° C. and 30 kg / cm 2 to form a composite film in which the three are integrated. Further, in the overlapping portion of the protective film and the electrode, the porous electrode base material contracts and the step is absorbed, so that the influence on the stacking dimension of the unit cell is eliminated. The protective film 11 is entirely adhered to the solid polymer electrolyte membrane by pressing the frame-shaped gas seal material 5 surrounding the electrode and a portion corresponding to the gap 8 with a spacing piece interposed. As a result, a stronger composite film can be obtained.

【0015】このように形成された固体高分子電解質
膜,保護膜および一対の電極が一体化した複合膜の両側
には一対のガス不透過性板4が積層され、かつガスシ−
ル材5が充填されることにより、図2に示すように、固
体高分子電解質膜の外周部分がこれに固着した保護膜で
機械的に補強された固体高分子電解質型燃料電池の単電
池が形成される。さらに、単電池複数層を積層すること
によりスタックが形成される。
A pair of gas impermeable plates 4 are laminated on both sides of the composite membrane in which the solid polymer electrolyte membrane, the protective membrane and the pair of electrodes thus formed are integrated, and a gas sheet is formed.
As a result of being filled with the filler material 5, as shown in FIG. 2, the unit cell of the solid polymer electrolyte fuel cell in which the outer peripheral portion of the solid polymer electrolyte membrane is mechanically reinforced by the protective film adhered thereto It is formed. Further, a stack is formed by stacking a plurality of unit cell layers.

【0016】上述のようにしてえられた高分子電解質型
燃料電池においては、固体高分子電解質膜1に固着した
額縁状の保護膜11の外周側が一対のガスシ−ル材5に
挟持されて外部へのガス漏れが阻止されるとともに、内
周側が一対の電極間に挟持されて、両挟持部分の間の隙
間部分で保護膜が固体高分子電解質膜を補強するよう作
用するので、この部分に加わる差圧の増大や機械的スト
レスに耐える強度を大幅に高める機能が得られ、固体高
分子電解質膜のガスシ−ル機能が失われることによる爆
鳴気の生成を排除し、固体高分子電解質型燃料電池を安
全に運転することができる。なお、保護膜11を固体高
分子電解質膜の一方の面側にのみ設けるよう構成して
も、その厚みの決め方により前記と同様の機能が得られ
る。
In the polymer electrolyte fuel cell obtained as described above, the outer peripheral side of the frame-shaped protective film 11 fixed to the solid polymer electrolyte membrane 1 is sandwiched between the pair of gas seal materials 5 and the outside. Gas is prevented from leaking to the electrode, and the inner peripheral side is sandwiched between a pair of electrodes, and the protective membrane acts to reinforce the solid polymer electrolyte membrane in the gap between the sandwiched portions. It has the function of significantly increasing the applied differential pressure and the strength to withstand mechanical stress, eliminating the generation of detonation due to the loss of the gas seal function of the solid polymer electrolyte membrane, and solid polymer electrolyte type The fuel cell can be operated safely. Even if the protective film 11 is provided only on one surface side of the solid polymer electrolyte membrane, the same function as described above can be obtained depending on how the thickness is determined.

【0017】[0017]

【発明の効果】この発明は前述のように、固体高分子電
解質膜の少なくとも一方の面の周縁部分に保護膜を前記
電極に重なりを有するように額縁状に配し、前記固体高
分子電解質膜,保護膜,および電極を、熱圧加工により
一体化して構成した。その結果、固体高分子電解質膜お
よび額縁状の保護膜が互いに密着し、その外周側が一対
のガスシ−ル材に挟持されて外部へのガス漏れを阻止す
るとともに、内周側が一対の電極間に挟持されて両挟持
部分の間の隙間部分で保護膜が固体高分子電解質膜を補
強するよう作用するので、従来技術で問題となった、こ
の部分に加わる差圧の増大や機械的ストレスにより固体
高分子電解質膜が破損する事態が排除され、固体高分子
電解質膜のガスシ−ル機能が失われることによる爆鳴気
の生成を回避し、固体高分子電解質型燃料電池の安全運
転性能を向上できるシ−ル構造を備えた固体高分子電解
質型燃料電池を提供することができる。
As described above, according to the present invention, a protective film is arranged in a frame shape on the peripheral portion of at least one surface of a solid polymer electrolyte membrane so as to overlap the electrode, and the solid polymer electrolyte membrane is provided. , The protective film, and the electrode were integrated by hot pressing. As a result, the solid polymer electrolyte membrane and the frame-shaped protective film are in close contact with each other, the outer peripheral side is sandwiched between the pair of gas seal materials to prevent gas leakage to the outside, and the inner peripheral side is between the pair of electrodes. Since the protective film acts to reinforce the solid polymer electrolyte membrane in the gap between the two sandwiched portions, the solid membrane is affected by the increase in the differential pressure applied to this portion and mechanical stress, which have been problems in the conventional technology. The situation that the polymer electrolyte membrane is damaged is eliminated, the generation of detonation due to the loss of the gas seal function of the solid polymer electrolyte membrane is avoided, and the safe operation performance of the solid polymer electrolyte fuel cell can be improved. A solid polymer electrolyte fuel cell having a seal structure can be provided.

【0018】[0018]

【0019】[0019]

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例になる固体高分子電解質型燃
料電池を左右方向に展開して示す断面図
FIG. 1 is a cross-sectional view showing a solid polyelectrolyte fuel cell according to an embodiment of the present invention when developed in the left-right direction.

【図2】実施例になる固体高分子電解質型燃料電池の要
部の断面図
FIG. 2 is a sectional view of a main part of a solid polymer electrolyte fuel cell according to an embodiment.

【図3】従来の固体高分子電解質型燃料電池を左右方向
に展開して示す断面図
FIG. 3 is a cross-sectional view showing a conventional solid polymer electrolyte fuel cell in a laterally developed manner.

【符号の説明】[Explanation of symbols]

1 固体高分子電解質膜 2 アノ−ド電極 3 カソ−ド電極 4 ガス不透過性板 5 ガスシ−ル材 6 燃料通路 7 酸化剤通路 8 隙間 11 保護膜(フッ素樹脂系シ−ト) 1 Solid polymer electrolyte membrane 2 anode electrode 3 cathode electrodes 4 Gas impermeable plate 5 gas seal materials 6 Fuel passage 7 Oxidant passage 8 gap 11 Protective film (fluororesin sheet)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固体高分子電解質膜と、その両面に配置さ
れる一対の電極と、この一対の電極の両側に配された反
応ガス通路を有する一対のガス不透過性板との積層体か
らなり、前記固体高分子電解質膜の面積が前記電極より
大きく形成され、前記固体高分子電解質膜とガス不透過
性板との間に介装されて前記電極を隙間を保持して額縁
状に包囲するガスシ−ル材によりガスシ−ルされてなる
ものにおいて、 前記固体高分子電解質膜の少なくとも一方の面の周縁部
分に保護膜が前記電極に重なりを有するように額縁状に
配され、前記固体高分子電解質膜,保護膜,および電極
が、熱圧加工により一体化されたものであることを特徴
とする固体高分子電解質型燃料電池。
1. A laminate of a solid polymer electrolyte membrane, a pair of electrodes arranged on both sides of the solid polymer electrolyte membrane, and a pair of gas impermeable plates having reaction gas passages arranged on both sides of the pair of electrodes. The area of the solid polymer electrolyte membrane is formed larger than that of the electrode, and the solid polymer electrolyte membrane is interposed between the solid polymer electrolyte membrane and the gas impermeable plate to surround the electrode in a frame shape with a gap. In a gas sealed by a gas seal material, a protective film is arranged in a frame shape on the peripheral portion of at least one surface of the solid polymer electrolyte membrane so as to have an overlap with the electrode, A solid polymer electrolyte fuel cell characterized in that a molecular electrolyte membrane, a protective membrane, and an electrode are integrated by thermocompression processing.
【請求項2】保護膜が厚み50μm以下のフッ素樹脂系
シ−トであることを特徴とする請求項1記載の固体高分
子電解質型燃料電池。
2. The solid polymer electrolyte fuel cell according to claim 1, wherein the protective film is a fluororesin-based sheet having a thickness of 50 μm or less.
JP17563191A 1991-07-17 1991-07-17 Seal structure of solid polymer electrolyte fuel cell Expired - Lifetime JP3368907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17563191A JP3368907B2 (en) 1991-07-17 1991-07-17 Seal structure of solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17563191A JP3368907B2 (en) 1991-07-17 1991-07-17 Seal structure of solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH0521077A JPH0521077A (en) 1993-01-29
JP3368907B2 true JP3368907B2 (en) 2003-01-20

Family

ID=15999462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17563191A Expired - Lifetime JP3368907B2 (en) 1991-07-17 1991-07-17 Seal structure of solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3368907B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521144B2 (en) 2004-08-30 2009-04-21 Asahi Glass Company, Limited Membrane-electrode assembly for polymer electrolyte fuel cells, and polymer electrolyte fuel cell
WO2009072291A1 (en) 2007-12-06 2009-06-11 Panasonic Corporation Electrode-film-frame assembly manufacturing method
DE112007000860T5 (en) 2006-06-16 2009-09-03 Matsushita Electric Industrial Co. Ltd. A fuel cell film electrode assembly, a fuel cell polymer electrolyte cell, and a method of manufacturing a polymer electrolytic fuel cell and a film electrode assembly
WO2010032099A1 (en) 2008-09-19 2010-03-25 Toyota Jidosha Kabushiki Kaisha Manufacture method for polymer electrolyte fuel, and polymer electrolyte fuel cell manufactured by the method
US8895202B2 (en) 2012-01-13 2014-11-25 Honda Motor Co., Ltd. Fuel cell membrane electrode assembly
WO2021020288A1 (en) 2019-07-29 2021-02-04 東レ株式会社 Gas diffusion electrode, method for producing same and membrane electrode assembly

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010215A1 (en) * 1998-08-10 2000-02-24 Axiva Gmbh Fuel cell with improved long-term performance, method for operating a pme fuel cell and pme fuel cell battery
CN1305157C (en) * 2001-01-31 2007-03-14 松下电器产业株式会社 High polymer electrolyte fuel cell and electrolyte film-gasket assembly for fuel cell
JP2002352817A (en) * 2001-05-25 2002-12-06 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP4600632B2 (en) * 2001-08-24 2010-12-15 Nok株式会社 Fuel cell components
WO2003034523A1 (en) 2001-10-11 2003-04-24 Hitachi, Ltd. Home-use fuel cell system
US8007949B2 (en) * 2002-10-08 2011-08-30 Bhaskar Sompalli Edge-protected catalyst-coated diffusion media and membrane electrode assemblies
US7977005B2 (en) 2002-10-08 2011-07-12 GM Global Technology Operations LLC Edge-protected catalyst-coated membrane electrode assemblies
JP4760027B2 (en) * 2004-01-30 2011-08-31 富士電機株式会社 Method for producing membrane / electrode assembly of solid polymer electrolyte fuel cell
WO2006002878A1 (en) * 2004-07-01 2006-01-12 Umicore Ag & Co. Kg Lamination process for manufacture of integrated membrane-electrode-assemblies
GB0421254D0 (en) * 2004-09-24 2004-10-27 Johnson Matthey Plc Membrane electrode assembly
US20060078781A1 (en) * 2004-10-08 2006-04-13 3M Innovative Properties Company Curable subgasket for a membrane electrode assembly
EP1876666B1 (en) 2005-04-01 2012-11-14 Panasonic Corporation Polymer electrolyte fuel cell and manufacturing method thereof
JP4975982B2 (en) * 2005-06-06 2012-07-11 パナソニック株式会社 Fuel cell
JP4977972B2 (en) * 2005-07-11 2012-07-18 日産自動車株式会社 Fuel cell, electrolyte membrane / electrode laminate, and method for producing the same
JP5194346B2 (en) * 2005-08-31 2013-05-08 日産自動車株式会社 Electrolyte membrane-electrode assembly
WO2007032442A1 (en) 2005-09-15 2007-03-22 Matsushita Electric Industrial Co., Ltd. Membrane-membrane stiffening member union, membrane-catalyst layer union, membrane-electrode union, and polymer electrolyte type fuel cell
JP2007109576A (en) * 2005-10-14 2007-04-26 Japan Gore Tex Inc Membrane electrode assembly and solid polymer fuel cell
JP5095601B2 (en) * 2006-02-16 2012-12-12 パナソニック株式会社 Membrane catalyst layer assembly, membrane electrode assembly, and polymer electrolyte fuel cell
CN101507030B (en) * 2006-11-07 2011-08-31 松下电器产业株式会社 Film-film reinforcing film assembly, film-catalyst layer assembly, film-electrode assembly, and polymer electrolyte fuel cell
US20080107945A1 (en) * 2006-11-08 2008-05-08 Gm Global Technology Operations, Inc. Fuel cell substrate with an overcoat
JP5095190B2 (en) * 2006-12-07 2012-12-12 パナソニック株式会社 Membrane-electrode assembly and polymer electrolyte fuel cell having the same
JP2008146915A (en) * 2006-12-07 2008-06-26 Matsushita Electric Ind Co Ltd Membrane-electrode assembly, and polymer electrolyte fuel cell equipped with this
EP2112705A4 (en) * 2007-01-22 2013-10-09 Panasonic Corp Film-film reinforcing member bonded body, film-catalyst layer bonded body, film-electrode bonded body, and polyelectrolyte type fuel cell
US8182958B2 (en) 2007-01-29 2012-05-22 Panasonic Corporation Membrane membrane-reinforcement-member assembly, membrane catalyst-layer assembly, membrane electrode assembly and polymer electrolyte fuel cell
WO2008126350A1 (en) * 2007-03-14 2008-10-23 Panasonic Corporation Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, polymer electrolyte fuel cell, and process for producing membrane-electrode assembly
JP5319073B2 (en) 2007-03-20 2013-10-16 帝人デュポンフィルム株式会社 Biaxially oriented polyester film for solid polymer electrolyte membrane reinforcement
JP5396029B2 (en) * 2008-02-21 2014-01-22 東海ゴム工業株式会社 FUEL CELL CELL, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL CELL
JP5366469B2 (en) 2008-08-04 2013-12-11 本田技研工業株式会社 Electrolyte membrane / electrode structure
JP5273541B2 (en) * 2008-12-11 2013-08-28 独立行政法人日本原子力研究開発機構 Polymer fuel cell
JP5172792B2 (en) 2009-07-31 2013-03-27 本田技研工業株式会社 Membrane-electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
EP2525429B1 (en) * 2010-01-14 2015-09-09 Honda Motor Co., Ltd. Fuel cell
JP2012123922A (en) * 2010-12-06 2012-06-28 Nok Corp Seal structure of fuel cell
DE102010063254A1 (en) * 2010-12-16 2012-06-21 FuMA-Tech Gesellschaft für funktionelle Membranen und Anlagentechnologie mbH Membrane electrode assembly with two cover layers
US9123963B2 (en) * 2011-03-25 2015-09-01 GM Global Technology Operations LLC Direct coated membrane electrode assembly on external reinforcement for fuel cells
US8962213B2 (en) * 2011-03-25 2015-02-24 GM Global Technology Operations LLC Direct catalyst coating on free standing microporous layer
JP5936889B2 (en) 2012-03-09 2016-06-22 本田技研工業株式会社 Fuel cell
DK2987194T3 (en) * 2013-04-16 2019-09-09 Basf Se PROCEDURE FOR MANUFACTURING Membrane Electrode Units
JP6100230B2 (en) * 2014-12-08 2017-03-22 本田技研工業株式会社 Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
CN109473707B (en) * 2017-09-08 2022-05-31 徐煜 Proton exchange membrane of proton exchange membrane fuel cell
JP6633127B2 (en) * 2018-04-27 2020-01-22 本田技研工業株式会社 Fuel cell stack, dummy cell for fuel cell stack, and method of manufacturing dummy cell
CN117976932B (en) * 2024-03-29 2024-05-31 成都岷山绿氢能源有限公司 Preassembling structure and assembling method of single cell unit and contact-free stress SOC (state of charge) pile

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521144B2 (en) 2004-08-30 2009-04-21 Asahi Glass Company, Limited Membrane-electrode assembly for polymer electrolyte fuel cells, and polymer electrolyte fuel cell
DE112007000860B4 (en) * 2006-06-16 2010-08-26 Panasonic Corp., Kadoma A fuel cell, polymer electrolyte fuel cell film electrode assembly and method of making a film electrode assembly
DE112007000860T5 (en) 2006-06-16 2009-09-03 Matsushita Electric Industrial Co. Ltd. A fuel cell film electrode assembly, a fuel cell polymer electrolyte cell, and a method of manufacturing a polymer electrolytic fuel cell and a film electrode assembly
US7709123B2 (en) 2006-06-16 2010-05-04 Panasonic Corporation Film electrode assembly for fuel cell, polymer electrolytic cell for fuel cell and method for manufacturing polymer electrolytic fuel cell and film electrode assembly
WO2009072291A1 (en) 2007-12-06 2009-06-11 Panasonic Corporation Electrode-film-frame assembly manufacturing method
US8703360B2 (en) 2007-12-06 2014-04-22 Panasonic Corporation Method for producing an electrode-membrane-frame assembly
WO2010032099A1 (en) 2008-09-19 2010-03-25 Toyota Jidosha Kabushiki Kaisha Manufacture method for polymer electrolyte fuel, and polymer electrolyte fuel cell manufactured by the method
JP2010073562A (en) * 2008-09-19 2010-04-02 Toyota Motor Corp Manufacturing method of solid polymer fuel cell, and solid polymer fuel cell manufactured by the method
US8741503B2 (en) 2008-09-19 2014-06-03 Toyota Jidosha Kabushiki Kaisha Manufacture method for polymer electrolyte fuel, and polymer electrolyte fuel cell manufactured by the method
US8895202B2 (en) 2012-01-13 2014-11-25 Honda Motor Co., Ltd. Fuel cell membrane electrode assembly
WO2021020288A1 (en) 2019-07-29 2021-02-04 東レ株式会社 Gas diffusion electrode, method for producing same and membrane electrode assembly
KR20220041076A (en) 2019-07-29 2022-03-31 도레이 카부시키가이샤 Gas diffusion electrode, manufacturing method thereof, and membrane electrode assembly
US11804606B2 (en) 2019-07-29 2023-10-31 Toray Industries, Inc. Gas diffusion electrode, method for producing the same and membrane electrode assembly

Also Published As

Publication number Publication date
JPH0521077A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
JP3368907B2 (en) Seal structure of solid polymer electrolyte fuel cell
JP3052536B2 (en) Solid polymer electrolyte fuel cell
JPH07220742A (en) Solid high polymer electrolyte fuel cell and manufacture of electrode-ion exchange film connector for this fuel cell
US8007949B2 (en) Edge-protected catalyst-coated diffusion media and membrane electrode assemblies
JP3079742B2 (en) Solid polymer electrolyte fuel cell
JP2000100457A (en) Fuel cell
JP2019153585A (en) Electrolyte membrane-electrode structure with frame and method of manufacturing the same, and fuel cell
JPH0696783A (en) Fuel cell
JP3353567B2 (en) Fuel cell
JPH06251780A (en) Solid high polymer electrolyte type fuel cell
JP2001283893A (en) Solid polymer fuel cell stack
JPH07312223A (en) Fuel cell
JP2001015127A (en) Electrolytic film/electrode bonded body and solid polyelectrolyte type fuel cell
JP2001196082A (en) Electrode unit for phosphoric acid fuel cell
JP2004319153A (en) Solid polyelectrolyte fuel cell and its manufacturing method
JP2014032957A (en) Fuel cell
JPH06338335A (en) Solid high molecular electrolytic fuel cell
JPH10289722A (en) Solid macromolecular type fuel cell and manufacture therefor
JP3619737B2 (en) Fuel cell and fuel cell
KR100400434B1 (en) Polymer electrolyte-type fuel cell having reliable sealing structure
KR20230092959A (en) Membrane-electrode assembly for electrochemical cell and manufacturing method of membrane-electrode assembly
JP2002093434A (en) Electrolyte layer/electrode joint body and fuel cell
JP2012109074A (en) Fuel cell system
JP5628110B2 (en) Electrolyte membrane / electrode structure manufacturing equipment
JP2006066161A (en) Manufacturing method of fuel cell film/electrode junction

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9