JP4100096B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4100096B2
JP4100096B2 JP2002247954A JP2002247954A JP4100096B2 JP 4100096 B2 JP4100096 B2 JP 4100096B2 JP 2002247954 A JP2002247954 A JP 2002247954A JP 2002247954 A JP2002247954 A JP 2002247954A JP 4100096 B2 JP4100096 B2 JP 4100096B2
Authority
JP
Japan
Prior art keywords
fuel cell
heat insulating
polymer electrolyte
gas
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002247954A
Other languages
Japanese (ja)
Other versions
JP2004087344A (en
Inventor
勝憲 西村
甚一 今橋
昌宏 小町谷
宏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002247954A priority Critical patent/JP4100096B2/en
Publication of JP2004087344A publication Critical patent/JP2004087344A/en
Application granted granted Critical
Publication of JP4100096B2 publication Critical patent/JP4100096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、出力が高い、寿命が長い、起動・停止による劣化が少ない、運転温度が低い(約70〜80℃)、精密な差圧制御が不要等の長所を有しているため、電気自動車用電源,業務用及び家庭用の分散電源等の幅広い用途が期待されている。
【0003】
これらの用途の中で、固体高分子型燃料電池を搭載した分散電源(例えば、コジェネレーション発電システム)は、固体高分子型燃料電池より電気を取り出すと同時に、発電時に電池から発生する熱を温水として回収することにより、エネルギーを有効活用しようとするシステムである。
【0004】
したがって、このような分散電源では、燃料電池からの熱ロスをいかに低減させるかが重要となる。しかしながら、そのような観点で、固体高分子型燃料電池からの放熱防止するための技術は見当たらない。
【0005】
【発明が解決しようとする課題】
通常、燃料電池からの熱は、大気との接触により奪われてしまうため、温水として回収可能な熱量が低下する問題があった。この問題を解決するために、断熱材で燃料電池を被覆することが考えられる。
【0006】
しかし、固体高分子型燃料電池は、水素を含む可燃性ガスを用いるため、万が一、燃料電池から水素が漏洩したときに、被覆のために用いた断熱材によって、燃料電池の近傍に水素が滞留することが想定され、単純に断熱材で燃料電池を被覆することは実用性に問題があった。
【0007】
さらに、通常の固体高分子型燃料電池は、発電に寄与する多数の単セルが直列に配置され、その各単セルを構成する2枚の電気伝導性のセパレータが外部に露出している。このため、気温変動によってセパレータが結露すると、単セルの電圧によりセパレータ間で外部短絡が起こる可能性もあり、単純に断熱材で燃料電池を被覆することは実用性に問題があった。
【0008】
そこで、本発明は、このような可燃性ガスの滞留や結露による外部短絡を防止することを可能にしようとするものである。
【0009】
【課題を解決するための手段】
固体高分子型燃料電池は、水素イオンを透過させる機能を有する固体高分子電解質膜、この膜の両面に形成した電極層、この電極層を挟持するように配置されたセパレータを基本構成として単セルを構成し、通常、十分な電力を得るために単セルを複数個直列に接続した構成を有する。
【0010】
水素イオンを透過させる機能を有する固体高分子電解質膜とは、フッ素系高分子のフッ素の一部をスルホン酸に置換したものが一般的であり、水素イオンを移動させる機能を有する高分子膜であれば、本発明に適用可能である。例えば、4フッ化エチレンを基本単位とする高分子鎖に含まれるフッ素原子を2〜5個程度のアルキル鎖(−CF2CF2−,−CF2CF2(CF3)−など)を介して、アルキル鎖の末端にスルホン酸基(−SO3H)を有する高分子膜がある。
【0011】
電極層とは、白金、あるいは白金とルテニウム等との異種元素との合金を電極触媒とし、この電極触媒と炭素粉末とバインダーとを有する層である。
【0012】
固体高分子型燃料電池に供給される燃料ガスは、純水素あるいは水素を含むガスであり、この水素は、電極触媒上で酸化反応(式1)により酸化される。同時に、反対側の電極触媒上では、酸素の還元反応(式2)が進行する。水素の酸化反応にて生じた水素イオンは、固体高分子電解質膜に受け渡され、水素イオンは反対側の電極層にて酸素と結合することにより水が生成する。
【0013】
2 → 2H++2e- (式1)
2H++1/2O2+2e- → H2O (式2)
この電池反応により単セルの起電力は約1.2V 、負荷を接続して発電したときは0.5〜0.7V程度の電圧が得られるため、この発電に寄与する単セルを複数個積層することにより、数十から数百ボルトの電圧を取ることができる。
【0014】
【発明の実施の形態】
以下に実施例により、本発明の内容を説明する。なお、本発明は以下に述べる実施例に限定されるものではない。
【0015】
固体高分子型燃料電池の構成を図1に示す。発電部は単セル101であり、通常は数十セル以上の多積層セルによって、直流電力を取り出している。この単セル101は、固体高分子電解質膜102の両面に電極層を設けた膜−電極接合体(拡大図中の102と103とからなる膜)とこれを挟持する2枚の単セル用セパレータ104より構成され、単セル用セパレータ104の間には、ガスケット105を挿入した。
【0016】
この膜−電極接合体の周辺の拡大図を図1中に示した。単セル用セパレータ104の一方には、燃料ガスが流通する溝が加工されている。単セル用セパレータ104の他方には、酸化剤ガス、通常は空気を流通させる溝が加工されている。
【0017】
これらを積層し、末端に正極集電板113と負極集電板114とを配置させる。この集電板113,114の外側から、絶縁板107を介して端板109によって加圧されている。端板109を固定する部品は、ボルト116,皿ばね117,ナット118である。
【0018】
単電池(単セル)101,冷却水用セパレータ108,端板109,集電板113,114等からなる積層体を、ボルト116,皿ばね117,ナット118からなる締め付け部品により固定する条件は、2枚の端板で挟みつけた積層体を油圧プレスで圧縮し、そのままの状態で5時間放置した後、ナット118を締め付ける。
【0019】
燃料ガス,酸化剤ガス,冷却水は、端板109に設けたコネクター110,111,112より供給され、他方の端板109に設けたコネクターより排出される。直流電力(出力)は、正極集電板113と負極集電板114とから得ることができる。
【0020】
固体高分子型燃料電池は、通常、各単セルを構成する単セル用セパレータ104が外部に露出している。そのため、燃料電池からの放熱による熱回収率の減少という問題があるが、本実施例では、以下のような手段で解決している。
【0021】
その手段は、燃料電池の外部の一部あるいは全面を断熱性部品121で被覆することにより可能となる。
【0022】
断熱性部品121を構成する断熱材に求められる性質は、熱伝導率が小さいことであり、断熱材として一般的なグラスウールの熱伝導率(0.4W/mK)よりも小さいことが望ましい。
【0023】
また、寒冷地での使用を考慮すると、断熱材の熱伝導率は0.1W/mK 未満、たとえば0.02〜0.03W/mK 付近にあることがさらに望ましい。
【0024】
このような優れた断熱性を実現するためには、対流がない閉じられた状態で空気の熱伝導率は小さいことから、断熱材が外界とつながらない独立の気泡を多数有する材料が適している。
【0025】
また、断熱性部品121が、独立の気泡を有するのみでなく、断熱性部品121を貫通する孔も有するもので、燃料電池の外部の一部あるいは全面を被覆することにより可能となる。
【0026】
このような貫通孔を設ける理由は、断熱性部品121で燃料電池を被覆することにより、滞留した可燃性ガスを容易に放出させ、結露水を外部に出すことが容易になるためである。
【0027】
貫通孔の形状,サイズは任意であるが、大気の対流による放熱を防止するため、可燃性ガス等が透過できる程度のものが必要である。可燃性ガスの透過に対しては、10〜1000μm、結露水の透過に対しては、1〜10mmが望ましい。
【0028】
また、一般に水素は空気よりも比重が小さいため、上方に拡散しやすく、さらに加熱された空気も上部に移動しやすいため、燃料電池を被覆する断熱性部品の上面や側面は、可燃性ガスの透過を主体に考えた貫通孔を有する部品を配置することができる。
【0029】
これに対し、結露水は重力により底面に溜まりやすいため、燃料電池の底面または側面を被覆する断熱性部品は、結露水の透過を主体に考えた貫通孔を有する部品を配置させることができる。
【0030】
この代替えの方式として、複数の板状の断熱性部品を燃料電池の底面に配置させ、それらの部品の間に、1〜10mmのすき間を設けることにより、貫通孔を省いた断熱性部品を使用することも可能である。
【0031】
以上で説明した断熱性部品に適用可能な材料として、ポリウレタンフォーム,スチレンフォーム,発泡ゴムなどが挙げられる。
【0032】
さらに、難燃性,不燃性,自己消火性の機能を付与した発泡ゴム材料も、本発明に適用することができる。
【0033】
断熱性部品は、発泡の有無,材料の種類に特に限定されず、断熱性部品が0.4W/mK よりも小さな熱伝導率を有するものであれば良い。
【0034】
なお、図1中の固体高分子電解質膜102には、フッ素系電解質膜を、触媒層103の触媒には、白金系触媒を使用する。ガス拡散層106は、厚さ200μmのカーボンペーパーを用いる。
【0035】
アノード側のセパレータ面には、幅1mm,深さ0.5mm のアノードガスの流路を、カソード側のセパレータ面には、幅1mm,深さ0.8mm のカソードガスの流路を設ける。
【0036】
本実施例の固体高分子型燃料電池は、複数の50個の単セルを直列に接続した構成とし、2セル毎に冷却水の流路を形成させた冷却水用セパレータ108を挿入する。
【0037】
これは、電池外部に設置したポンプにより、冷却水用セパレータ108に冷却水を供給し、ポンプと電池とを接続する冷却水の配管の途中に設ける熱交換器によって、電池の内部で発生した熱を回収するためである。
【0038】
断熱性部品121には、ポリウレタンフォームを用いる。これらを燃料電池の側面(4面)を覆うように設置し、断熱性部品121の側面を接着剤で固定する。
【0039】
端板109からの放熱を低減させるために、厚さ40mmのABS樹脂製の端板109を用いた。図1中に示されていないが、この端板109を金属性とし、その外側に断熱性部品を設置させ、固体高分子型燃料電池の全面を被覆することも可能である。
【0040】
出力端子付きの正極及び負極の集電板113,114は、集電板の端子部分を断熱性部品121の孔より突き出させた。この端子を外部の負荷に接続することにより、電力を取り出すことができる。これらの集電板の材質は、ニッケル製とした。集電板113,114と端板109との間に絶縁板107を挿入させ、電気的絶縁を図った。
【0041】
本実施例において、発電可能な電極有効面積は100cm2 とし、電流50Aにて出力を計測した。アノードに供給するガスは水素、カソードに供給するガスは空気とし、圧力は常圧(一気圧)とした。水素と酸素の利用率はそれぞれ70%,40%とした。セルに供給する冷却水の温度は70±2℃に設定した。本実施例の電池をS1とする。
【0042】
前述の実施例に用いた貫通孔のない断熱性部品132と、前述の実施例に用いた断熱性部品に直径0.1mm の孔を100cm2 当り4個の微細孔を開けた断熱性部品131と、前述の実施例に用いた断熱性部品に直径3mmの孔を100cm2 当り4個の孔を開けた断熱性部品133からなる3種類の部品を製作した。
【0043】
断熱性部品132は、放熱の防止のみを目的としているため、図2に示すように、燃料電池の側面に配置させた。断熱性部品131は、可燃性ガスが漏洩した場合を想定しているため、燃料電池の上部に配置させた。断熱性部品133は、結露水の排出を目的とするため、燃料電池の底面に配置させた。これらの断熱性部品間、および断熱性部品と端板119との間は、エポキシ樹脂製接着剤で固定した。本実施例の電池をS2とする。
【0044】
なお、比較例として、前述の固体高分子型燃料電池で用いた断熱性部品を取り外し、まったく断熱を考慮しない従来の方式の燃料電池を製作した。比較例の電池をRとする。
【0045】
電池S1,S2ならびに比較例の電池Rを、図3に示す発電システムに組み込みこんだ装置を製作した。電池S1を搭載した装置をA1、電池S2を搭載した装置をA2、電池Rを搭載した装置をA3とする。これらの装置は、電池の種類のみ異なるが、他の構成部品や構成は同一になるようにした。
【0046】
図3中、1001は天然ガス、1002は空気、1003は改質器、1005は燃料電池の積層体、1006は蒸留水、1007は貯湯槽、1008はアノードガス用ポンプ、1009はカソードガス用ポンプ、1010は循環水用ポンプ、1011は熱交換器、1012は燃料電池、1013はカソードガス排出用配管、1014はアノードガス排出用配管である。
【0047】
各装置に、都市ガスを改質することにより水素濃度70%の燃料ガスをアノードに導入し、カソードには空気を供給させた。
【0048】
発電開始時の貯湯槽1007の水温は40℃、燃料電池1012に供給される循環水の温度も40℃とした。外気温は10℃一定になるように、空調設備を有する定温実験室にて試験を実施した。
【0049】
水素および酸素の利用率は、それぞれ70%,40%とし、各電流に対して一定とした。ガスの圧力は常圧とした。
【0050】
電流密度は0.5mA/cm2に設定し、連続発電試験を実施した。
【0051】
本発明の装置A1,A2は、連続発電によって、約4時間後に60℃の温水を得ることができた。これに対し、比較例の電池Rを搭載した装置A3の場合は、同じ温水を得るために約5時間の時間を要したことから、本発明の装置A1,A2を用いたときに熱回収効率が高いことを実証することができた。
【0052】
【発明の効果】
本発明の断熱性部品によって、固体高分子型燃料電池からの熱回収効率が向上する。
【図面の簡単な説明】
【図1】本発明の断熱性部品を配置させた燃料電池の構成図。
【図2】本発明の断熱性部品を配置させた燃料電池の平面図。
【図3】本発明の固体高分子型燃料電池を搭載した発電システム図。
【符号の説明】
101…単セル、102…固体高分子電解質膜、103…触媒層、104…単セル用セパレータ、105…ガスケット、106…ガス拡散層、107…絶縁板、108…冷却水用セパレータ、109…端板、110…アノードガス配管用コネクター、111…冷却水配管用コネクター、112…カソードガス配管用コネクター、113,114…集電板、116…ボルト、117…皿ばね、118…ナット、121…断熱性部品、1001…天然ガス、1002…空気、1005…燃料電池の積層体、1006…蒸留水、1007…貯湯槽、1008…アノードガス用ポンプ、1009…カソードガス用ポンプ、1010…循環水用ポンプ、1011…熱交換器、1012…燃料電池、1013…カソードガス排出用配管、1014…アノードガス排出用配管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell.
[0002]
[Prior art]
The polymer electrolyte fuel cell has advantages such as high output, long life, little deterioration due to start / stop, low operating temperature (about 70-80 ° C), and no need for precise differential pressure control. Therefore, it is expected to be used in a wide range of applications such as electric power sources for electric vehicles, distributed power sources for business use and home use.
[0003]
Among these applications, a distributed power source (for example, a cogeneration power generation system) equipped with a polymer electrolyte fuel cell takes out electricity from the polymer electrolyte fuel cell, and at the same time, generates heat from the battery during power generation with hot water. It is a system that tries to make effective use of energy by collecting as
[0004]
Therefore, in such a distributed power supply, it is important how to reduce the heat loss from the fuel cell. However, from such a viewpoint, there is no technique for preventing heat dissipation from the polymer electrolyte fuel cell.
[0005]
[Problems to be solved by the invention]
Usually, the heat from the fuel cell is deprived by contact with the atmosphere, so there is a problem that the amount of heat that can be recovered as hot water decreases. In order to solve this problem, it is conceivable to coat the fuel cell with a heat insulating material.
[0006]
However, since the polymer electrolyte fuel cell uses a combustible gas containing hydrogen, in the unlikely event that hydrogen leaks from the fuel cell, the hydrogen stays in the vicinity of the fuel cell due to the insulation used for the coating. Therefore, simply covering the fuel cell with a heat insulating material has a problem in practicality.
[0007]
Furthermore, in a normal polymer electrolyte fuel cell, a large number of single cells contributing to power generation are arranged in series, and two electrically conductive separators constituting each single cell are exposed to the outside. For this reason, when the separator is dewed due to temperature fluctuation, there is a possibility that an external short circuit may occur between the separators due to the voltage of a single cell, and simply covering the fuel cell with a heat insulating material has a problem in practicality.
[0008]
Therefore, the present invention intends to make it possible to prevent such external short-circuiting due to retention of flammable gas or condensation.
[0009]
[Means for Solving the Problems]
A polymer electrolyte fuel cell is a single cell based on a solid polymer electrolyte membrane having a function of permeating hydrogen ions, electrode layers formed on both sides of the membrane, and a separator disposed so as to sandwich the electrode layer. In general, a plurality of single cells are connected in series to obtain sufficient power.
[0010]
A solid polymer electrolyte membrane having a function of permeating hydrogen ions is generally a polymer membrane in which a part of fluorine of a fluorine-based polymer is replaced with sulfonic acid, and is a polymer membrane having a function of moving hydrogen ions. If it exists, it is applicable to the present invention. For example, a fluorine chain contained in a polymer chain having tetrafluoroethylene as a basic unit is passed through about 2 to 5 alkyl chains (—CF 2 CF 2 —, —CF 2 CF 2 (CF 3 ) —, etc.). Thus, there is a polymer membrane having a sulfonic acid group (—SO 3 H) at the end of an alkyl chain.
[0011]
The electrode layer is a layer having platinum or an alloy of different elements such as platinum and ruthenium as an electrode catalyst, and having the electrode catalyst, carbon powder, and a binder.
[0012]
The fuel gas supplied to the polymer electrolyte fuel cell is pure hydrogen or a gas containing hydrogen, and this hydrogen is oxidized by an oxidation reaction (formula 1) on the electrode catalyst. At the same time, the oxygen reduction reaction (formula 2) proceeds on the opposite electrode catalyst. Hydrogen ions generated by the oxidation reaction of hydrogen are transferred to the solid polymer electrolyte membrane, and the hydrogen ions are combined with oxygen in the opposite electrode layer to generate water.
[0013]
H 2 → 2H + + 2e (Formula 1)
2H + + 1 / 2O 2 + 2e → H 2 O (Formula 2)
Due to this battery reaction, the electromotive force of a single cell is about 1.2 V, and when a power is generated with a load connected, a voltage of about 0.5 to 0.7 V can be obtained. By doing so, a voltage of tens to hundreds of volts can be taken.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The contents of the present invention will be described below with reference to examples. In addition, this invention is not limited to the Example described below.
[0015]
The configuration of the polymer electrolyte fuel cell is shown in FIG. The power generation unit is a single cell 101, and usually DC power is taken out by a multi-layered cell of several tens or more cells. This single cell 101 includes a membrane-electrode assembly (a film made of 102 and 103 in the enlarged view) in which electrode layers are provided on both surfaces of a solid polymer electrolyte membrane 102, and two single cell separators sandwiching the membrane-electrode assembly. The gasket 105 is inserted between the single cell separators 104.
[0016]
An enlarged view of the periphery of this membrane-electrode assembly is shown in FIG. On one side of the single cell separator 104, a groove through which the fuel gas flows is processed. On the other side of the single cell separator 104, a groove through which an oxidant gas, usually air, flows is processed.
[0017]
These are laminated and the positive electrode current collector plate 113 and the negative electrode current collector plate 114 are disposed at the ends. Pressure is applied from the outside of the current collector plates 113 and 114 by the end plate 109 through the insulating plate 107. Parts for fixing the end plate 109 are a bolt 116, a disc spring 117, and a nut 118.
[0018]
The conditions for fixing the laminated body composed of the single battery (single cell) 101, the separator for cooling water 108, the end plate 109, the current collecting plates 113 and 114, etc., with the fastening parts including the bolt 116, the disc spring 117, and the nut 118 are as follows: The laminated body sandwiched between the two end plates is compressed by a hydraulic press and left as it is for 5 hours, and then the nut 118 is tightened.
[0019]
Fuel gas, oxidant gas, and cooling water are supplied from connectors 110, 111, and 112 provided on the end plate 109, and are discharged from a connector provided on the other end plate 109. DC power (output) can be obtained from the positive current collector 113 and the negative current collector 114.
[0020]
In the polymer electrolyte fuel cell, the single cell separator 104 constituting each single cell is usually exposed to the outside. Therefore, there is a problem that the heat recovery rate is reduced due to heat radiation from the fuel cell. In this embodiment, the problem is solved by the following means.
[0021]
The means can be realized by covering a part or the whole of the outside of the fuel cell with the heat insulating component 121.
[0022]
The property required of the heat insulating material constituting the heat insulating part 121 is that the thermal conductivity is small, and is preferably smaller than the thermal conductivity (0.4 W / mK) of glass wool generally used as a heat insulating material.
[0023]
In consideration of use in a cold region, the thermal conductivity of the heat insulating material is more preferably less than 0.1 W / mK, for example, in the vicinity of 0.02 to 0.03 W / mK.
[0024]
In order to realize such excellent heat insulating properties, since the thermal conductivity of air is small in a closed state without convection, a material having many independent bubbles in which the heat insulating material does not connect to the outside is suitable.
[0025]
Further, the heat insulating component 121 has not only independent bubbles but also a hole penetrating the heat insulating component 121, which can be achieved by covering a part or the entire surface of the fuel cell.
[0026]
The reason for providing such a through hole is that by covering the fuel cell with the heat-insulating component 121, it is possible to easily release the staying combustible gas and to discharge condensed water to the outside.
[0027]
The shape and size of the through-hole are arbitrary, but in order to prevent heat dissipation due to convection in the atmosphere, a through-hole capable of transmitting a combustible gas or the like is required. 10 to 1000 μm is desirable for permeation of combustible gas, and 1 to 10 mm for permeation of condensed water.
[0028]
In general, since hydrogen has a lower specific gravity than air, it tends to diffuse upward, and heated air also tends to move upward. A part having a through hole that is mainly considered to be transparent can be arranged.
[0029]
On the other hand, since dew condensation water tends to accumulate on the bottom surface due to gravity, a heat insulating part covering the bottom surface or side surface of the fuel cell can be provided with a part having a through-hole mainly considering the permeation of dew condensation water.
[0030]
As an alternative method, a plurality of plate-like heat-insulating parts are arranged on the bottom surface of the fuel cell, and a 1-10 mm gap is provided between these parts, thereby using heat-insulating parts with no through holes. It is also possible to do.
[0031]
Examples of materials applicable to the heat insulating parts described above include polyurethane foam, styrene foam, and foamed rubber.
[0032]
Further, a foamed rubber material imparted with flame retardancy, nonflammability, and self-extinguishing functions can also be applied to the present invention.
[0033]
The heat insulating component is not particularly limited to the presence or absence of foaming and the type of material, and it is sufficient that the heat insulating component has a thermal conductivity smaller than 0.4 W / mK.
[0034]
Note that a fluorine-based electrolyte membrane is used for the solid polymer electrolyte membrane 102 in FIG. 1, and a platinum-based catalyst is used for the catalyst of the catalyst layer 103. As the gas diffusion layer 106, carbon paper having a thickness of 200 μm is used.
[0035]
An anode gas channel having a width of 1 mm and a depth of 0.5 mm is provided on the anode side separator surface, and a cathode gas channel having a width of 1 mm and a depth of 0.8 mm is provided on the cathode side separator surface.
[0036]
The polymer electrolyte fuel cell of the present embodiment has a configuration in which a plurality of 50 single cells are connected in series, and a cooling water separator 108 in which a cooling water flow path is formed is inserted every two cells.
[0037]
This is because the cooling water is supplied to the cooling water separator 108 by a pump installed outside the battery, and the heat generated inside the battery by the heat exchanger provided in the middle of the cooling water pipe connecting the pump and the battery. It is for recovering.
[0038]
Polyurethane foam is used for the heat insulating part 121. These are installed so as to cover the side surfaces (four surfaces) of the fuel cell, and the side surfaces of the heat insulating component 121 are fixed with an adhesive.
[0039]
In order to reduce heat radiation from the end plate 109, an end plate 109 made of ABS resin having a thickness of 40 mm was used. Although not shown in FIG. 1, the end plate 109 may be made of metal, and a heat insulating part may be installed outside the end plate 109 to cover the entire surface of the polymer electrolyte fuel cell.
[0040]
The positive and negative current collector plates 113 and 114 with output terminals were formed by protruding the terminal portions of the current collector plates from the holes of the heat insulating component 121. By connecting this terminal to an external load, electric power can be taken out. These current collector plates were made of nickel. An insulating plate 107 was inserted between the current collecting plates 113 and 114 and the end plate 109 to achieve electrical insulation.
[0041]
In this example, the electrode effective area capable of generating power was 100 cm 2 and the output was measured at a current of 50 A. The gas supplied to the anode was hydrogen, the gas supplied to the cathode was air, and the pressure was normal pressure (one atmospheric pressure). The utilization rates of hydrogen and oxygen were 70% and 40%, respectively. The temperature of the cooling water supplied to the cell was set to 70 ± 2 ° C. The battery of this example is designated as S1.
[0042]
The heat-insulating part 132 having no through holes used in the above-described embodiment and the heat-insulating part 131 having four fine holes per 100 cm 2 with a diameter of 0.1 mm in the heat-insulating part used in the above-described embodiment. Then, three types of parts made of the heat insulating part 133 in which holes having a diameter of 3 mm and four holes per 100 cm 2 were formed in the heat insulating part used in the above-described embodiment were manufactured.
[0043]
Since the heat insulating component 132 is intended only to prevent heat dissipation, it is disposed on the side surface of the fuel cell as shown in FIG. Since the heat insulating component 131 is assumed to be a case where flammable gas leaks, the heat insulating component 131 is disposed on the upper part of the fuel cell. The heat insulating component 133 is disposed on the bottom surface of the fuel cell in order to discharge condensed water. These heat insulating parts and between the heat insulating parts and the end plate 119 were fixed with an epoxy resin adhesive. The battery of this example is designated S2.
[0044]
As a comparative example, a conventional type fuel cell that does not consider heat insulation was manufactured by removing the heat insulating parts used in the above-described polymer electrolyte fuel cell. Let R be the battery of the comparative example.
[0045]
A device in which the batteries S1 and S2 and the battery R of the comparative example were incorporated in the power generation system shown in FIG. 3 was manufactured. A device equipped with the battery S1 is designated as A1, a device equipped with the battery S2 is designated as A2, and a device equipped with the battery R is designated as A3. These devices differ only in the type of battery, but the other components and configurations are the same.
[0046]
In FIG. 3, 1001 is natural gas, 1002 is air, 1003 is a reformer, 1005 is a fuel cell stack, 1006 is distilled water, 1007 is a hot water tank, 1008 is a pump for anode gas, and 1009 is a pump for cathode gas. 1010 is a circulating water pump, 1011 is a heat exchanger, 1012 is a fuel cell, 1013 is a cathode gas discharge pipe, and 1014 is an anode gas discharge pipe.
[0047]
In each apparatus, a fuel gas having a hydrogen concentration of 70% was introduced into the anode by reforming the city gas, and air was supplied to the cathode.
[0048]
The water temperature of the hot water storage tank 1007 at the start of power generation was 40 ° C., and the temperature of the circulating water supplied to the fuel cell 1012 was also 40 ° C. The test was carried out in a constant temperature laboratory having an air conditioner so that the outside air temperature was constant at 10 ° C.
[0049]
The utilization rates of hydrogen and oxygen were 70% and 40%, respectively, and were constant for each current. The gas pressure was normal pressure.
[0050]
The current density was set to 0.5 mA / cm 2 and a continuous power generation test was performed.
[0051]
The apparatuses A1 and A2 of the present invention were able to obtain 60 ° C. hot water after about 4 hours by continuous power generation. On the other hand, in the case of the apparatus A3 equipped with the battery R of the comparative example, it took about 5 hours to obtain the same hot water, so that the heat recovery efficiency was obtained when the apparatuses A1 and A2 of the present invention were used. We were able to prove that
[0052]
【The invention's effect】
The heat-recovery component of the present invention improves the efficiency of heat recovery from the polymer electrolyte fuel cell.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a fuel cell in which a heat insulating component of the present invention is arranged.
FIG. 2 is a plan view of a fuel cell in which the heat insulating parts of the present invention are arranged.
FIG. 3 is a diagram of a power generation system equipped with the polymer electrolyte fuel cell of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 ... Single cell, 102 ... Solid polymer electrolyte membrane, 103 ... Catalyst layer, 104 ... Single cell separator, 105 ... Gasket, 106 ... Gas diffusion layer, 107 ... Insulating plate, 108 ... Cooling water separator, 109 ... End Plate 110, connector for anode gas piping, 111 ... connector for cooling water piping, 112 ... connector for cathode gas piping, 113, 114 ... current collector plate, 116 ... bolt, 117 ... disc spring, 118 ... nut, 121 ... heat insulation 1001 ... Natural gas, 1002 ... Air, 1005 ... Fuel cell stack, 1006 ... Distilled water, 1007 ... Hot water storage tank, 1008 ... Anode gas pump, 1009 ... Cathode gas pump, 1010 ... Circulating water pump DESCRIPTION OF SYMBOLS 1011 ... Heat exchanger, 1012 ... Fuel cell, 1013 ... Cathode gas discharge piping, 1014 ... Ano Gas discharge pipe.

Claims (3)

ガス流通溝を有する2枚の単セル用セパレータに、触媒層と水素イオン伝導性高分子膜とを有する膜−電極接合体を挟持させた単セルを複数個積層した積層体の全面または一部を、熱伝導率が0.4W/mKより小さい断熱性部品により被覆し、可燃性ガスを放出させる前記断熱性部品を貫通する貫通孔を有することを特徴とする固体高分子型燃料電池。The entire surface or a part of a laminate in which a plurality of unit cells each having a membrane-electrode assembly having a catalyst layer and a hydrogen ion conductive polymer membrane sandwiched between two single cell separators having gas flow grooves are laminated. Is coated with a heat insulating component having a thermal conductivity of less than 0.4 W / mK, and has a through-hole penetrating the heat insulating component that releases a combustible gas . 前記断熱性部品が、不燃性,難燃性、あるいは自己消火性の機能を有することを特徴とする請求項1記載の固体高分子型燃料電池。  2. The polymer electrolyte fuel cell according to claim 1, wherein the heat insulating component has a nonflammability, flame retardancy, or self-extinguishing function. 水素を含むガスを連続的に製造する機器または水素を貯蔵する機器と、固体高分子型燃料電池とを水素を含むガスを流通させる配管を介して連結された発電システムであって、前記固体高分子型燃料電池が、前記機器より供給された水素を含むガスを利用して発電する請求項1または2記載の固体高分子型燃料電池であることを特徴とする発電システム。  A power generation system in which an apparatus for continuously producing a gas containing hydrogen or an apparatus for storing hydrogen and a polymer electrolyte fuel cell are connected to each other via a pipe through which a gas containing hydrogen is circulated. 3. The power generation system according to claim 1, wherein the molecular fuel cell is a solid polymer fuel cell according to claim 1, wherein power is generated using a gas containing hydrogen supplied from the device.
JP2002247954A 2002-08-28 2002-08-28 Polymer electrolyte fuel cell Expired - Fee Related JP4100096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247954A JP4100096B2 (en) 2002-08-28 2002-08-28 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247954A JP4100096B2 (en) 2002-08-28 2002-08-28 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2004087344A JP2004087344A (en) 2004-03-18
JP4100096B2 true JP4100096B2 (en) 2008-06-11

Family

ID=32055450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247954A Expired - Fee Related JP4100096B2 (en) 2002-08-28 2002-08-28 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4100096B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1749325B1 (en) * 2004-04-23 2011-10-26 NuCellSys GmbH Fuel cell based power generation systems and methods of operating the same
JP5123465B2 (en) * 2005-02-18 2013-01-23 パナソニック株式会社 Fuel cell power generation system
JP2007207664A (en) 2006-02-03 2007-08-16 Toyota Motor Corp Fuel cell system

Also Published As

Publication number Publication date
JP2004087344A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP3841347B2 (en) Polymer electrolyte fuel cell
JP2005019223A (en) Fuel cell stack
CA2400452C (en) A fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JP2003249242A (en) Fuel cell
JP3358222B2 (en) Activation method of polymer electrolyte fuel cell
JP3141619B2 (en) Solid polymer electrolyte fuel cell power generator
US9935323B2 (en) Fuel cell module and fuel cell stack
JP3448550B2 (en) Polymer electrolyte fuel cell stack
KR100612529B1 (en) Fuel cell power generator
US8492043B2 (en) Fuel cell, fuel cell system, and method for operating fuel cell
JP4100096B2 (en) Polymer electrolyte fuel cell
US20050074640A1 (en) Fuel cell system and operation method thereof
JPH0992308A (en) Solid polymer electrolyte fuel cell
JP4090956B2 (en) Polymer electrolyte fuel cell
JP2002141090A (en) Operation method of solid polymer fuel cell system
JPH0963623A (en) Solid polymer electrolyte fuel cell
JPH06333581A (en) Solid poly electrolyte fuel cell
KR100531822B1 (en) Apparatus for supplying air of fuel cell
JP2004111118A (en) Fuel cell stack
JPH06333582A (en) Solid polyelectrolyte fuel cell
US20060051653A1 (en) Fuel cell system and stack
JP2010113959A (en) Fuel cell stack
JP2007026857A (en) Fuel cell
JP2009054482A (en) Solid polymer fuel cell stack
JP5504498B2 (en) FUEL CELL, FUEL CELL SYSTEM, AND POWER GENERATION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees