JP2012164685A - Method for producing electrolyte membrane-electrode structure - Google Patents

Method for producing electrolyte membrane-electrode structure Download PDF

Info

Publication number
JP2012164685A
JP2012164685A JP2012128978A JP2012128978A JP2012164685A JP 2012164685 A JP2012164685 A JP 2012164685A JP 2012128978 A JP2012128978 A JP 2012128978A JP 2012128978 A JP2012128978 A JP 2012128978A JP 2012164685 A JP2012164685 A JP 2012164685A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
solid polymer
polymer electrolyte
electrode structure
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012128978A
Other languages
Japanese (ja)
Other versions
JP5798521B2 (en
Inventor
Shigetoshi Sugita
成利 杉田
Hideaki Kikuchi
英明 菊池
Yoshihiro Nakanishi
吉宏 中西
Tadashi Nishiyama
忠志 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012128978A priority Critical patent/JP5798521B2/en
Publication of JP2012164685A publication Critical patent/JP2012164685A/en
Application granted granted Critical
Publication of JP5798521B2 publication Critical patent/JP5798521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an electrolyte membrane-electrode structure 30 capable of enhancing handling capability by preventing bending and warping of a solid polymer electrolyte membrane 32.SOLUTION: The method for producing the electrolyte membrane-electrode structure 30 formed by sandwiching the solid polymer electrolyte membrane 32 between a pair of gas diffusion electrodes 34 and 36, which comprises: jointing the pair of the gas diffusion electrodes 34 and 36 with the solid polymer electrolyte membrane 32 in a state that the solid polymer electrolyte membrane 32 projects from a periphery of the pair of the gas diffusion electrodes 34 and 36, and integrating them; and forming a frame-shaped seal member 38 so as to surround only the periphery of the gas diffusion electrode 36 out of the pair of the gas diffusion electrodes 34 and 36.

Description

この発明は、固体高分子電解質膜とその両側のガス拡散電極で形成した電解質膜・電極構造体、及びこれを一対のセパレータで挟持した燃料電池セルに係り、特に、固体高分子電解質膜の外周側のシール性を向上させ、外部へのガス流出を防止する電解質膜・電極構造体の製造方法に関するものである。   The present invention relates to an electrolyte membrane / electrode structure formed by a solid polymer electrolyte membrane and gas diffusion electrodes on both sides thereof, and a fuel battery cell sandwiched by a pair of separators, and in particular, the outer periphery of the solid polymer electrolyte membrane The present invention relates to a method of manufacturing an electrolyte membrane / electrode structure that improves the side sealability and prevents gas outflow to the outside.

燃料電池には、固体高分子電解質膜とその両側のアノード側拡散層とカソード側拡散層とで構成された電解質膜・電極構造体を、一対のセパレータで挟持して燃料電池セルを構成し、この燃料電池セルを複数積層(スタック)させた構造のものがある。   In a fuel cell, an electrolyte membrane / electrode structure composed of a solid polymer electrolyte membrane and anode-side diffusion layers and cathode-side diffusion layers on both sides thereof is sandwiched between a pair of separators to constitute a fuel cell. There is a structure in which a plurality of fuel cells are stacked.

この一例を図10、図11によって説明すると、これらの図において1は電解質膜・電極構造体を示し、この電解質膜・電極構造体1は、固体高分子電解質膜2と、その両側に設けたガス拡散層(アノード側拡散層とカソード側拡散層)3、4で構成されている。前記固体高分子電解質膜2と、それぞれのガス拡散層3,4の間には触媒層が形成してある。前記固体高分子電解質膜2は、その両側のアノード側拡散層3とカソード側拡散層4より平面寸法を大きく形成してあり、拡散層3、4の外周に固体高分子電解質膜2がはみ出した構造となっている。この電解質膜・電極構造体1の両面には、図11に示すように一対のセパレータ5、6が配設され、各セパレータ5、6同士の対向面周縁側にリング状のシール部材7をセットして、このシール部材7により固体高分子電解質膜2を挟持し、その状態で両セパレータ5、6で電解質膜・電極構造体1を挟持して、燃料電池セル8を構成している。なお、両セパレータ5、6には燃料ガスや酸化ガス、冷却媒体を供給するためのガス通路孔9、10、冷却媒体通路孔11が形成してある。   An example of this will be described with reference to FIGS. 10 and 11. In these drawings, 1 represents an electrolyte membrane / electrode structure, and this electrolyte membrane / electrode structure 1 is provided with a solid polymer electrolyte membrane 2 and on both sides thereof. The gas diffusion layers (anode side diffusion layer and cathode side diffusion layer) 3 and 4 are configured. A catalyst layer is formed between the solid polymer electrolyte membrane 2 and the gas diffusion layers 3 and 4. The solid polymer electrolyte membrane 2 has a larger planar dimension than the anode side diffusion layer 3 and the cathode side diffusion layer 4 on both sides thereof, and the solid polymer electrolyte membrane 2 protrudes from the outer periphery of the diffusion layers 3 and 4. It has a structure. As shown in FIG. 11, a pair of separators 5 and 6 are disposed on both surfaces of the electrolyte membrane / electrode structure 1, and a ring-shaped seal member 7 is set on the peripheral side of the opposing surfaces of the separators 5 and 6. Then, the solid polymer electrolyte membrane 2 is sandwiched by the seal member 7, and the electrolyte membrane / electrode structure 1 is sandwiched between the separators 5 and 6 in this state to constitute the fuel cell 8. Both separators 5 and 6 are provided with gas passage holes 9 and 10 for supplying a fuel gas, an oxidizing gas and a cooling medium, and a cooling medium passage hole 11.

上記のように構成した燃料電池セル8においては、前記ガス通路孔9を通してアノード側拡散層3の反応面に燃料ガス(例えば、水素ガス)を供給すると、触媒層で水素がイオン化され、固体高分子電解質膜2を介してカソード側拡散層4側に移動する。この間に生じた電子が外部回路に取り出され、直流の電気エネルギーとして利用される。カソード側拡散層4においては酸化ガス(例えば、酸素を含む空気)が供給されているため、水素イオン、電子、及び酸素が反応して水が生成される。   In the fuel battery cell 8 configured as described above, when a fuel gas (for example, hydrogen gas) is supplied to the reaction surface of the anode side diffusion layer 3 through the gas passage hole 9, hydrogen is ionized in the catalyst layer, It moves to the cathode side diffusion layer 4 side through the molecular electrolyte membrane 2. Electrons generated during this time are taken out to an external circuit and used as direct current electric energy. Since the oxidizing gas (for example, air containing oxygen) is supplied to the cathode side diffusion layer 4, hydrogen ions, electrons, and oxygen react to generate water.

しかしながら、前記固体高分子電解質膜2は、図10に示したように、拡散層3、4の外周に固体高分子電解質膜2がはみ出した構造となっており、固体高分子電解質膜2を介して向かい合ったシール部材7の位置が互いにわずかでもズレると、せん断応力が作用して固体高分子電解質膜2を破損するおそれがある。また、燃料電池セル8に燃料ガスや酸素ガスを供給すると、固体高分子電解質膜2の一側と他側で圧力差(極間差圧)12が発生して、図12に示したように、固体高分子電解質膜2にたわみ13が発生するおそれがある。このため、固体高分子電解質膜2を介して向かい合う互いのシール部材7の位置合わせを非常に厳密に行う必要があり、この精度を確保するために燃料電池セル8の作製に時間がかかるとともに、作業上の負担が非常に大きいという問題がある。   However, the solid polymer electrolyte membrane 2 has a structure in which the solid polymer electrolyte membrane 2 protrudes from the outer periphery of the diffusion layers 3 and 4 as shown in FIG. If the positions of the sealing members 7 facing each other are slightly shifted from each other, there is a possibility that the solid polymer electrolyte membrane 2 may be damaged due to shear stress. Further, when fuel gas or oxygen gas is supplied to the fuel cell 8, a pressure difference (interpolar pressure difference) 12 is generated between one side and the other side of the solid polymer electrolyte membrane 2, as shown in FIG. There is a possibility that the deflection 13 occurs in the solid polymer electrolyte membrane 2. For this reason, it is necessary to very precisely align the seal members 7 facing each other through the solid polymer electrolyte membrane 2, and in order to ensure this accuracy, it takes time to manufacture the fuel cell 8, There is a problem that the work burden is very large.

これに対して、特許文献1には、図13に示したような構造の燃料電池セル20が開示されている。すなわち、固体高分子電解質膜22に接触した触媒23の反対面に、前記固体高分子電解質膜22と略同一寸法のガス拡散層25が前記触媒23と一体的に設けられ、当該ガス拡散層25が固体高分子電解質膜22の周縁部分と接合することにより、固体高分子電解質膜22の周縁部分が補強されている。また、前記ガス拡散層25の端部を覆うために、片側断面略C字状のシール部材26を設けて、外部へのガス漏れの防止を図っている。   On the other hand, Patent Document 1 discloses a fuel battery cell 20 having a structure as shown in FIG. That is, a gas diffusion layer 25 having substantially the same dimensions as the solid polymer electrolyte membrane 22 is provided integrally with the catalyst 23 on the opposite surface of the catalyst 23 in contact with the solid polymer electrolyte membrane 22. Is joined to the peripheral portion of the solid polymer electrolyte membrane 22 to reinforce the peripheral portion of the solid polymer electrolyte membrane 22. Further, in order to cover the end portion of the gas diffusion layer 25, a seal member 26 having a substantially C-shaped cross section on one side is provided to prevent gas leakage to the outside.

特開平10−289722号公報JP-A-10-289722

しかし、前記燃料電池セル20においては、一方のガス拡散層25を、前記固体高分子電解質膜22と略同一サイズに大きく形成する必要があるため、材料費が余分にかかる分だけコスト高になるという問題があった。
また、前記ガス拡散層25と、他方のガス拡散層25bとでは、それぞれのサイズが異なるため、部品点数が多くなると共に製造工程が複雑化してしまう。
さらに、上記の燃料電池セル20においては、断面C字状のシール部材26をガス拡散層25の端部を覆うように設けているため、ガス拡散層25の形状に合わせてシール部材26を作成したり、ガス拡散層25を覆うようにシール部材26を組み込むといった手間がかかるという問題があった。
そこで、この発明は、コストを低減するとともに固体高分子電解質膜を保護又は補強して取り扱いを容易に行うことができる電解質膜・電極構造体を提供するものである。
また、この発明は、組み立て処理を容易に行うことができる燃料電池セルを提供するものである。
また、この発明は、外部へのガス流出をより一層確実に防止することができる電解質膜・電極構造体の製造方法を提供するものである。
However, in the fuel cell 20, since one gas diffusion layer 25 needs to be formed to be substantially the same size as the solid polymer electrolyte membrane 22, the cost increases due to the extra material cost. There was a problem.
In addition, since the gas diffusion layer 25 and the other gas diffusion layer 25b have different sizes, the number of parts increases and the manufacturing process becomes complicated.
Further, in the fuel cell 20 described above, since the sealing member 26 having a C-shaped cross section is provided so as to cover the end of the gas diffusion layer 25, the sealing member 26 is formed in accordance with the shape of the gas diffusion layer 25. There is a problem that it takes time and labor to incorporate the seal member 26 so as to cover the gas diffusion layer 25.
Therefore, the present invention provides an electrolyte membrane / electrode structure that can be easily handled by reducing the cost and protecting or reinforcing the solid polymer electrolyte membrane.
The present invention also provides a fuel cell that can be easily assembled.
Moreover, this invention provides the manufacturing method of the electrolyte membrane and electrode structure which can prevent the gas outflow to the exterior more reliably.

上記課題を解決するために、本発明の電解質膜・電極構造体の製造方法は、固体高分子電解質膜(例えば、実施形態における固体高分子電解質膜32)を一対のガス拡散電極(例えば、実施形態におけるアノード側拡散層34及びカソード側拡散層36)で挟持した電解質膜・電極構造体(例えば、実施形態における電解質膜・電極構造体30)の製造方法であって、前記一対のガス拡散電極の外周から前記固体高分子電解質膜がはみ出した状態で前記一対のガス拡散電極と前記固体高分子電解質膜とを接合して一体化した後、前記一対のガス拡散電極のうち一方の前記ガス拡散電極のみの外周を囲むように額状部材(例えば、実施形態における額状シール部材38)を成形することを特徴とする。
このように構成することで、ガス拡散電極に必要な材料を発電に必要な最小限に抑えることができるとともに、前記額状体により固体高分子電解質膜を保護又は補強することができるため、固体高分子電解質膜の折れ曲がりやたわみを防止することができ、従来に比して取り扱いが容易となる。また、両側のガス拡散電極は同じ大きさでよいため、部品点数を少なくできるとともに製造工程を簡略することができる。また、固体高分子電解質膜において、前記額状体と当接した反対側の面に設けるシール部材の位置合わせの自由度が増し、位置合わせに必要な時間を大幅に短縮することができるとともに、製造歩留まりを上げることができる。
In order to solve the above-mentioned problems, the method for producing an electrolyte membrane / electrode structure of the present invention comprises a solid polymer electrolyte membrane (for example, the solid polymer electrolyte membrane 32 in the embodiment) as a pair of gas diffusion electrodes (for example, implementation). A method of manufacturing an electrolyte membrane / electrode structure (for example, the electrolyte membrane / electrode structure 30 in the embodiment) sandwiched between the anode-side diffusion layer 34 and the cathode-side diffusion layer 36 in the embodiment, wherein the pair of gas diffusion electrodes The pair of gas diffusion electrodes and the solid polymer electrolyte membrane are joined and integrated with the solid polymer electrolyte membrane protruding from the outer periphery of the gas diffusion electrode, and then the gas diffusion of one of the pair of gas diffusion electrodes A frame member (for example, the frame seal member 38 in the embodiment) is formed so as to surround the outer periphery of only the electrode.
By configuring in this way, the material necessary for the gas diffusion electrode can be suppressed to the minimum necessary for power generation, and the solid polymer electrolyte membrane can be protected or reinforced by the frame body. Bending and bending of the polymer electrolyte membrane can be prevented, and handling becomes easier as compared to the conventional case. Moreover, since the gas diffusion electrodes on both sides may be the same size, the number of parts can be reduced and the manufacturing process can be simplified. In addition, in the solid polymer electrolyte membrane, the degree of freedom of alignment of the seal member provided on the opposite surface in contact with the frame is increased, and the time required for alignment can be greatly shortened, The production yield can be increased.

本発明の電解質膜・電極構造体は、固体高分子電解質膜とその両側のガス拡散電極で構成した電解質膜・電極構造体であって、一対のガス拡散の外周からはみ出した固体高分子電解質膜の部分を、一方のガス拡散電極のみの外周を囲むように設けた額状のシール部材にて、覆いかつ支持したことを特徴とする。
このように構成することで、ガス拡散電極に必要な材料を発電に必要な最小限に抑えることができるとともに、前記額状部材により固体高分子電解質膜を保護又は補強することができるため、固体高分子電解質膜の折れ曲がりやたわみを防止することができ、従来に比して取り扱いが容易となる。また、前記両側のガス拡散電極は同じ大きさでよいため、部品点数を少なくできるとともに製造工程を簡略することができる。また、固体高分子電解質膜において、前記額状のシール部材と当接した反対側の面に設けるシール部材の位置合わせの自由度が増し、位置合わせに必要な時間を大幅に短縮することができるとともに、製造歩留まりを上げることができる。
The electrolyte membrane / electrode structure of the present invention is an electrolyte membrane / electrode structure comprising a solid polymer electrolyte membrane and gas diffusion electrodes on both sides thereof, and is a solid polymer electrolyte membrane protruding from the outer periphery of a pair of gas diffusions This portion is covered and supported by a frame-shaped seal member provided so as to surround the outer periphery of only one gas diffusion electrode.
By configuring in this way, the material necessary for the gas diffusion electrode can be suppressed to the minimum necessary for power generation, and the solid polymer electrolyte membrane can be protected or reinforced by the frame member. Bending and bending of the polymer electrolyte membrane can be prevented, and handling becomes easier as compared to the conventional case. Further, since the gas diffusion electrodes on both sides may have the same size, the number of parts can be reduced and the manufacturing process can be simplified. Further, in the solid polymer electrolyte membrane, the degree of freedom of positioning of the sealing member provided on the opposite surface in contact with the frame-shaped sealing member is increased, and the time required for positioning can be greatly shortened. At the same time, the production yield can be increased.

なお、前記額状のシール部材は、内部のガス拡散電極と同一厚みに構成すると、燃料電池セル組立時に固体高分子電解質膜にずれを生じさせないため、好ましい。また、前記額状のシール部材は、前記額状のシール部材内に保持するガス拡散電極とラップするように形成することが好ましい。このようにすると、前記額状のシール部材とガス拡散電極との接合度合が高まり、固体高分子電解質膜を一層保護又は補強することができる。前記シール部材の材質としては、シール性を有しているものであれば、カーボン、金属、樹脂、ゴムなどを好ましく用いることができる。また、額状のシール部材と内部に保持したガス拡散電極とは、接合面に接着剤を用いて一体的に形成してもよいし、モールド成形、鋳造、樹脂成形などで一体的に成形してもよい。   In addition, it is preferable that the frame-shaped sealing member is configured to have the same thickness as the internal gas diffusion electrode because the solid polymer electrolyte membrane is not displaced during assembly of the fuel cell. The frame-shaped seal member is preferably formed so as to wrap with a gas diffusion electrode held in the frame-shaped seal member. In this way, the degree of joining between the frame-shaped sealing member and the gas diffusion electrode is increased, and the solid polymer electrolyte membrane can be further protected or reinforced. As the material of the sealing member, carbon, metal, resin, rubber, or the like can be preferably used as long as it has a sealing property. Further, the frame-shaped sealing member and the gas diffusion electrode held inside may be integrally formed on the joint surface using an adhesive, or may be integrally formed by molding, casting, resin molding, or the like. May be.

本発明の燃料電池セルは、固体高分子電解質膜とその両側のガス拡散電極で構成した電解質膜・電極構造体において、一対のガス拡散の外周からはみ出した固体高分子電解質膜の部分を、一方のガス拡散電極のみの外周を囲むように設けた額状のシール部材にて、覆いかつ支持するとともに、ガス拡散電極の他方外側の前記固体高分子電解質膜上に他のシール部材(例えば、実施形態におけるシール部材40)を配置して、一対のセパレータ(例えば、実施形態におけるセパレータ52、54)で挟持してなることを特徴とする。
このように構成することで、位置決め自由度を従来に比して大幅に広い範囲で確保することができるため、燃料電池セルの製作時間を短縮することができるとともに、作業上の処理負担を低減することができる。また、構成された燃料電池セル内の固体高分子電解質膜は平坦度を確保した状態で保持されているため、燃料電池セル内で固体高分子電解質膜が極間差圧などで破損されることを防止できる。さらに、前記平坦面外周側はシール性の部材で形成されているため、上側からシール部材を配して挟着するだけで、複雑な形状のシール部材を用いなくても、外部へのシール性を十分に確保することができる。
The fuel battery cell of the present invention comprises a solid polymer electrolyte membrane and a gas diffusion electrode on both sides of the polymer membrane / electrode structure. It is covered and supported by a frame-shaped sealing member provided so as to surround the outer periphery of only the gas diffusion electrode, and another sealing member (for example, on the solid polymer electrolyte membrane on the other outer side of the gas diffusion electrode) The sealing member 40 in the embodiment is disposed and sandwiched between a pair of separators (for example, the separators 52 and 54 in the embodiment).
With this configuration, the degree of positioning freedom can be secured in a significantly wider range than before, so the time required for manufacturing the fuel cell can be shortened and the processing burden on the work can be reduced. can do. In addition, since the solid polymer electrolyte membrane in the configured fuel cell is maintained in a state in which flatness is ensured, the solid polymer electrolyte membrane is damaged in the fuel cell due to the differential pressure between the electrodes. Can be prevented. Furthermore, since the outer peripheral side of the flat surface is formed of a sealing member, the sealing member can be sealed to the outside without using a complicated-shaped sealing member by simply placing and sealing the sealing member from above. Can be secured sufficiently.

また、前記一対のセパレータ(例えば、実施形態におけるセパレータ72、74)は、前記電解質膜・電極構造体より平面寸法を大きく形成してなり、前記電解質膜・電極構造体外側であって一対のセパレータの周縁部にもシール部材(例えば、実施形態におけるシール部材41)を設けて、複数のシール構造としたことを特徴とする。
このように構成することで、電解質膜・電極構造体は、反応ガス等が流出しても、セパレータの周縁部に設けたシール部材により、外部へのガスの流出をより確実に防止することができる。支持機構とシール機構とを通常のシール処理をすることで、一段上のシール処理がなされることとなるので、電解質膜・電極構造体からの外部へのガス漏れをより一層確実に防止することができる。
Further, the pair of separators (for example, the separators 72 and 74 in the embodiment) are formed so as to have a larger planar dimension than the electrolyte membrane / electrode structure, and are outside the electrolyte membrane / electrode structure and are separated from each other. A seal member (for example, the seal member 41 in the embodiment) is also provided at the peripheral portion of the plurality of seal structures to form a plurality of seal structures.
With this configuration, the electrolyte membrane / electrode structure can more reliably prevent the outflow of gas to the outside by the sealing member provided at the peripheral edge of the separator even if the reaction gas or the like flows out. it can. By performing a normal sealing process on the support mechanism and the sealing mechanism, a one-stage sealing process is performed, so that gas leakage from the electrolyte membrane / electrode structure to the outside can be prevented more reliably. Can do.

本発明によれば、ガス拡散電極に必要な材料を発電に必要な最小限に抑えることができるとともに、前記額状部材により固体高分子電解質膜を保護又は補強することができるため、固体高分子電解質膜の折れ曲がりやたわみを防止することができ、従来に比して取り扱いが容易となる。また、前記両側のガス拡散電極は同じ大きさでよいため、部品点数を少なくできるとともに製造工程を簡略することができる。また、固体高分子電解質膜において、前記平坦面と当接した反対側の面に設けるシール部材の位置合わせの自由度が増し、位置合わせに必要な時間を大幅に短縮することができるとともに、製造歩留まりを上げることができる。   According to the present invention, the material necessary for the gas diffusion electrode can be suppressed to the minimum necessary for power generation, and the solid polymer electrolyte membrane can be protected or reinforced by the frame member. Bending and bending of the electrolyte membrane can be prevented, and handling becomes easier as compared with the conventional case. Further, since the gas diffusion electrodes on both sides may have the same size, the number of parts can be reduced and the manufacturing process can be simplified. In addition, in the solid polymer electrolyte membrane, the degree of freedom of positioning of the sealing member provided on the opposite surface that is in contact with the flat surface is increased, and the time required for positioning can be greatly shortened and the manufacturing can be performed. Yield can be increased.

この発明の第1実施形態の電解質膜・電極構造体を示す断面図である。It is sectional drawing which shows the electrolyte membrane and electrode structure of 1st Embodiment of this invention. この発明の第1実施形態の電極を示す断面図及び電解質膜・電極構造体の製造工程を示す説明図である。It is sectional drawing which shows the electrode of 1st Embodiment of this invention, and explanatory drawing which shows the manufacturing process of an electrolyte membrane electrode structure. この発明の第1実施形態の電解質膜・電極構造体を用いた燃料電池セルを示す要部断面図である。It is principal part sectional drawing which shows the fuel cell using the electrolyte membrane and electrode structure of 1st Embodiment of this invention. この発明の第1実施形態の電解質膜・電極構造体を用いた燃料電池セルの変形例を示す断面図である。It is sectional drawing which shows the modification of the fuel cell using the electrolyte membrane and electrode structure of 1st Embodiment of this invention. この発明の第1実施形態の電解質膜・電極構造体を用いた燃料電池セルの他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the fuel cell using the electrolyte membrane and electrode structure of 1st Embodiment of this invention. この発明の第2実施形態の電解質膜・電極構造体を示す断面図である。It is sectional drawing which shows the electrolyte membrane and electrode structure of 2nd Embodiment of this invention. この発明の第3実施形態の電解質膜・電極構造体を示す断面図である。It is sectional drawing which shows the electrolyte membrane and electrode structure of 3rd Embodiment of this invention. この発明の第4実施形態の電解質膜・電極構造体を示す断面図である。It is sectional drawing which shows the electrolyte membrane and electrode structure of 4th Embodiment of this invention. この発明の第5実施形態の電解質膜・電極構造体を示す断面図である。It is sectional drawing which shows the electrolyte membrane and electrode structure of 5th Embodiment of this invention. 従来技術の電解質膜・電極構造体を示す断面図である。It is sectional drawing which shows the electrolyte membrane and electrode structure of a prior art. 従来技術の燃料電池セルを示す断面図である。It is sectional drawing which shows the fuel cell of a prior art. 従来技術の不具合を示す説明図である。It is explanatory drawing which shows the malfunction of a prior art. 従来技術の燃料電池セルを示す断面図である。It is sectional drawing which shows the fuel cell of a prior art.

以下、本発明の実施形態につき図面を参照して説明する。
以下、この発明の実施形態を図面と共に説明する。
図1はこの発明の第1実施形態の電解質膜・電極構造体30を示す断面図である。この電解質膜・電極構造体30は、固体高分子電解質膜32と、これを挟持するアノード側拡散層34及びカソード側拡散層36を備えるとともに、カソード側拡散層36の外周側に設けた額状シール部材38を一体的に設けた構成としている。前記アノード側拡散層34及びカソード側拡散層36には、前記電解質膜・電極構造体30との当接面に触媒が塗布してある。前記触媒の塗布されたアノード側拡散層34、カソード側拡散層36は、ガス拡散電極を構成している。
そして、前記カソード側拡散層36及び額状シール部材38(以下、額状体35、と記載することがある)は、前記固体高分子電解質膜32と同じサイズの平坦面37を構成して、当該平坦面37に固体高分子電解質膜32を密着させて保持させるのである。つまり、カソード側拡散層36の外周からはみ出した固体高分子電解質膜32の部分を、カソード側拡散層36の外周を囲むように設けた額状シール部材38にて、覆いかつ支持しているのである。このようにしたため、図1に示したように、固体高分子電解質膜32が全面に亘り同一高さに保持される。また、本実施形態の額状シール部材38は、前記固体高分子電解質膜32に図示しない接着剤を介して接合して一体化させ、接合強度を高めている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a sectional view showing an electrolyte membrane / electrode structure 30 according to a first embodiment of the present invention. The electrolyte membrane / electrode structure 30 includes a solid polymer electrolyte membrane 32, an anode side diffusion layer 34 and a cathode side diffusion layer 36 sandwiching the solid polymer electrolyte membrane 32, and a frame shape provided on the outer peripheral side of the cathode side diffusion layer 36. The seal member 38 is integrally provided. The anode side diffusion layer 34 and the cathode side diffusion layer 36 are coated with a catalyst on the contact surface with the electrolyte membrane / electrode structure 30. The anode side diffusion layer 34 and the cathode side diffusion layer 36 coated with the catalyst constitute a gas diffusion electrode.
The cathode-side diffusion layer 36 and the frame-shaped sealing member 38 (hereinafter sometimes referred to as the frame-shaped body 35) constitute a flat surface 37 having the same size as the solid polymer electrolyte membrane 32, The solid polymer electrolyte membrane 32 is held in close contact with the flat surface 37. That is, the portion of the solid polymer electrolyte membrane 32 that protrudes from the outer periphery of the cathode side diffusion layer 36 is covered and supported by the frame-shaped seal member 38 provided so as to surround the outer periphery of the cathode side diffusion layer 36. is there. Thus, as shown in FIG. 1, the solid polymer electrolyte membrane 32 is held at the same height over the entire surface. In addition, the frame-shaped sealing member 38 of the present embodiment is bonded and integrated with the solid polymer electrolyte membrane 32 via an adhesive (not shown) to increase the bonding strength.

前記額状体35は、全面に亘り同一厚みとなるように形成してある。本実施形態の額状体35は射出成形で形成している。すなわち、カソード側拡散層36を略矩形状の型材に保持した状態で、シール材となるゴム、例えばシリコンゴムやEPDM(ethylene propylen dien monomer)などを型材内に注入して、額状体35を形成するのである。このとき、形成される額状体35は、前記固体高分子電解質膜32と同一サイズになるように予め設定しておく。または、固体高分子電解質膜32と前記額状体35を接合した後に、同一サイズとなるように額状体35の外周を裁断してもよい。なお、前記額状体35の形成の仕方は、射出成形に限らず、額状シール部材38の材質などに応じて適宜選択できる。例えば、前記額状シール部材38が樹脂やゴムの場合には射出成形が好ましいが、金属の場合には鋳造で、カーボンの場合にはモールド成形を行うことが好ましい。なお、前記アノード側拡散層34及びカソード側拡散層36は、多孔質層の多孔質カーボンクロス又は多孔質カーボンペーパーからなり、電極面側(固体高分子電解質膜32側)に白金を主とした触媒を設けている。また、固体高分子電解質膜32としては、ペルフルオロスルホン酸ポリマーを用いている。   The frame body 35 is formed to have the same thickness over the entire surface. The frame body 35 of the present embodiment is formed by injection molding. That is, with the cathode-side diffusion layer 36 held in a substantially rectangular mold material, a rubber serving as a seal material, such as silicon rubber or EPDM (ethylene propylene diene monomer), is injected into the mold material, and the frame 35 is formed. It forms. At this time, the formed frame 35 is set in advance so as to have the same size as the solid polymer electrolyte membrane 32. Alternatively, after the solid polymer electrolyte membrane 32 and the frame 35 are joined, the outer periphery of the frame 35 may be cut so as to have the same size. The method of forming the frame body 35 is not limited to injection molding, and can be selected as appropriate according to the material of the frame seal member 38 and the like. For example, injection molding is preferable when the frame-shaped seal member 38 is a resin or rubber, but it is preferable that casting be performed when it is a metal, and molding be performed when it is a carbon. The anode side diffusion layer 34 and the cathode side diffusion layer 36 are made of porous carbon cloth or porous carbon paper as a porous layer, and platinum is mainly used on the electrode surface side (solid polymer electrolyte membrane 32 side). A catalyst is provided. In addition, as the solid polymer electrolyte membrane 32, a perfluorosulfonic acid polymer is used.

そして、電解質膜・電極構造体30は、ホットプレス法で作成する。このとき、カソード側拡散層36と、アノード側拡散層34とには、電極触媒層を予め印刷しておく。そして、図2(b)に示すように、アノード側拡散層34を固体高分子電解質膜32の上面に位置させ、カソード側拡散層36及び額状シール部材38を固体高分子電解質膜32の下面に位置させて、ホットプレスする。このときに、前記額状シール部材38の接合面に接着剤を用いることで、より丈夫な電解質膜・電極構造体30とすることができる。なお、シール部材40は燃料電池セルの組立時に取り付ける。
このように構成した電解質膜・電極構造体30は、アノード側拡散層34及びカソード側拡散層36に必要な材料を最小限に抑えることができるとともに、前記額状シール部材38により固体高分子電解質膜32を保護又は補強することができるため、固体高分子電解質膜の折れ曲がりやたわみを防止することができ、従来に比して取り扱いが容易となる。また、前記両側のアノード側拡散層34及びカソード側拡散層36は同じ大きさでよいため、部品点数を少なくできるとともに製造工程を簡略することができる。また、固体高分子電解質膜において、前記平坦面と当接した反対側の面に設けるシール部材の位置合わせの自由度が増し、位置合わせに必要な時間を大幅に短縮することができるとともに、製造歩留まりを上げることができる。
The electrolyte membrane / electrode structure 30 is formed by a hot press method. At this time, an electrode catalyst layer is printed in advance on the cathode side diffusion layer 36 and the anode side diffusion layer 34. As shown in FIG. 2B, the anode side diffusion layer 34 is positioned on the upper surface of the solid polymer electrolyte membrane 32, and the cathode side diffusion layer 36 and the frame seal member 38 are placed on the lower surface of the solid polymer electrolyte membrane 32. Place in hot press. At this time, a stronger electrolyte membrane / electrode structure 30 can be obtained by using an adhesive on the joint surface of the frame-shaped seal member 38. The seal member 40 is attached when the fuel cell is assembled.
The electrolyte membrane / electrode structure 30 configured as described above can minimize the materials necessary for the anode-side diffusion layer 34 and the cathode-side diffusion layer 36, and the solid polymer electrolyte by the frame-shaped seal member 38. Since the membrane 32 can be protected or reinforced, bending or bending of the solid polymer electrolyte membrane can be prevented, and handling becomes easier as compared with the conventional case. Moreover, since the anode side diffusion layer 34 and the cathode side diffusion layer 36 on both sides may be the same size, the number of parts can be reduced and the manufacturing process can be simplified. In addition, in the solid polymer electrolyte membrane, the degree of freedom of positioning of the sealing member provided on the opposite surface that is in contact with the flat surface is increased, and the time required for positioning can be greatly shortened and the manufacturing can be performed. Yield can be increased.

図3は前記電解質膜・電極構造体30を用いた燃料電池セル50を示す要部断面図である。上記したように構成した電解質膜・電極構造体30を一対のセパレータ52、54で挟持させて燃料電池セル50が構成されている。なお、前記セパレータ52、54は、緻密質カーボン製である。アノード側拡散層34側のセパレータ52には、燃料ガスである水素ガス60を供給するためのガス流路56が形成してあり、カソード側拡散層36のセパレータ54には、空気(酸化ガス)62を供給するためのガス流路58が形成してある。
このようにしたため、燃料電池セル50内においても、固体高分子電解質膜32は、前記額状体35により平坦度を確保しつつ保持されているため、燃料電池セル50内で固体高分子電解質膜32が極間差圧により破損するおそれがない。
また、前記額状シール部材38は、前記固体高分子電解質膜32の周縁部を保持するとともに、外部へのガス流出を防止するシール機能も併せ持っているため、前記額状シール部材38と前記シール部材40で固体高分子電解質膜32を挟み込むことで、固体高分子電解質膜32を保持しつつ、電解質膜・電極構造体30を外部に対してシールすることができる。このため、複雑な形状のシール部材などが不要であり、組立時間、部品点数等の面でもメリットがある。
FIG. 3 is a cross-sectional view of a principal part showing a fuel cell 50 using the electrolyte membrane / electrode structure 30. The fuel cell 50 is configured by sandwiching the electrolyte membrane / electrode structure 30 configured as described above between a pair of separators 52 and 54. The separators 52 and 54 are made of dense carbon. The separator 52 on the anode side diffusion layer 34 side is provided with a gas flow path 56 for supplying hydrogen gas 60 as a fuel gas, and air (oxidizing gas) is provided on the separator 54 of the cathode side diffusion layer 36. A gas flow path 58 for supplying 62 is formed.
As a result, the solid polymer electrolyte membrane 32 is also retained in the fuel cell 50 while securing the flatness by the frame body 35 in the fuel cell 50. There is no fear that 32 is damaged by the differential pressure between the electrodes.
Further, the frame-shaped seal member 38 holds the peripheral portion of the solid polymer electrolyte membrane 32 and also has a sealing function for preventing gas outflow to the outside. Therefore, the frame-shaped seal member 38 and the seal By sandwiching the solid polymer electrolyte membrane 32 with the member 40, the electrolyte membrane / electrode structure 30 can be sealed to the outside while holding the solid polymer electrolyte membrane 32. For this reason, a complicated-shaped sealing member or the like is unnecessary, and there are advantages in terms of assembly time, number of parts, and the like.

図4はこの発明の前記電解質膜・電極構造体30を用いた他の燃料電池セル70を示す断面図である。なお、以下の説明において、前記燃料電池セル50と同一の部材については、同一の番号を付してその説明を省略する。燃料電池セル70のセパレータ72、セパレータ74は、前記電解質膜・電極構造体30よりも平面寸法を大きく形成してなり、前記電解質膜・電極構造体30外側であって一対のセパレータ72、74の周縁部側にシール部材41を設けた2重のシール構造となっている。上記したように、電解質膜・電極構造体30においても、前記額状シール部材38、シール部材40によりシールがなされているため、前記シール部材41により一層確実に外部へのガス漏れを防止することができる。なお、前記燃料電池セル70においては、2重のシール構造としたが、複数のシール構造であればよく、場合によっては3重以上の多重シール構造としてもよい。   FIG. 4 is a sectional view showing another fuel cell 70 using the electrolyte membrane / electrode structure 30 of the present invention. In addition, in the following description, about the member same as the said fuel cell 50, the same number is attached | subjected and the description is abbreviate | omitted. The separator 72 and the separator 74 of the fuel cell 70 are formed to have a larger planar dimension than the electrolyte membrane / electrode structure 30, and outside the electrolyte membrane / electrode structure 30. It has a double seal structure in which a seal member 41 is provided on the peripheral edge side. As described above, since the electrolyte membrane / electrode structure 30 is also sealed by the frame-shaped seal member 38 and the seal member 40, the seal member 41 can more reliably prevent gas leakage to the outside. Can do. Although the fuel cell 70 has a double seal structure, it may have a plurality of seal structures. In some cases, a triple seal structure may be used.

図5はこの発明の前記電解質膜・電極構造体30を用いたさらに他の燃料電池セル80を示す断面図である。なお、以下の説明において、前記燃料電池セル50、70と同一の部材については、同一の番号を付してその説明を省略する。燃料電池セル80のセパレータ82は、前記セパレータ74との対向面を段差のない平坦面に形成してあり、前記セパレータ82、74の周縁部側にシール部材81を設けた2重のシール構造となっている。なお、前記燃料電池セル80も、上記した燃料電池セル70と同様に、複数のシール構造であればよい。   FIG. 5 is a sectional view showing still another fuel cell 80 using the electrolyte membrane / electrode structure 30 of the present invention. In the following description, the same members as those of the fuel cells 50 and 70 are denoted by the same reference numerals and the description thereof is omitted. The separator 82 of the fuel battery cell 80 has a double seal structure in which a surface facing the separator 74 is formed on a flat surface without a step, and a seal member 81 is provided on the peripheral edge side of the separators 82 and 74. It has become. In addition, the fuel cell 80 may have a plurality of seal structures as in the fuel cell 70 described above.

図6は、この発明の第2実施形態の電解質膜・電極構造体90を示す断面図である。図6に示した電解質膜・電極構造体90においては、額状シール部材92がカソード側拡散層36の外面(表面)周縁部にラップするような構造としている。このようにしたことで、ラップした部分でカソード側拡散層36と額状シール部材38との接着力がより強化されて、剥離しにくくなる。このため、固体高分子電解質膜32を一層保護又は補強することができる。
また、図7は、この発明の第3実施形態の電解質膜・電極構造体100を示す断面図である。図7に示した電解質膜・電極構造体100においては、額状シール部材102がカソード側拡散層36の内面(固体高分子電解質膜32側の面)周縁部にラップするような構造としたことで、図6の場合と同様に、ラップした部分でカソード側拡散層36と額状シール部材102との接着力がより強化されて、固体高分子電解質膜32を一層保護又は補強することができる。
FIG. 6 is a cross-sectional view showing an electrolyte membrane / electrode structure 90 according to a second embodiment of the present invention. The electrolyte membrane / electrode structure 90 shown in FIG. 6 has a structure in which the frame-shaped seal member 92 wraps around the outer surface (surface) peripheral edge portion of the cathode-side diffusion layer 36. By doing in this way, the adhesive force of the cathode side diffused layer 36 and the frame-shaped sealing member 38 is strengthened in the lapped part, and it becomes difficult to peel. For this reason, the solid polymer electrolyte membrane 32 can be further protected or reinforced.
FIG. 7 is a sectional view showing an electrolyte membrane / electrode structure 100 according to a third embodiment of the present invention. The electrolyte membrane / electrode structure 100 shown in FIG. 7 has a structure in which the frame-shaped sealing member 102 wraps around the inner periphery of the cathode side diffusion layer 36 (the surface on the solid polymer electrolyte membrane 32 side). As in the case of FIG. 6, the adhesive force between the cathode side diffusion layer 36 and the frame-shaped seal member 102 is further strengthened at the wrapped portion, so that the solid polymer electrolyte membrane 32 can be further protected or reinforced. .

また、図8は、この発明の第4実施形態の電解質膜・電極構造体110を示す断面図である。この電解質膜・電極構造体110においては、額状シール部材112がカソード側拡散層36の外面周縁部にラップするとともに、当該額状シール部材112とカソード側拡散層36とで形成する額状体113が同一厚みとなるように形成されている。これにより、上記した第2実施形態のラップの効果に加えて、燃料電池セル形成時にセパレータで挟持されるときの圧力を分散することができ、厚み方向の強度を高めることができる。
また、図9は、この発明の第5実施形態の電解質膜・電極構造体120を示す断面図である。この電解質膜・電極構造体120においては、額状シール部材122がカソード側拡散層36の内面周縁部にラップするとともに、当該額状シール部材122とカソード側拡散層36とで形成する額状体123が同一厚みとなるように形成されている。これにより、上記した第3実施形態のラップの効果に加えて、第4実施形態と同様に厚み方向の強度を高めることができる。
なお、以上の実施形態においては、カソード側拡散層36に額状シール部材を形成した場合について説明したが、アノード側拡散層に設けてもよい。
FIG. 8 is a sectional view showing an electrolyte membrane / electrode structure 110 according to a fourth embodiment of the present invention. In this electrolyte membrane / electrode structure 110, the frame-shaped sealing member 112 wraps around the outer peripheral edge of the cathode-side diffusion layer 36, and the frame-shaped body formed by the frame-shaped sealing member 112 and the cathode-side diffusion layer 36. 113 are formed to have the same thickness. Thereby, in addition to the effect of the wrap of the second embodiment described above, the pressure when sandwiched between the separators when the fuel cell is formed can be dispersed, and the strength in the thickness direction can be increased.
FIG. 9 is a sectional view showing an electrolyte membrane / electrode structure 120 according to a fifth embodiment of the present invention. In this electrolyte membrane / electrode structure 120, the frame-shaped sealing member 122 wraps around the inner peripheral edge of the cathode-side diffusion layer 36 and is formed by the frame-shaped sealing member 122 and the cathode-side diffusion layer 36. 123 are formed to have the same thickness. Thereby, in addition to the effect of the wrap of the third embodiment described above, the strength in the thickness direction can be increased similarly to the fourth embodiment.
In the above embodiment, the case where the frame-shaped sealing member is formed in the cathode side diffusion layer 36 has been described, but it may be provided in the anode side diffusion layer.

30、90、100、110、120…電解質膜・電極構造体 32…固体高分子電解質膜 34…アノード側拡散層(ガス拡散電極) 35、113、123…額状体 36…カソード側拡散層(ガス拡散電極) 38…額状シール部材(額状部材) 40、41、81、92、102…シール部材 50、70、80…燃料電池セル 52、54、72、74、82…セパレータ 56、58…ガス流路 60…水素ガス 62…空気   30, 90, 100, 110, 120 ... electrolyte membrane / electrode structure 32 ... solid polymer electrolyte membrane 34 ... anode side diffusion layer (gas diffusion electrode) 35, 113, 123 ... frame body 36 ... cathode side diffusion layer ( Gas diffusion electrode) 38 ... Frame seal member (frame member) 40, 41, 81, 92, 102 ... Seal member 50, 70, 80 ... Fuel cell 52, 54, 72, 74, 82 ... Separator 56, 58 ... gas flow path 60 ... hydrogen gas 62 ... air

Claims (1)

固体高分子電解質膜を一対のガス拡散電極で挟持した電解質膜・電極構造体の製造方法であって、
前記一対のガス拡散電極の外周から前記固体高分子電解質膜がはみ出した状態で前記一対のガス拡散電極と前記固体高分子電解質膜とを接合して一体化した後、前記一対のガス拡散電極のうち一方の前記ガス拡散電極のみの外周を囲むように額状部材を成形することを特徴とする電解質膜・電極構造体の製造方法。
A method for producing an electrolyte membrane / electrode structure in which a solid polymer electrolyte membrane is sandwiched between a pair of gas diffusion electrodes,
The pair of gas diffusion electrodes and the solid polymer electrolyte membrane are joined and integrated in a state where the solid polymer electrolyte membrane protrudes from the outer periphery of the pair of gas diffusion electrodes. A method of manufacturing an electrolyte membrane / electrode structure, wherein a frame member is formed so as to surround an outer periphery of only one of the gas diffusion electrodes.
JP2012128978A 2012-06-06 2012-06-06 Manufacturing method of electrolyte membrane / electrode structure Expired - Fee Related JP5798521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012128978A JP5798521B2 (en) 2012-06-06 2012-06-06 Manufacturing method of electrolyte membrane / electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012128978A JP5798521B2 (en) 2012-06-06 2012-06-06 Manufacturing method of electrolyte membrane / electrode structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001199779A Division JP5208338B2 (en) 2001-06-29 2001-06-29 Electrolyte membrane / electrode structure and fuel cell

Publications (2)

Publication Number Publication Date
JP2012164685A true JP2012164685A (en) 2012-08-30
JP5798521B2 JP5798521B2 (en) 2015-10-21

Family

ID=46843828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012128978A Expired - Fee Related JP5798521B2 (en) 2012-06-06 2012-06-06 Manufacturing method of electrolyte membrane / electrode structure

Country Status (1)

Country Link
JP (1) JP5798521B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234606A (en) * 1992-02-21 1993-09-10 Fuji Electric Co Ltd Solid high polymer electrolyte type fuel cell
JPH07312223A (en) * 1994-05-17 1995-11-28 Matsushita Electric Ind Co Ltd Fuel cell
JPH10199551A (en) * 1997-01-06 1998-07-31 Honda Motor Co Ltd Fuel cell structural body and manufacture thereof
JP2003017092A (en) * 2001-06-29 2003-01-17 Honda Motor Co Ltd Electrolyte membrane-electrode structure, and fuel cell
WO2011118136A1 (en) * 2010-03-23 2011-09-29 パナソニック株式会社 Membrane electrode assembly with integrated frame and fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234606A (en) * 1992-02-21 1993-09-10 Fuji Electric Co Ltd Solid high polymer electrolyte type fuel cell
JPH07312223A (en) * 1994-05-17 1995-11-28 Matsushita Electric Ind Co Ltd Fuel cell
JPH10199551A (en) * 1997-01-06 1998-07-31 Honda Motor Co Ltd Fuel cell structural body and manufacture thereof
JP2003017092A (en) * 2001-06-29 2003-01-17 Honda Motor Co Ltd Electrolyte membrane-electrode structure, and fuel cell
WO2011118136A1 (en) * 2010-03-23 2011-09-29 パナソニック株式会社 Membrane electrode assembly with integrated frame and fuel cell

Also Published As

Publication number Publication date
JP5798521B2 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5208338B2 (en) Electrolyte membrane / electrode structure and fuel cell
JP4316164B2 (en) Membrane / electrode structure and fuel cell
JP5681792B2 (en) ELECTROLYTE MEMBRANE / ELECTRODE STRUCTURE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5206665B2 (en) Membrane electrode assembly
JP5186754B2 (en) Fuel cell
CN1322619C (en) Fuel cell and its making method
JP5683433B2 (en) Fuel cell stack
JP2015060621A (en) Electrolyte membrane/electrode structure with resin frame for fuel cell
JP2015537343A (en) Membrane electrode assembly, fuel cell having such a membrane electrode assembly, and automobile having a fuel cell
JP2008171613A (en) Fuel cells
JP2008226722A (en) Gasket integration type membrane-electrode assembly, fuel cell including it, membrane protecting structure, and manufacturing method of gasket integration type membrane-electrode assembly
US11171341B2 (en) Fuel cell and method of manufacturing fuel cell
JP2015090793A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel batteries
JP2008034274A (en) Fuel cell separator, plate for fuel cell separator constitution, and manufacturing method of fuel cell separator
JP2007048568A (en) Membrane/electrode assembly of fuel cell, fuel cell, and manufacturing method of membrane/electrode assembly
JP2007103152A (en) Fuel cell
JP2017126448A (en) Power generation module
JP5798521B2 (en) Manufacturing method of electrolyte membrane / electrode structure
JP2005243622A (en) Method of manufacturing membrane/electrode joint body for solid polymer electrolyte type fuel cell
JP2009211977A (en) Fuel cell and cell unit
JP5604404B2 (en) Fuel cell
JP2005158424A (en) Fuel cell
CN114551927B (en) Membrane electrode assembly for proton exchange membrane fuel cell and glue injection sealing method thereof
JP2008226682A (en) Fuel cell, its manufacturing method, and fuel cell stack
JP2008218368A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140806

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140814

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150821

R150 Certificate of patent or registration of utility model

Ref document number: 5798521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees