JP3358222B2 - Activation method of polymer electrolyte fuel cell - Google Patents

Activation method of polymer electrolyte fuel cell

Info

Publication number
JP3358222B2
JP3358222B2 JP34592992A JP34592992A JP3358222B2 JP 3358222 B2 JP3358222 B2 JP 3358222B2 JP 34592992 A JP34592992 A JP 34592992A JP 34592992 A JP34592992 A JP 34592992A JP 3358222 B2 JP3358222 B2 JP 3358222B2
Authority
JP
Japan
Prior art keywords
cell
electrode
exchange membrane
fuel cell
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34592992A
Other languages
Japanese (ja)
Other versions
JPH06196187A (en
Inventor
誠 内田
裕子 青山
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP34592992A priority Critical patent/JP3358222B2/en
Publication of JPH06196187A publication Critical patent/JPH06196187A/en
Application granted granted Critical
Publication of JP3358222B2 publication Critical patent/JP3358222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、燃料として純水素また
はメタノールおよび化石燃料からの改質水素などの還元
剤を用い、酸化剤として空気や酸素を用いる燃料電池に
関するものであり、特に固体高分子型燃料電池の活性化
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell using a reducing agent such as pure hydrogen or methanol and reformed hydrogen from fossil fuel as fuel, and using air or oxygen as an oxidizing agent. The present invention relates to a method for activating a molecular fuel cell.

【0002】[0002]

【従来の技術】例えば固体高分子型燃料電池は、固体高
分子電解質にプロトン伝導体であるカチオン交換膜を用
い、燃料として水素を、酸化剤として酸素をそれぞれ導
入した場合には次の反応が起こることが知られている。
2. Description of the Related Art For example, a polymer electrolyte fuel cell uses a cation exchange membrane, which is a proton conductor, as a polymer electrolyte and introduces hydrogen as a fuel and oxygen as an oxidant, respectively. It is known to happen.

【0003】 (化1) 負極 H2 → 2H++2e- (化2) 正極 1/2O2+2H++2e- → H2
O 負極では水素がプロトンと電子に解離する。プロトンは
カチオン交換膜中を正極に向かって移動し、電子は導電
性のセパレータ板と直列に積層されたセルとさらに外部
の回路を移動して正極に至る。このとき発電が行われ
る。一方、正極ではカチオン交換膜中を移動してきたプ
ロトンと外部回路を移動してきた電子と外部から導入さ
れた酸素とが反応し水を生成する。この反応は発熱を伴
うので全体として次式のように表され、水素と酸素から
電気と水と熱を発生する。
(Chemical formula 1) Negative electrode H 2 → 2H + + 2e (Chemical formula 2 ) Positive electrode 1 / 2O 2 + 2H + + 2e → H 2
At the O 2 negative electrode, hydrogen dissociates into protons and electrons. Protons move in the cation exchange membrane toward the positive electrode, and electrons move in a cell stacked in series with the conductive separator plate and further in an external circuit to reach the positive electrode. At this time, power generation is performed. On the other hand, in the positive electrode, the protons traveling in the cation exchange membrane, the electrons traveling in the external circuit, and the oxygen introduced from the outside react to generate water. Since this reaction is exothermic, it is generally expressed by the following formula, and generates electricity, water and heat from hydrogen and oxygen.

【0004】(化3) H2+1/2O2 → H2O 固体高分子型燃料電池が他の燃料電池と大きく異なる点
は、電解質が固体高分子であるイオン交換膜で構成され
ている点である。このイオン交換膜にはパーフルオロカ
ーボンスルホン酸膜(米国、デュポン社製、商品名ナフ
ィオン)などが用いられるが、この膜が十分なプロトン
導電性を示すためには膜が十分に含水している必要があ
る。イオン交換膜を含水させる方法としては、例えば
J.Electrochem.Soc.135(198
8)2209に記載されているように反応ガスを加湿器
に通すことによって水蒸気をセル内に導入しイオン交換
膜を含水する方法が取られる。イオン交換膜の含水率は
加湿ガスの露点温度に依存し、例えばJ.Electr
ochem.Soc.139(1992)2530に記
載されているように温度の上昇に伴って含水率が増加す
る。膜が飽和含水量となるには長時間を必要とするが、
一旦膜中に吸収された水はポリマーに取り込まれ保持さ
れるために、含水率の処理温度以下の温度変化への依存
性は小さくなる。したがって、Joural of P
ower Sources.37(1992)181に
記載されているように、燃料電池を常温から迅速に作動
させることが可能になる。膜と電極を接合する方法とし
ては例えばJ.Electroanal.Chem.2
51(1988)272に記載されているように、12
0〜130℃の温度で、約50atmの圧力でプレスす
る方法が用いられるが、この工程において膜の含水率は
著しく低下する。よって、各セルを組み立てた後に、加
湿ガスをセルに導入することによって、膜を含水させ
て、活性化する。
(Chemical Formula 3) H 2 + 1 / 2O 2 → H 2 O The polymer electrolyte fuel cell is significantly different from other fuel cells in that the electrolyte is constituted by an ion exchange membrane which is a solid polymer. It is. As the ion exchange membrane, a perfluorocarbon sulfonic acid membrane (manufactured by DuPont, USA, trade name: Nafion) or the like is used. In order for the membrane to exhibit sufficient proton conductivity, the membrane must have sufficient water content. There is. As a method for making the ion-exchange membrane water-containing, for example, J. Pharm. Electrochem. Soc. 135 (198
8) As described in 2209, a method is employed in which water vapor is introduced into the cell by passing a reaction gas through a humidifier to wet the ion exchange membrane. The water content of the ion exchange membrane depends on the dew point temperature of the humidified gas. Electr
ochem. Soc. 139 (1992) 2530, the water content increases with increasing temperature. It takes a long time for the membrane to reach saturated water content,
The water once absorbed in the membrane is taken up and retained by the polymer, so that the dependence of the water content on temperature changes below the processing temperature is reduced. Therefore, the Journal of P
lower Sources. 37 (1992) 181 allows the fuel cell to operate quickly from room temperature. As a method for bonding the membrane and the electrode, for example, J. J. Electroanal. Chem. 2
51 (1988) 272.
A method of pressing at a temperature of 0 to 130 ° C. and a pressure of about 50 atm is used, but in this step, the water content of the film is significantly reduced. Therefore, after assembling each cell, the membrane is hydrated and activated by introducing a humidifying gas into the cell.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
の方法では、組み立て直後の各セルのイオン交換膜の含
水率が十分な値となるためには24〜72時間以上の加
湿処理を必要とし、燃料電池が本来の特性を発揮するま
でに長時間を必要とする欠点を有していた。また、各セ
ルのイオン交換膜の含水量にバラツキが生じた場合には
各セルの放電特性もバラつく結果となった。さらに、含
水処理後の燃料電池の積層体において、不良のセルを新
しいセルと交換する、または、新しいセルを追加した場
合などには、新しいセルのイオン交換膜は含水率が著し
く低いために各セルの特性にバラツキを生じた。したが
って、特性を均一化するために積層電池全体を再度含水
処理をし直す必要があった。
However, in the above-mentioned conventional method, a humidification treatment of 24 to 72 hours or more is required in order for the water content of the ion exchange membrane of each cell immediately after assembly to be a sufficient value. The battery has a disadvantage that it requires a long time to exhibit its original characteristics. Further, when the water content of the ion exchange membrane of each cell varied, the discharge characteristics of each cell also varied. Further, in the fuel cell stack after the water-containing treatment, when a defective cell is replaced with a new cell, or when a new cell is added, the ion exchange membrane of the new cell has a remarkably low water content. The characteristics of the cell varied. Therefore, in order to make the characteristics uniform, it was necessary to perform the water-containing treatment again on the entire laminated battery.

【0006】本発明は上記従来の課題を解決するもの
で、迅速な含水処理法を積層セル全体、もしくは各セル
に施すことによって、燃料電池の活性化処理時間を短縮
する方法と各セルの放電特性を均一化する方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems. A method for shortening the activation treatment time of a fuel cell by applying a rapid water-containing treatment method to the entire stacked cell or each cell, and a method for discharging each cell. It is an object to provide a method for making characteristics uniform.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明によれば、固体高分子からなるイオン交換膜
と、このイオン交換膜の両面に接して電極触媒層を有す
る正極および負極からなる単位セルを、セパレータ板を
介して積層されてなる燃料電池において、加湿ガスを導
入した状態で電解処理をする活性化方法としたものであ
る。
According to the present invention, there is provided an ion exchange membrane comprising a solid polymer, and a positive electrode and a negative electrode having an electrode catalyst layer in contact with both surfaces of the ion exchange membrane. Is an activation method for performing an electrolytic treatment in a state in which a humidified gas is introduced in a fuel cell formed by stacking unit cells comprising a separator plate.

【0008】[0008]

【作用】この構成では、各セルに電解電圧を付加するこ
とによって、次式のように (化4) H2O → H2+1/2O2 膜中の水が強制的に水素と酸素に分解される。それに伴
って、膜中の水分子の濃度勾配は電解前と比較して著し
く増大する。したがって、膜中の水の拡散速度が増大
し、その結果、加湿ガス中の水が膜中に移行し迅速な含
水量の増大が可能となる。ただし、長時間の電解処理は
膜中の水の枯渇を招く。また、電解電圧が大きすぎると
電極に使用している触媒やカーボン担体の溶解を引き起
こす。よって、最適な電解条件が存在する。
In this configuration, by applying an electrolytic voltage to each cell, water in the H 2 O → H 2 + 1 / 2O 2 film is forcibly decomposed into hydrogen and oxygen as shown in the following formula. Is done. Along with this, the concentration gradient of water molecules in the film increases significantly as compared to before the electrolysis. Therefore, the diffusion rate of water in the film increases, and as a result, water in the humidified gas moves into the film, and the water content can be rapidly increased. However, long-term electrolytic treatment causes depletion of water in the membrane. On the other hand, if the electrolysis voltage is too high, the catalyst or carbon carrier used for the electrodes will be dissolved. Thus, there are optimal electrolysis conditions.

【0009】[0009]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図4は、一般的な固体高分子型燃料電池の
積層電池の外観図である。グラッシーカーボンなどの導
電性の素材からなるセパレータ板2と絶縁性のガスケッ
ト1が交互に積み重ねられ、最外側のセパレータ板に銅
製の集電板3が密着されている。この積層体を絶縁板4
を介してステンレス製のエンドプレート5ではさみ、エ
ンドプレート間をボルト,ナットで締めつける構造とな
っている。もちろん各パーツの材質は導電性,絶縁性,
耐熱性,ガス透過性などの条件が電池性能に悪影響をお
よぼさなければ上記の素材に限定されるものではない。
FIG. 4 is an external view of a laminated cell of a general polymer electrolyte fuel cell. Separator plates 2 made of a conductive material such as glassy carbon and insulating gaskets 1 are alternately stacked, and a current collector plate 3 made of copper is adhered to the outermost separator plate. This laminate is placed on an insulating plate 4
The end plate 5 made of stainless steel is interposed therebetween, and the end plates are tightened with bolts and nuts. Of course, the material of each part is conductive, insulating,
The materials are not limited to the above materials as long as conditions such as heat resistance and gas permeability do not adversely affect battery performance.

【0011】図5は一般的な積層電池内部セルの断面図
を示した図である。中央のイオン交換膜11の両面に電
極12が接合され、その接合体の上下に溝付きのセパレ
ータ板2が位置している。イオン交換膜の面積は電極よ
り大きくなっており周囲をガスケットではさみ込み、各
セルのシールとセパレータ板間の絶縁を行っている。図
に示したように必要に応じて積層体の内部にガス通路1
3を設置する場合(内部マニホールド型)には、ガスケ
ットがこのガス通路のシールも行う。溝付きのセパレー
タ板は溝の部分に多孔質状の溝付き板をはめ込む場合や
メッシュなどを用いるなどの様々な構造が可能でありこ
の構造が本発明を限定するものではない。
FIG. 5 is a cross-sectional view of a general internal cell of a laminated battery. Electrodes 12 are joined to both surfaces of a central ion exchange membrane 11, and grooved separator plates 2 are located above and below the joined body. The area of the ion exchange membrane is larger than the electrodes, and the periphery is sandwiched by gaskets to insulate the seal of each cell and the separator plate. As shown in FIG.
If 3 is installed (internal manifold type), the gasket also seals this gas passage. The grooved separator plate can have various structures such as a case where a porous grooved plate is fitted into a groove portion or a mesh or the like, and this structure does not limit the present invention.

【0012】(実施例1)図1は10セル積層にした固
体高分子型燃料電池の延べ放電時間と電流密度0.1A
/cm2での端子電圧を示した。セルには露点温度80℃
の水素および酸素よりなる加湿ガスを導入した。本実施
例の放電曲線を曲線Aとし、セルに上記加湿ガスを導入
した状態で放電開始1時間後に、10セル積層の全体に
対して18Vの電解電圧を30秒間付加した。この処理
によって、各単位セルの電解電圧は、1.7〜1.9V
を示した。処理後、直ちに放電させると端子電圧は5.
6Vを示し、徐々に増加していった。放電開始2時間
後、再度同様の電解処理を行うとさらに端子電圧は7.
2Vまで増大し、その後ほぼ安定した。一方比較例とし
て、電解処理を施さなかった電池の放電曲線を曲線Bと
した。比較例では放電時間約10時間までは0.1A/
cm2の電流密度を取り出すことができなかった。したが
って、0.1A/cm2以下の電流密度で放電を行った。
約10時間経過後から徐々に端子電圧が増加し始め、6
0時間経過後に一定電圧、7.1Vを示した。
Example 1 FIG. 1 shows the total discharge time and current density of 0.1 A of a polymer electrolyte fuel cell having 10 cells stacked.
/ Cm 2 is shown. 80 ° C dew point temperature in cell
Of humidified gas consisting of hydrogen and oxygen. In this example, the discharge curve was set to curve A, and one hour after the start of discharge in a state where the humidified gas was introduced into the cells, an electrolytic voltage of 18 V was applied to the entire 10-cell stack for 30 seconds. By this processing, the electrolysis voltage of each unit cell becomes 1.7 to 1.9 V
showed that. If the battery is discharged immediately after the treatment, the terminal voltage becomes 5.
It showed 6V and gradually increased. Two hours after the start of discharge, when the same electrolytic treatment is performed again, the terminal voltage is further reduced to 7.
It increased to 2V, and then became almost stable. On the other hand, as a comparative example, a discharge curve of the battery that was not subjected to the electrolytic treatment was set as a curve B. In the comparative example, 0.1 A /
A current density of cm 2 could not be extracted. Therefore, discharge was performed at a current density of 0.1 A / cm 2 or less.
After about 10 hours, the terminal voltage starts to increase gradually.
After a lapse of 0 hours, a constant voltage of 7.1 V was shown.

【0013】以上のように、従来では固体高分子型燃料
電池の放電特性が安定値を示すまでには60時間以上の
時間を必要としたが、本発明による活性化方法によれば
約2時間で電池本来の特性を引き出すことが可能となっ
た。なお、本実施例では活性化処理を1時間おきに2度
実施したが、本発明はこの実施条件に限定されるもので
はなく、燃料電池の電極などの条件に伴って、電解電
圧,時間,付加回数などの最適な条件を選択することが
可能性である。ただし、本実施例においても、20V以
上の電解電圧で、2分以上の電解処理を行った場合に
は、電池の特性が著しく劣化した。
As described above, conventionally, it took 60 hours or more for the discharge characteristics of the polymer electrolyte fuel cell to reach a stable value. However, according to the activation method of the present invention, about 2 hours was required. With this, the original characteristics of the battery can be brought out. In the present embodiment, the activation process is performed twice every one hour. However, the present invention is not limited to this condition, and the electrolysis voltage, time, It is possible to select optimal conditions such as the number of additions. However, also in this example, when the electrolytic treatment was performed for 2 minutes or more at an electrolytic voltage of 20 V or more, the characteristics of the battery were significantly deteriorated.

【0014】その原因を調査した結果、電極のカーボン
担体および白金触媒が溶解していることが伴り、溶解し
ない電解処理条件では電池の劣化は見られなかった。
As a result of investigating the cause, the deterioration of the battery was not observed under the electrolytic treatment conditions in which the carbon carrier and the platinum catalyst of the electrode were dissolved and the electrode was not dissolved.

【0015】すなわち電極触媒が溶解するような電解処
理は電池の特性を劣化させる恐れがあるので注意が必要
である。
That is, it is necessary to pay attention to the electrolytic treatment in which the electrode catalyst is dissolved, since the characteristics of the battery may be deteriorated.

【0016】逆に燃料電池の理論電解電圧(25℃雰囲
気で約1.23V)に抵抗、濃度などによる過電圧を加
えた値である約1.3V以下においては、長時間電解処
理を行った場合でも、化学式4の反応が生成せず、膜中
の水の拡散も発生せず、ほとんど効果がないものであ
る。
On the other hand, if the theoretical electrolysis voltage of the fuel cell (approximately 1.23 V in an atmosphere of 25 ° C.) is about 1.3 V or less, which is a value obtained by adding an overvoltage due to resistance, concentration, etc. However, the reaction represented by the chemical formula 4 does not occur, the diffusion of water in the film does not occur, and there is almost no effect.

【0017】また一方、水素ガス,酸素ガスをセル内に
導入時、また加湿の度合が高い程、水の拡散による活性
化が活発となり、短時間に放電特性が安定となる。その
ため、膜の表面全体が結露状態になる加湿条件が望まし
い。
On the other hand, when hydrogen gas and oxygen gas are introduced into the cell, and as the degree of humidification increases, activation by diffusion of water becomes more active, and the discharge characteristics become stable in a short time. Therefore, it is desirable to use humidifying conditions in which the entire surface of the film is dewed.

【0018】さらに露点温度が高い加湿ガスの導入、セ
ル温度の低下など、膜と電極間の水の濃度勾配を高くす
ることが、より好ましい状態である。
It is more preferable to increase the concentration gradient of water between the membrane and the electrode, for example, by introducing a humidified gas having a high dew point temperature or lowering the cell temperature.

【0019】(実施例2)図2および図3は本発明の実
施例2の活性化処理実施前後の各セルの放電特性を示
す。図2に、5セル積層した電池の各単位セルの放電特
性を示した。5セルのうち2つのセルの特性が他と比較
して著しく低く、電流密度0.15A/cm2における各
単位セルの電圧は0.63〜0.18Vと大きなバラツ
キを示した。この積層電池に露点温度85℃の水素およ
び酸素よりなる加湿ガスを導入した状態で9Vの電解電
圧を1分間付加した後の各単位セルの放電特性を図3に
示した。本発明の活性化処理の結果、低い特性を示した
セルの特性が向上し、電流密度0.15A/cm2におけ
る各単位セル電圧のバラツキ範囲は0.64〜0.59
Vにまで向上した。
(Embodiment 2) FIGS. 2 and 3 show the discharge characteristics of each cell before and after the activation process of Embodiment 2 of the present invention. FIG. 2 shows the discharge characteristics of each unit cell of a battery in which five cells are stacked. The characteristics of two of the five cells were significantly lower than those of the others, and the voltage of each unit cell at a current density of 0.15 A / cm 2 showed a large variation of 0.63 to 0.18 V. FIG. 3 shows the discharge characteristics of each unit cell after an electrolytic voltage of 9 V was applied for 1 minute in a state where a humidified gas consisting of hydrogen and oxygen having a dew point of 85 ° C. was introduced into the laminated battery. As a result of the activation treatment of the present invention, the characteristics of the cells exhibiting low characteristics are improved, and the variation range of each unit cell voltage at a current density of 0.15 A / cm 2 is 0.64 to 0.59.
V.

【0020】以上のように、本実施例の活性化処理を行
うことにより、積層電池の各単位セルの放電特性のバラ
ツキが減少し特に高レベルで安定した。積層電池の各単
位セルの放電特性のバラツキは各単位セルのイオン交換
膜の含水量のバラツキに依存するところが大きいことが
判明した。したがって、本発明の活性化処理の効果は、
実施例1に記述したように電解処理により特性の低かっ
た各単位セルの膜の含水率が他の各単位セルの含水率に
まで、増加したことによってもたらされたと考えられ
る。なお、本実施例では9Vの電解電圧を1分間の条件
で活性化処理を行ったが、本発明はこの実施条件に限定
されるものではなく、燃料電池の電極などの条件に伴っ
て、電解電圧,時間,付加回数などの最適な条件が選択
される。また、2つの各単位セルの特性改善のために積
層した電池に電解電圧を付加したが、特性の低い単位セ
ルのみ、または数個の単位セルからなるモジュール単位
で活性化処理することも他の単位セルへの、上述した過
度の電解処理を防ぐ意味でより望ましい。さらに、本発
明の活性化処理は、積層電池において新しい単位セルを
追加した場合、また古い単位セルと交換した場合など
に、追加した単位セルの含水率を従来のセルにそろえ、
特性を高レベルで均一化する際に非常に有効である。
As described above, by performing the activation treatment of the present embodiment, the variation in the discharge characteristics of each unit cell of the laminated battery was reduced, and it was stabilized at a particularly high level. It has been found that the variation in the discharge characteristics of each unit cell of the stacked battery largely depends on the variation in the water content of the ion exchange membrane of each unit cell. Therefore, the effect of the activation treatment of the present invention is as follows.
It is considered that this was caused by the increase in the water content of the membrane of each unit cell, which had low characteristics due to the electrolytic treatment, to the water content of each of the other unit cells as described in Example 1. In the present embodiment, the activation process was performed under the condition of an electrolysis voltage of 9 V for one minute. However, the present invention is not limited to this embodiment, and the electrolysis is performed in accordance with the conditions such as the electrode of the fuel cell. Optimal conditions such as voltage, time, and number of additions are selected. In addition, although an electrolytic voltage is applied to the stacked batteries in order to improve the characteristics of each of the two unit cells, the activation treatment may be performed only in a unit cell having low characteristics or in a module unit including several unit cells. It is more desirable in order to prevent the above-described excessive electrolytic treatment of the unit cell. Further, the activation process of the present invention, when a new unit cell is added to the stacked battery, or when replacing the old unit cell, the water content of the added unit cell is aligned with the conventional cell,
It is very effective in making the characteristics uniform at a high level.

【0021】[0021]

【発明の効果】以上のように本発明は、固体高分子から
なるイオン交換膜と、このイオン交換膜の両面に接して
電極触媒層を有する正極および負極からなる単位セル
を、セパレータ板を介して積層された燃料電池におい
て、単位セルないし単位セルを複数個積層してなる電池
に加湿ガスを導入した状態で電解処理をすることによっ
て、短時間で電池本来の特性を引き出すことができる。
さらに、積層電池の単位セルの放電特性を短時間で効率
よく高レベルで均一化することも可能となる。
As described above, according to the present invention, a unit cell consisting of an ion exchange membrane made of a solid polymer and a positive electrode and an anode having an electrode catalyst layer in contact with both surfaces of the ion exchange membrane is provided via a separator plate. In a stacked fuel cell, by performing an electrolytic treatment in a state in which a humidified gas is introduced into a unit cell or a battery in which a plurality of unit cells are stacked, it is possible to bring out the inherent characteristics of the battery in a short time.
Further, the discharge characteristics of the unit cells of the stacked battery can be made uniform efficiently at a high level in a short time.

【0022】以上の効果により、燃料電池の活性化工程
および修理工程の迅速化と、単位セル特性のバラツキの
小さい信頼性の高い固体高分子型燃料電池を提供でき
る。
With the above effects, the fuel cell activation step and the repair step can be sped up, and a highly reliable polymer electrolyte fuel cell with small variations in unit cell characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1および比較例における放電特
性図
FIG. 1 is a discharge characteristic diagram in Example 1 and Comparative Example of the present invention.

【図2】本発明の実施前の各単位セルの放電特性図FIG. 2 is a discharge characteristic diagram of each unit cell before implementation of the present invention.

【図3】本発明の実施例2の実施後の各単位セルの放電
特性図
FIG. 3 is a discharge characteristic diagram of each unit cell after implementation of Example 2 of the present invention.

【図4】一般的な固体高分子型燃料電池の外観図FIG. 4 is an external view of a general polymer electrolyte fuel cell.

【図5】一般的なセルの断面図FIG. 5 is a cross-sectional view of a general cell.

【符号の説明】 1 ガスケット 2 セパレータ板 3 集電板 4 絶縁板 5 エンドプレート 6 水素入口 7 水素出口 8 酸素入口 9 酸素出口 11 イオン交換膜 12 電極 13 ガス通路[Description of Signs] 1 Gasket 2 Separator plate 3 Current collector plate 4 Insulating plate 5 End plate 6 Hydrogen inlet 7 Hydrogen outlet 8 Oxygen inlet 9 Oxygen outlet 11 Ion exchange membrane 12 Electrode 13 Gas passage

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−225775(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/04 H01M 8/10 ────────────────────────────────────────────────── (5) References JP-A-61-225775 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8/04 H01M 8/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固体高分子からなるイオン交換膜と、前記
イオン交換膜に接する両面に電極触媒層を有する正極お
よび負極からなる単位セルないしはセパレータ板を介し
て積層されてなる燃料電池において、前記正極と前記負
極とに加湿ガスを導入した状態で、1.3V以上で前記
電極触媒が溶解する電位以下の電圧を、前記正極と前記
負極との印可する固体電解質型燃料電池の活性化方法。
1. A solid and the ion exchange membrane made of a polymer, a fuel obtained by laminating through the unit cell or the separator plate made of positive electrode and the negative electrode having the two sides on the electrode catalyst layer in contact with the <br/> ion exchange membrane In the battery, the positive electrode and the negative electrode
With the humidified gas introduced to the poles and above 1.3V
A voltage lower than the potential at which the electrode catalyst dissolves, the positive electrode and the
A method for activating a solid oxide fuel cell to be applied to a negative electrode .
【請求項2】固体高分子からなるイオン交換膜と、前記
イオン交換膜に接する両面に電極触媒層を有する正極お
よび負極からなる単位セルないしはセパレータ板を介し
て積層されてなる燃料電池において、交換または追加さ
れた前記単位セルまたは前記単位セルを含むモジュール
、前記正極と前記負極とに加湿ガスを導入した状態
、1.3V以上で前記電極触媒が溶解する電位以下の
電圧を、前記正極と前記負極との印可する固体電解質型
燃料電池の活性化方法。
2. A solid and the ion exchange membrane made of a polymer, a fuel obtained by laminating through the unit cell or the separator plate made of positive electrode and the negative electrode having the two sides on the electrode catalyst layer in contact with the <br/> ion exchange membrane in the battery, the module including the exchange or added the unit cells or the unit cell, the state of introducing the positive electrode and the negative electrode and the humidified gas, the following potential said electrode catalyst is dissolved at 1.3V or higher
A method for activating a solid oxide fuel cell , wherein a voltage is applied between the positive electrode and the negative electrode .
JP34592992A 1992-12-25 1992-12-25 Activation method of polymer electrolyte fuel cell Expired - Fee Related JP3358222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34592992A JP3358222B2 (en) 1992-12-25 1992-12-25 Activation method of polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34592992A JP3358222B2 (en) 1992-12-25 1992-12-25 Activation method of polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH06196187A JPH06196187A (en) 1994-07-15
JP3358222B2 true JP3358222B2 (en) 2002-12-16

Family

ID=18379958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34592992A Expired - Fee Related JP3358222B2 (en) 1992-12-25 1992-12-25 Activation method of polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3358222B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446605B1 (en) * 1998-02-27 2004-11-08 삼성전자주식회사 Method of activating proton exchange membrane fuel cell for increasing output
US6187464B1 (en) * 1998-06-01 2001-02-13 Matsushita Electric Industrial Co., Ltd. Method for activating fuel cell
JP3460793B2 (en) * 1998-06-01 2003-10-27 松下電器産業株式会社 How the fuel cell works
JP4038723B2 (en) 2003-05-21 2008-01-30 アイシン精機株式会社 Method for activating solid polymer fuel cell
JP4951847B2 (en) 2004-07-23 2012-06-13 パナソニック株式会社 Fuel cell activation method
US7608118B2 (en) * 2004-11-15 2009-10-27 3M Innovative Properties Company Preconditioning fuel cell membrane electrode assemblies
JP5083642B2 (en) * 2006-02-03 2012-11-28 日産自動車株式会社 Fuel cell system
JP2007273460A (en) * 2006-03-10 2007-10-18 Sanyo Electric Co Ltd Activation method of fuel cell, fuel battery cell or membrane electrode assembly for fuel cell activated, cell stack or fuel cell having them, and fuel cell activation device
JP2008059960A (en) * 2006-09-01 2008-03-13 Toyota Motor Corp Activation method of solid polymer fuel cell and solid polymer fuel cell
JP2008311064A (en) * 2007-06-14 2008-12-25 Canon Inc Fuel cell system and activation method of fuel cell
KR101033889B1 (en) 2007-07-03 2011-05-11 자동차부품연구원 Method for accelerating activation of fuel cell
JP2009049004A (en) * 2007-07-20 2009-03-05 Toray Ind Inc Method of manufacturing liquid supply type fuel cell
JP5073448B2 (en) * 2007-10-24 2012-11-14 本田技研工業株式会社 Operation method of polymer electrolyte fuel cell
JP5073447B2 (en) * 2007-10-24 2012-11-14 本田技研工業株式会社 Operation method of polymer electrolyte fuel cell
FR3142045A1 (en) * 2022-11-10 2024-05-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for activating a fuel cell by electrolysis

Also Published As

Publication number Publication date
JPH06196187A (en) 1994-07-15

Similar Documents

Publication Publication Date Title
US5958616A (en) Membrane and electrode structure for methanol fuel cell
JP3052536B2 (en) Solid polymer electrolyte fuel cell
EP1294039B1 (en) Thin film polymer electrolyte fuel cell and method of operating the same
US6187464B1 (en) Method for activating fuel cell
US7081317B2 (en) Polymer electrolyte thin film fuel cell and method of operating the same
JP3358222B2 (en) Activation method of polymer electrolyte fuel cell
JPH07220742A (en) Solid high polymer electrolyte fuel cell and manufacture of electrode-ion exchange film connector for this fuel cell
US7875405B2 (en) Side-by-side fuel cells
JP2002289230A (en) Polymer electrolyte fuel cell
JP3460793B2 (en) How the fuel cell works
JP3353567B2 (en) Fuel cell
JP3141619B2 (en) Solid polymer electrolyte fuel cell power generator
US20060121333A1 (en) Electrode for fuel cell, method for manufacturing the same, and fuel cell using the same
JP3469091B2 (en) Activation method of polymer electrolyte fuel cell
JP2005340022A (en) Aging method and manufacturing method of fuel cell
JP2004103296A (en) Solid polymer type fuel cell
JPH06338342A (en) Cell stack structure for solid high polymer electrolytic fuel cell
JPH10208757A (en) Fuel cell generating set
KR20060096610A (en) Membrane electrode assembly for fuel cell, and stack for fuel cell and full cell system comprising the same
KR100612235B1 (en) A membrane for fuel cell and a fuel cell comprising the same
JP2002141090A (en) Operation method of solid polymer fuel cell system
JP3991283B2 (en) Storage method of polymer electrolyte membrane electrode assembly
JP4100096B2 (en) Polymer electrolyte fuel cell
JP2002231262A (en) High polymer electrolyte fuel cell
JP2003317777A (en) Method of activating high polymer electrolyte fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees