JPH0696783A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH0696783A
JPH0696783A JP4246201A JP24620192A JPH0696783A JP H0696783 A JPH0696783 A JP H0696783A JP 4246201 A JP4246201 A JP 4246201A JP 24620192 A JP24620192 A JP 24620192A JP H0696783 A JPH0696783 A JP H0696783A
Authority
JP
Japan
Prior art keywords
gasket
fuel cell
bubbles
sponge sheet
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4246201A
Other languages
Japanese (ja)
Inventor
Makoto Uchida
誠 内田
Hiroko Aoyama
裕子 青山
Nobuo Eda
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4246201A priority Critical patent/JPH0696783A/en
Publication of JPH0696783A publication Critical patent/JPH0696783A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce size and weight, and improve economic property by using a gasket exhibiting high sealing property with low fastening pressure. CONSTITUTION:A gasket 21 is formed of a sponge sheet of independent bubbles 22, or formed into an integrated structure in which the sponge sheet of the bubbles 22 is adhered to both surface of a metal base. The gasket 21 is further formed into an integrated structure in which a rubber sheet is adhered to both surfaces of the metal base, and the periphery of its sealing part is subjected to protruding embossing finish. Since the sponge sheet of the bubbles 22 absorbs the thickness of an ion-exchange film 11 or the irregularities of a separator plate 2 by the compression of the bubbles 22, excellent sealing property can be provided with a small fastening pressure. Further, since the sponge sheet of the bubbles 22 is adhered to the metal base, the sponge sheet never escape to the outside by the adhesive force when a high pressure gas is used in the inner part, so that a highly precise working can be performed, and a linear seal can be also performed. Thus, a fuel cell can be reduced in size and weight, and economic property can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料として純水素、ま
たはメタノール及び化石燃料からの改質水素などの還元
剤を用い、空気や酸素を酸化剤とする燃料電池に関する
ものであり、特に固体高分子電解質型燃料電池のガスケ
ットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell using pure hydrogen as a fuel or a reducing agent such as reformed hydrogen from methanol and fossil fuel and using air or oxygen as an oxidant, and particularly to a solid-state fuel cell. The present invention relates to a gasket for a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】例えば固体高分子電解質型燃料電池は、
固体高分子電解質にプロトン伝導体であるカチオン交換
膜を用い、燃料として水素を酸化剤として酸素を導入し
た場合には次の反応が起こることが知られている。
2. Description of the Related Art For example, a solid polymer electrolyte fuel cell is
It is known that the following reaction occurs when a cation exchange membrane, which is a proton conductor, is used as a solid polymer electrolyte and hydrogen is introduced as a fuel and oxygen as an oxidant.

【0003】 (化1) 負極 H2 → 2H+ +2e- (化2) 正極 1/2O2 +2H+ +2e-
2O 負極では水素がプロトンと電子に解離する。プロトンは
カチオン交換膜中を正極に向かって移動し、電子は導電
性のセパレータ板と直列に積層されたセルとさらに外部
の回路を移動して正極に至る。このとき発電が行われ
る。一方、正極ではカチオン交換膜中を移動してきたプ
ロトンと外部回路を移動してきた電子と外部から導入さ
れた酸素が反応し水を生成する。この反応は発熱を伴う
ので全体として水素と酸素から電気と水と熱を発生す
る。
(Chemical formula 1) Negative electrode H 2 → 2H + + 2e (Chemical formula 2 ) Positive electrode 1 / 2O 2 + 2H + + 2e
In the H 2 O negative electrode, hydrogen dissociates into protons and electrons. Protons move in the cation exchange membrane toward the positive electrode, and electrons move in the cell laminated in series with the conductive separator plate and an external circuit to reach the positive electrode. At this time, power is generated. On the other hand, in the positive electrode, the protons moving in the cation exchange membrane, the electrons moving in the external circuit, and oxygen introduced from the outside react to generate water. Since this reaction is exothermic, hydrogen, oxygen, and electricity generate electricity, water, and heat as a whole.

【0004】固体高分子電解質型燃料電池が他の燃料電
池と大きく異なる点は、電解質が固体高分子であるイオ
ン交換膜で構成されている点である。このイオン交換膜
にはパーフルオロカーボンスルホン酸膜(米国、デュポ
ン社製、商品名ナフィオン)等が用いられるが、この膜
が十分なプロトン導電性を示すためには膜が十分に水和
している必要がある。イオン交換膜を水和させる方法と
しては、例えばJ.Electorochem.So
c.135(1988)2209に記載されているよう
に反応ガスを加湿器に通すことによって水蒸気をセル内
に導入しイオン交換膜の乾燥を防ぐ方法が取られる。ま
た、各セルをシールする方法としては、例えばJ.Po
wer Sources,29(1990)367に記
載されているようにイオン交換膜の面積を電極面積より
も大きくしイオン交換膜の電極と接合されていない周囲
部分を上下のガスケットで挟み込む方法が取られる。ガ
スケットの材質としてはポリテトラフルオロエチレン
(米国、デュポン社製、商品名テフロン)をコーティン
グしたガラス繊維布やフッソゴムが用いられている。ま
た、米国特許No.4,826,741ではシリコンゴム
やフッソゴムが用いられている。この構成時、ガスケッ
トは約150〜200μmのイオン交換膜の厚みを吸収
しつつ隣合うセパレータ板間の絶縁とガスシールを行わ
なければならない。そこで、セルの締めつけ圧力を大き
くしてガスケットをつぶしたり、ガスケットのイオン交
換膜が当たる部分の厚みを膜厚分だけ薄くする微細な加
工が必要であった。
The solid polymer electrolyte fuel cell is greatly different from other fuel cells in that the electrolyte is composed of an ion exchange membrane which is a solid polymer. A perfluorocarbon sulfonic acid membrane (trade name, Nafion, manufactured by DuPont, USA) is used as the ion exchange membrane, but the membrane is sufficiently hydrated in order for this membrane to exhibit sufficient proton conductivity. There is a need. As a method for hydrating the ion exchange membrane, for example, J. Electrochem. So
c. 135 (1988) 2209, a method is adopted in which water vapor is introduced into the cell by passing the reaction gas through a humidifier to prevent the ion exchange membrane from drying. As a method of sealing each cell, for example, J. Po
As described in Wer Sources, 29 (1990) 367, the area of the ion exchange membrane is made larger than the electrode area, and the peripheral portion of the ion exchange membrane that is not joined to the electrodes is sandwiched by upper and lower gaskets. As the material of the gasket, glass fiber cloth or fluorine rubber coated with polytetrafluoroethylene (trade name Teflon manufactured by DuPont, USA) is used. Further, in U.S. Pat. No. 4,826,741, silicon rubber and fluorine rubber are used. In this structure, the gasket must absorb the thickness of the ion exchange membrane of about 150 to 200 μm and perform insulation and gas sealing between the adjacent separator plates. Therefore, it is necessary to perform fine processing by increasing the cell clamping pressure to crush the gasket, or to reduce the thickness of the portion of the gasket that contacts the ion exchange membrane by the thickness of the membrane.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
の方法では、セルの積層数が増すにつれて吸収すべきイ
オン交換膜の厚みが積算されて大きくなるために吸収し
きれなくなったり、非常に大きな締めつけ圧を必要と
し、強度を確保するためにエンドプレートやボルトナッ
トなどの他のハウジングが大がかりなものになる。ま
た、ガスケットやイオン交換膜やセパレータ板の厚みの
ばらつきによって十分なガスシール性が確保できないな
どの欠点を有していた。さらに、イオン交換膜は含水率
の変化にともなって膜厚が変化するため、従来のガスケ
ット材料では応力緩和性が大きいために当初確保されて
いたシール性が運転途中で低下するという危険を有して
いた。
However, in the above-mentioned conventional method, as the number of laminated cells increases, the thickness of the ion-exchange membrane to be absorbed increases and becomes too large to be absorbed completely. And other housings such as end plates and bolts and nuts become large in order to secure strength. In addition, there is a drawback that sufficient gas sealability cannot be secured due to variations in the thickness of the gasket, the ion exchange membrane, and the separator plate. Furthermore, since the ion-exchange membrane changes its thickness with the change of water content, the conventional gasket material has a large stress relaxation property, so there is a risk that the sealing property initially secured will deteriorate during operation. Was there.

【0006】本発明は上記従来の課題を解決するもの
で、低い締めつけ圧力で高いシール性を発揮するガスケ
ットを用いることによって、より軽く経済性の高い燃料
電池特に固体高分子電解質型燃料電池を提供することを
目的とする。
The present invention solves the above-mentioned conventional problems and provides a lighter and more economical fuel cell, particularly a solid polymer electrolyte fuel cell, by using a gasket that exhibits a high sealing property at a low tightening pressure. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明によれば、正極、電解質板、負極からなる単
位セルの周縁にガスケットを配し、セパレータ板を介し
て積層された燃料電池において、ガスケットが独立気泡
のスポンジシートよりなること。また、金属基板の両面
に独立気泡のスポンジシートを接着した一体構造のガス
ケットからなること。さらに、ガスケットが金属基板の
両面にゴムシートを接着した一体構造よりなり、前記ガ
スケットのシート部周辺に山状のエンボス加工を施す構
成としたものである。
In order to achieve this object, according to the present invention, a fuel is provided in which a gasket is arranged around the periphery of a unit cell consisting of a positive electrode, an electrolyte plate and a negative electrode, and a separator plate is interposed therebetween. In the battery, the gasket shall be a closed-cell sponge sheet. In addition, it shall consist of a gasket with an integrated structure in which sponge sheets with closed cells are adhered to both sides of the metal substrate. Further, the gasket has an integral structure in which rubber sheets are adhered to both surfaces of the metal substrate, and a mountain-shaped embossing is applied to the periphery of the sheet portion of the gasket.

【0008】[0008]

【作用】この第一の構成では、独立気泡のスポンジシー
トがイオン交換膜の厚みを気泡の圧縮によって吸収す
る。また、部分的な凹凸に対しても個々の独立した気泡
が圧縮するためにセパレータ板のウネリや粗さも吸収す
ることができる。さらに、密閉された気泡を圧縮させる
ので応力緩和が小さい。第二の構成では、独立気泡のス
ポンジシートが金属製の基板に接着されているために、
内部に高圧のガスを用いた場合にも基板とシートとの接
着力によってスポンジシートが外側に逃げない。基板と
して金属板を用いているので精度の高い加工が可能であ
る。例えば、基板にアルミ板等を用いた場合にはトムソ
ン型での打ち抜き加工も容易である。第三の構成ではシ
ール部周辺の山状のエンボス加工によってOリングと同
様の線状のシールが可能となる。
In the first configuration, the closed-cell sponge sheet absorbs the thickness of the ion exchange membrane by compressing the bubbles. In addition, since individual independent air bubbles are compressed against partial unevenness, the swell and roughness of the separator plate can be absorbed. Further, since the closed air bubbles are compressed, stress relaxation is small. In the second configuration, since the closed-cell sponge sheet is bonded to the metal substrate,
Even when a high-pressure gas is used inside, the sponge sheet does not escape to the outside due to the adhesive force between the substrate and the sheet. Since a metal plate is used as the substrate, highly accurate processing is possible. For example, when an aluminum plate or the like is used as the substrate, punching with a Thomson die is easy. In the third configuration, a linear seal similar to that of the O-ring can be obtained by embossing the mountain shape around the seal portion.

【0009】[0009]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図5は、一般的な固体高分子電解質型燃料
電池の積層電池の外観図である。グラッシーカーボンな
どの導電性の素材からなるセパレータ板2と絶縁性のガ
スケット1が交互に積み重ねられ、最外側のセパレータ
板に銅製の集電板3が密着されている。この積層体を絶
縁板4を介してステンレス製のエンドプレート5ではさ
み、エンドプレート間をボルト、ナットで締めつける構
造となっている。もちろん各パーツの材質は導電性、絶
縁性、耐熱性、ガス透過性などの条件が電池性能に悪影
響をおよぼさなければ上記の素材に限定されるものでは
ない。
FIG. 5 is an external view of a laminated cell of a general solid polymer electrolyte fuel cell. Separator plates 2 made of a conductive material such as glassy carbon and insulating gaskets 1 are alternately stacked, and a copper current collector plate 3 is adhered to the outermost separator plate. This laminated body is sandwiched by stainless steel end plates 5 with an insulating plate 4 interposed therebetween, and the end plates are fastened with bolts and nuts. Of course, the material of each part is not limited to the above materials as long as the conditions such as conductivity, insulation, heat resistance and gas permeability do not adversely affect the battery performance.

【0011】図6は一般的な積層電池内部セルの断面図
を示した図である。中央のイオン交換膜11の両面に電
極12が接合され、その接合体の上下に溝付きのセパレ
ータ板2が位置している。イオン交換膜の面積は電極よ
り大きくなっており周囲をガスケットではさみ込み、各
セルのシールとセパレータ板どうし間の絶縁を行ってい
る。図に示したように必要に応じて積層体の内部にガス
通路13を設置する場合(内部マニホールド型)には、
ガスケットがこのガス通路のシールも行う。溝付きのセ
パレータ板は溝の部分に多孔質状の溝付き板をはめ込む
場合やメッシュなどを用いるなどの様々な構造が可能で
ありこの構造が本発明を限定するものではない。
FIG. 6 is a view showing a cross-sectional view of a general internal cell of a laminated battery. Electrodes 12 are bonded to both surfaces of the central ion exchange membrane 11, and grooved separator plates 2 are located above and below the bonded body. The area of the ion-exchange membrane is larger than that of the electrode, and the circumference is sandwiched by gaskets to insulate the seal between each cell and the separator plates. As shown in the figure, when the gas passage 13 is installed inside the laminated body as necessary (internal manifold type),
A gasket also seals this gas passage. The grooved separator plate may have various structures such as a case where a porous grooved plate is fitted in the groove portion or a mesh is used, and this structure does not limit the present invention.

【0012】(実施例1)図1は本発明の実施例1のセ
ルの断面を示した。ガスケット21に呉羽ゴム工業製で
厚み1.0mmのシリコンの独立気泡のスポンジシートを
用いた。本発明のガスケットの場合にはイオン交換膜に
接する部分の独立した気泡22がセパレータ板2どうし
に挟まれた部分よりもさらに圧縮することによってイオ
ン交換膜11の厚みを吸収しつつセパレータ板間、イオ
ン交換膜とセパレータ間の両方のシールを行うことがで
きた。締めつけ圧力は従来の気泡のないフッ素ゴムを用
いた場合がシール圧10kg/cm2を必要としたのに対し
て本発明のガスケットの場合には3kg/cm2以上で十分
であった。
Example 1 FIG. 1 shows a cross section of a cell of Example 1 of the present invention. As the gasket 21, a sponge sheet made of Kureha Rubber Industry and having a thickness of 1.0 mm and having a closed cell of silicon was used. In the case of the gasket of the present invention, the gaps between the separator plates are absorbed while absorbing the thickness of the ion exchange membrane 11 by further compressing the independent bubbles 22 in the part in contact with the ion exchange film than in the part sandwiched between the separator plates 2. Both the ion exchange membrane and the separator could be sealed. The tightening pressure required a sealing pressure of 10 kg / cm 2 when the conventional bubble-free fluororubber was used, whereas 3 kg / cm 2 or more was sufficient for the gasket of the present invention.

【0013】(実施例2)図2は本発明の実施例2のセ
ルの断面を示した。ガスケット31にニチアス社製のフ
ォームラバーシート(商品名、メタフォーム)を用い
た。このガスケットは基板の厚み0.25mmのアルミ板
32の両面にブタジエン、アクリロニトリルラバーの独
立気泡のスポンジゴム33を接着し全体として1.5mm
の厚みとした。実施例1と同様のシール効果によってシ
ール圧は2kg/cm2以上で十分であった。さらに、従来
のフッ素ゴム製ガスケットや実施例1のスポンジシート
ではセル及びガス通路の内圧が高圧になるとガスケット
が外側にずれて吹き切れてしまったのに対して、実施例
2のガスケットの場合には、アルミ板とブタジエン、ア
クリロニトリルラバー層との接着力によってゴム層のず
れが防止されて吹き切れを起こさなかった。
(Embodiment 2) FIG. 2 shows a cross section of a cell of Embodiment 2 of the present invention. A foam rubber sheet (trade name, Metafoam) manufactured by Nichias Corporation was used for the gasket 31. This gasket is made by adhering sponge rubber 33, which is a closed cell of butadiene or acrylonitrile rubber, to both sides of an aluminum plate 32 having a thickness of 0.25 mm and is 1.5 mm in total.
And the thickness. Due to the same sealing effect as in Example 1, the sealing pressure of 2 kg / cm 2 or more was sufficient. Further, in the case of the conventional fluororubber gasket and the sponge sheet of Example 1, when the internal pressure of the cells and the gas passages became high, the gasket was displaced to the outside and blown out, whereas in the case of the gasket of Example 2, The rubber layer was prevented from shifting due to the adhesive force between the aluminum plate and the butadiene / acrylonitrile rubber layer, and blowout did not occur.

【0014】(実施例3)図3及び図4はそれぞれ本発
明の実施例3のガスケットの断面斜視図及びセルの断面
を示した。ガスケットにニチアス社製の金属・ゴム複合
ガスケット(商品名、メタコート)を用いた。このガス
ケット41は基板の厚み0.25mmの鉄板42の両面に
ニトリルゴム43を接着し全体として0.38mmの厚み
とし、電極の周辺部とガス供給孔の周辺に山状のエンボ
ス加工44を行った。電極周辺部のエンボスはイオン交
換膜を挟み込むのでエンボスの高さをやや小さく設定し
た。このシール部周辺の山状のエンボス加工によってO
リングと同様の線状のシールが可能となり、シール圧は
6kg/cm2以上で十分であった。
(Embodiment 3) FIGS. 3 and 4 show a perspective sectional view of a gasket and a cross section of a cell according to Embodiment 3 of the present invention, respectively. A metal / rubber composite gasket (trade name, metacoat) manufactured by Nichias was used for the gasket. This gasket 41 has a total thickness of 0.38 mm by adhering nitrile rubber 43 to both sides of an iron plate 42 having a substrate thickness of 0.25 mm, and a mountain-shaped embossing process 44 is performed around the electrodes and the gas supply holes. It was Since the embossing around the electrode sandwiches the ion exchange membrane, the height of the embossing was set to be slightly smaller. Due to the mountain-shaped embossing around this seal,
A linear seal similar to that of a ring became possible, and a seal pressure of 6 kg / cm 2 or more was sufficient.

【0015】なお、本実施例ではガスケットの材料とし
て前記の材質を用いたが、この固体高分子電解質型燃料
電池は作動温度が120℃以下であるので種々の弾性材
料が使用でき、腐食性の電解液を用いていないために特
別な耐薬品性も必要としない。従って、120℃の耐熱
性が確保されればどのような材質を選択することが可能
であり、本発明は実施例の材料に限定されない。
Although the above-mentioned materials are used as the material of the gasket in this embodiment, since this solid polymer electrolyte fuel cell has an operating temperature of 120 ° C. or lower, various elastic materials can be used and it is corrosive. Since no electrolyte is used, no special chemical resistance is required. Therefore, any material can be selected as long as heat resistance of 120 ° C. is ensured, and the present invention is not limited to the material of the embodiment.

【0016】さらに、本実施例ではガスケットを1枚使
用してイオン交換膜の一方向からシールする方法を示し
たが、ガスケットを2枚使用してイオン交換膜を挟み込
む方法を取っても同様の効果を得た。また実施例では固
体高分子電解質型燃料電池を一例として述べたが、リン
酸型燃料電池、アルカリ型燃料電池等にも同様の効果を
示した。
Further, in this embodiment, the method of sealing one direction from one direction of the ion exchange membrane by using one gasket was shown, but the same method can be obtained by using two gaskets and sandwiching the ion exchange membrane. Got the effect. Further, in the examples, the solid polymer electrolyte fuel cell was described as an example, but the same effect was exhibited also in the phosphoric acid fuel cell, the alkaline fuel cell and the like.

【0017】[0017]

【発明の効果】以上のように本発明は、燃料電池におい
て、ガスケットが独立気泡のスポンジシートよりなるこ
と。また、金属基板の両面に独立気泡のスポンジシート
を接着した一体構造のガスケットからなること。さら
に、ガスケットが金属基板の両面にゴムシートを接着し
た一体構造よりなり、前記ガスケットのシール部周辺に
山状のエンボス加工を施す構成とした。これにより第一
の構成では、独立気泡のスポンジシートがイオン交換膜
の厚みやセパレータ板の凹凸を気泡の圧縮によって吸収
するので、小さな締め付け圧で優れたシール性能を実現
できる。第二の構成では、独立気泡のスポンジシートが
金属製の基板に接着されているために、内部に高圧のガ
スを用いた場合にも接着力によってスポンジシートが外
側に逃げない。基板として金属板を用いているので精度
の高い加工が可能である。第三の構成ではシール部周辺
の山状のエンボス加工によってOリングと同様の線状の
シールが可能となる。
As described above, according to the present invention, in the fuel cell, the gasket is made of a closed-cell sponge sheet. In addition, it shall consist of a gasket with an integrated structure in which sponge sheets with closed cells are adhered to both sides of the metal substrate. Further, the gasket has an integrated structure in which rubber sheets are adhered to both sides of the metal substrate, and a mountain-shaped embossing process is performed around the seal portion of the gasket. Thus, in the first configuration, the closed-cell sponge sheet absorbs the thickness of the ion exchange membrane and the unevenness of the separator plate by compressing the bubbles, so that excellent sealing performance can be realized with a small tightening pressure. In the second configuration, since the closed-cell sponge sheet is bonded to the metal substrate, the sponge sheet does not escape to the outside due to the adhesive force even when high-pressure gas is used inside. Since a metal plate is used as the substrate, highly accurate processing is possible. In the third configuration, a linear seal similar to that of the O-ring can be obtained by embossing the mountain shape around the seal portion.

【0018】以上の効果により、締めつけ圧力の大幅な
低減が実現できるためエンドプレートやセパレータや電
極などの強度を低減することができ、例えばエンドプレ
ートとして従来ステンレスを使用していたものに替えエ
ンジニアプラスチックなどの材料を使用することが可能
となり、小型、軽量で経済性の高い燃料電池が実現でき
る。
Due to the above effects, the tightening pressure can be greatly reduced, so that the strength of the end plate, the separator, the electrode, etc. can be reduced. For example, engineering plastics can be used instead of stainless steel used as the end plate. It is possible to use such materials as described above, and it is possible to realize a small-sized, lightweight and highly economical fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1におけるセルの断面図FIG. 1 is a sectional view of a cell according to a first embodiment of the present invention.

【図2】本発明の実施例2におけるセルの断面図FIG. 2 is a sectional view of a cell according to a second embodiment of the present invention.

【図3】本発明の実施例3におけるガスケットの断面斜
視図
FIG. 3 is a sectional perspective view of a gasket according to a third embodiment of the present invention.

【図4】本発明の実施例3におけるセルの断面図FIG. 4 is a sectional view of a cell according to a third embodiment of the present invention.

【図5】一般的な固体高分子電解質型燃料電池の外観図FIG. 5 is an external view of a general solid polymer electrolyte fuel cell

【図6】一般的なセルの断面図FIG. 6 is a sectional view of a general cell.

【符号の説明】[Explanation of symbols]

1 ガスケット 2 セパレータ板 3 集電板 4 絶縁板 5 エンドプレート 6 水素入口 7 水素出口 8 酸素入口 9 酸素出口 10 排水ドレン 11 イオン交換膜 12 電極 13 ガス通路 21 実施例1のガスケット 31 実施例2のガスケット 32 アルミ板 33 スポンジゴム層 41 実施例3のガスケット 42 鉄板 43 ゴム層 44 エンボス加工 1 Gasket 2 Separator Plate 3 Current Collector Plate 4 Insulating Plate 5 End Plate 6 Hydrogen Inlet 7 Hydrogen Outlet 8 Oxygen Inlet 9 Oxygen Outlet 10 Drain Drain 11 Ion Exchange Membrane 12 Electrode 13 Gas Passage 21 Gasket 31 of Example 1 of Example 2 Gasket 32 Aluminum plate 33 Sponge rubber layer 41 Gasket of Example 3 42 Iron plate 43 Rubber layer 44 Embossing

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極、電解質板、負極からなる単位セルの
周縁にガスケットを配し、セパレータ板を介して積層さ
れた燃料電池において、ガスケットが独立気泡のスポン
ジシートよりなる燃料電池。
1. A fuel cell in which a gasket is arranged around a unit cell composed of a positive electrode, an electrolyte plate, and a negative electrode, and a gasket is formed of a closed-cell sponge sheet in a fuel cell laminated with a separator plate.
【請求項2】正極、電解質板、負極からなる単位セルの
周縁にガスケットを配し、セパレータ板を介して積層さ
れた燃料電池において、ガスケットが金属基板の両面に
独立気泡のスポンジシートを接着した一体構造よりなる
燃料電池。
2. In a fuel cell in which a gasket is arranged around the periphery of a unit cell composed of a positive electrode, an electrolyte plate and a negative electrode, and a gasket is formed by bonding sponge sheets of closed cells to both surfaces of a metal substrate. A fuel cell with an integrated structure.
【請求項3】正極、電解質板、負極からなる単位セルの
周縁にガスケットを配し、セパレータ板を介して積層さ
れた燃料電池において、ガスケットが金属基板の両面に
ゴムシートを接着した一体構造よりなり、ガスケットの
シール部周辺に山状のエンボス加工を施してなる燃料電
池。
3. A fuel cell in which a gasket is arranged around the periphery of a unit cell composed of a positive electrode, an electrolyte plate, and a negative electrode, and a gasket is laminated through a separator plate. Is a fuel cell in which a mountain-shaped embossing is applied around the seal part of the gasket.
【請求項4】固体高分子からなるイオン交換膜と、この
イオン交換膜に接する両面に電極触媒層を有する正極お
よび負極からなる単位セルの周縁にガスケットを配し、
セパレータ板を介して積層された燃料電池において、ガ
スケットが請求項1、請求項2、請求項3のいずれかで
ある燃料電池。
4. A gasket is provided around the periphery of a unit cell composed of an ion exchange membrane made of a solid polymer and a positive electrode and a negative electrode having electrode catalyst layers on both sides in contact with the ion exchange membrane,
A fuel cell in which a gasket is one of claim 1, claim 2, and claim 3 in a fuel cell stacked with a separator plate interposed therebetween.
JP4246201A 1992-09-16 1992-09-16 Fuel cell Pending JPH0696783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4246201A JPH0696783A (en) 1992-09-16 1992-09-16 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4246201A JPH0696783A (en) 1992-09-16 1992-09-16 Fuel cell

Publications (1)

Publication Number Publication Date
JPH0696783A true JPH0696783A (en) 1994-04-08

Family

ID=17145021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4246201A Pending JPH0696783A (en) 1992-09-16 1992-09-16 Fuel cell

Country Status (1)

Country Link
JP (1) JPH0696783A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850903A (en) * 1994-08-08 1996-02-20 Mazda Motor Corp Solid polymer type fuel cell
JPH0997619A (en) * 1995-09-29 1997-04-08 Matsushita Electric Ind Co Ltd Fuel cell
EP0933826A1 (en) * 1998-02-03 1999-08-04 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte membrane fuel cell and seal assembly therefor
EP1006600A2 (en) * 1998-11-17 2000-06-07 Nichias Corporation Separator structure for a fuel cell and method for making same
JP2001102072A (en) * 1999-09-30 2001-04-13 Aisin Seiki Co Ltd Fuel cell
KR100347350B1 (en) * 1999-09-16 2002-08-07 주식회사 네스캡 Electrochemical cell and manufacturing method thereof
US6475656B1 (en) 1997-01-29 2002-11-05 Proton Motor Fuel Cell Gmbh Membrane-electrode unit with an integrated wear ring, and method of making the same
EP1276164A2 (en) * 2001-07-10 2003-01-15 Honda Giken Kogyo Kabushiki Kaisha Membrane electrode assembly and fuel cell unit
JP2004265824A (en) * 2003-03-04 2004-09-24 Honda Motor Co Ltd Fuel cell
JP2005285744A (en) * 2004-03-27 2005-10-13 Hyundai Motor Co Ltd Single cell structure for fuel cell stack including composite gasket
JP2005285497A (en) * 2004-03-29 2005-10-13 Honda Motor Co Ltd Fuel cell
EP1152477A3 (en) * 2000-05-02 2007-03-14 Honda Giken Kogyo Kabushiki Kaisha Polymeric membrane fuel cell
WO2007132219A3 (en) * 2006-05-13 2008-01-17 Intelligent Energy Ltd Gaskets for fuel cells
JP2008502115A (en) * 2004-06-10 2008-01-24 ザトーリウス アクチエン ゲゼルシャフト Membrane electrode assembly (MEA) for fuel cells
US7402357B2 (en) * 2003-06-27 2008-07-22 Delphi Technologies, Inc Gas-filled gasket for a solid-oxide fuel cell assembly
JP2009510668A (en) * 2005-06-28 2009-03-12 プジョー シトロエン オートモビル エス アー Gasket and fuel cell using the gasket for bipolar plate
US7651805B2 (en) 2000-05-02 2010-01-26 Honda Giken Kogyo Kabushiki Kaisha Fuel cell having sealant for sealing a solid polymer electrolyte membrane
JP2010182690A (en) * 2010-04-12 2010-08-19 Honda Motor Co Ltd Fuel cell
JP2010199084A (en) * 2010-05-10 2010-09-09 Honda Motor Co Ltd Fuel cell
JP2010267628A (en) * 2010-07-26 2010-11-25 Honda Motor Co Ltd Membrane-electrode structure and fuel cell
JP2011216324A (en) * 2010-03-31 2011-10-27 Dainippon Printing Co Ltd Catalyst layer-electrolyte membrane laminate, membrane-electrode conjugant equipped with the same, and solid polymer fuel cell
JP2012128996A (en) * 2010-12-14 2012-07-05 Hitachi Ltd Fuel battery
JP2012146649A (en) * 2011-01-12 2012-08-02 Samsung Electro-Mechanics Co Ltd Sealing member for solid oxide fuel cell and solid oxide fuel cell employing the same
JP2014093251A (en) * 2012-11-06 2014-05-19 Dainippon Printing Co Ltd Catalyst layer-electrolytic membrane laminate with reinforcements, solid polymer type fuel cell, and manufacturing method of catalyst layer-electrolytic membrane laminate with reinforcements

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850903A (en) * 1994-08-08 1996-02-20 Mazda Motor Corp Solid polymer type fuel cell
JPH0997619A (en) * 1995-09-29 1997-04-08 Matsushita Electric Ind Co Ltd Fuel cell
US6475656B1 (en) 1997-01-29 2002-11-05 Proton Motor Fuel Cell Gmbh Membrane-electrode unit with an integrated wear ring, and method of making the same
EP0933826A1 (en) * 1998-02-03 1999-08-04 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte membrane fuel cell and seal assembly therefor
US6316139B1 (en) 1998-02-03 2001-11-13 Matsushita Electric Industrial Co., Ltd. Fuel cell having a gasket with an adhesive layer
EP1006600A3 (en) * 1998-11-17 2004-12-22 Nichias Corporation Separator structure for a fuel cell and method for making same
EP1006600A2 (en) * 1998-11-17 2000-06-07 Nichias Corporation Separator structure for a fuel cell and method for making same
KR100347350B1 (en) * 1999-09-16 2002-08-07 주식회사 네스캡 Electrochemical cell and manufacturing method thereof
JP2001102072A (en) * 1999-09-30 2001-04-13 Aisin Seiki Co Ltd Fuel cell
EP1152477A3 (en) * 2000-05-02 2007-03-14 Honda Giken Kogyo Kabushiki Kaisha Polymeric membrane fuel cell
US7651805B2 (en) 2000-05-02 2010-01-26 Honda Giken Kogyo Kabushiki Kaisha Fuel cell having sealant for sealing a solid polymer electrolyte membrane
EP1276164A3 (en) * 2001-07-10 2004-01-14 Honda Giken Kogyo Kabushiki Kaisha Membrane electrode assembly and fuel cell unit
US7056614B2 (en) 2001-07-10 2006-06-06 Honda Giken Kogyo Kabushiki Kaisha Membrane electrode assembly and fuel cell unit
EP1276164A2 (en) * 2001-07-10 2003-01-15 Honda Giken Kogyo Kabushiki Kaisha Membrane electrode assembly and fuel cell unit
JP2004265824A (en) * 2003-03-04 2004-09-24 Honda Motor Co Ltd Fuel cell
JP4516279B2 (en) * 2003-03-04 2010-08-04 本田技研工業株式会社 Fuel cell
US7402357B2 (en) * 2003-06-27 2008-07-22 Delphi Technologies, Inc Gas-filled gasket for a solid-oxide fuel cell assembly
JP2005285744A (en) * 2004-03-27 2005-10-13 Hyundai Motor Co Ltd Single cell structure for fuel cell stack including composite gasket
JP2005285497A (en) * 2004-03-29 2005-10-13 Honda Motor Co Ltd Fuel cell
US8148032B2 (en) 2004-03-29 2012-04-03 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
JP2008502115A (en) * 2004-06-10 2008-01-24 ザトーリウス アクチエン ゲゼルシャフト Membrane electrode assembly (MEA) for fuel cells
JP2009510668A (en) * 2005-06-28 2009-03-12 プジョー シトロエン オートモビル エス アー Gasket and fuel cell using the gasket for bipolar plate
WO2007132219A3 (en) * 2006-05-13 2008-01-17 Intelligent Energy Ltd Gaskets for fuel cells
JP2009537940A (en) * 2006-05-13 2009-10-29 インテリジェント エナジー リミテッド Gasket for fuel cell
US8338057B2 (en) 2006-05-13 2012-12-25 Intelligent Energy Limited Gaskets for fuel cells
JP2011216324A (en) * 2010-03-31 2011-10-27 Dainippon Printing Co Ltd Catalyst layer-electrolyte membrane laminate, membrane-electrode conjugant equipped with the same, and solid polymer fuel cell
JP2010182690A (en) * 2010-04-12 2010-08-19 Honda Motor Co Ltd Fuel cell
JP2010199084A (en) * 2010-05-10 2010-09-09 Honda Motor Co Ltd Fuel cell
JP2010267628A (en) * 2010-07-26 2010-11-25 Honda Motor Co Ltd Membrane-electrode structure and fuel cell
JP2012128996A (en) * 2010-12-14 2012-07-05 Hitachi Ltd Fuel battery
JP2012146649A (en) * 2011-01-12 2012-08-02 Samsung Electro-Mechanics Co Ltd Sealing member for solid oxide fuel cell and solid oxide fuel cell employing the same
JP2014093251A (en) * 2012-11-06 2014-05-19 Dainippon Printing Co Ltd Catalyst layer-electrolytic membrane laminate with reinforcements, solid polymer type fuel cell, and manufacturing method of catalyst layer-electrolytic membrane laminate with reinforcements

Similar Documents

Publication Publication Date Title
JPH0696783A (en) Fuel cell
US6210823B1 (en) Polymer electrolyte fuel cell
CA2260387C (en) Fuel cell
JP3052536B2 (en) Solid polymer electrolyte fuel cell
JP3489181B2 (en) Unit cell of fuel cell and method of manufacturing the same
KR100413891B1 (en) Fuel cell stack with separator of a laminate structure
JP4367477B2 (en) Fuel cell
JPH07220742A (en) Solid high polymer electrolyte fuel cell and manufacture of electrode-ion exchange film connector for this fuel cell
JP3353567B2 (en) Fuel cell
JPH07312223A (en) Fuel cell
JP2002042837A (en) Sealing structure for fuel cell
JP2000133291A (en) Solid polymer electrolyte fuel cell and its manufacture
JP3799038B2 (en) Separator for polymer electrolyte fuel cell
CA2672935C (en) Heat insulation cell for fuel cell and manufacturing method of the same
JP2003123801A (en) Polymer electrolyte stacked fuel cell
JP2008277111A (en) Fuel cell and gasket for fuel cell
JP2000021419A (en) Solid high polymer electrolyte fuel cell
JP2002093434A (en) Electrolyte layer/electrode joint body and fuel cell
JP2006054058A (en) Separator
JPH09274926A (en) Solid high polymer electrolyte type fuel cell
JP5181572B2 (en) Fuel cell separator, separator manufacturing method, and fuel cell manufacturing method
JP2006012462A (en) Sealing structure for fuel cell
JP3496819B2 (en) Polymer electrolyte fuel cell
JP2004311155A (en) Fuel cell stack
JP2005149749A (en) Separator and its manufacturing method