JP2002141090A - Operation method of solid polymer fuel cell system - Google Patents

Operation method of solid polymer fuel cell system

Info

Publication number
JP2002141090A
JP2002141090A JP2000331975A JP2000331975A JP2002141090A JP 2002141090 A JP2002141090 A JP 2002141090A JP 2000331975 A JP2000331975 A JP 2000331975A JP 2000331975 A JP2000331975 A JP 2000331975A JP 2002141090 A JP2002141090 A JP 2002141090A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
fuel
cell system
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000331975A
Other languages
Japanese (ja)
Other versions
JP3685039B2 (en
Inventor
Shinsuke Takeguchi
伸介 竹口
Hiroki Kusakabe
弘樹 日下部
Hideo Obara
英夫 小原
Tatsuto Yamazaki
達人 山崎
Nobunori Hase
伸啓 長谷
Yoshiaki Yamamoto
義明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000331975A priority Critical patent/JP3685039B2/en
Publication of JP2002141090A publication Critical patent/JP2002141090A/en
Application granted granted Critical
Publication of JP3685039B2 publication Critical patent/JP3685039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To prevent fall of cell voltage in continuous operation under conditions to maintain high efficiency of the system and stability of fuel cells. SOLUTION: Operation conditions are switched over for a certain period of time, when output voltage of the fuel cell goes below the predetermined threshold.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池を用いて発電を行う固体高分子型燃料電池システム
の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a polymer electrolyte fuel cell system for generating electric power using a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】固体高分子を用いた燃料電池は、水素を
含有する燃料ガスと、空気など酸素を含有する酸化剤ガ
スとを、電気化学的に反応させることで、電力と熱とを
同時に発生させるものである。
2. Description of the Related Art In a fuel cell using a solid polymer, a fuel gas containing hydrogen and an oxidizing gas containing oxygen, such as air, are electrochemically reacted to simultaneously generate electric power and heat. To be generated.

【0003】従来では、水素イオンを選択的に輸送する
高分子電解質膜の両面に、白金系の金属触媒を担持した
カーボン粉末を主成分とする触媒反応層を形成し、この
触媒反応層の外面に、燃料ガスの通気性と、電子導電性
を併せ持つ拡散層を形成し、この拡散層と触媒反応層と
を合わせて電極としている。また、供給する燃料ガスが
外にリークしたり、二種類の燃料ガスが互いに混合しな
いように、電極の周囲には高分子電解質膜を挟んでガス
シール材やガスケットを配置している。このシール材や
ガスケットは、電極及び高分子電解質膜と一体化してあ
らかじめ組み立て、これを、MEA(電極電解質膜接合
体)と呼ぶ。MEAの外側には、これを機械的に固定す
るとともに、隣接したMEAを互いに電気的に直列に接
続するための導電性のセパレータ板を配置し、セパレー
タ板のMEAと接触する部分には、電極面に反応ガスを
供給し、生成ガスや余剰ガスを運び去るためのガス流路
を形成している。ガス流路は、セパレータ板と別に設け
ることもできるが、セパレータの表面に溝を設けてガス
流路とする方式が一般的である。
Conventionally, a catalytic reaction layer mainly composed of carbon powder carrying a platinum-based metal catalyst is formed on both sides of a polymer electrolyte membrane for selectively transporting hydrogen ions, and the outer surface of the catalytic reaction layer is formed. In addition, a diffusion layer having both gas permeability and electronic conductivity is formed, and the diffusion layer and the catalytic reaction layer are combined to form an electrode. Further, a gas sealing material or a gasket is arranged around the electrode with a polymer electrolyte membrane interposed therebetween so that the supplied fuel gas does not leak outside or the two types of fuel gas do not mix with each other. The sealing material and the gasket are integrated with the electrode and the polymer electrolyte membrane in advance and assembled, and this is called an MEA (electrode electrolyte membrane assembly). On the outside of the MEA, a conductive separator plate for mechanically fixing the MEA and electrically connecting adjacent MEAs in series with each other is disposed. A gas flow path for supplying a reaction gas to the surface and carrying away generated gas and surplus gas is formed. Although the gas flow path can be provided separately from the separator plate, a method of forming a gas flow path by providing a groove on the surface of the separator is general.

【0004】この溝に反応ガスを供給するためには、ガ
ス流路を形成したセパレータ板に、貫通した孔を設け、
ガス流路の出入り口をこの孔まで通し、この孔から直接
反応ガスを各流路に分岐しながら供給する必要がある。
ここで、この各流路に反応ガスを供給するための貫通孔
のことをマニホールド孔と呼んでいる。燃料電池は運転
中に発熱するので、電池を良好な温度状態に維持するた
めに、冷却媒体等で冷却する必要がある。通常、1〜3
セル毎に冷却媒体を流す冷却部をセパレータとセパレー
タとの間に挿入するが、セパレータの背面に冷却媒体流
路を設けて冷却部とする場合が多い。この場合、セパレ
ータには冷却媒体を各冷却媒体流路に分配するためのマ
ニホールド孔も必要となる。これらのMEAとセパレー
タおよび冷却部を交互に重ねていき、10〜200セル
積層した後、集電板と絶縁板を介し、端板でこれを挟
み、締結ボルトで両端から固定するのが一般的な積層電
池の構造である。
In order to supply a reaction gas to the groove, a through hole is provided in a separator plate having a gas flow path formed therein.
It is necessary to pass the inlet / outlet of the gas flow path to this hole, and supply the reaction gas directly from this hole while branching to each flow path.
Here, the through holes for supplying the reaction gas to the respective flow paths are called manifold holes. Since a fuel cell generates heat during operation, it is necessary to cool the fuel cell with a cooling medium or the like in order to maintain the cell in a favorable temperature state. Usually 1-3
A cooling section for flowing a cooling medium for each cell is inserted between the separators. In many cases, a cooling medium flow path is provided on the back of the separator to serve as a cooling section. In this case, the separator also needs a manifold hole for distributing the cooling medium to each cooling medium flow path. The MEA, the separator and the cooling section are alternately stacked, and after stacking 10 to 200 cells, it is common to sandwich this with an end plate via a current collector plate and an insulating plate and fix it from both ends with fastening bolts. This is the structure of a simple stacked battery.

【0005】[0005]

【発明が解決しようとする課題】従来の固体高分子型燃
料電池は、電池性能を維持するためには高分子膜を湿ら
せてイオン導電性を一定に保つことが必要である。した
がって、高加湿な燃料ガス、酸化剤ガスを燃料電池へ供
給して運転することが望ましい。しかし、システム上で
は各ガスを高加湿にするためには水を気化する際に莫大
なエネルギーが必要になり、それによってシステム全体
の効率の低下を招いてしまう。また、供給ガスを高加湿
にしての運転ではセパレータ流路やMEA拡散層での水
による閉塞で電極への燃料ガス、酸化剤ガスの供給が不
足してしまい、燃料電池システムとして安定して運転で
きなくなるという課題がある。
In order to maintain the performance of a conventional polymer electrolyte fuel cell, it is necessary to keep the ion conductivity constant by moistening the polymer membrane. Therefore, it is desirable to operate the fuel cell by supplying a highly humidified fuel gas and an oxidizing gas to the fuel cell. However, in order to make each gas highly humidified on the system, enormous energy is required when evaporating water, thereby reducing the efficiency of the entire system. In addition, in the operation in which the supply gas is humidified, the supply of the fuel gas and the oxidizing gas to the electrodes becomes insufficient due to the blockage of the separator channel and the MEA diffusion layer with water, so that the fuel cell system operates stably. There is a problem that it will not be possible.

【0006】従って、水の気化熱を抑え、安定に電池を
動作させるために加湿量を減らしたり、水の閉塞を防止
するために燃料ガス、酸化剤ガス流量を増やして、ガス
流速を増加させ物理的に水を排出しながら運転してい
た。そのため、MEA内の経時的な乾きによって電池性
能が低下してしまっていた。
Accordingly, the amount of humidification is reduced in order to suppress the heat of vaporization of water and operate the battery stably, and the flow rate of the fuel gas and the oxidizing gas is increased in order to prevent clogging of the water, thereby increasing the gas flow rate. Driving while physically discharging water. As a result, the battery performance has deteriorated due to drying over time in the MEA.

【0007】このように、従来の固体高分子型燃料電池
システムでは、システムの高効率化と電池の安定性を維
持するための運転条件で、連続運転をすると電池電圧が
低下してしまうことが課題であった。
[0007] As described above, in the conventional polymer electrolyte fuel cell system, the battery voltage may drop when the continuous operation is performed under the operating conditions for improving the efficiency of the system and maintaining the stability of the battery. It was an issue.

【0008】[0008]

【課題を解決するための手段】本発明の固体高分子型燃
料電池の運転方法は、燃料ガスと酸化剤ガスとで発電を
行う燃料電池と、発電原料ガスから前記燃料ガスを生成
する燃料生成器と、前記燃料電池の運転に伴う発熱を一
定温度に保つように前記燃料電池の内部を冷却する冷却
媒体手段を備えた燃料電池システムにおいて、燃料電池
システムの運転条件を切り替え、燃料電池の出力電圧を
初期値に保つことを特徴とする。
SUMMARY OF THE INVENTION A method of operating a polymer electrolyte fuel cell according to the present invention is directed to a fuel cell for generating electric power with a fuel gas and an oxidizing gas, and a fuel generation for generating the fuel gas from a power generation raw material gas. A fuel cell system comprising a fuel cell and a cooling medium means for cooling the inside of the fuel cell so as to keep the heat generated by the operation of the fuel cell at a constant temperature. The voltage is maintained at an initial value.

【0009】このとき、冷却媒体温度の低下、燃料ガス
の流量の減少、酸化剤ガスの流量の減少、燃料ガスへの
加湿量の増加、酸化剤ガスへの加湿量の増加、あるいは
燃料電池で発電された電力を消費する負荷量の増加の中
で、1つあるいは複数個の条件を組み合わせることが有
効である。
At this time, the temperature of the cooling medium decreases, the flow rate of the fuel gas decreases, the flow rate of the oxidizing gas decreases, the amount of humidification to the fuel gas increases, the amount of humidification to the oxidizing gas increases, or the It is effective to combine one or a plurality of conditions while increasing the amount of load that consumes the generated power.

【0010】また、運転条件として、燃料電池へ供給さ
れる燃料ガスと酸化剤ガス、冷却媒体、および負荷を予
め定められた時間、停止することが有効である。
[0010] As an operating condition, it is effective to stop the fuel gas and the oxidizing gas, the cooling medium, and the load supplied to the fuel cell for a predetermined time.

【0011】さらに、積層している燃料電池内を複数の
セル群に分割し、セル群毎に燃料ガスおよび酸化剤ガス
の流量を任意に変更できる構造を持つ燃料電池であっ
て、セル群毎に燃料ガスおよび酸化剤ガスの流量を変更
することが有効である。
Further, the fuel cell has a structure in which the inside of the stacked fuel cells is divided into a plurality of cell groups, and the flow rates of the fuel gas and the oxidizing gas can be arbitrarily changed for each cell group. It is effective to change the flow rates of the fuel gas and the oxidizing gas.

【0012】[0012]

【発明の実施の形態】本発明の特徴は、燃料電池の出力
電圧低下時に運転条件を切り替えることで劣化した電池
性能を容易に回復させる運転方法を見出したことであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A feature of the present invention is to find an operation method for easily recovering deteriorated cell performance by switching operation conditions when the output voltage of a fuel cell drops.

【0013】本発明の実施の形態で使用する用語「しき
い値」は、燃料電池システムの出力電圧が初期値よりも
低下した場合の燃料電池スタック総出力電圧の値であ
る。
The term “threshold” used in the embodiment of the present invention is a value of the total output voltage of the fuel cell stack when the output voltage of the fuel cell system drops below an initial value.

【0014】[0014]

【実施例】(実施例1)まず、30nmの平均一次粒子
径を持つ導電性カ−ボン粒子であるケッチェンブラック
EC(オランダ国、AKZO Chemie社)を用い
て、平均粒径約30Åの白金粒子を50重量%担持した
ものを、空気極側の触媒とした。また、このケッチェン
ブラックECに、平均粒径約30Åの白金粒子とルテニ
ウム粒子とを、それぞれ25重量%担持したものを燃料
極極側の触媒とした。この触媒粉末をイソプロパノ−ル
に分散させた溶液に、パーフルオロカーボンスルホン酸
の粉末をエチルアルコールに分散したディスパージョン
溶液を混合し、ペースト状にした。このペーストを原料
としスクリ−ン印刷法をもちいて、厚み250μmのカ
−ボン不織布の一方の面に電極触媒層を形成した。形成
後の反応電極中に含まれる白金量は0.5mg/cm
2、パーフルオロカーボンスルホン酸の量は1.2mg
/cm2となるよう調整した。
(Example 1) First, platinum having an average particle size of about 30 ° was obtained using Ketjen Black EC (AKZO Chemie, the Netherlands) which is a conductive carbon particle having an average primary particle diameter of 30 nm. The catalyst supporting 50% by weight of the particles was used as a catalyst on the air electrode side. The Ketjen Black EC was loaded with platinum particles and ruthenium particles having an average particle diameter of about 30 ° by 25% by weight, respectively, to obtain a catalyst on the fuel electrode side. A dispersion solution in which a powder of perfluorocarbon sulfonic acid was dispersed in ethyl alcohol was mixed with a solution in which this catalyst powder was dispersed in isopropanol to form a paste. Using this paste as a raw material, an electrode catalyst layer was formed on one surface of a carbon nonwoven fabric having a thickness of 250 μm using a screen printing method. The amount of platinum contained in the reaction electrode after formation was 0.5 mg / cm
2. The amount of perfluorocarbon sulfonic acid is 1.2mg
/ Cm2.

【0015】これらの燃料極側および酸化極側電極は、
電極より一回り大きい面積を有するプロトン伝導性高分
子電解質膜の中心部の両面に、印刷した触媒層が電解質
膜側に接するようにホットプレスによって接合した。こ
こでは、プロトン伝導性高分子電解質として、パーフル
オロカーボンスルホン酸を薄膜化したもの(米国デュポ
ン社製:ナフィオン112)を用いた。さらに、電極の
外周には、電解質膜を挟んで両側に、セパレータと同一
の形状に打ち抜かれたガスケットをホットプレスによっ
て接合し、電極/電解質接合体(MEA)を作成した。
The fuel electrode side and the oxidation electrode side are
The printed catalyst layer was joined to both surfaces at the center of the proton conductive polymer electrolyte membrane having an area slightly larger than the electrode by hot pressing so that the printed catalyst layer was in contact with the electrolyte membrane side. Here, a thin film of perfluorocarbon sulfonic acid (manufactured by DuPont, USA: Nafion 112) was used as the proton conductive polymer electrolyte. Further, a gasket punched in the same shape as the separator was joined to both sides of the electrolyte membrane on both sides of the electrolyte membrane by hot pressing, thereby forming an electrode / electrolyte assembly (MEA).

【0016】このMEAをセパレータ板で挟み込んで単
電池の構成とした。セパレータ板の作成は、カーボン粉
末材料を冷間プレス成形したカーボン板に、フェノール
樹脂を含浸・硬化させガスシール性を改善した樹脂含浸
したものを用い、これに切削加工でガス流路を形成し
た。セパレータの大きさは10cm×20cm、厚さは
4mmであり、溝部は幅2mmで深さ1.5mmの凹部
であり、この部分をガスが流通する。また、ガス流路間
のリブ部は幅1mmの凸部である。また、酸化剤ガスの
マニホルド孔と、燃料ガスのマニホルド孔と、冷却媒体
のマニホルド孔を、セパレータに形成した。また、ガス
流通路と、マニホールド孔の周りに、ポリイソブチレン
に導電性カーボンを分散させた導電性のガスシール剤
で、ガスシール部を形成した。
The MEA was sandwiched between separator plates to form a unit cell. The separator plate was prepared by cold pressing a carbon powder material into a carbon plate, impregnating and curing a phenolic resin, and then impregnating the resin with improved gas sealing properties. . The size of the separator is 10 cm × 20 cm, the thickness is 4 mm, and the groove is a recess having a width of 2 mm and a depth of 1.5 mm, through which gas flows. The ribs between the gas flow paths are projections having a width of 1 mm. Further, a manifold hole for the oxidizing gas, a manifold hole for the fuel gas, and a manifold hole for the cooling medium were formed in the separator. Further, a gas seal portion was formed around the gas flow passage and the manifold hole with a conductive gas sealant in which conductive carbon was dispersed in polyisobutylene.

【0017】以上のように作成したMEAの両面に、導
電性セパレータの表面の燃料ガス流通側と、導電性セパ
レータの裏面の酸化剤ガス流通側とを接合し、単電池A
とした。また、MEAの両面に、導電性セパレータの表
面の燃料ガス流通側と、導電性セパレータの裏面の冷却
媒体流通側とを接合し、単電池Bとした。次に、単電池
Aと単電池Bとを1セルずつ交互に積層し、合計で50
セル積層した。
On both sides of the MEA prepared as described above, the fuel gas flow side on the front surface of the conductive separator and the oxidizing gas flow side on the back surface of the conductive separator are joined to form a single cell A.
And In addition, on both sides of the MEA, the fuel gas flow side on the front surface of the conductive separator and the cooling medium flow side on the back surface of the conductive separator were joined to form a cell B. Next, the unit cells A and the unit cells B are alternately stacked one by one, for a total of 50 cells.
The cells were stacked.

【0018】本実施例で作成した固体高分子型燃料電池
スタックを用いて本発明を説明する。
The present invention will be described using the polymer electrolyte fuel cell stack prepared in this embodiment.

【0019】運転の条件は、模擬改質ガス(水素80体
積%、二酸化炭素20体積%、一酸化炭素50ppm)
と、空気を酸化剤ガスとして、水素利用率80%、酸素
利用率30%、水素加湿バブラー温度75℃、空気加湿
バブラー温度50℃、電池温度75℃、電流密度0.3
A/cm2で連続運転を行った。燃料電池スタック総出
力電圧のしきい値を34Vとして、連続試験中にその値
を下回るたびに、電池温度を70℃に下げ、酸素利用率
を60%、空気加湿バブラー温度を60℃に変更して1
時間運転した。その運転後、初期の運転条件に戻して連
続試験を再開した。その結果を図1に示す(実践)。図
には従来例として連続して運転した結果についても併記
した(点線)。図より明らかなように、従来の運転方法
では時間とともに平均セル電圧が低下してしまっていた
が、本実施例の運転方法では任意の電圧幅内で電池性能
が維持されていることが確認できた。
The operating conditions are simulated reformed gas (80% by volume of hydrogen, 20% by volume of carbon dioxide, 50 ppm of carbon monoxide).
Using air as an oxidant gas, hydrogen utilization rate 80%, oxygen utilization rate 30%, hydrogen humidifier bubbler temperature 75 ° C, air humidifier bubbler temperature 50 ° C, battery temperature 75 ° C, current density 0.3
A continuous operation was performed at A / cm 2 . Assuming that the threshold value of the total output voltage of the fuel cell stack is 34V, the cell temperature is reduced to 70 ° C, the oxygen utilization rate is changed to 60%, and the air humidification bubbler temperature is changed to 60 ° C every time the value falls below the value during the continuous test. 1
Driven for hours. After the operation, the continuous test was restarted by returning to the initial operating conditions. The result is shown in FIG. 1 (practice). The figure also shows the result of continuous operation as a conventional example (dotted line). As is clear from the figure, in the conventional operation method, the average cell voltage decreased with time, but in the operation method of the present example, it was confirmed that the battery performance was maintained within an arbitrary voltage range. Was.

【0020】(実施例2)次に、本発明の第2の実施例
について説明する。本実施例では試験に使用した電池、
連続運転条件、および燃料電池スタックの総電圧のしき
い値は全て実施例1と同一とした。しかし、しきい値を
下回るたびに電池からの負荷、燃料ガス、酸化剤ガスの
供給および冷却媒体の循環を3時間完全に停止した。そ
の後、前記の連続運転条件で連続試験を再開した。その
結果を図2に示す。実施例1同様に任意の電圧幅内で電
池性能が維持されていることが確認できた。なお、本実
施例では、実施例1の運転条件の変更に対して、運転を
停止することで容易に同様の効果が得られた。
(Embodiment 2) Next, a second embodiment of the present invention will be described. In this example, the batteries used for the test,
The continuous operation conditions and the threshold value of the total voltage of the fuel cell stack were all the same as in Example 1. However, each time the voltage fell below the threshold value, the load from the battery, the supply of the fuel gas and the oxidizing gas, and the circulation of the cooling medium were completely stopped for 3 hours. Thereafter, the continuous test was restarted under the above-mentioned continuous operation conditions. The result is shown in FIG. As in Example 1, it was confirmed that the battery performance was maintained within an arbitrary voltage range. In the present embodiment, the same effect was easily obtained by stopping the operation with respect to the change of the operating condition of the first embodiment.

【0021】(実施例3)次に、本発明の第3の実施例
について説明する。本実施例で作製した燃料電池の構造
を図3に示す。本実施例では実施例1で説明した電池と
同じ燃料電池スタック1を用い、外部マニホールド方式
で燃料電池スタック1の6辺に均等に外部マニホールド
2、3を配置した。また、酸化剤ガスの供給を2つのセ
ル群に分割することのできる電池とした。つまり、流量
調整バルブ4によって流量が調整された酸化剤ガスが酸
化剤ガス供給配管5を通って酸化剤分割外部マニホール
ド2から燃料電池スタック1の上段と下段にそれぞれ調
整された流量を導入することができる。本実施例では、
燃料電池スタック1の上段と下段両方の連続運転条件
と、燃料電池スタックの総電圧のしきい値は実施例1と
同一とした。連続試験中にそのしきい値を下回るたび
に、空気加湿バブラー温度を65℃に、燃料電池スタッ
クの上段は酸素利用率を30%に、下段の酸素利用率を
70%に変更し、その他の運転条件は連続運転条件とし
て、2時間運転をした。その後、上段と下段の条件を逆
にしてさらに2時間運転をした。そして、初期の連続運
転条件に戻して連続試験を再開した。その結果を図4に
示す。本実施例では、実施例1および2に比べ、運転切
換時の燃料電池スタックの出力電圧を最小限に抑えられ
ることが確認できた。なお、複数の積層電池を組み合わ
せる場合も同様の効果があった。
(Embodiment 3) Next, a third embodiment of the present invention will be described. FIG. 3 shows the structure of the fuel cell manufactured in this example. In the present embodiment, the same fuel cell stack 1 as the battery described in the first embodiment is used, and the external manifolds 2 and 3 are arranged evenly on six sides of the fuel cell stack 1 by an external manifold method. Further, a battery capable of dividing the supply of the oxidizing gas into two cell groups was used. That is, the oxidizing gas whose flow rate has been adjusted by the flow rate adjusting valve 4 is introduced into the upper and lower fuel cell stacks 1 from the oxidizing split external manifold 2 through the oxidizing gas supply pipe 5. Can be. In this embodiment,
The continuous operation conditions of both the upper and lower stages of the fuel cell stack 1 and the threshold value of the total voltage of the fuel cell stack were the same as those in Example 1. Each time the threshold value was dropped during the continuous test, the air humidification bubbler temperature was changed to 65 ° C., the oxygen utilization of the upper fuel cell stack was changed to 30%, the oxygen utilization of the lower fuel cell was changed to 70%, and The operation was performed for 2 hours as a continuous operation condition. Thereafter, the operation of the upper and lower stages was reversed, and the operation was continued for another 2 hours. Then, the continuous test was restarted by returning to the initial continuous operation condition. FIG. 4 shows the results. In this example, it was confirmed that the output voltage of the fuel cell stack at the time of operation switching was minimized as compared with Examples 1 and 2. The same effect was obtained when a plurality of stacked batteries were combined.

【0022】[0022]

【発明の効果】本発明によると、電池性能が劣化してし
まった燃料電池スタックを運転条件を変更しての運転で
性能回復ができるため、燃料電池システムとして長寿命
化が図れる。
According to the present invention, since the performance of a fuel cell stack whose cell performance has deteriorated can be restored by changing the operating conditions, the life of the fuel cell system can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の燃料電池の耐久特性を
示すグラフ
FIG. 1 is a graph showing durability characteristics of a fuel cell according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の燃料電池の耐久特性を
示すグラフ
FIG. 2 is a graph showing durability characteristics of the fuel cell according to the second embodiment of the present invention.

【図3】本発明の第3の実施例の燃料電池を示す斜視図FIG. 3 is a perspective view showing a fuel cell according to a third embodiment of the present invention.

【図4】本発明の第3の実施例の燃料電池の耐久特性を
示すグラフ
FIG. 4 is a graph showing durability characteristics of the fuel cell according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 燃料電池スタック 2 酸化剤分割外部マニホールド 3 外部マニホールド 4 流量調整バルブ 5 酸化剤ガス供給配管 DESCRIPTION OF SYMBOLS 1 Fuel cell stack 2 Oxidant division external manifold 3 External manifold 4 Flow control valve 5 Oxidant gas supply piping

フロントページの続き (72)発明者 小原 英夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 山崎 達人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 長谷 伸啓 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 山本 義明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H026 AA06 CC03 CC08 5H027 AA06 BA01 CC06 KK22 KK25 KK46 KK48 KK52 MM04 MM09Continued on the front page (72) Inventor Hideo Ohara 1006 Kadoma Kadoma, Osaka Pref.Matsushita Electric Industrial Co., Ltd. Person Nobuhiro Hase 1006 Kadoma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Yoshiaki Yamamoto 1006 Kadoma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. BA01 CC06 KK22 KK25 KK46 KK48 KK52 MM04 MM09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃料ガスと酸化剤ガスとで発電を行う燃
料電池と、発電原料ガスから前記燃料ガスを生成する燃
料生成器と、前記燃料電池の運転に伴う発熱を一定温度
に保つように前記燃料電池の内部を冷却する冷却媒体手
段を備えた燃料電池システムにおいて、燃料電池システ
ムの運転条件を切り替え、燃料電池の出力電圧を初期値
に保つことを特徴とする固体高分子型燃料電池システム
の運転方法。
A fuel cell configured to generate power from a fuel gas and an oxidizing gas; a fuel generator configured to generate the fuel gas from a power generation raw material gas; In a fuel cell system provided with a cooling medium means for cooling the inside of the fuel cell, the operating conditions of the fuel cell system are switched, and the output voltage of the fuel cell is maintained at an initial value. Driving method.
【請求項2】 前記運転条件が、前記燃料電池の内部を
冷却する冷却媒体の温度の低下、前記燃料ガスの流量の
減少、前記酸化剤ガスの流量の減少、前記燃料ガスへの
加湿量の増加、前記酸化剤ガスへの加湿量の増加、ある
いは前記燃料電池で発電された電力を消費する負荷量の
増加のうちの1つ、あるいは複数の条件の組み合わせで
ある請求項1記載の固体高分子型燃料電池システムの運
転方法。
2. The operating conditions include: a decrease in the temperature of a cooling medium that cools the inside of the fuel cell; a decrease in the flow rate of the fuel gas; a decrease in the flow rate of the oxidizing gas; 2. The solid height according to claim 1, wherein the solid height is at least one of an increase, an increase in the amount of humidification to the oxidizing gas, and an increase in a load that consumes electric power generated by the fuel cell. 3. A method for operating a molecular fuel cell system.
【請求項3】 前記運転条件が、前記燃料ガスと前記酸
化剤ガス、前記燃料電池の内部を冷却する冷却媒体、お
よび前記燃料電池の発電量を消費する負荷を、一定時間
停止することである請求項1記載の固体高分子型燃料電
池システムの運転方法。
3. The operating condition is that the fuel gas and the oxidizing gas, a cooling medium that cools the inside of the fuel cell, and a load that consumes a power generation amount of the fuel cell are stopped for a certain period of time. An operation method of the polymer electrolyte fuel cell system according to claim 1.
【請求項4】 燃料電池の内部が複数のセルから構成さ
れ、前記セル毎に燃料ガスおよび酸化剤ガスの流量を任
意に変更できる燃料電池であって、前記セル毎に燃料ガ
スおよび酸化剤ガスの流量を変更して運転することを特
徴とする固体高分子型燃料電池システムの運転方法。
4. A fuel cell in which the inside of a fuel cell is composed of a plurality of cells, wherein the flow rates of fuel gas and oxidizing gas can be arbitrarily changed for each of the cells. An operation method of a polymer electrolyte fuel cell system, wherein the operation is performed by changing the flow rate of the fuel cell.
JP2000331975A 2000-10-31 2000-10-31 Polymer electrolyte fuel cell system Expired - Lifetime JP3685039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331975A JP3685039B2 (en) 2000-10-31 2000-10-31 Polymer electrolyte fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331975A JP3685039B2 (en) 2000-10-31 2000-10-31 Polymer electrolyte fuel cell system

Publications (2)

Publication Number Publication Date
JP2002141090A true JP2002141090A (en) 2002-05-17
JP3685039B2 JP3685039B2 (en) 2005-08-17

Family

ID=18808242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331975A Expired - Lifetime JP3685039B2 (en) 2000-10-31 2000-10-31 Polymer electrolyte fuel cell system

Country Status (1)

Country Link
JP (1) JP3685039B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105168A1 (en) * 2003-05-21 2004-12-02 Aisin Seiki Kabushiki Kaisha Method for activating solid polymer fuel cell
WO2005055353A1 (en) * 2003-12-02 2005-06-16 Canon Kabushiki Kaisha Gas replacement method of fuel cell, fuel cell system and device for fuel cell system
JP2007234347A (en) * 2006-02-28 2007-09-13 Sanyo Electric Co Ltd Fuel cell system
WO2008047822A1 (en) * 2006-10-17 2008-04-24 Panasonic Corporation Polymer electrolyte fuel cell system
JP2008098076A (en) * 2006-10-16 2008-04-24 Matsushita Electric Ind Co Ltd Fuel cell power generation device
US10069159B2 (en) 2013-12-25 2018-09-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105168A1 (en) * 2003-05-21 2004-12-02 Aisin Seiki Kabushiki Kaisha Method for activating solid polymer fuel cell
US7923160B2 (en) 2003-05-21 2011-04-12 Aisin Seiki Kabushiki Kaisha Method for activating solid polymer fuel cell
WO2005055353A1 (en) * 2003-12-02 2005-06-16 Canon Kabushiki Kaisha Gas replacement method of fuel cell, fuel cell system and device for fuel cell system
US8426080B2 (en) 2003-12-02 2013-04-23 Canon Kabushiki Kaisha Gas replacement method of fuel cell, fuel cell system and device for fuel cell system
JP2007234347A (en) * 2006-02-28 2007-09-13 Sanyo Electric Co Ltd Fuel cell system
JP2008098076A (en) * 2006-10-16 2008-04-24 Matsushita Electric Ind Co Ltd Fuel cell power generation device
WO2008047822A1 (en) * 2006-10-17 2008-04-24 Panasonic Corporation Polymer electrolyte fuel cell system
US10069159B2 (en) 2013-12-25 2018-09-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Also Published As

Publication number Publication date
JP3685039B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
US7745063B2 (en) Fuel cell stack
US7566511B2 (en) Solid polymer cell assembly
JP3841347B2 (en) Polymer electrolyte fuel cell
JP4907894B2 (en) Fuel cell stack
US20020192530A1 (en) Fuel cell that can stably generate electricity with excellent characteristics
JP2002025584A (en) Solid high polymer molecule electrolyte fuel cell and its humidifying method
JP4632917B2 (en) Polymer electrolyte fuel cell
US7309541B2 (en) Fuel cell
JPWO2002047190A1 (en) Polymer electrolyte fuel cell and method of operating the same
WO2004075326A1 (en) Polyelectrolyte type fuel cell and operating method for polyelectrolyte type fuel cell
JP5124900B2 (en) Fuel cell having a stack structure
JP2003282133A (en) Fuel cell stack
JP4599300B2 (en) Polymer electrolyte fuel cell
JP2001357869A (en) Solid high-polymer type fuel cell stack
JP2004247289A (en) Fuel cell and its operation method
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
EP2341571B1 (en) Fuel cell, fuel cell system, and operating method for a fuel cell
JP3685039B2 (en) Polymer electrolyte fuel cell system
JP3673252B2 (en) Fuel cell stack
JP3963716B2 (en) Fuel cell stack
JP2005038845A (en) Polyelectrolyte fuel cell
JP4397603B2 (en) Polymer electrolyte fuel cell
JP2006210212A (en) Polymer electrolyte fuel cell
JP2004111118A (en) Fuel cell stack
JP2004349013A (en) Fuel cell stack

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R151 Written notification of patent or utility model registration

Ref document number: 3685039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

EXPY Cancellation because of completion of term