JP2004087344A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell Download PDF

Info

Publication number
JP2004087344A
JP2004087344A JP2002247954A JP2002247954A JP2004087344A JP 2004087344 A JP2004087344 A JP 2004087344A JP 2002247954 A JP2002247954 A JP 2002247954A JP 2002247954 A JP2002247954 A JP 2002247954A JP 2004087344 A JP2004087344 A JP 2004087344A
Authority
JP
Japan
Prior art keywords
fuel cell
heat
polymer electrolyte
insulating component
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002247954A
Other languages
Japanese (ja)
Other versions
JP4100096B2 (en
Inventor
Katsunori Nishimura
西村 勝憲
Jinichi Imahashi
今橋 甚一
Masahiro Komachiya
小町谷 昌宏
Hiroshi Takahashi
高橋  宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002247954A priority Critical patent/JP4100096B2/en
Publication of JP2004087344A publication Critical patent/JP2004087344A/en
Application granted granted Critical
Publication of JP4100096B2 publication Critical patent/JP4100096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat recovery efficiency by heat radiation from a solid polymer fuel cell by covering a whole surface or a part of the battery with heat-insulating parts from outside of the solid polymer fuel cell. <P>SOLUTION: As for this solid polymer fuel cell, a front face or one part of a laminate laminating a plurality of single cells which make a film-electrode conjugate having a catalyst layer and a hydrogen ion conductive polymer film pinched and held by two sheets of separators for the single cells having gas circulation channels is covered with the heat-insulating parts. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、出力が高い、寿命が長い、起動・停止による劣化が少ない、運転温度が低い(約70〜80℃)、精密な差圧制御が不要等の長所を有しているため、電気自動車用電源,業務用及び家庭用の分散電源等の幅広い用途が期待されている。
【0003】
これらの用途の中で、固体高分子型燃料電池を搭載した分散電源(例えば、コジェネレーション発電システム)は、固体高分子型燃料電池より電気を取り出すと同時に、発電時に電池から発生する熱を温水として回収することにより、エネルギーを有効活用しようとするシステムである。
【0004】
したがって、このような分散電源では、燃料電池からの熱ロスをいかに低減させるかが重要となる。しかしながら、そのような観点で、固体高分子型燃料電池からの放熱防止するための技術は見当たらない。
【0005】
【発明が解決しようとする課題】
通常、燃料電池からの熱は、大気との接触により奪われてしまうため、温水として回収可能な熱量が低下する問題があった。この問題を解決するために、断熱材で燃料電池を被覆することが考えられる。
【0006】
しかし、固体高分子型燃料電池は、水素を含む可燃性ガスを用いるため、万が一、燃料電池から水素が漏洩したときに、被覆のために用いた断熱材によって、燃料電池の近傍に水素が滞留することが想定され、単純に断熱材で燃料電池を被覆することは実用性に問題があった。
【0007】
さらに、通常の固体高分子型燃料電池は、発電に寄与する多数の単セルが直列に配置され、その各単セルを構成する2枚の電気伝導性のセパレータが外部に露出している。このため、気温変動によってセパレータが結露すると、単セルの電圧によりセパレータ間で外部短絡が起こる可能性もあり、単純に断熱材で燃料電池を被覆することは実用性に問題があった。
【0008】
そこで、本発明は、このような可燃性ガスの滞留や結露による外部短絡を防止することを可能にしようとするものである。
【0009】
【課題を解決するための手段】
固体高分子型燃料電池は、水素イオンを透過させる機能を有する固体高分子電解質膜、この膜の両面に形成した電極層、この電極層を挟持するように配置されたセパレータを基本構成として単セルを構成し、通常、十分な電力を得るために単セルを複数個直列に接続した構成を有する。
【0010】
水素イオンを透過させる機能を有する固体高分子電解質膜とは、フッ素系高分子のフッ素の一部をスルホン酸に置換したものが一般的であり、水素イオンを移動させる機能を有する高分子膜であれば、本発明に適用可能である。例えば、4フッ化エチレンを基本単位とする高分子鎖に含まれるフッ素原子を2〜5個程度のアルキル鎖(−CFCF−,−CFCF(CF)−など)を介して、アルキル鎖の末端にスルホン酸基(−SOH)を有する高分子膜がある。
【0011】
電極層とは、白金、あるいは白金とルテニウム等との異種元素との合金を電極触媒とし、この電極触媒と炭素粉末とバインダーとを有する層である。
【0012】
固体高分子型燃料電池に供給される燃料ガスは、純水素あるいは水素を含むガスであり、この水素は、電極触媒上で酸化反応(式1)により酸化される。同時に、反対側の電極触媒上では、酸素の還元反応(式2)が進行する。水素の酸化反応にて生じた水素イオンは、固体高分子電解質膜に受け渡され、水素イオンは反対側の電極層にて酸素と結合することにより水が生成する。
【0013】
 → 2H+2e                    (式1)
2H+1/2O+2e → HO             (式2)
この電池反応により単セルの起電力は約1.2V 、負荷を接続して発電したときは0.5〜0.7V程度の電圧が得られるため、この発電に寄与する単セルを複数個積層することにより、数十から数百ボルトの電圧を取ることができる。
【0014】
【発明の実施の形態】
以下に実施例により、本発明の内容を説明する。なお、本発明は以下に述べる実施例に限定されるものではない。
【0015】
固体高分子型燃料電池の構成を図1に示す。発電部は単セル101であり、通常は数十セル以上の多積層セルによって、直流電力を取り出している。この単セル101は、固体高分子電解質膜102の両面に電極層を設けた膜−電極接合体(拡大図中の102と103とからなる膜)とこれを挟持する2枚の単セル用セパレータ104より構成され、単セル用セパレータ104の間には、ガスケット105を挿入した。
【0016】
この膜−電極接合体の周辺の拡大図を図1中に示した。単セル用セパレータ
104の一方には、燃料ガスが流通する溝が加工されている。単セル用セパレータ104の他方には、酸化剤ガス、通常は空気を流通させる溝が加工されている。
【0017】
これらを積層し、末端に正極集電板113と負極集電板114とを配置させる。この集電板113,114の外側から、絶縁板107を介して端板109によって加圧されている。端板109を固定する部品は、ボルト116,皿ばね117,ナット118である。
【0018】
単電池(単セル)101,冷却水用セパレータ108,端板109,集電板
113,114等からなる積層体を、ボルト116,皿ばね117,ナット118からなる締め付け部品により固定する条件は、2枚の端板で挟みつけた積層体を油圧プレスで圧縮し、そのままの状態で5時間放置した後、ナット118を締め付ける。
【0019】
燃料ガス,酸化剤ガス,冷却水は、端板109に設けたコネクター110,
111,112より供給され、他方の端板109に設けたコネクターより排出される。直流電力(出力)は、正極集電板113と負極集電板114とから得ることができる。
【0020】
固体高分子型燃料電池は、通常、各単セルを構成する単セル用セパレータ104が外部に露出している。そのため、燃料電池からの放熱による熱回収率の減少という問題があるが、本実施例では、以下のような手段で解決している。
【0021】
その手段は、燃料電池の外部の一部あるいは全面を断熱性部品121で被覆することにより可能となる。
【0022】
断熱性部品121を構成する断熱材に求められる性質は、熱伝導率が小さいことであり、断熱材として一般的なグラスウールの熱伝導率(0.4W/mK)よりも小さいことが望ましい。
【0023】
また、寒冷地での使用を考慮すると、断熱材の熱伝導率は0.1W/mK 未満、たとえば0.02〜0.03W/mK 付近にあることがさらに望ましい。
【0024】
このような優れた断熱性を実現するためには、対流がない閉じられた状態で空気の熱伝導率は小さいことから、断熱材が外界とつながらない独立の気泡を多数有する材料が適している。
【0025】
また、断熱性部品121が、独立の気泡を有するのみでなく、断熱性部品121を貫通する孔も有するもので、燃料電池の外部の一部あるいは全面を被覆することにより可能となる。
【0026】
このような貫通孔を設ける理由は、断熱性部品121で燃料電池を被覆することにより、滞留した可燃性ガスを容易に放出させ、結露水を外部に出すことが容易になるためである。
【0027】
貫通孔の形状,サイズは任意であるが、大気の対流による放熱を防止するため、可燃性ガス等が透過できる程度のものが必要である。可燃性ガスの透過に対しては、10〜1000μm、結露水の透過に対しては、1〜10mmが望ましい。
【0028】
また、一般に水素は空気よりも比重が小さいため、上方に拡散しやすく、さらに加熱された空気も上部に移動しやすいため、燃料電池を被覆する断熱性部品の上面や側面は、可燃性ガスの透過を主体に考えた貫通孔を有する部品を配置することができる。
【0029】
これに対し、結露水は重力により底面に溜まりやすいため、燃料電池の底面または側面を被覆する断熱性部品は、結露水の透過を主体に考えた貫通孔を有する部品を配置させることができる。
【0030】
この代替えの方式として、複数の板状の断熱性部品を燃料電池の底面に配置させ、それらの部品の間に、1〜10mmのすき間を設けることにより、貫通孔を省いた断熱性部品を使用することも可能である。
【0031】
以上で説明した断熱性部品に適用可能な材料として、ポリウレタンフォーム,スチレンフォーム,発泡ゴムなどが挙げられる。
【0032】
さらに、難燃性,不燃性,自己消火性の機能を付与した発泡ゴム材料も、本発明に適用することができる。
【0033】
断熱性部品は、発泡の有無,材料の種類に特に限定されず、断熱性部品が0.4W/mK よりも小さな熱伝導率を有するものであれば良い。
【0034】
なお、図1中の固体高分子電解質膜102には、フッ素系電解質膜を、触媒層103の触媒には、白金系触媒を使用する。ガス拡散層106は、厚さ200
μmのカーボンペーパーを用いる。
【0035】
アノード側のセパレータ面には、幅1mm,深さ0.5mm のアノードガスの流路を、カソード側のセパレータ面には、幅1mm,深さ0.8mm のカソードガスの流路を設ける。
【0036】
本実施例の固体高分子型燃料電池は、複数の50個の単セルを直列に接続した構成とし、2セル毎に冷却水の流路を形成させた冷却水用セパレータ108を挿入する。
【0037】
これは、電池外部に設置したポンプにより、冷却水用セパレータ108に冷却水を供給し、ポンプと電池とを接続する冷却水の配管の途中に設ける熱交換器によって、電池の内部で発生した熱を回収するためである。
【0038】
断熱性部品121には、ポリウレタンフォームを用いる。これらを燃料電池の側面(4面)を覆うように設置し、断熱性部品121の側面を接着剤で固定する。
【0039】
端板109からの放熱を低減させるために、厚さ40mmのABS樹脂製の端板109を用いた。図1中に示されていないが、この端板109を金属性とし、その外側に断熱性部品を設置させ、固体高分子型燃料電池の全面を被覆することも可能である。
【0040】
出力端子付きの正極及び負極の集電板113,114は、集電板の端子部分を断熱性部品121の孔より突き出させた。この端子を外部の負荷に接続することにより、電力を取り出すことができる。これらの集電板の材質は、ニッケル製とした。集電板113,114と端板109との間に絶縁板107を挿入させ、電気的絶縁を図った。
【0041】
本実施例において、発電可能な電極有効面積は100cm とし、電流50Aにて出力を計測した。アノードに供給するガスは水素、カソードに供給するガスは空気とし、圧力は常圧(一気圧)とした。水素と酸素の利用率はそれぞれ70%,40%とした。セルに供給する冷却水の温度は70±2℃に設定した。本実施例の電池をS1とする。
【0042】
前述の実施例に用いた貫通孔のない断熱性部品132と、前述の実施例に用いた断熱性部品に直径0.1mm の孔を100cm 当り4個の微細孔を開けた断熱性部品131と、前述の実施例に用いた断熱性部品に直径3mmの孔を100cm 当り4個の孔を開けた断熱性部品133からなる3種類の部品を製作した。
【0043】
断熱性部品132は、放熱の防止のみを目的としているため、図2に示すように、燃料電池の側面に配置させた。断熱性部品131は、可燃性ガスが漏洩した場合を想定しているため、燃料電池の上部に配置させた。断熱性部品133は、結露水の排出を目的とするため、燃料電池の底面に配置させた。これらの断熱性部品間、および断熱性部品と端板119との間は、エポキシ樹脂製接着剤で固定した。本実施例の電池をS2とする。
【0044】
なお、比較例として、前述の固体高分子型燃料電池で用いた断熱性部品を取り外し、まったく断熱を考慮しない従来の方式の燃料電池を製作した。比較例の電池をRとする。
【0045】
電池S1,S2ならびに比較例の電池Rを、図3に示す発電システムに組み込みこんだ装置を製作した。電池S1を搭載した装置をA1、電池S2を搭載した装置をA2、電池Rを搭載した装置をA3とする。これらの装置は、電池の種類のみ異なるが、他の構成部品や構成は同一になるようにした。
【0046】
図3中、1001は天然ガス、1002は空気、1003は改質器、1005は燃料電池の積層体、1006は蒸留水、1007は貯湯槽、1008はアノードガス用ポンプ、1009はカソードガス用ポンプ、1010は循環水用ポンプ、1011は熱交換器、1012は燃料電池、1013はカソードガス排出用配管、1014はアノードガス排出用配管である。
【0047】
各装置に、都市ガスを改質することにより水素濃度70%の燃料ガスをアノードに導入し、カソードには空気を供給させた。
【0048】
発電開始時の貯湯槽1007の水温は40℃、燃料電池1012に供給される循環水の温度も40℃とした。外気温は10℃一定になるように、空調設備を有する定温実験室にて試験を実施した。
【0049】
水素および酸素の利用率は、それぞれ70%,40%とし、各電流に対して一定とした。ガスの圧力は常圧とした。
【0050】
電流密度は0.5mA/cmに設定し、連続発電試験を実施した。
【0051】
本発明の装置A1,A2は、連続発電によって、約4時間後に60℃の温水を得ることができた。これに対し、比較例の電池Rを搭載した装置A3の場合は、同じ温水を得るために約5時間の時間を要したことから、本発明の装置A1,
A2を用いたときに熱回収効率が高いことを実証することができた。
【0052】
【発明の効果】
本発明の断熱性部品によって、固体高分子型燃料電池からの熱回収効率が向上する。
【図面の簡単な説明】
【図1】本発明の断熱性部品を配置させた燃料電池の構成図。
【図2】本発明の断熱性部品を配置させた燃料電池の平面図。
【図3】本発明の固体高分子型燃料電池を搭載した発電システム図。
【符号の説明】
101…単セル、102…固体高分子電解質膜、103…触媒層、104…単セル用セパレータ、105…ガスケット、106…ガス拡散層、107…絶縁板、108…冷却水用セパレータ、109…端板、110…アノードガス配管用コネクター、111…冷却水配管用コネクター、112…カソードガス配管用コネクター、113,114…集電板、116…ボルト、117…皿ばね、118…ナット、121…断熱性部品、1001…天然ガス、1002…空気、1005…燃料電池の積層体、1006…蒸留水、1007…貯湯槽、1008…アノードガス用ポンプ、1009…カソードガス用ポンプ、1010…循環水用ポンプ、1011…熱交換器、1012…燃料電池、1013…カソードガス排出用配管、1014…アノードガス排出用配管。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell.
[0002]
[Prior art]
Polymer electrolyte fuel cells have the advantages of high output, long life, little degradation due to start / stop, low operating temperature (about 70-80 ° C), and no need for precise differential pressure control. Therefore, it is expected to be used in a wide range of applications, such as power supplies for electric vehicles, distributed power supplies for business use and home use.
[0003]
Among these applications, a distributed power source equipped with a polymer electrolyte fuel cell (for example, a cogeneration power generation system) takes out electricity from the polymer electrolyte fuel cell and simultaneously generates heat from the battery during power generation. It is a system that tries to make effective use of energy by recovering as energy.
[0004]
Therefore, in such a distributed power source, it is important how to reduce the heat loss from the fuel cell. However, from such a viewpoint, there is no technology for preventing heat radiation from the polymer electrolyte fuel cell.
[0005]
[Problems to be solved by the invention]
Normally, heat from the fuel cell is taken away by contact with the atmosphere, and there has been a problem that the amount of heat that can be recovered as hot water is reduced. To solve this problem, it is conceivable to cover the fuel cell with a heat insulating material.
[0006]
However, polymer electrolyte fuel cells use a flammable gas containing hydrogen, so if hydrogen leaks from the fuel cell, the hydrogen will stay near the fuel cell due to the heat insulating material used for coating. Therefore, simply covering the fuel cell with a heat insulating material has a problem in practicality.
[0007]
Further, in a typical polymer electrolyte fuel cell, a number of single cells contributing to power generation are arranged in series, and two electrically conductive separators constituting each single cell are exposed to the outside. For this reason, if the separator condenses due to temperature fluctuations, an external short circuit may occur between the separators due to the voltage of the single cell, and simply covering the fuel cell with a heat insulating material has a problem in practicality.
[0008]
Therefore, the present invention aims to prevent such an external short circuit due to stagnation or dew condensation of the flammable gas.
[0009]
[Means for Solving the Problems]
A polymer electrolyte fuel cell is a single cell having a basic structure of a solid polymer electrolyte membrane having a function of transmitting hydrogen ions, electrode layers formed on both sides of the membrane, and a separator arranged so as to sandwich the electrode layer. And usually has a configuration in which a plurality of single cells are connected in series in order to obtain sufficient power.
[0010]
A solid polymer electrolyte membrane having a function of permeating hydrogen ions is generally a polymer obtained by substituting a part of fluorine of a fluoropolymer with sulfonic acid, and having a function of transferring hydrogen ions. If there is, it is applicable to the present invention. For example, fluorine atoms contained in a polymer chain having ethylene tetrafluoride as a basic unit are bonded through about 2 to 5 alkyl chains (such as —CF 2 CF 2 — and —CF 2 CF 2 (CF 3 ) —). Thus, there is a polymer film having a sulfonic acid group (—SO 3 H) at the end of an alkyl chain.
[0011]
The electrode layer is a layer containing platinum or an alloy of a different element such as platinum and ruthenium as an electrode catalyst, and having this electrode catalyst, carbon powder, and a binder.
[0012]
The fuel gas supplied to the polymer electrolyte fuel cell is pure hydrogen or a gas containing hydrogen, and the hydrogen is oxidized on the electrode catalyst by an oxidation reaction (formula 1). At the same time, a reduction reaction of oxygen (formula 2) proceeds on the opposite electrode catalyst. Hydrogen ions generated by the hydrogen oxidation reaction are transferred to the polymer electrolyte membrane, and the hydrogen ions combine with oxygen at the opposite electrode layer to generate water.
[0013]
H 2 → 2H ++ 2e (formula 1)
2H + + 1 / 2O 2 + 2e → H 2 O (formula 2)
By this battery reaction, the electromotive force of the single cell is about 1.2 V. When a load is connected to generate power, a voltage of about 0.5 to 0.7 V is obtained. Therefore, a plurality of single cells contributing to this power generation are stacked. Thus, a voltage of several tens to several hundreds of volts can be obtained.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the contents of the present invention will be described with reference to examples. The present invention is not limited to the embodiments described below.
[0015]
FIG. 1 shows the configuration of a polymer electrolyte fuel cell. The power generation unit is a single cell 101, and DC power is normally extracted by a multi-stacked cell of several tens or more cells. This single cell 101 is composed of a membrane-electrode assembly in which electrode layers are provided on both surfaces of a solid polymer electrolyte membrane 102 (a membrane composed of 102 and 103 in an enlarged view) and two single cell separators sandwiching the membrane-electrode assembly. A gasket 105 was inserted between the single cell separators 104.
[0016]
An enlarged view of the periphery of the membrane-electrode assembly is shown in FIG. On one side of the single cell separator 104, a groove through which the fuel gas flows is machined. On the other side of the single-cell separator 104, a groove for circulating an oxidizing gas, usually air, is formed.
[0017]
These are laminated, and a positive electrode current collector 113 and a negative electrode current collector 114 are arranged at the ends. Pressure is applied from the outside of the current collectors 113 and 114 by an end plate 109 via an insulating plate 107. Parts fixing the end plate 109 are a bolt 116, a disc spring 117, and a nut 118.
[0018]
The conditions for fixing the laminated body including the single battery (single cell) 101, the cooling water separator 108, the end plate 109, the current collector plates 113, 114, and the like with the fastening parts including the bolts 116, the disc springs 117, and the nuts 118 are as follows. The laminate sandwiched between the two end plates is compressed by a hydraulic press, left as it is for 5 hours, and then the nut 118 is tightened.
[0019]
The fuel gas, the oxidizing gas and the cooling water are supplied to the connector 110 provided on the end plate 109,
It is supplied from 111 and 112 and discharged from the connector provided on the other end plate 109. DC power (output) can be obtained from the positive current collector 113 and the negative current collector 114.
[0020]
In a polymer electrolyte fuel cell, a single cell separator 104 constituting each single cell is usually exposed to the outside. Therefore, there is a problem that the heat recovery rate is reduced due to heat radiation from the fuel cell. However, this embodiment solves the problem by the following means.
[0021]
The means can be realized by covering a part or the whole of the outside of the fuel cell with the heat insulating component 121.
[0022]
The property required for the heat insulating material constituting the heat insulating component 121 is that the heat conductivity is small, and it is desirable that the heat conductivity is lower than the heat conductivity (0.4 W / mK) of general glass wool as the heat insulating material.
[0023]
Further, in consideration of use in cold regions, it is more desirable that the thermal conductivity of the heat insulating material be less than 0.1 W / mK, for example, in the vicinity of 0.02 to 0.03 W / mK.
[0024]
In order to realize such excellent heat insulating properties, a material having a large number of independent air bubbles whose heat insulating material is not connected to the outside is suitable because the thermal conductivity of air is small in a closed state without convection.
[0025]
In addition, the heat insulating component 121 has not only independent air bubbles but also a hole penetrating the heat insulating component 121, which can be achieved by covering a part or the whole outside of the fuel cell.
[0026]
The reason why such a through hole is provided is that by covering the fuel cell with the heat insulating component 121, the retained combustible gas is easily released, and the dew condensation water is easily discharged to the outside.
[0027]
The shape and size of the through-hole are arbitrary, but in order to prevent heat radiation due to convection of the atmosphere, it is necessary that the through-hole has such a degree as to allow a flammable gas or the like to pass therethrough. For transmission of combustible gas, 10 to 1000 μm is preferable, and for transmission of dew condensation water, 1 to 10 mm is preferable.
[0028]
In addition, since hydrogen generally has a lower specific gravity than air, it is easily diffused upward, and heated air is also easily moved to the upper part. A component having a through-hole mainly considering transmission can be arranged.
[0029]
On the other hand, since the dew condensation water easily accumulates on the bottom surface due to gravity, a heat insulating component covering the bottom surface or the side surface of the fuel cell can be a component having a through-hole mainly considering the permeation of the dew condensation water.
[0030]
As an alternative to this, a plurality of plate-shaped heat-insulating parts are arranged on the bottom surface of the fuel cell, and a gap of 1 to 10 mm is provided between the parts to use a heat-insulating part without a through hole. It is also possible.
[0031]
Examples of materials applicable to the heat-insulating components described above include polyurethane foam, styrene foam, foamed rubber, and the like.
[0032]
Further, a foamed rubber material having a flame-retardant, non-flammable and self-extinguishing function can also be applied to the present invention.
[0033]
The heat-insulating component is not particularly limited to the presence or absence of foaming and the type of material, as long as the heat-insulating component has a thermal conductivity smaller than 0.4 W / mK.
[0034]
Note that a fluorine-based electrolyte membrane is used for the solid polymer electrolyte membrane 102 in FIG. 1 and a platinum-based catalyst is used for the catalyst of the catalyst layer 103. The gas diffusion layer 106 has a thickness of 200
Use μm carbon paper.
[0035]
An anode gas flow path having a width of 1 mm and a depth of 0.5 mm is provided on the anode-side separator surface, and a cathode gas flow path having a width of 1 mm and a depth of 0.8 mm is provided on the cathode-side separator surface.
[0036]
The polymer electrolyte fuel cell of the present embodiment has a configuration in which a plurality of 50 single cells are connected in series, and a cooling water separator 108 in which a cooling water flow path is formed for every two cells is inserted.
[0037]
This is because the cooling water is supplied to the cooling water separator 108 by a pump provided outside the battery, and the heat generated inside the battery is provided by a heat exchanger provided in the middle of a cooling water pipe connecting the pump and the battery. In order to collect the
[0038]
Polyurethane foam is used for the heat insulating component 121. These are installed so as to cover the side surfaces (four surfaces) of the fuel cell, and the side surfaces of the heat insulating component 121 are fixed with an adhesive.
[0039]
In order to reduce heat radiation from the end plate 109, an end plate 109 made of ABS resin having a thickness of 40 mm was used. Although not shown in FIG. 1, the end plate 109 may be made of metal, and a heat insulating component may be provided outside the end plate 109 to cover the entire surface of the polymer electrolyte fuel cell.
[0040]
The positive and negative electrode current collector plates 113 and 114 with output terminals protrude the terminal portions of the current collector plate from the holes of the heat insulating component 121. Power can be taken out by connecting this terminal to an external load. The material of these current collector plates was made of nickel. An insulating plate 107 was inserted between the current collector plates 113 and 114 and the end plate 109 to achieve electrical insulation.
[0041]
In this example, the effective area of the electrode capable of generating power was 100 cm 2, and the output was measured at a current of 50 A. The gas supplied to the anode was hydrogen, the gas supplied to the cathode was air, and the pressure was normal pressure (one atmosphere). The utilization rates of hydrogen and oxygen were 70% and 40%, respectively. The temperature of the cooling water supplied to the cell was set at 70 ± 2 ° C. The battery of this embodiment is designated as S1.
[0042]
A heat-insulating component 132 having no through-hole used in the above-described embodiment, and a heat-insulating component 131 having four fine holes per 100 cm 2 having a diameter of 0.1 mm in the heat-insulating component used in the above-described embodiment. And three types of heat insulating parts 133 having holes of 3 mm in diameter and four holes per 100 cm 2 were formed in the heat insulating parts used in the above-mentioned examples.
[0043]
Since the heat insulating component 132 is only for the purpose of preventing heat radiation, it was arranged on the side surface of the fuel cell as shown in FIG. The heat insulating component 131 is arranged above the fuel cell because it is assumed that the combustible gas leaks. The heat insulating component 133 was disposed on the bottom surface of the fuel cell in order to discharge dew water. The space between these heat-insulating components and the space between the heat-insulating components and the end plate 119 were fixed with an epoxy resin adhesive. The battery of this embodiment is designated as S2.
[0044]
As a comparative example, a heat-insulating component used in the above-mentioned polymer electrolyte fuel cell was removed, and a conventional fuel cell in which heat insulation was not considered at all was manufactured. The battery of the comparative example is denoted by R.
[0045]
A device in which the batteries S1 and S2 and the battery R of the comparative example were incorporated in the power generation system shown in FIG. 3 was manufactured. The device equipped with the battery S1 is designated A1, the device equipped with the battery S2 is designated A2, and the device equipped with the battery R is designated A3. These devices differ only in the type of battery, but have the same other components and configurations.
[0046]
In FIG. 3, 1001 is natural gas, 1002 is air, 1003 is a reformer, 1005 is a stack of fuel cells, 1006 is distilled water, 1007 is a hot water storage tank, 1008 is a pump for anode gas, and 1009 is a pump for cathode gas. Reference numeral 1010 denotes a circulating water pump, 1011 denotes a heat exchanger, 1012 denotes a fuel cell, 1013 denotes a cathode gas discharge pipe, and 1014 denotes an anode gas discharge pipe.
[0047]
A fuel gas having a hydrogen concentration of 70% was introduced into each device by reforming city gas into the anode, and air was supplied to the cathode.
[0048]
The water temperature of the hot water storage tank 1007 at the start of power generation was 40 ° C., and the temperature of circulating water supplied to the fuel cell 1012 was also 40 ° C. The test was carried out in a constant temperature laboratory having an air conditioner so that the outside air temperature was kept constant at 10 ° C.
[0049]
The utilization rates of hydrogen and oxygen were 70% and 40%, respectively, and were constant for each current. The gas pressure was normal pressure.
[0050]
The current density was set to 0.5 mA / cm 2 and a continuous power generation test was performed.
[0051]
The devices A1 and A2 of the present invention were able to obtain hot water at 60 ° C. after about 4 hours by continuous power generation. On the other hand, in the case of the device A3 equipped with the battery R of the comparative example, it took about 5 hours to obtain the same hot water.
It was demonstrated that the heat recovery efficiency was high when A2 was used.
[0052]
【The invention's effect】
By the heat insulating component of the present invention, the efficiency of heat recovery from the polymer electrolyte fuel cell is improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a fuel cell in which a heat insulating component of the present invention is arranged.
FIG. 2 is a plan view of a fuel cell in which the heat insulating component of the present invention is arranged.
FIG. 3 is a diagram of a power generation system equipped with the polymer electrolyte fuel cell of the present invention.
[Explanation of symbols]
101 single cell, 102 solid polymer electrolyte membrane, 103 catalyst layer, 104 single cell separator, 105 gasket, 106 gas diffusion layer, 107 insulating plate, 108 cooling water separator, 109 end Plate, 110: Connector for anode gas piping, 111: Connector for cooling water piping, 112: Connector for cathode gas piping, 113, 114: Current collector, 116: Bolt, 117: Disc spring, 118: Nut, 121: Heat insulation 1001, natural gas, 1002, air, 1005, fuel cell stack, 1006, distilled water, 1007, hot water tank, 1008, anode gas pump, 1009, cathode gas pump, 1010, circulating water pump Reference numeral 1011: heat exchanger; 1012: fuel cell; 1013: cathode gas discharge pipe; Gas discharge pipe.

Claims (5)

ガス流通溝を有する2枚の単セル用セパレータに、触媒層と水素イオン伝導性高分子膜とを有する膜−電極接合体を挟持させた単セルを複数個積層した積層体の前面または一部を断熱性部品により被覆した固体高分子型燃料電池。Front surface or part of a laminate in which a plurality of single cells in which a membrane-electrode assembly having a catalyst layer and a hydrogen ion conductive polymer membrane is sandwiched between two single cell separators having gas flow grooves are sandwiched Solid polymer fuel cell coated with a heat insulating component. 前記断熱性部品の内部に気泡または貫通孔を有することを特徴とする請求項1記載の固体高分子型燃料電池。2. The polymer electrolyte fuel cell according to claim 1, wherein the heat insulating component has a bubble or a through hole inside. 前記断熱部品の熱伝導率が、0.4W/mK 以下であることを特徴とする請求項1または2記載の固体高分子型燃料電池。3. The polymer electrolyte fuel cell according to claim 1, wherein the thermal conductivity of the heat insulating component is 0.4 W / mK or less. 前記断熱性部品が、不燃性,難燃性、あるいは自己消火性の機能を有することを特徴とする請求項1,2または3記載の固体高分子型燃料電池。4. The polymer electrolyte fuel cell according to claim 1, wherein the heat-insulating component has a nonflammable, flame-retardant or self-extinguishing function. 水素を含むガスを連続的に製造する機器または水素を貯蔵する機器と、固体高分子型燃料電池とを水素を含むガスを流通させる配管を介して連結された発電システムであって、前記固体高分子型燃料電池が、前記機器より供給された水素を含むガスを利用して発電する請求項1,2,3または4記載の固体高分子型燃料電池であることを特徴とする発電システム。A power generation system in which a device for continuously producing a gas containing hydrogen or a device for storing hydrogen and a polymer electrolyte fuel cell are connected via a pipe for flowing a gas containing hydrogen. The power generation system according to claim 1, 2, 3, or 4, wherein the molecular fuel cell generates power using gas containing hydrogen supplied from the device.
JP2002247954A 2002-08-28 2002-08-28 Polymer electrolyte fuel cell Expired - Fee Related JP4100096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247954A JP4100096B2 (en) 2002-08-28 2002-08-28 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247954A JP4100096B2 (en) 2002-08-28 2002-08-28 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2004087344A true JP2004087344A (en) 2004-03-18
JP4100096B2 JP4100096B2 (en) 2008-06-11

Family

ID=32055450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247954A Expired - Fee Related JP4100096B2 (en) 2002-08-28 2002-08-28 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4100096B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228613A (en) * 2005-02-18 2006-08-31 Matsushita Electric Ind Co Ltd Fuel cell power generation system
JP2007535098A (en) * 2004-04-23 2007-11-29 ニューセルシス ゲーエムベーハー Power generation system based on fuel cell and method of operating the same
DE112007000109T5 (en) 2006-02-03 2009-05-20 Toyota Jidosha Kabushiki Kaisha, Toyota-shi The fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535098A (en) * 2004-04-23 2007-11-29 ニューセルシス ゲーエムベーハー Power generation system based on fuel cell and method of operating the same
JP2006228613A (en) * 2005-02-18 2006-08-31 Matsushita Electric Ind Co Ltd Fuel cell power generation system
DE112007000109T5 (en) 2006-02-03 2009-05-20 Toyota Jidosha Kabushiki Kaisha, Toyota-shi The fuel cell system

Also Published As

Publication number Publication date
JP4100096B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP2005019223A (en) Fuel cell stack
KR20080099021A (en) End plate for fuel cell stack and air breathing type fuel cell stack using the same
CA2400452C (en) A fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JP2003249242A (en) Fuel cell
JP3358222B2 (en) Activation method of polymer electrolyte fuel cell
JP6477681B2 (en) Fuel cell module and fuel cell stack
JP3448550B2 (en) Polymer electrolyte fuel cell stack
KR100612529B1 (en) Fuel cell power generator
US9293778B2 (en) Proton exchange membrane fuel cell
JPH06338342A (en) Cell stack structure for solid high polymer electrolytic fuel cell
US8492043B2 (en) Fuel cell, fuel cell system, and method for operating fuel cell
JP2007193948A (en) Fuel cell
JP4100096B2 (en) Polymer electrolyte fuel cell
US7811718B2 (en) Fuel cell
EP1646099B1 (en) Electrochemical device
JP2002141090A (en) Operation method of solid polymer fuel cell system
JP6546951B2 (en) Electrolyte membrane electrode structure
CN100379066C (en) Fuel cell system and stack
JP2007095712A (en) Solid polymer fuel cell and method of manufacturing same
JP4090956B2 (en) Polymer electrolyte fuel cell
JPH06333581A (en) Solid poly electrolyte fuel cell
JP2004111118A (en) Fuel cell stack
JPH06333582A (en) Solid polyelectrolyte fuel cell
JP2006066339A (en) Cell of fuel cell
JP2010113959A (en) Fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees