JPH06338342A - Cell stack structure for solid high polymer electrolytic fuel cell - Google Patents

Cell stack structure for solid high polymer electrolytic fuel cell

Info

Publication number
JPH06338342A
JPH06338342A JP5128662A JP12866293A JPH06338342A JP H06338342 A JPH06338342 A JP H06338342A JP 5128662 A JP5128662 A JP 5128662A JP 12866293 A JP12866293 A JP 12866293A JP H06338342 A JPH06338342 A JP H06338342A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
electrode
ion exchange
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5128662A
Other languages
Japanese (ja)
Inventor
Takeji Tanjiyou
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5128662A priority Critical patent/JPH06338342A/en
Publication of JPH06338342A publication Critical patent/JPH06338342A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide high voltage by connecting a positive electrode and a negative electrode together in series, and to have moisture infiltrated from the gap between the electrodes into an ion exchange film by connecting the positive electrode and the negative electrode together in close proximity on the same plane of the exchange film, and by forming the positive electrode and the negative electrode in a correlated manner in the direction of layer formation. CONSTITUTION:A positive electrode 1 and a negative electrode made of carbon are connected together alternately in the close proximity on the both sides of an ion exchange film 3 made of perfluorocarbon sulfone acid. The negative electrode is provided on the back side of the positive electrode 1, and the negative electrode 2 is connected to the positive electrode 1. A collector made of titanium and a terminal plate made of carbon are provided on the electrodes. In this structure the corner of the terminal plate is sealed by Teflon and is thus insulated to prevent adhesion of the adjacent electrodes and gas mixture. The cell is formed into a stack structure, and the size of the electrode is reduced and divided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質型燃
料電池セルスタック構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell stack structure.

【0002】[0002]

【従来の技術】従来の固体高分子電解質型燃料電池の電
極構造としては、例えば第7図に示すように水素イオン
導伝性を有する電解質からなるイオン交換膜3を用い、
その両面に白金などの触媒成分を担持したカーボン電極
シートからなり、片側を正極1、その反対側を負極2と
するものである。電池反応としては、正極1および負極
2にそれぞれ酸素および水素を流し、負極2である水素
極でイオン化した水素がイオン交換膜3を通って正極1
である酸素極に達し、そこで起こる水の生成反応で生じ
る電気を取り出すものである。燃料電池の中で通常電気
自動車用としては、出力密度が高く作動温度が低く、起
動が早い高分子電解質型が適しており、また電解質が固
体であることから軽量、コンパクトに設計でき、スタッ
ク構造のシールが容易であるなど安全性に優れているた
め、上述のような単セルをいくつか積層してスタックと
して用いられている。
2. Description of the Related Art As an electrode structure of a conventional solid polymer electrolyte fuel cell, for example, as shown in FIG. 7, an ion exchange membrane 3 made of an electrolyte having hydrogen ion conductivity is used.
A carbon electrode sheet having a catalyst component such as platinum supported on both surfaces thereof is used, and one side is a positive electrode 1 and the other side is a negative electrode 2. As the battery reaction, oxygen and hydrogen are caused to flow to the positive electrode 1 and the negative electrode 2, respectively, and hydrogen ionized at the hydrogen electrode, which is the negative electrode 2, passes through the ion exchange membrane 3 and the positive electrode 1
It reaches the oxygen electrode, which is, and takes out the electricity generated by the water generation reaction that occurs there. Among the fuel cells, a polymer electrolyte type with high power density, low operating temperature, and quick start-up is suitable for ordinary electric vehicles, and because the electrolyte is solid, it can be designed lightweight and compact, and has a stack structure. Since it is excellent in safety such as easy sealing, it is used as a stack by stacking several unit cells as described above.

【0003】さらに、上述の反応により正極側で生成し
た水を排水する方法については、特開平2−87481
号公報に提案されている方法によって行われている。
Further, regarding the method of draining the water generated on the positive electrode side by the above-mentioned reaction, JP-A-2-87481.
It is carried out by the method proposed in the publication.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の固体高分子電解質型燃料電池セルスタック構
造にあっては、イオン交換膜の片側に正極のみを、その
反対側に負極のみを接合する構造となっていたため、イ
オン交換膜の正極側には水が生成するが、負極側には水
が生成しなかった。イオン交換膜が乾いてしまっては、
本来の性能を発揮できないため、負極側のガスを加湿し
てイオン交換膜を含水し、正極側の過剰な水を排出しな
なければならないという問題点があった。
However, in such a conventional solid polymer electrolyte fuel cell stack structure, only the positive electrode is bonded to one side of the ion exchange membrane and only the negative electrode is bonded to the other side. Because of the structure, water was generated on the positive electrode side of the ion exchange membrane, but water was not generated on the negative electrode side. If the ion exchange membrane has dried,
Since the original performance cannot be exhibited, there is a problem that the gas on the negative electrode side must be humidified to contain the ion exchange membrane and the excess water on the positive electrode side must be discharged.

【0005】また、従来の固体高分子電解質型燃料電池
セルスタック構造を用いた場合でも、両電極のサイズを
小さくして単位面積あたりの個数を増やせば、加湿しな
くても電極間の隙間から正極で生成した水が負極へ供給
可能となる。しかし、加湿しなくても十分機能するまで
単位面積あたりの電極の個数を増やすことは構造上極め
て困難なことであり、負極側に含水の必要のない構造の
固体高分子電解質型燃料電池を得ることが課題となって
いた。
Further, even when the conventional solid polymer electrolyte fuel cell stack structure is used, if the size of both electrodes is reduced to increase the number per unit area, the gap between the electrodes can be maintained without humidification. The water generated at the positive electrode can be supplied to the negative electrode. However, it is structurally extremely difficult to increase the number of electrodes per unit area until they function sufficiently without humidification, and a solid polymer electrolyte fuel cell with a structure that does not require water absorption on the negative electrode side is obtained. That was a challenge.

【0006】[0006]

【課題を解決するための手段】この発明は、このような
従来の問題点に着目してなされたもので、水素導伝性を
有する高分子電解質からなるイオン交換膜と、該イオン
交換膜の両面に触媒成分を担持したカーボン電極シート
を備えた固体高分子電解質型燃料電池において、イオン
交換膜の同一平面上では前記カーボン電極シートからな
る正極と負極の両方を隣どうしになるように接合し、か
つ該イオン交換膜の積層方向には、前記正極と負極とが
相対するように積層したことを特徴とする固体高分子電
解質型燃料電池セルスタック構造とすることにより、上
記課題を解決することを目的としている。
The present invention has been made by paying attention to such conventional problems, and it is an ion exchange membrane made of a polymer electrolyte having hydrogen conductivity, and an ion exchange membrane of the ion exchange membrane. In a solid polymer electrolyte fuel cell having a carbon electrode sheet carrying a catalyst component on both sides, in the same plane of the ion exchange membrane, both the positive electrode and the negative electrode made of the carbon electrode sheet are joined so that they are adjacent to each other. And a solid polymer electrolyte fuel cell stack structure characterized in that the positive electrode and the negative electrode are laminated so as to face each other in the laminating direction of the ion-exchange membrane, thereby solving the above problems. It is an object.

【0007】 [0007]

【作用】この発明の固体高分子電解質型燃料電池セルス
タック構造は、セルスタックの片面から酸素、他の面か
ら水素を流すと、酸素と水素が互いに混合することなく
交互に電極上に流れ込む構造となっている。
In the solid polymer electrolyte fuel cell stack structure of the present invention, when oxygen is supplied from one surface of the cell stack and hydrogen is supplied from the other surface, oxygen and hydrogen flow alternately onto the electrodes without being mixed with each other. Has become.

【0008】ガスを流しはじめると正極である水素極上
で水が生成し、イオン交換膜へしみこむ。本発明の固体
高分子電解質型燃料電池セルスタック構造は、イオン交
換膜に正極と負極とを隣どうしに接合しているのでイオ
ン交換膜へしみこんだ水が負極へ素早く供給され、加湿
する必要がなくなる。
When gas starts to flow, water is produced on the hydrogen electrode, which is the positive electrode, and soaks into the ion exchange membrane. In the solid polymer electrolyte fuel cell stack structure of the present invention, since the positive electrode and the negative electrode are joined to the ion exchange membrane next to each other, the water soaked into the ion exchange membrane is quickly supplied to the negative electrode, and it is necessary to humidify it. Disappear.

【0009】高分子電解質型燃料電池の酸素極側での電
極反応は、1/2O2+2H++2e-→H2Oとなり、ま
た水素極側での電極反応は、H2→2H++2e-とな
り、全体反応として、1/2O2+H2+→H2Oであ
り、水の電気分解の逆反応を利用して電力を取り出すも
のである。
The electrode reaction on the oxygen electrode side of the polymer electrolyte fuel cell is 1 / 2O 2 + 2H + + 2e → H 2 O, and the electrode reaction on the hydrogen electrode side is H 2 → 2H + + 2e −. Therefore, the overall reaction is 1 / 2O 2 + H 2 + → H 2 O, and electric power is taken out by utilizing the reverse reaction of electrolysis of water.

【0010】[0010]

【実施例】以下、この発明を図面に基づいて説明する。
本発明の高分子電解質型燃料電池は、水素イオン導電性
を有する高分子電解質膜としてイオン交換膜を用い、そ
の両端面には白金を触媒成分として担持したカーボン電
極シートから成り立っている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
The polymer electrolyte fuel cell of the present invention comprises ion exchange membranes as the polymer electrolyte membrane having hydrogen ion conductivity, and carbon electrode sheets carrying platinum as a catalyst component on both end faces thereof.

【0011】本発明においては、高分子電解質としてパ
ーフルオロカーボンスルホン酸、フェノールスルホン
酸、ポリスチレンスルホン酸およびポリトリフルオロス
チレンスルホン酸等を用ることができる。また、集電体
の素材は錆にくく、且つ溶けにくい材料であればよいた
め、チタン、ステンレス−アルミニウム合金等を用いる
ことができる。さらに、隣合う両電極の大きさ、個数お
よび形状は任意でよい。
In the present invention, perfluorocarbon sulfonic acid, phenol sulfonic acid, polystyrene sulfonic acid, polytrifluorostyrene sulfonic acid and the like can be used as the polymer electrolyte. Further, since the material of the current collector may be any material that is resistant to rust and difficult to melt, titanium, stainless-aluminum alloy, or the like can be used. Furthermore, the size, the number, and the shape of the adjacent electrodes may be arbitrary.

【0012】実施例1 第1図は、本発明の第1の実施例を示す図である。まず
その構成を説明すると、パーフルオロカーボンスルホン
酸からなる厚さ100μmのイオン交換膜(商品名:ナ
フィオン、デュポン社製)の両側に1cm角の厚さ10
0μmのカーボンシート製の正極と負極とを隣りどうし
交互に接合する。本実施例では、電極の個数は縦2列横
2列の4個とした。また、正極の裏には負極、負極の裏
には正極を接合する。第2図に実施例1の断面図を示
す。第2図に示す両電極の上にはチタン製の集電体と、
第3図に示す形状のカーボン製端子板を配設する。端子
板の素材は導電体であればよく、また隣どうしの電極の
接着防止およびガスの混合を防ぐために、端子板の角
(第1図中の格子点4)をテフロンでシールし、絶縁し
た。
First Embodiment FIG. 1 is a diagram showing a first embodiment of the present invention. First, the structure will be described. A 1 cm square thickness 10 on each side of an ion exchange membrane (product name: Nafion, manufactured by DuPont) made of perfluorocarbon sulfonic acid and having a thickness of 100 μm.
A 0 μm carbon sheet positive electrode and a negative electrode are alternately and adjacently joined. In the present embodiment, the number of electrodes is four in two columns and two columns. Further, a negative electrode is bonded to the back of the positive electrode, and a positive electrode is bonded to the back of the negative electrode. FIG. 2 shows a sectional view of the first embodiment. On both electrodes shown in FIG. 2, a current collector made of titanium,
A carbon terminal plate having the shape shown in FIG. 3 is arranged. The terminal board may be made of a conductive material, and the corners (lattice points 4 in Fig. 1) of the terminal board are sealed with Teflon to prevent the adhesion of adjacent electrodes and the prevention of gas mixture. .

【0013】第2図は第1図に示す本実施例の断面図で
あるが、第1図におけるA−A′断面もB−B′断面と
同一構造である。
FIG. 2 is a sectional view of this embodiment shown in FIG. 1. The AA 'section in FIG. 1 has the same structure as the BB' section.

【0014】実施例2 第5図は、本発明の第2の実施例を示す平面図である。
本実施例は、白金を触媒成分として担持したカーボン電
極シートを用い、幅5mmの渦巻状の電極を作成し、正
極と負極との間を2mmあけてイオン交換膜に接合し
た。本実施例で用いたカーボン電極シートおよびイオン
交換膜は、実施例1と同様のものである。第4図に本実
施例の第5図におけるC−C′断面を示す。第4図は、
両電極1および2の上に断面がコ字型のチタン製の集電
体6と、カーボン製の端子板5を配設したものである。
Embodiment 2 FIG. 5 is a plan view showing a second embodiment of the present invention.
In this example, a carbon electrode sheet supporting platinum as a catalyst component was used to form a spiral electrode having a width of 5 mm, and the positive electrode and the negative electrode were separated by 2 mm and bonded to an ion exchange membrane. The carbon electrode sheet and the ion exchange membrane used in this example are the same as in Example 1. FIG. 4 shows a CC ′ cross section in FIG. 5 of this embodiment. Figure 4 shows
A collector 6 made of titanium having a U-shaped cross section and a terminal plate 5 made of carbon are arranged on both electrodes 1 and 2.

【0015】比較例 第7図は、従来の高分子電解質型燃料電池の電極構造を
示す図である。本比較例は、実施例1と同様の材料を用
いイオン交換膜の両側に2cm角のカーボンシート製の
電極を接合し、これを実施例1と同様に積層した。
Comparative Example FIG. 7 is a diagram showing an electrode structure of a conventional polymer electrolyte fuel cell. In this comparative example, a 2 cm square electrode made of a carbon sheet was joined to both sides of the ion exchange membrane using the same material as in Example 1, and this was laminated in the same manner as in Example 1.

【0016】試験例1 実施例1および比較例について、燃料ガスの流量を調整
して電流を変化させたときの電圧の変化を第5図に示し
た。
Test Example 1 For Example 1 and Comparative Example, changes in voltage when the flow rate of the fuel gas was adjusted and the current was changed are shown in FIG.

【0017】比較例において、負極側のガスを加湿した
ものを『加湿あり』とし、加湿しないものを『加湿な
し』と示した。比較例は、加湿しないものは加湿したも
のと比べると、電圧が降下しているのが認められる。こ
れに対し、本発明の実施例1は負極側ガスを加湿しない
にもかかわらず、比較例の加湿ありの場合と殆ど同程度
の性能を示しているのが認められる。
In the comparative examples, those with humidified gas on the negative electrode side are shown as "with humidification", and those without humidification are shown as "without humidification". In the comparative example, it can be seen that the voltage of the non-humidified one is lower than that of the humidified one. On the other hand, it is recognized that Example 1 of the present invention shows almost the same performance as the case of the comparative example with humidification, though the negative electrode side gas is not humidified.

【0018】[0018]

【発明の効果】この発明は、水素導伝性を有する高分子
電解質からなるイオン交換膜と、該イオン交換膜の両面
に触媒成分を担持したカーボン電極シートを備えた固体
高分子電解質型燃料電池において、イオン交換膜の同一
平面上では前記カーボン電極シートからなる正極と負極
の両方を隣どうしになるように接合し、かつ該イオン交
換膜の積層方向には、前記正極と負極とが相対するよう
に積層したことを特徴とする固体高分子電解質型燃料電
池セルスタック構造ととしたため、電極を小さく分割
し、直列に接続することにより高電圧が得られる。ま
た、電極と電極との隙間からイオン交換膜に含水できる
ため、負極に供給するガスを加湿しなくても良い。
INDUSTRIAL APPLICABILITY The present invention provides a solid polymer electrolyte fuel cell comprising an ion exchange membrane made of a polymer electrolyte having hydrogen conductivity and carbon electrode sheets carrying catalyst components on both sides of the ion exchange membrane. In, on the same plane of the ion exchange membrane, both the positive electrode and the negative electrode made of the carbon electrode sheet are joined so that they are adjacent to each other, and the positive electrode and the negative electrode face each other in the stacking direction of the ion exchange membrane. Since the solid polymer electrolyte fuel cell stack structure is characterized by being laminated in this way, a high voltage can be obtained by dividing the electrodes into small pieces and connecting them in series. Further, since the ion exchange membrane can contain water through the gap between the electrodes, it is not necessary to humidify the gas supplied to the negative electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1FIG. 1 is a first embodiment of the present invention.

【図2】実施例1の断面図(A−A′断面)FIG. 2 is a cross-sectional view of Example 1 (cross section AA ′).

【図3】端子板拡大図[Fig. 3] Enlarged view of terminal board

【図4】本発明の実施例2FIG. 4 is a second embodiment of the present invention.

【図5】実施例2の断面図(C−C′断面)FIG. 5 is a cross-sectional view of Example 2 (C-C ′ cross section).

【図6】電流I(A/cm2)を変化させた時の電圧E
(V)の変化を示すグラフ
FIG. 6 is a voltage E when the current I (A / cm 2 ) is changed.
Graph showing changes in (V)

【図7】従来の高分子電解質型燃料電池の電極構造FIG. 7: Electrode structure of a conventional polymer electrolyte fuel cell

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 イオン交換膜 4 絶縁シール 5 端子板 6 集電体 1 Positive electrode 2 Negative electrode 3 Ion exchange membrane 4 Insulation seal 5 Terminal plate 6 Current collector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水素導伝性を有する高分子電解質からなる
イオン交換膜と、該イオン交換膜の両面に触媒成分を担
持したカーボン電極シートを備えた固体高分子電解質型
燃料電池において、 イオン交換膜の同一平面上では前記カーボン電極シート
からなる正極と負極の両方を隣どうしになるように接合
し、かつ該イオン交換膜の積層方向には、前記正極と負
極とが相対するように積層することを特徴とする固体高
分子電解質型燃料電池セルスタック構造。
1. A solid polymer electrolyte fuel cell comprising an ion exchange membrane made of a polymer electrolyte having hydrogen conductivity, and carbon electrode sheets carrying a catalyst component on both sides of the ion exchange membrane. On the same plane of the membrane, both the positive electrode and the negative electrode made of the carbon electrode sheet are joined so that they are adjacent to each other, and in the laminating direction of the ion exchange membrane, the positive electrode and the negative electrode are laminated so as to face each other. A solid polymer electrolyte fuel cell stack structure characterized by the above.
JP5128662A 1993-05-31 1993-05-31 Cell stack structure for solid high polymer electrolytic fuel cell Pending JPH06338342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5128662A JPH06338342A (en) 1993-05-31 1993-05-31 Cell stack structure for solid high polymer electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5128662A JPH06338342A (en) 1993-05-31 1993-05-31 Cell stack structure for solid high polymer electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH06338342A true JPH06338342A (en) 1994-12-06

Family

ID=14990349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5128662A Pending JPH06338342A (en) 1993-05-31 1993-05-31 Cell stack structure for solid high polymer electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH06338342A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052164A1 (en) * 1998-04-03 1999-10-14 Plug Power Inc. Pem-type fuel cell assembly having multiple parallel fuel cell sub-stacks
KR100387244B1 (en) * 2001-03-16 2003-06-12 삼성전자주식회사 Monopolar cell pack of direct methanol fuel cell
JP2003317791A (en) * 2002-04-24 2003-11-07 Hitachi Maxell Ltd Liquid fuel cell
JP2004164861A (en) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd Catalyst layer formation sheet for fuel cell and manufacturing method for it and catalyst layer-electrolyte membrane layered product
JP2004164866A (en) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd Catalyst layer formation sheet for fuel cell, catalyst layer-electrolyte membrane layered product, and manufacturing method for them
JP2004319455A (en) * 2003-03-31 2004-11-11 Honda Motor Co Ltd Flat laminated fuel cell
JP2009054600A (en) * 2008-11-05 2009-03-12 Dainippon Printing Co Ltd Manufacturing method of catalyst layer-electrolyte film laminate
JP2010192447A (en) * 2002-04-03 2010-09-02 Three M Innovative Properties Co Lamination apparatus and methods
JP2011071122A (en) * 1997-10-10 2011-04-07 3M Co Membrane electrode assemblies
US8338052B2 (en) 2007-11-26 2012-12-25 Toyota Jidosha Kabushiki Kaisha Method for manufacturing a membrane-electrode assembly, with folding process
JP2014192096A (en) * 2013-03-28 2014-10-06 Toppan Printing Co Ltd Membrane electrode assembly and solid polymer fuel cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071122A (en) * 1997-10-10 2011-04-07 3M Co Membrane electrode assemblies
WO1999052164A1 (en) * 1998-04-03 1999-10-14 Plug Power Inc. Pem-type fuel cell assembly having multiple parallel fuel cell sub-stacks
KR100387244B1 (en) * 2001-03-16 2003-06-12 삼성전자주식회사 Monopolar cell pack of direct methanol fuel cell
JP2010192447A (en) * 2002-04-03 2010-09-02 Three M Innovative Properties Co Lamination apparatus and methods
JP2003317791A (en) * 2002-04-24 2003-11-07 Hitachi Maxell Ltd Liquid fuel cell
JP2004164861A (en) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd Catalyst layer formation sheet for fuel cell and manufacturing method for it and catalyst layer-electrolyte membrane layered product
JP2004164866A (en) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd Catalyst layer formation sheet for fuel cell, catalyst layer-electrolyte membrane layered product, and manufacturing method for them
JP2004319455A (en) * 2003-03-31 2004-11-11 Honda Motor Co Ltd Flat laminated fuel cell
JP4498792B2 (en) * 2003-03-31 2010-07-07 本田技研工業株式会社 Flat stacked fuel cell
US8338052B2 (en) 2007-11-26 2012-12-25 Toyota Jidosha Kabushiki Kaisha Method for manufacturing a membrane-electrode assembly, with folding process
JP2009054600A (en) * 2008-11-05 2009-03-12 Dainippon Printing Co Ltd Manufacturing method of catalyst layer-electrolyte film laminate
JP4538692B2 (en) * 2008-11-05 2010-09-08 大日本印刷株式会社 Method for producing catalyst layer-electrolyte membrane laminate
JP2014192096A (en) * 2013-03-28 2014-10-06 Toppan Printing Co Ltd Membrane electrode assembly and solid polymer fuel cell

Similar Documents

Publication Publication Date Title
US5958616A (en) Membrane and electrode structure for methanol fuel cell
EP0068508B1 (en) Methanol fuel cell
US5922485A (en) Solid polymer electrolyte fuel cell
US6207310B1 (en) Fuel cell with metal screen flow-field
US8367270B2 (en) Flow field plate arrangement for a fuel cell
US7569301B2 (en) Fuel cell
US7763393B2 (en) Fuel cell having electrode channel member with comb-teeth shape
JP2002056855A (en) Flat fuel cell
JP2009093825A (en) Current-collecting composite plate for fuel cell, and fuel cell
JPH06338342A (en) Cell stack structure for solid high polymer electrolytic fuel cell
JP3358222B2 (en) Activation method of polymer electrolyte fuel cell
JP3448550B2 (en) Polymer electrolyte fuel cell stack
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JPH06338335A (en) Solid high molecular electrolytic fuel cell
JP2006147425A (en) Electrolyte membrane for polymer electrolyte fuel cell, its manufacturing method and the polymer electrolyte fuel cell
JP2001307749A (en) Solid polymer fuel battery and stack of the same
JP3258378B2 (en) Fuel cell
JP2000251901A (en) Cell for fuel cell and fuel cell using it
JP2002198072A (en) Solid polymer fuel cell
JPH10270066A (en) Fuel cell
JP2004119189A (en) Fuel cell
JP2002270198A (en) Fuel cell
JPH06333582A (en) Solid polyelectrolyte fuel cell
US7473483B2 (en) Direct methanol fuel cell
JPH06333581A (en) Solid poly electrolyte fuel cell