JPH07312223A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH07312223A
JPH07312223A JP6102668A JP10266894A JPH07312223A JP H07312223 A JPH07312223 A JP H07312223A JP 6102668 A JP6102668 A JP 6102668A JP 10266894 A JP10266894 A JP 10266894A JP H07312223 A JPH07312223 A JP H07312223A
Authority
JP
Japan
Prior art keywords
gasket
fuel cell
plate
exchange membrane
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6102668A
Other languages
Japanese (ja)
Inventor
Makoto Uchida
誠 内田
Hiroko Aoyama
裕子 青山
Nobuo Eda
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6102668A priority Critical patent/JPH07312223A/en
Publication of JPH07312223A publication Critical patent/JPH07312223A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a light and highly economical fuel cell by using a gasket exhibiting high sealing property with low fastening pressure. CONSTITUTION:In a fuel cell having a gasket 31 arranged on the periphery of a unit cell consisting of a positive electrode 12, an electrolytic plate 11, and a negative electrode 12, and laminated through a separator plate 2, the gasket has a closed cell sponge layer 33 integrally adhered on at least one surface of a rubber plate 32.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料として純水素、ま
たはメタノール及び化石燃料からの改質水素などの還元
剤を用い、空気や酸素を酸化剤とする燃料電池に関する
ものであり、特に固体高分子電解質型燃料電池のガスケ
ットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell using pure hydrogen as a fuel or a reducing agent such as reformed hydrogen from methanol and fossil fuel and using air or oxygen as an oxidant, and particularly to a solid-state fuel cell. The present invention relates to a gasket for a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】例えば固体高分子電解質型燃料電池は、
固体高分子電解質にプロトン伝導体であるカチオン交換
膜を用い、燃料として水素を、酸化剤として酸素を導入
した場合には、次の(化1)、(化2)反応が起こるこ
とが知られている。
2. Description of the Related Art For example, a solid polymer electrolyte fuel cell is
It is known that when a cation exchange membrane which is a proton conductor is used as a solid polymer electrolyte and hydrogen is introduced as a fuel and oxygen is introduced as an oxidant, the following (formula 1) and (formula 2) reactions occur. ing.

【0003】[0003]

【化1】 [Chemical 1]

【0004】[0004]

【化2】 [Chemical 2]

【0005】負極では水素がプロトンと電子に解離す
る。プロトンはカチオン交換膜中を正極に向かって移動
し、電子は導電性のセパレータ板と直列に積層されたセ
ルとさらに外部の回路を移動して正極に至り、このとき
発電が行われる。一方、正極ではカチオン交換膜中を移
動してきたプロトンと外部回路を移動してきた電子と外
部から導入された酸素とが反応し水を生成する。この反
応は発熱を伴うので全体として水素と酸素から電気と水
と熱を発生する。
At the negative electrode, hydrogen dissociates into protons and electrons. Protons move in the cation exchange membrane toward the positive electrode, and electrons move in a cell laminated in series with a conductive separator plate and an external circuit to reach the positive electrode, at which time power is generated. On the other hand, in the positive electrode, the protons that have moved in the cation exchange membrane, the electrons that have moved in the external circuit, and oxygen introduced from the outside react to generate water. Since this reaction is exothermic, hydrogen, oxygen, and electricity generate electricity, water, and heat as a whole.

【0006】固体高分子電解質型燃料電池が他の燃料電
池と大きく異なる点は、電解質が固体高分子であるイオ
ン交換膜で構成されている点である。このイオン交換膜
にはパーフルオロカーボンスルホン酸膜(米国、デュポ
ン社製 商品名ナフィオン)等が用いられるが、この膜
が十分なプロトン導電性を示すためには膜が十分に水和
している必要がある。イオン交換膜を水和させる方法と
しては、例えばJ.Electorochem.So
c.135(1988)2209頁に記載されているよ
うに反応ガスを加湿器に通すことによって水蒸気をセル
内に導入してイオン交換膜の乾燥を防ぐ方法が取られ
る。また、各セルをシールする方法としては、例えば
J.Power Sources,29(1990)3
67頁に記載されているようにイオン交換膜の面積を電
極面積よりも大きくし、イオン交換膜の電極と接合され
ていない周囲部分を上下のガスケットで挟み込む方法が
取られる。
The solid polymer electrolyte fuel cell is greatly different from other fuel cells in that the electrolyte is composed of an ion exchange membrane which is a solid polymer. A perfluorocarbon sulfonic acid membrane (Nafion, trade name, manufactured by DuPont, USA) is used for this ion exchange membrane, but the membrane must be sufficiently hydrated in order for this membrane to exhibit sufficient proton conductivity. There is. As a method for hydrating the ion exchange membrane, for example, J. Electrochem. So
c. 135 (1988) p. 2209, a method is adopted in which water vapor is introduced into the cell by passing the reaction gas through a humidifier to prevent the ion exchange membrane from drying. As a method of sealing each cell, for example, J. Power Sources, 29 (1990) 3
As described on page 67, the area of the ion exchange membrane is made larger than the electrode area, and the peripheral portion of the ion exchange membrane that is not joined to the electrodes is sandwiched by upper and lower gaskets.

【0007】ガスケットの材質としてはポリテトラフル
オロエチレン(米国,デュポン社製商品名テフロン)を
コーティングしたガラス繊維布やフッソゴムが用いられ
ている。
As a material of the gasket, a glass fiber cloth or fluorine rubber coated with polytetrafluoroethylene (trade name: Teflon manufactured by DuPont, USA) is used.

【0008】また、米国特許第4,826,741号明
細書ではシリコンゴムやフッソゴムが用いられている。
この構成時、ガスケットは約50〜200μmのイオン
交換膜の厚みを吸収しつつ隣合うセパレータ板間の絶縁
とガスシールを行わなければならない。そこで、セルの
締めつけ圧力を大きくしてガスケットをつぶしたり、ガ
スケットのイオン交換膜が当たる部分の厚みを膜厚分だ
け薄くする微細な加工が必要であった。
Further, in US Pat. No. 4,826,741, silicon rubber and fluorine rubber are used.
In this structure, the gasket must absorb the thickness of the ion exchange membrane of about 50 to 200 μm and perform insulation and gas sealing between the adjacent separator plates. Therefore, it is necessary to perform fine processing by increasing the cell clamping pressure to crush the gasket, or to reduce the thickness of the portion of the gasket that contacts the ion exchange membrane by the thickness of the membrane.

【0009】[0009]

【発明が解決しようとする課題】しかしながら上記従来
の方法では、セルの積層数が増すにつれて吸収すべきイ
オン交換膜の厚みが積算されて大きくなるために吸収し
きれなくなったり、非常に大きな締めつけ圧力を必要と
し、強度を確保するためにエンドプレートやボルトナッ
トなどの他のハウジングが大がかりなものになる。ま
た、ガスケットやイオン交換膜やセパレータ板の厚みの
ばらつきによって十分なガスシール性が確保できないな
どの欠点を有していた。さらに、イオン交換膜は含水率
の変化にともなって膜厚が変化するため、従来のガスケ
ット材料では応力緩和性が大きいことから、当初確保さ
れていたシール性が運転途中で低下するという危険を有
していた。
However, in the above-mentioned conventional method, as the number of laminated cells increases, the thickness of the ion-exchange membrane to be absorbed is integrated and becomes large, so that the absorption cannot be completed or a very large tightening pressure is applied. And other housings such as end plates and bolts and nuts become large in order to secure strength. In addition, there is a drawback that sufficient gas sealability cannot be secured due to variations in the thickness of the gasket, the ion exchange membrane, and the separator plate. Furthermore, since the thickness of the ion exchange membrane changes with the change of the water content, the conventional gasket material has a large stress relaxation property, so there is a risk that the initially secured sealing property will deteriorate during operation. Was.

【0010】本発明は上記従来の課題を解決するもの
で、低い締めつけ圧力で高いシール性を発揮するガスケ
ットを用いることによって、より軽く経済性の高い燃料
電池、特に固体高分子電解質型燃料電池を提供すること
を目的とする。
The present invention solves the above-mentioned problems of the prior art. By using a gasket that exhibits a high sealing property at a low tightening pressure, a lighter and more economical fuel cell, particularly a solid polymer electrolyte fuel cell, is provided. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
に、本発明によれば、正極、電解質板、負極からなる単
位セルの周縁にガスケットを配し、セパレータ板を介在
して積層された燃料電池において、ガスケットをゴム板
の少なくとも片面に独立気泡のスポンジ層を一体に接着
した構成としたものである。
In order to achieve this object, according to the present invention, a gasket is placed around the periphery of a unit cell composed of a positive electrode, an electrolyte plate and a negative electrode, and a separator plate is interposed between the gaskets. In a fuel cell, a gasket has a structure in which a sponge layer of closed cells is integrally bonded to at least one surface of a rubber plate.

【0012】[0012]

【作用】この構成では、独立気泡のスポンジ層がイオン
交換膜の厚みを気泡の圧縮によって吸収する。また、部
分的な凹凸に対しても個々の独立した気泡が圧縮するた
めにセパレータ板のウネリや粗さも吸収することができ
る。さらに、密閉された気泡を圧縮させるので応力緩和
が小さく、スポンジ層がゴムのソリッド層の基板に接着
されているために、内部に高圧のガスを用いた場合にも
スポンジ層と基板との接着力によってスポンジ層が外側
に逃げることはない。
In this structure, the closed-cell sponge layer absorbs the thickness of the ion exchange membrane by compressing the bubbles. In addition, since individual independent air bubbles are compressed against partial unevenness, the swell and roughness of the separator plate can be absorbed. Further, since the closed air bubbles are compressed, stress relaxation is small, and the sponge layer is adhered to the substrate of the rubber solid layer, so that the sponge layer and the substrate are adhered even when a high pressure gas is used inside. The sponge layer does not escape to the outside due to the force.

【0013】[0013]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図3は、一般的な固体高分子電解質型燃料
電池の積層電池の外観図である。グラッシーカーボンな
どの導電性の素材からなるセパレータ板2と絶縁性のガ
スケット1が交互に積み重ねられ、最外側のセパレータ
板に銅製の集電板3が密着されている。この積層体を絶
縁板4を介してステンレス製のエンドプレート5ではさ
み、エンドプレート間をボルト、ナットで締めつける構
造となっている。
FIG. 3 is an external view of a laminated cell of a general solid polymer electrolyte fuel cell. Separator plates 2 made of a conductive material such as glassy carbon and insulating gaskets 1 are alternately stacked, and a copper current collector plate 3 is adhered to the outermost separator plate. This laminated body is sandwiched by stainless steel end plates 5 with an insulating plate 4 interposed therebetween, and the end plates are fastened with bolts and nuts.

【0015】もちろん各パーツの材質は導電性、絶縁
性、耐熱性、ガス透過性などの条件が電池性能に悪影響
をおよぼさなければ、上記の素材に限定されるものでは
ない。
Of course, the material of each part is not limited to the above materials as long as the conditions such as conductivity, insulation, heat resistance and gas permeability do not adversely affect the battery performance.

【0016】図4は一般的な積層電池内部セルの断面図
を示した図である。中央のイオン交換膜11の両面に電
極12が接合され、その接合体の上下に溝付きのセパレ
ータ板2が位置している。イオン交換膜の面積は電極1
2よりも大きくなっており、周囲をガスケットではさみ
込み、各セルのシールとセパレータ板どうし間の絶縁を
行っている。図に示したように必要に応じて積層体の内
部にガス通路13を設置する場合(内部マニホールド
型)には、ガスケットがこのガス通路のシールも行う。
溝付きのセパレータ板2は溝の部分に多孔質状の溝付き
板をはめ込む場合やメッシュなどを用いるなどの様々な
構造が可能であり、この構造が本発明を限定するもので
はない。
FIG. 4 is a view showing a cross-sectional view of a general laminated battery internal cell. Electrodes 12 are bonded to both surfaces of the central ion exchange membrane 11, and grooved separator plates 2 are located above and below the bonded body. The area of the ion exchange membrane is electrode 1
It is larger than 2, and the periphery is sandwiched by gaskets to insulate between the seals of each cell and the separator plates. As shown in the figure, when the gas passage 13 is installed inside the laminate (internal manifold type) as required, the gasket also seals the gas passage.
The grooved separator plate 2 can have various structures such as a case where a porous grooved plate is fitted in the groove portion or a mesh is used, and this structure does not limit the present invention.

【0017】(実施例1)図1は本発明の実施例1のセ
ルの断面を示す。図中ガスケット21は、厚み0.8m
mのエチレン−プロピレンゴム(EPDM)22の片面
に厚み0.7mmのEPDMの独立気泡のスポンジ層2
3を接着したものである。本発明のガスケット21は、
イオン交換膜11に接する部分の独立した気泡が、セパ
レータ板2どうしに挟まれた部分よりもさらに圧縮され
ることによってイオン交換膜11の厚みを吸収しつつセ
パレータ板間、イオン交換膜とセパレータ間の両方のシ
ールを行うことができた。締めつけ圧力は従来の気泡の
ないフッ素ゴムを用いた場合がシール圧10kg/cm
2を必要としたのに対して、本発明のガスケットの場合
には3kg/cm2以上で十分であった。さらに、スポ
ンジ層だけのシートでは非常に柔らかいためにセル及び
ガス通路の内圧が高圧になるとガスケットが外側にずれ
て吹き切れてしまったのに対して、本発明のガスケット
の場合には固いゴム板が心材となり、このゴム板とスポ
ンジ層との接着力によってスポンジ層のズレが防止され
て吹き切れを起こさなかった。
(Embodiment 1) FIG. 1 shows a cross section of a cell according to Embodiment 1 of the present invention. In the figure, the gasket 21 has a thickness of 0.8 m.
m ethylene-propylene rubber (EPDM) 22 with 0.7 mm thick EPDM closed-cell sponge layer 2 on one side.
3 is adhered. The gasket 21 of the present invention is
Independent air bubbles in the portion in contact with the ion exchange membrane 11 are compressed more than in the portion sandwiched between the separator plates 2 to absorb the thickness of the ion exchange membrane 11 and between the separator plates and between the ion exchange membrane and the separator. Was able to do both seals. The tightening pressure is 10 kg / cm when the conventional bubble-free fluororubber is used.
While 2 was required, in the case of the gasket of the present invention, 3 kg / cm 2 or more was sufficient. Further, since the sheet having only the sponge layer is very soft, when the internal pressure of the cells and the gas passages became high, the gasket was shifted to the outside and blown out, whereas in the case of the gasket of the present invention, a hard rubber plate was used. Became a core material, and the adhesive force between the rubber plate and the sponge layer prevented the sponge layer from being displaced, so that blowout did not occur.

【0018】(実施例2)図2は本発明の実施例2のセ
ルの断面を示す。ガスケット31は、厚み0.7mmの
EPDM板32の両面に厚み0.4mmのEPDMの独
立気泡のスポンジ層33を接着した。実施例1と同様の
シール効果に加えて、セパレータ板と接する面にもスポ
ンジ層が存在するために、スポンジ層がセパレータ板表
面の凹凸を吸収してさらにシール効果が増大した。従っ
て、セパレータ板の接触面の加工精度を低く押さえるこ
とが可能となった。このガスケットを用いた場合のシー
ル圧は2kg/cm2で十分であった。
(Embodiment 2) FIG. 2 shows a cross section of a cell of Embodiment 2 of the present invention. In the gasket 31, a 0.4 mm-thick EPDM closed-cell sponge layer 33 was adhered to both surfaces of a 0.7 mm-thick EPDM plate 32. In addition to the sealing effect similar to that of Example 1, since the sponge layer also exists on the surface in contact with the separator plate, the sponge layer absorbs irregularities on the surface of the separator plate, further increasing the sealing effect. Therefore, it becomes possible to suppress the processing accuracy of the contact surface of the separator plate to a low level. A sealing pressure of 2 kg / cm 2 was sufficient when this gasket was used.

【0019】なお、本実施例ではガスケットの材料とし
て前記の材質を用いたが、この固体高分子電解質型燃料
電池は作動温度が100℃以下であるので、種々の弾性
材料が使用できる。ただし、イオン交換膜がその交換基
としてスルホン酸基をもち酸性を示すので、ガスケット
の接触面は耐酸性が必要である。
Although the above-mentioned materials are used as the material of the gasket in this embodiment, since the operating temperature of this solid polymer electrolyte fuel cell is 100 ° C. or lower, various elastic materials can be used. However, since the ion exchange membrane has a sulfonic acid group as its exchange group and shows acidity, the contact surface of the gasket must be acid resistant.

【0020】以上の耐熱性と耐酸性の条件が満たされれ
ばどのような材質を選択することも可能であり、本発明
は実施例の材料に限定されない。
Any material can be selected as long as the above heat resistance and acid resistance conditions are satisfied, and the present invention is not limited to the materials of the examples.

【0021】さらに、本実施例ではガスケットを1枚使
用してイオン交換膜を一方向からシールする方法を示し
たが、ガスケットを2枚使用してイオン交換膜を挟み込
む方法を使っても同様の効果が得られた。また、上記の
実施例では固体高分子電解質型燃料電池を一例として述
べたが、リン酸型燃料電池、アルカリ型燃料電池等にお
いても同様の効果を示した。
Further, in the present embodiment, the method of sealing the ion exchange membrane from one direction by using one gasket was shown, but the same method can be achieved by using the method of sandwiching the ion exchange membrane by using two gaskets. The effect was obtained. Further, although the solid polymer electrolyte fuel cell has been described as an example in the above-mentioned embodiment, the same effect is exhibited in the phosphoric acid fuel cell, the alkaline fuel cell and the like.

【0022】[0022]

【発明の効果】以上のように本発明は、燃料電池におい
て、ガスケットはゴム板の少なくとも片面に独立気泡の
スポンジ層を一体に接着した構成とした。これにより、
独立気泡のスポンジ層がイオン交換膜の厚みやセパレー
タ板の凹凸を気泡の圧縮によって吸収するので、小さな
締めつけ圧力で優れたシール性能を実現できる。また、
独立気泡のスポンジ層がゴム板に接着されているため
に、内部に高圧のガスを用いた場合にも接着力によって
スポンジ層が外側に逃げない。
As described above, according to the present invention, in the fuel cell, the gasket has a structure in which a sponge layer of closed cells is integrally bonded to at least one surface of a rubber plate. This allows
Since the sponge layer of closed cells absorbs the thickness of the ion exchange membrane and the unevenness of the separator plate by compressing the bubbles, excellent sealing performance can be realized with a small tightening pressure. Also,
Since the closed-cell sponge layer is adhered to the rubber plate, the sponge layer does not escape to the outside due to the adhesive force even when high-pressure gas is used inside.

【0023】以上の効果により、締めつけ圧力の大幅な
低減が実現できるためエンドプレート、セパレータ、電
極などの強度を低減することができ、例えばエンドプレ
ートとして従来ステンレス鋼を使用していたものに代え
てエンジニアプラスチックなどの材料を使用することが
可能となり、小型軽量で経済性の高い燃料電池が実現で
きる。
Due to the above effects, the tightening pressure can be greatly reduced, so that the strength of the end plate, the separator, the electrode, etc. can be reduced. For example, instead of the end plate conventionally made of stainless steel, It is possible to use materials such as engineered plastics, and it is possible to realize a fuel cell that is small, lightweight, and highly economical.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1におけるセルの断面図FIG. 1 is a sectional view of a cell according to a first embodiment of the present invention.

【図2】本発明の実施例2におけるセルの断面図FIG. 2 is a sectional view of a cell according to a second embodiment of the present invention.

【図3】一般的な固体高分子電解質型燃料電池の外観図FIG. 3 is an external view of a general solid polymer electrolyte fuel cell

【図4】一般的なセルの断面図FIG. 4 is a sectional view of a general cell.

【符号の説明】[Explanation of symbols]

1 ガスケット 2 セパレータ板 3 集電板 4 絶縁板 5 エンドプレート 6 水素入口 7 水素出口 8 酸素入口 9 酸素出口 10 排水ドレン 11 イオン交換膜 12 電極 13 ガス通路 21 実施例1のガスケット 22 ゴム板 23 スポンジ層 31 実施例2のガスケット 32 ゴム板 33 スポンジ層 1 Gasket 2 Separator Plate 3 Current Collector Plate 4 Insulating Plate 5 End Plate 6 Hydrogen Inlet 7 Hydrogen Outlet 8 Oxygen Inlet 9 Oxygen Outlet 10 Drain Drain 11 Ion Exchange Membrane 12 Electrode 13 Gas Passage 21 Gasket 22 of Example 1 Rubber Plate 23 Sponge Layer 31 Gasket of Example 2 32 Rubber plate 33 Sponge layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極、電解質板、負極からなる単位セルの
周縁にガスケットを配し、セパレータ板を介在して積層
された燃料電池において、上記ガスケットはゴム板の少
なくとも片面に独立気泡のスポンジ層を一体に接着した
構造よりなる燃料電池。
1. A fuel cell in which a gasket is arranged around the periphery of a unit cell composed of a positive electrode, an electrolyte plate and a negative electrode, and a separator plate is interposed between the gaskets, and the gasket is a sponge layer of closed cells on at least one side of a rubber plate. A fuel cell with a structure in which the two are bonded together.
【請求項2】固体高分子からなるイオン交換膜と、この
イオン交換膜に接する両面に電極触媒層を有する正極お
よび負極からなる単位セルの周縁にガスケットを配し、
セパレータ板を介在して積層された燃料電池において、
ゴム板の少なくとも片面に独立気泡のスポンジ層を一体
に接着した構造のガスケットを用いた燃料電池。
2. A gasket is provided around the periphery of a unit cell composed of a solid polymer ion exchange membrane and a positive electrode and a negative electrode having electrode catalyst layers on both sides in contact with the ion exchange membrane,
In a fuel cell stacked with a separator plate interposed,
A fuel cell using a gasket having a structure in which a sponge layer of closed cells is integrally bonded to at least one surface of a rubber plate.
JP6102668A 1994-05-17 1994-05-17 Fuel cell Pending JPH07312223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6102668A JPH07312223A (en) 1994-05-17 1994-05-17 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6102668A JPH07312223A (en) 1994-05-17 1994-05-17 Fuel cell

Publications (1)

Publication Number Publication Date
JPH07312223A true JPH07312223A (en) 1995-11-28

Family

ID=14333618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6102668A Pending JPH07312223A (en) 1994-05-17 1994-05-17 Fuel cell

Country Status (1)

Country Link
JP (1) JPH07312223A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933826A1 (en) * 1998-02-03 1999-08-04 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte membrane fuel cell and seal assembly therefor
US6231053B1 (en) 1999-06-11 2001-05-15 Nok Corporation Gasket for fuel cell
US6337120B1 (en) 1998-06-26 2002-01-08 Nok Corporation Gasket for layer-built fuel cells and method for making the same
JP2002352817A (en) * 2001-05-25 2002-12-06 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2003017092A (en) * 2001-06-29 2003-01-17 Honda Motor Co Ltd Electrolyte membrane-electrode structure, and fuel cell
US6770396B2 (en) 2001-09-11 2004-08-03 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7014939B2 (en) 2001-01-30 2006-03-21 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and fuel cell stack
US7063911B1 (en) 1999-07-13 2006-06-20 Nok Corporation Gasket for fuel cell and method of forming it
JP2006236671A (en) * 2005-02-23 2006-09-07 Nitto Shinko Kk Seal material for solid polymer fuel cell
JP2006269304A (en) * 2005-03-24 2006-10-05 Matsushita Electric Works Ltd Manufacturing method of separator material for fuel cell, separator for fuel cell and fuel cell
US7122268B2 (en) * 2001-04-23 2006-10-17 Nissan Motor Co., Ltd. Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
WO2007132219A3 (en) * 2006-05-13 2008-01-17 Intelligent Energy Ltd Gaskets for fuel cells
DE10028395B4 (en) * 1999-06-11 2008-05-15 Nok Corp., Fujisawa Arrangement consisting of a polymer electrolyte membrane element and a gasket for fuel cells
WO2008153147A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Assembly of membrane, electrode, gas diffusion layer and gasket, method for producing the same, and solid polymer fuel cell
EP2202833A2 (en) 1999-05-20 2010-06-30 NOK Corporation Gasket for fuel cell and method of forming it
JP2010267628A (en) * 2010-07-26 2010-11-25 Honda Motor Co Ltd Membrane-electrode structure and fuel cell
JP2012164685A (en) * 2012-06-06 2012-08-30 Honda Motor Co Ltd Method for producing electrolyte membrane-electrode structure
JP2015106477A (en) * 2013-11-29 2015-06-08 株式会社フジクラ Fuel cell stack and manufacturing method for the same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933826A1 (en) * 1998-02-03 1999-08-04 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte membrane fuel cell and seal assembly therefor
US6316139B1 (en) 1998-02-03 2001-11-13 Matsushita Electric Industrial Co., Ltd. Fuel cell having a gasket with an adhesive layer
US6649097B2 (en) 1998-06-26 2003-11-18 Nok Corporation Method of making a gasket for layer-built fuel cells
US6337120B1 (en) 1998-06-26 2002-01-08 Nok Corporation Gasket for layer-built fuel cells and method for making the same
EP2202833A2 (en) 1999-05-20 2010-06-30 NOK Corporation Gasket for fuel cell and method of forming it
US6231053B1 (en) 1999-06-11 2001-05-15 Nok Corporation Gasket for fuel cell
DE10028395B4 (en) * 1999-06-11 2008-05-15 Nok Corp., Fujisawa Arrangement consisting of a polymer electrolyte membrane element and a gasket for fuel cells
US7063911B1 (en) 1999-07-13 2006-06-20 Nok Corporation Gasket for fuel cell and method of forming it
US7014939B2 (en) 2001-01-30 2006-03-21 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and fuel cell stack
US8637204B2 (en) 2001-01-30 2014-01-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and fuel cell stack
US8097379B2 (en) 2001-01-30 2012-01-17 Honda Motor Co., Ltd. Fuel cell stack with insulating members
US7122268B2 (en) * 2001-04-23 2006-10-17 Nissan Motor Co., Ltd. Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
US8323845B2 (en) 2001-04-23 2012-12-04 Nissan Motor Co., Ltd. Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
JP2002352817A (en) * 2001-05-25 2002-12-06 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2003017092A (en) * 2001-06-29 2003-01-17 Honda Motor Co Ltd Electrolyte membrane-electrode structure, and fuel cell
US6770396B2 (en) 2001-09-11 2004-08-03 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2006236671A (en) * 2005-02-23 2006-09-07 Nitto Shinko Kk Seal material for solid polymer fuel cell
JP2006269304A (en) * 2005-03-24 2006-10-05 Matsushita Electric Works Ltd Manufacturing method of separator material for fuel cell, separator for fuel cell and fuel cell
US20090311569A1 (en) * 2006-05-13 2009-12-17 Intelligent Energy Limited Gaskets for fuel cells
JP2009537940A (en) * 2006-05-13 2009-10-29 インテリジェント エナジー リミテッド Gasket for fuel cell
WO2007132219A3 (en) * 2006-05-13 2008-01-17 Intelligent Energy Ltd Gaskets for fuel cells
US8338057B2 (en) * 2006-05-13 2012-12-25 Intelligent Energy Limited Gaskets for fuel cells
KR101382514B1 (en) * 2006-05-13 2014-04-07 인텔리전트 에너지 리미티드 Gaskets for fuel cells
WO2008153147A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Assembly of membrane, electrode, gas diffusion layer and gasket, method for producing the same, and solid polymer fuel cell
JP2010267628A (en) * 2010-07-26 2010-11-25 Honda Motor Co Ltd Membrane-electrode structure and fuel cell
JP2012164685A (en) * 2012-06-06 2012-08-30 Honda Motor Co Ltd Method for producing electrolyte membrane-electrode structure
JP2015106477A (en) * 2013-11-29 2015-06-08 株式会社フジクラ Fuel cell stack and manufacturing method for the same

Similar Documents

Publication Publication Date Title
CA2260387C (en) Fuel cell
JP3052536B2 (en) Solid polymer electrolyte fuel cell
JPH0696783A (en) Fuel cell
US9093697B2 (en) Fuel cell stack
JPH07220742A (en) Solid high polymer electrolyte fuel cell and manufacture of electrode-ion exchange film connector for this fuel cell
JPH07312223A (en) Fuel cell
JP3353567B2 (en) Fuel cell
CA2658983C (en) Fuel cell and gasket for fuel cell
JP2008508679A (en) End-protected catalyst-coated diffusion medium and membrane electrode assembly
US10573915B2 (en) Membrane electrode assembly and fuel cell including the same
JPH06251780A (en) Solid high polymer electrolyte type fuel cell
JP3358222B2 (en) Activation method of polymer electrolyte fuel cell
JP2007193948A (en) Fuel cell
JP2003123801A (en) Polymer electrolyte stacked fuel cell
JP2004164969A (en) Fuel cell stack
JPH09274926A (en) Solid high polymer electrolyte type fuel cell
JP2003282094A (en) Membrane-electrode junction, production process thereof and fuel cell using the junction
JP2006012462A (en) Sealing structure for fuel cell
JP2004311155A (en) Fuel cell stack
JP5151250B2 (en) Fuel cell and fuel cell separator
JP3110902B2 (en) Fuel cell
KR20060000460A (en) Fuel cell system and stack used thereto
JP2003173813A (en) Planar lamination fuel cell
JP2009238611A (en) Mea member, fuel battery cell, and polymer electrolyte fuel battery
JP2008123812A (en) Fuel battery