JP6641812B2 - Manufacturing method of membrane electrode assembly - Google Patents

Manufacturing method of membrane electrode assembly Download PDF

Info

Publication number
JP6641812B2
JP6641812B2 JP2015178730A JP2015178730A JP6641812B2 JP 6641812 B2 JP6641812 B2 JP 6641812B2 JP 2015178730 A JP2015178730 A JP 2015178730A JP 2015178730 A JP2015178730 A JP 2015178730A JP 6641812 B2 JP6641812 B2 JP 6641812B2
Authority
JP
Japan
Prior art keywords
catalyst layer
substrate
electrode catalyst
layer
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015178730A
Other languages
Japanese (ja)
Other versions
JP2017054727A (en
Inventor
友希 五十嵐
友希 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2015178730A priority Critical patent/JP6641812B2/en
Publication of JP2017054727A publication Critical patent/JP2017054727A/en
Application granted granted Critical
Publication of JP6641812B2 publication Critical patent/JP6641812B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体高分子形燃料電池を構成する膜電極接合体(MEA:membrane−electrode assembly)の製造方法に関する。 The present invention is a membrane electrode assembly constituting the solid polymer electrolyte fuel cell: about the (MEA membrane-electrode assembly) fabrication how.

従来より、膜電極接合体の製造方法としては、所望の形状を有する電極触媒層(以下、単に「触媒層」とも言う)を熱圧着などにより固体高分子電解質膜に接合した後、ガスリーク抑制のためのガスケット材を、固体高分子電解質膜上を覆うようにして触媒層の外周に形成する方法がある。このガスケット材により、寸法変化が大きい固体高分子電解質膜の露出部分が小さくなるため、発電時の膨張伸縮による破膜も抑制することができる。   Conventionally, as a method for producing a membrane electrode assembly, an electrode catalyst layer having a desired shape (hereinafter, simply referred to as a “catalyst layer”) is bonded to a solid polymer electrolyte membrane by thermocompression bonding or the like, and then gas leakage is suppressed. A gasket material is formed on the outer periphery of the catalyst layer so as to cover the solid polymer electrolyte membrane. Since the exposed portion of the solid polymer electrolyte membrane having a large dimensional change is reduced by this gasket material, the membrane breakage due to expansion and contraction during power generation can be suppressed.

例えば、特許文献1に示すように、転写基材上に触媒ペーストを塗布・乾燥することにより得られた触媒層形成用転写シートにより、固体高分子電解質膜を挟持するようにして、熱プレスすることによって、電解質膜−触媒層接合体を得る。その後、触媒層の外周縁部上を覆うように枠状のガスケット材を接合している。
前記手法では、ガスリーク抑制のために触媒層上に枠状のガスケット材が乗り上げているため、発電に関与しない触媒が存在してしまう。そのため、高価な触媒の利用効率が低くなってしまい、十分な発電性能を得ることが難しい。
For example, as shown in Patent Document 1, hot pressing is performed so that a solid polymer electrolyte membrane is sandwiched by a transfer sheet for forming a catalyst layer obtained by applying and drying a catalyst paste on a transfer base material. Thus, an electrolyte membrane-catalyst layer assembly is obtained. Thereafter, a frame-shaped gasket material is joined so as to cover the outer peripheral edge of the catalyst layer.
In the above method, a frame-shaped gasket material rides on the catalyst layer to suppress gas leakage, and therefore, there is a catalyst that does not participate in power generation. Therefore, the utilization efficiency of the expensive catalyst is reduced, and it is difficult to obtain sufficient power generation performance.

また、特許文献2では枠状のガスケットを固体高分子電解質膜に貼合した後、特許文献1のような触媒層形成用転写シートを熱プレスし、転写基材のみを剥離することで、電解質膜−触媒層接合体を得る。
前記手法では、枠状にガスケット材があり、凹んだ電解質膜部分に触媒層を押し込むため、圧力が枠状のガスケット部分に強く掛かる。これにより、電解質膜部分への均一な触媒層の転写が困難である。また、この不均一な転写により、枠状部分の際に触媒層の無い隙間が生じるため、電解質膜の露出部分ができてしまう。この露出部分は、発電により破膜する恐れがある。
Further, in Patent Document 2, after a frame-shaped gasket is bonded to a solid polymer electrolyte membrane, a catalyst layer forming transfer sheet as in Patent Document 1 is hot-pressed, and only the transfer base material is peeled off. A membrane-catalyst layer assembly is obtained.
In the above method, a gasket material is provided in a frame shape, and a catalyst layer is pressed into a concave electrolyte membrane portion, so that a pressure is strongly applied to the frame-shaped gasket portion. This makes it difficult to transfer the catalyst layer uniformly to the electrolyte membrane. In addition, due to the non-uniform transfer, a gap without a catalyst layer is generated in the case of the frame portion, so that an exposed portion of the electrolyte membrane is formed. The exposed portion may be ruptured by power generation.

また、ガスケット材にも熱プレス時に触媒層が触れるため、ガスケット材に触媒層が転写されないように、マスク材を接合しておいたり、離型剤による離型処理などを施す必要があり、コストアップと発電時の離型剤の溶出による性能低下が懸念される。   In addition, since the catalyst layer also touches the gasket material during hot pressing, it is necessary to join a mask material or perform release treatment with a release agent, etc., so that the catalyst layer is not transferred to the gasket material, and cost is reduced. There is a concern that the performance may decrease due to the release and release of the release agent during power generation.

特開2009−135068号公報JP 2009-135068 A 特開2006−244930号公報JP 2006-244930 A

本発明の課題は、ガスケット材を有する膜電極接合体の製造方法として、触媒の利用効率の低下が抑制され、触媒層と固体高分子電解質膜の間に露出部分が存在しない膜電極接合体が得られ、触媒層の転写性も向上できる方法を提供することである。   An object of the present invention is to provide a method for producing a membrane / electrode assembly having a gasket material, in which a decrease in utilization efficiency of a catalyst is suppressed, and a membrane / electrode assembly having no exposed portion between the catalyst layer and the solid polymer electrolyte membrane. It is an object of the present invention to provide a method that can improve the transferability of the catalyst layer.

本発明の第一態様は、高分子電解質膜と、前記高分子電解質膜の互いに反対側となる面に所定の平面形状で形成された電極触媒層と、を有する膜電極接合体の製造方法であって、下記の構成(1) を満たす転写フィルムを用い、下記の工程(2) を行うことを特徴とする方法である。
(1) 基板と、前記基板上に接合されたガスケット層と、前記ガスケット層上に接合された転写基材と、前記転写基材上に形成された電極触媒層と、を有する。前記ガスケット層は、前記平面形状の外形線に一致する切り込み線を前記基板との境界位置まで有する。前記電極触媒層および前記転写基材は、前記切り込み線に一致する外形面を有し、前記平面形状と一致する形状で前記ガスケット層上に存在する。
A first aspect of the present invention is a method for producing a membrane / electrode assembly comprising: a polymer electrolyte membrane; and an electrode catalyst layer formed in a predetermined planar shape on surfaces opposite to each other of the polymer electrolyte membrane. A method characterized by performing the following step (2) using a transfer film satisfying the following configuration (1).
(1) It has a substrate, a gasket layer bonded on the substrate, a transfer substrate bonded on the gasket layer, and an electrode catalyst layer formed on the transfer substrate. The gasket layer has a cut line corresponding to the outline of the planar shape up to a boundary position with the substrate. The electrode catalyst layer and the transfer substrate have an outer surface that matches the cut line, and are present on the gasket layer in a shape that matches the planar shape.

(2)前記転写フィルムの前記電極触媒層および前記ガスケット層を前記高分子電解質膜の前記面に向けて、前記電極触媒層および前記切り込み線より外側に存在する枠状の前記ガスケット層を前記面に熱圧着した後に、前記転写基材を前記電極触媒層から剥離し、前記切り込み線より外側に存在する枠状の前記ガスケット層を前記基板から剥離することで、前記転写フィルムから前記高分子電解質膜の前記面に、前記平面形状の前記電極触媒層と前記枠状のガスケット層を転写する。これにより、前記高分子電解質膜の前記面に、前記平面形状の前記電極触媒層と前記枠状のガスケット層が形成される。 (2) the towards the surface of the electrode catalyst layer and the gasket layer pre-Symbol polymer electrolyte membrane of the transfer film, the said gasket layer frame-like existing outside from the electrode catalyst layer and the score line After thermocompression bonding to the surface, the transfer base material is peeled off from the electrode catalyst layer, and the frame-shaped gasket layer existing outside the cut line is peeled off from the substrate, so that the polymer is removed from the transfer film. The planar electrode catalyst layer and the frame-shaped gasket layer are transferred to the surface of the electrolyte membrane. Thereby, the planar electrode catalyst layer and the frame-shaped gasket layer are formed on the surface of the polymer electrolyte membrane.

本発明の第二態様は、高分子電解質膜と、前記高分子電解質膜の互いに反対側となる面に所定の平面形状で形成された電極触媒層と、を有する膜電極接合体であって、前記高分子電解質膜の前記面の前記電極触媒層の外側に、前記平面形状の外形線に一致する内形面(内側面、内周面)を有する枠状のガスケット層が形成され、前記電極触媒層の外形面(外側面、外周面)と前記ガスケット層の内形面が接触している膜電極接合体である。つまり、第二態様の膜電極接合体では、前記電極触媒層と前記ガスケット層とが前記平面形状の外形線に一致する面で接触している。   A second aspect of the present invention is a membrane electrode assembly having a polymer electrolyte membrane and an electrode catalyst layer formed in a predetermined planar shape on surfaces opposite to each other of the polymer electrolyte membrane, Outside the electrode catalyst layer on the surface of the polymer electrolyte membrane, a frame-shaped gasket layer having an inner surface (inner surface, inner peripheral surface) corresponding to the outer shape of the planar shape is formed. A membrane electrode assembly in which the outer surface (outer surface, outer surface) of the catalyst layer and the inner surface of the gasket layer are in contact. That is, in the membrane-electrode assembly according to the second aspect, the electrode catalyst layer and the gasket layer are in contact with each other at a plane that matches the outline of the planar shape.

本発明の膜電極接合体の製造方法によれば、ガスケット材を有する膜電極接合体として、触媒の利用効率の低下が抑制され、触媒層と固体高分子電解質膜の間に露出部分が存在しないものが得られ、触媒層の転写性も向上できる。   According to the method for producing a membrane / electrode assembly of the present invention, as a membrane / electrode assembly having a gasket material, a decrease in catalyst utilization efficiency is suppressed, and there is no exposed portion between the catalyst layer and the solid polymer electrolyte membrane. Thus, the transferability of the catalyst layer can be improved.

本発明の一実施形態に相当する膜電極接合体の製造方法の概略図である。It is a schematic diagram of a manufacturing method of a membrane electrode assembly corresponding to one embodiment of the present invention. 本発明の比較例に相当する膜電極接合体の製造方法の概略図である。It is the schematic of the manufacturing method of the membrane electrode assembly corresponding to the comparative example of this invention.

前記第一態様の方法は、前記転写フィルムを、下記の構成(a) を有する積層体を用い、下記の工程(b) を行うことで製造する工程を含むことができる。
(a) 基板と、前記基板上に接合されたガスケット層と、前記ガスケット層上に接合された転写基材と、前記転写基材上に形成された電極触媒層と、を有する。前記基板、前記ガスケット層、前記転写基材、および前記電極触媒層の平面形状は、前記膜電極接合体に形成する電極触媒層の平面形状より大きい。
The method according to the first aspect may include a step of manufacturing the transfer film by using a laminate having the following configuration (a) and performing the following step (b).
(a) It has a substrate, a gasket layer bonded on the substrate, a transfer substrate bonded on the gasket layer, and an electrode catalyst layer formed on the transfer substrate. The planar shape of the substrate, the gasket layer, the transfer substrate, and the electrode catalyst layer is larger than the planar shape of the electrode catalyst layer formed on the membrane electrode assembly.

(b) 前記積層体の前記電極触媒層側から前記ガスケット層の前記基板との境界位置まで、前記膜電極接合体に形成する電極触媒層の平面形状の外形線に一致する切り込み線で断裁した後、前記切り込み線より外側の前記転写基材を前記ガスケット層から剥離する。これにより、前記切り込み線より外側の前記転写基材および前記電極触媒層が前記積層体から除去される。 (b) From the side of the electrode catalyst layer of the laminate to the boundary position of the gasket layer with the substrate, the gasket layer was cut with a cut line corresponding to the outline of the planar shape of the electrode catalyst layer formed on the membrane electrode assembly. Thereafter, the transfer substrate outside the cut line is peeled from the gasket layer. Thereby, the transfer base material and the electrode catalyst layer outside the cut line are removed from the laminate.

前記積層体の製造は、前記電極触媒層が形成された前記転写基材に対して前記ガスケット層を接合する工程を含む方法で行うことができる。基板とガスケット層との結合は電極触媒層の形成前後のどちらに行ってもよい。
前記積層体の製造は、前記ガスケット層が結合されている前記転写基材上に前記電極触媒層を形成する工程を含む方法で行うことができる。基板とガスケット層との結合は電極触媒層の形成前後のどちらに行ってもよい。
The production of the laminate can be performed by a method including a step of bonding the gasket layer to the transfer substrate on which the electrode catalyst layer is formed. The bonding between the substrate and the gasket layer may be performed before or after the formation of the electrode catalyst layer.
The production of the laminate can be performed by a method including a step of forming the electrode catalyst layer on the transfer substrate to which the gasket layer is bonded. The bonding between the substrate and the gasket layer may be performed before or after the formation of the electrode catalyst layer.

第一態様の膜電極接合体の製造方法および第二態様の膜電極接合体によれば、固体高分子電解質膜が露出した部分が存在しないため、ガスリークや寸法変化による破膜を抑制することができる。
更に、構成(a) を有する積層体を用いて工程(b) を行うことで前記転写フィルムを製造する場合には、打ち抜き加工等により断裁を行うことで、転写基材除去後の不良や、触媒層へのガスケット材の乗り上げ部分が無く、触媒の利用効率を低下させることがないため、高い性能を発揮することが可能である。
According to the method for manufacturing a membrane electrode assembly of the first embodiment and the membrane electrode assembly of the second embodiment, since there is no portion where the solid polymer electrolyte membrane is exposed, it is possible to suppress gas leakage and rupture of membrane due to dimensional change. it can.
Furthermore, in the case where the transfer film is manufactured by performing the step (b) using the laminate having the configuration (a), by performing cutting by punching or the like, defects after removing the transfer base material, Since there is no portion where the gasket material rides on the catalyst layer and the efficiency of use of the catalyst is not reduced, high performance can be exhibited.

第一態様の膜電極接合体の製造方法によれば、事前に所望の形状に触媒層とガスケット材を同時に加工し、ガスケット材の開口部と触媒層の形状を同じにすることで、触媒層と固体高分子電解質膜の間に露出部分が存在せず、且つ触媒層に乗り上げて、触媒の利用効率が低下することのない、ガスリーク抑制のためのガスケット材を接合した高安定性、高性能の膜電極接合体を製造することができる。また、事前に触媒層の形状を加工することで、熱加圧時に選択的に触媒層に圧力を掛けられるようにすることで、転写性を向上させることもできる。   According to the method for producing a membrane electrode assembly of the first aspect, the catalyst layer and the gasket material are simultaneously processed into a desired shape in advance, and the shape of the opening of the gasket material and the shape of the catalyst layer are made the same. High stability and high performance by joining a gasket material to suppress gas leakage, with no exposed part between the polymer electrolyte membrane and the solid electrolyte membrane Can be manufactured. In addition, by transferring the shape of the catalyst layer in advance so that the pressure can be selectively applied to the catalyst layer at the time of applying heat and pressure, the transferability can be improved.

次に、本発明の一実施形態を説明する。なお、本発明は、以下に記す実施形態に限定されるものではなく、当業者の知識に基づいて設計の変更などの変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれるものである。
図1は、本発明の実施形態に相当する膜電極接合体の製造方法を説明するための概略図である。
Next, an embodiment of the present invention will be described. Note that the present invention is not limited to the embodiments described below, and modifications such as design changes can be made based on the knowledge of those skilled in the art. Are also included in the scope of the present invention.
FIG. 1 is a schematic diagram for explaining a method for manufacturing a membrane electrode assembly corresponding to an embodiment of the present invention.

この方法では、先ず、触媒インク3を転写基材10上に塗布した(a) 後、乾燥することで、電極触媒層50を形成する(b) 。転写基材10に、粘着層を有するガスケット材(ガスケット層)1を、粘着層を介して貼合する。更に、ガスケット材1の背面には、粘着層を有するプラチックフィルム(基板)2を粘着層を介して貼合し、ガスケット基板12とする(c) 。これにより、積層体が得られる。つまり、(a) 〜(c) が積層体の製造工程である。   In this method, first, the catalyst ink 3 is applied onto the transfer base material 10 (a) and then dried to form the electrode catalyst layer 50 (b). A gasket material (gasket layer) 1 having an adhesive layer is attached to the transfer substrate 10 via the adhesive layer. Further, on the back surface of the gasket material 1, a plastic film (substrate) 2 having an adhesive layer is bonded via an adhesive layer to form a gasket substrate 12 (c). Thereby, a laminated body is obtained. That is, (a) to (c) are the manufacturing steps of the laminate.

ガスケット基板12は、事前にガスケット材1と粘着層を有するプラスチックフィルム2を貼合して得られたものを使用しても良い。
次に、積層体の電極触媒層50上から、刃物などにより、電極触媒層50、転写基材10、及びガスケット材1が同一の形状の切り込み部を有するように断裁する(d) 。次に、電極触媒層50及び転写基材10の切り込み部の外周部分を、ガスケット材1から除去し、凸形状の転写フィルム11を得る(e) 。
The gasket substrate 12 may be obtained by previously bonding the gasket material 1 and the plastic film 2 having an adhesive layer.
Next, the electrode catalyst layer 50, the transfer substrate 10, and the gasket material 1 are cut from the top of the electrode catalyst layer 50 of the laminate using a blade or the like so as to have cuts of the same shape (d). Next, the outer peripheral portions of the cut portions of the electrode catalyst layer 50 and the transfer substrate 10 are removed from the gasket material 1 to obtain a transfer film 11 having a convex shape (e).

アノード用触媒インク及びカソード用触媒インクで同様にしてそれぞれ転写フィルム11を得た後、アノード用及びカソード用転写フィルム11を固体高分子電解質膜4を挟んで鏡像となるように配置し、熱加圧する(f) 。熱加圧後、転写フィルム11の電極触媒層50aから転写基材10aを、固体高分子電解質膜4と接した枠状のガスケット材1aから粘着層を有するプラチックフィルム2を除去し(g) 、膜電極接合体5を得る(h) 。   After the transfer films 11 were obtained in the same manner using the anode catalyst ink and the cathode catalyst ink, the anode and cathode transfer films 11 were arranged so as to be mirror images with the solid polymer electrolyte membrane 4 interposed therebetween, and then heated. Press (f). After the heat pressing, the transfer substrate 10a was removed from the electrode catalyst layer 50a of the transfer film 11, and the plastic film 2 having the adhesive layer was removed from the frame-shaped gasket material 1a in contact with the solid polymer electrolyte membrane 4 (g). A membrane electrode assembly 5 is obtained (h).

固体高分子電解質膜4は、湿潤状態で良好なプロトン導電性を示す高分子材料である。転写基材10はプラスチックフィルムである。また、ガスケット材1及び粘着層を有するプラチックフィルム2は粘着層を有するフィルムである。触媒インク3は、白金又は白金と他の金属との合金からなる触媒を担持した粉末カーボンと樹脂により形成され、乾燥、固化により電極触媒層50を形成する。   The solid polymer electrolyte membrane 4 is a polymer material exhibiting good proton conductivity in a wet state. The transfer substrate 10 is a plastic film. Further, the gasket material 1 and the plastic film 2 having an adhesive layer are films having an adhesive layer. The catalyst ink 3 is formed of powdered carbon and resin carrying a catalyst made of platinum or an alloy of platinum and another metal, and forms the electrode catalyst layer 50 by drying and solidification.

以下、固体高分子電解質膜4、電極触媒層50、転写基材10、ガスケット材1及び粘着層を有するプラチックフィルム2を構成する材料の具体例を挙げるが、本発明はこれらに限定されない。
固体高分子電解質膜4を構成する高分子材料としては、具体的には、炭化水素系高分子電解質、フッ素系高分子電解質を用いることができる。炭化水素系高分子電解質膜としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質膜を用いることができる。
Hereinafter, specific examples of materials constituting the solid polymer electrolyte membrane 4, the electrode catalyst layer 50, the transfer substrate 10, the gasket material 1, and the plastic film 2 having an adhesive layer will be described, but the present invention is not limited thereto.
As a polymer material constituting the solid polymer electrolyte membrane 4, specifically, a hydrocarbon polymer electrolyte or a fluorine polymer electrolyte can be used. As the hydrocarbon-based polymer electrolyte membrane, an electrolyte membrane such as sulfonated polyetherketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used.

フッ素系高分子電解質としては、例えば、デュポン製Nafion(登録商標)、旭硝子製Flemion(登録商標)、旭化成製Aciplex(登録商標)、ゴア製Gore Select(登録商標)などを用いることができる。炭化水素系電解質膜は、フッ素系高分子電解質に比べ、溶剤に対する染み込み、膨潤が少ないため、触媒インクを固体電解質膜に塗布するのにより好ましい。固体高分子電解質膜4の厚みは、5μm以上300μm以下程度に形成される。   As the fluorine-based polymer electrolyte, for example, Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass, Aciplex (registered trademark) manufactured by Asahi Kasei, or Gore Select (registered trademark) manufactured by Gore can be used. The hydrocarbon-based electrolyte membrane is less likely to permeate and swell into a solvent as compared with a fluorine-based polymer electrolyte, and is therefore more preferably applied with a catalyst ink on a solid electrolyte membrane. The thickness of the solid polymer electrolyte membrane 4 is formed to be about 5 μm or more and 300 μm or less.

電極触媒層50を構成する樹脂としては、前記高分子材料と同様のものを用いることができる。
また、電極触媒層50を構成する触媒としては、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素のほか、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属若しくは白金とこれらの合金、又はこれらの酸化物、複酸化物などを用いることができる。その中でも、白金や白金合金がより好ましい。
As the resin constituting the electrode catalyst layer 50, the same resin as the above-mentioned polymer material can be used.
Examples of the catalyst constituting the electrode catalyst layer 50 include platinum group elements such as platinum, palladium, ruthenium, iridium, rhodium, and osmium, as well as iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, and gallium. , A metal such as aluminum, platinum and an alloy thereof, or an oxide or a double oxide thereof can be used. Among them, platinum and a platinum alloy are more preferable.

また、触媒の粒径は、大きすぎると触媒の活性が低下し、小さすぎると触媒の安定性が低下するため、0.5nm以上20nm以下が好ましい。また、電極触媒層50を構成する粉末カーボンとしては、微粒子状で導電性を有し、触媒に侵さないものであれば特に限定されない。具体的には、カーボンブラックやグラファイト、黒鉛、活性炭、カーボンファイバー、カーボンナノチューブ、フラーレンなどを用いることができる。粉末カーボンの粒径は、触媒より小さい10nm以上100nm以下程度が好適に用いられる。   When the particle size of the catalyst is too large, the activity of the catalyst is reduced. When the particle size is too small, the stability of the catalyst is reduced. The powdered carbon constituting the electrode catalyst layer 50 is not particularly limited as long as it has a fine particle shape and conductivity and does not attack the catalyst. Specifically, carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, fullerene, or the like can be used. The particle size of the powdered carbon is preferably about 10 nm to 100 nm smaller than that of the catalyst.

電極触媒層50は前記材料を溶媒、及び水に分散させて調合した触媒インク3を転写基材10上に塗布・乾燥することで得ることができる。前記溶媒は前記材料を好適に分散させるために、1-プロパノール、2−プロパノールなどのアルコール類を用いていれば良いが、水よりも低沸点の溶媒は乾燥が容易なため、より好ましい。
転写基材10を構成する材料としては、その表面に電極触媒層50を形成でき、形成した電極触媒層50を固体高分子電解質膜4に転写でき、且つガスケット材1の粘着層より除去できれば、特に限定されない。転写基材10を構成する材料としては、以下の材料が例示できる。
The electrode catalyst layer 50 can be obtained by applying the catalyst ink 3 prepared by dispersing the above-mentioned material in a solvent and water on the transfer substrate 10 and drying the ink. As the solvent, alcohols such as 1-propanol and 2-propanol may be used to suitably disperse the material, but a solvent having a boiling point lower than that of water is more preferable because it is easy to dry.
As a material constituting the transfer base material 10, if the electrode catalyst layer 50 can be formed on the surface thereof, the formed electrode catalyst layer 50 can be transferred to the solid polymer electrolyte membrane 4, and can be removed from the adhesive layer of the gasket material 1, There is no particular limitation. The following materials can be exemplified as the material constituting the transfer substrate 10.

ポリイミド、ポリエチレンテレフタレート、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアクリレート、ポリエチレンナフタレート等の高分子フィルム。
また、エチレンテトラフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロパーフルオロアルキルビニルエーテル共重合体、ポリテトラフルオロエチレン等の耐熱性フッ素樹脂を用いることもできる。
Polymer films such as polyimide, polyethylene terephthalate, polypalvanic acid aramid, polyamide (nylon), polysulfone, polyethersulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyetherimide, polyacrylate, and polyethylenenaphthalate.
Further, heat-resistant fluororesins such as ethylene tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroperfluoroalkylvinyl ether copolymer, and polytetrafluoroethylene can also be used.

転写基材10上に電極触媒層50を形成する塗布装置は、触媒層を均一な厚みで塗布が可能な装置であれば良く、ダイコーター方式、ロールコーター方式等の方式を用いることができる。
ガスケット材1及び粘着層を有するプラチックフィルム2の基材層は、熱加圧時に溶融しない程度の耐熱性を有していれば特に限定されないが、以下の材料が例示できる。 ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリイミド、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアクリレート等の高分子フィルム。
The coating device for forming the electrode catalyst layer 50 on the transfer substrate 10 may be a device capable of coating the catalyst layer with a uniform thickness, and a method such as a die coater method or a roll coater method can be used.
The substrate layer of the plastic film 2 having the gasket material 1 and the adhesive layer is not particularly limited as long as it has heat resistance that does not melt when heated and pressed, and the following materials can be exemplified. Polymer films such as polyethylene naphthalate, polyethylene terephthalate, polyimide, polypalvanic acid aramid, polyamide (nylon), polysulfone, polyethersulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyetherimide, and polyacrylate.

また、エチレンテトラフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロパーフルオロアルキルビニルエーテル共重合体、ポリテトラフルオロエチレン等の耐熱性フッ素樹脂を用いることもできる。ガスケット材1における基材としては、ガスバリヤ性、耐熱性を考慮した場合、ポリエチレンナフタレートであることが特に好ましい。   Further, heat-resistant fluororesins such as ethylene tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroperfluoroalkylvinyl ether copolymer, and polytetrafluoroethylene can also be used. In consideration of gas barrier properties and heat resistance, the substrate of the gasket material 1 is particularly preferably polyethylene naphthalate.

ガスケット材1及び粘着層を有するプラチックフィルム2の粘着層は、アクリル系、ウレタン系、シリコーン系、ゴム系などの粘着剤であればよく、基材層及び固体高分子電解質膜4との密着性と、熱加圧時における耐熱性を考慮するとアクリル系であることがより好ましい。
ガスケット材1及び粘着層を有するプラチックフィルム2の粘着層の密着性は、「『固体高分子電解質膜4−ガスケット材1間の密着性』>『ガスケット材―粘着層を有するプラチックフィルム2間の密着性』」を満たせば、膜電極接合体5にガスケット材1を接合することが容易であるため好ましい。
The gasket material 1 and the pressure-sensitive adhesive layer of the plastic film 2 having a pressure-sensitive adhesive layer may be any pressure-sensitive adhesive such as acrylic, urethane, silicone, or rubber. Considering the heat resistance at the time of hot pressurization, it is more preferable to use an acrylic resin.
The adhesiveness of the gasket material 1 and the adhesive layer of the plastic film 2 having the adhesive layer is determined as follows: “Adhesion between the solid polymer electrolyte membrane 4 and the gasket material 1”> “between the gasket material and the plastic film 2 having the adhesive layer” Adhesion "is preferable because it is easy to join the gasket material 1 to the membrane electrode assembly 5.

転写フィルム11に切り込み部を形成するための加工には、打ち抜き加工などの刃物型を用いる加工を行うことにより、形状、寸法に優れた切り込み部を有する電極触媒層50を得ることができる。このとき、刃物型は電極触媒層50、転写基材10及びガスケット材1まで貫通し、断裁する必要がある。これにより、電極触媒層50とガスケット材1を同時に同一形状で断裁することで、膜電極接合体5の電極触媒層50とガスケット材1との間に隙間をなくすることができる。   The electrode catalyst layer 50 having a notch with an excellent shape and size can be obtained by performing a process using a blade tool such as a punching process for forming the notch in the transfer film 11. At this time, it is necessary to penetrate the blade mold to the electrode catalyst layer 50, the transfer base material 10, and the gasket material 1 and cut it. Thus, by simultaneously cutting the electrode catalyst layer 50 and the gasket material 1 into the same shape, it is possible to eliminate a gap between the electrode catalyst layer 50 of the membrane electrode assembly 5 and the gasket material 1.

このとき、断裁は、粘着層を有するプラチックフィルム2まで断裁してしまうと、電極触媒層50が転写フィルム11から抜け落ちてしまう恐れがあり、ガスケット材1と触媒層50の間に位置ずれが発生してしまう。位置ずれにより隙間や乗り上げ部分が生じ、膜電極接合体5に高分子電解質膜の露出部が生じてしまうため、好ましくない。
また、本発明のように断裁を行わず、マスク材をはがす方法を採用した場合、断面形状が崩れて密着性が損なわれることや、部分的に剥離が起こり発電時に問題が発生する恐れがある。
At this time, if the cutting is performed to the plastic film 2 having the adhesive layer, the electrode catalyst layer 50 may fall off from the transfer film 11, and a positional shift occurs between the gasket material 1 and the catalyst layer 50. Resulting in. A gap or a riding portion is generated due to the displacement, and an exposed portion of the polymer electrolyte membrane is generated in the membrane electrode assembly 5, which is not preferable.
Further, when a method of peeling off the mask material is employed without cutting as in the present invention, the cross-sectional shape may be broken and the adhesion may be impaired, or partial peeling may occur to cause a problem during power generation. .

熱加圧における加熱温度は電極触媒層50及び固体高分子電解質膜4に含まれる高分子材料の軟化点付近であるため、70〜200℃であればよい。熱加圧の方式は平板状またはロール状でも良い。
膜電極接合体の製造方法は、製造効率を考慮すると全工程が連続であることが好ましいが、電極触媒層50の塗布工程の歩留まりを考慮すると全工程が不連続であっても良い。
Since the heating temperature in the thermal pressurization is near the softening point of the polymer material contained in the electrode catalyst layer 50 and the solid polymer electrolyte membrane 4, the heating temperature may be 70 to 200 ° C. The hot pressing method may be a flat plate or a roll.
In the method of manufacturing a membrane electrode assembly, all steps are preferably continuous in consideration of manufacturing efficiency, but all steps may be discontinuous in consideration of the yield of the application step of the electrode catalyst layer 50.

以上説明した膜電極接合体の製造方法によれば、固体高分子電解質膜4上における電極触媒層50と電極触媒層50の外周部のガスケット材1の間に電解質膜4の露出部がないため、ガスリークや寸法変化による性能低下が発生しないだけでなく、触媒層へのガスケット材1の乗り上げ部分がないため、触媒の利用効率の高い膜電極接合体製造装置及び膜電極接合体5の製造方法を提供することができる。
以下、本発明の実施例と比較例について具体的に説明する。しかし、本発明は以下の実施例に限定されるものではない。
According to the method for manufacturing a membrane electrode assembly described above, there is no exposed portion of the electrolyte membrane 4 between the electrode catalyst layer 50 on the solid polymer electrolyte membrane 4 and the gasket material 1 on the outer peripheral portion of the electrode catalyst layer 50. In addition to the fact that the performance does not deteriorate due to gas leaks and dimensional changes, there is no portion where the gasket material 1 rides on the catalyst layer. Can be provided.
Hereinafter, examples of the present invention and comparative examples will be specifically described. However, the present invention is not limited to the following examples.

<膜電極接合体の製造>
[実施例]
転写基材10としてフッ素系樹脂フィルム(旭硝子製FLUON アフレックス50N(NT)、厚み50μm)を用意した。
この転写基材10上に、ダイコーター方式にて、フッ素系高分子電解質膜分散溶液(旭化成イーマテリアルズ製SS700C/20)、白金触媒(田中貴金属製TEC「10F30E−HT」)、1−プロパノール、水からなる触媒インク3を、ダイコーターにて塗布した。次に、90℃の温度で10分間乾燥することで、転写基材10上にアノード用電極触媒層50を形成した。アノード用電極触媒層50は転写基材10の中心に、約8cm×8cmの正方形の平面形状で形成した。このようにして、図1(b)に示す状態とした。
<Production of membrane electrode assembly>
[Example]
A fluororesin film (FLUON Aflex 50N (NT) manufactured by Asahi Glass, thickness 50 μm) was prepared as the transfer substrate 10.
A fluoropolymer electrolyte membrane dispersion solution (SS700C / 20 manufactured by Asahi Kasei E-Materials), a platinum catalyst (TEC “10F30E-HT” manufactured by Tanaka Kikinzoku), 1-propanol were placed on the transfer substrate 10 by a die coater method. And a catalyst ink 3 composed of water was applied by a die coater. Next, the anode electrode catalyst layer 50 was formed on the transfer substrate 10 by drying at a temperature of 90 ° C. for 10 minutes. The anode electrode catalyst layer 50 was formed in the center of the transfer substrate 10 in a square plane shape of about 8 cm × 8 cm. Thus, the state shown in FIG. 1B was obtained.

また、白金触媒(田中貴金属製TEC「10F50E−HT」)を変えた以外は上記と同様にして、転写基材10上にカソード用電極触媒層50を形成した。
ガスケット材1として、ポリエチレンナフタレートフィルム(帝人デュポンフィルム製テオネックスQ51、厚み25μm)からなり、一方の面にアクリル系の粘着層(厚み10μm)が形成されているものを用意した。また、基板2として、ポリエチレンテレフタレート上にアクリル系の粘着層を有するプラスチックフィルム(きもと製Prosave25CBFS2、厚み27.5μm)を用意した。基板2の粘着層にガスケット材1の裏面(粘着層がない面)を事前に貼り付けて、ガスケット基板12を作製した。
Further, the cathode electrode catalyst layer 50 was formed on the transfer base material 10 in the same manner as described above except that the platinum catalyst (TEC “10F50E-HT” manufactured by Tanaka Kikinzoku) was changed.
The gasket material 1 was prepared from a polyethylene naphthalate film (Teonex Q51 manufactured by Teijin DuPont Films, thickness 25 μm), on one surface of which an acrylic adhesive layer (thickness 10 μm) was formed. As the substrate 2, a plastic film (Prosave25CBFS2 manufactured by Kimoto, thickness 27.5 μm) having an acrylic adhesive layer on polyethylene terephthalate was prepared. The gasket substrate 12 was prepared by previously attaching the back surface of the gasket material 1 (the surface without the adhesive layer) to the adhesive layer of the substrate 2.

ガスケット基板12を、アノード用触媒層、カソード用電極触媒層50がそれぞれ形成された各転写基材10の裏面(電極触媒層50がない面)に貼り付けて、図1(c)に示す状態の積層体を得た。この状態で、転写基材10とガスケット材1との間に粘着層が存在し、ガスケット基材1と基板2との間にも粘着層が存在する。
次に、図1(c)に示す積層体に対し、5cm×5cmの正方形の刃物型を、電極触媒層50から基板2の手間まで押し込む打ち抜き加工を行うことで、電極触媒層50と転写基材10とガスケット材1に切り込みを入れた。打ち抜き加工は、ガスケット材1まで断裁され基板2は断裁されない様に、刃物型の押し込み量を調整して行った。これにより、図1(d)に示す状態とした。
The gasket substrate 12 is attached to the back surface (the surface without the electrode catalyst layer 50) of each transfer substrate 10 on which the anode catalyst layer and the cathode electrode catalyst layer 50 are formed, and the state shown in FIG. Was obtained. In this state, an adhesive layer exists between the transfer substrate 10 and the gasket material 1, and an adhesive layer also exists between the gasket substrate 1 and the substrate 2.
Next, for the laminate shown in FIG. 1 (c), a 5 cm × 5 cm square tool is pressed from the electrode catalyst layer 50 to the trouble of the substrate 2 to perform punching. The material 10 and the gasket material 1 were cut. The punching process was performed by adjusting the pushing amount of the blade mold so that the gasket material 1 was cut and the substrate 2 was not cut. Thus, the state shown in FIG.

次に、電極触媒層50と転写基材10の切り込み線より外側の部分を、転写基材10とガスケット材1との間は粘着層がガスケット材1に残るようにして除去し、アノード用とカソード用の転写フィルム11を得た。つまり、図1(e)に示す状態とした。
図1(e)に示すように、得られた転写フィルム11のガスケット層1は、膜電極接合体5に形成する電極触媒層の平面形状の外形線に一致する切り込み線13を、基板2との境界位置まで有する。転写フィルム11の電極触媒層50aおよび転写基材10aは、切り込み線13に一致する外形面を有する。
Next, the portion outside the cut line between the electrode catalyst layer 50 and the transfer base material 10 is removed between the transfer base material 10 and the gasket material 1 so that the adhesive layer remains on the gasket material 1. A transfer film 11 for a cathode was obtained. That is, the state shown in FIG.
As shown in FIG. 1 (e), the gasket layer 1 of the transfer film 11 obtained has a cut line 13 that matches the outline of the planar shape of the electrode catalyst layer formed on the membrane / electrode assembly 5 and the substrate 2. To the boundary position of. The electrode catalyst layer 50a and the transfer substrate 10a of the transfer film 11 have outer surfaces that match the cut lines 13.

得られたアノード用転写フィルム11およびカソード用転写フィルム11を、炭化水素系フィルム(厚み11μm)からなる固体高分子電解質膜4の表面および裏面(互いに反対側となる一面および他面)に位置合わせして貼合し、圧力0.8MPa、温度170℃で10分間平板の熱プレスを行った。つまり、図1(f)に示す工程を行った。
これにより、固体高分子電解質膜4の一面の中心に5cm×5cmの正方形のアノード用電極触媒層50aが接合され、アノード用電極触媒層50aの外側に、切り込み線により形成された5cm×5cmの正方形の内形面を有する枠状のガスケット材1aが接合された。また、固体高分子電解質膜4の他面の中心に5cm×5cmの正方形のカソード用電極触媒層50aが接合され、カソード用電極触媒層50aの外側に、切り込み線により形成された5cm×5cmの正方形の内形面を有する枠状のガスケット材1aが接合された。
The obtained transfer film for anode 11 and transfer film for cathode 11 are aligned with the front surface and the back surface (one surface and the other surface opposite to each other) of the solid polymer electrolyte membrane 4 made of a hydrocarbon film (thickness 11 μm). The plate was hot-pressed at a pressure of 0.8 MPa and a temperature of 170 ° C. for 10 minutes. That is, the step shown in FIG.
As a result, a 5 cm × 5 cm square anode electrode catalyst layer 50 a is joined to the center of one surface of the solid polymer electrolyte membrane 4, and a 5 cm × 5 cm square formed by cut lines is formed outside the anode electrode catalyst layer 50 a. The frame-shaped gasket material 1a having a square inner surface was joined. A 5 cm × 5 cm square cathode electrode catalyst layer 50 a is joined to the center of the other surface of the solid polymer electrolyte membrane 4, and a 5 cm × 5 cm 5 cm × 5 cm formed by a cut line is formed outside the cathode electrode catalyst layer 50 a. The frame-shaped gasket material 1a having a square inner surface was joined.

次に、図1(g)に示すように、各電極触媒層50aから転写基材10aを剥離し、各枠状のガスケット材1aから基板2を剥離した。基板2の粘着層は基板2側に残した。これにより、固体高分子電解質膜4の互いに反対側となる面に、正方形の触媒層(アノード用触媒層、カソード用触媒層)50aと枠状のガスケット材1aが形成されている膜電極接合体5を得た。電極触媒層50aは固体高分子電解質膜4の中心に配置され、枠状のガスケット材1aは電極触媒層50aの周囲に配置され、電極触媒層50aの外形面とガスケット材1aの内形面が接触している。   Next, as shown in FIG. 1 (g), the transfer substrate 10a was peeled off from each electrode catalyst layer 50a, and the substrate 2 was peeled off from each frame-shaped gasket material 1a. The adhesive layer of the substrate 2 was left on the substrate 2 side. As a result, a membrane-electrode assembly in which a square catalyst layer (anode catalyst layer, cathode catalyst layer) 50a and a frame-shaped gasket material 1a are formed on opposite surfaces of the solid polymer electrolyte membrane 4 5 was obtained. The electrode catalyst layer 50a is disposed at the center of the solid polymer electrolyte membrane 4, the frame-shaped gasket material 1a is disposed around the electrode catalyst layer 50a, and the outer surface of the electrode catalyst layer 50a and the inner surface of the gasket material 1a In contact.

[比較例]
図2に、特許文献2と同様にして、実施例と同様の材料を用いた、膜電極接合体の製造方法を比較例として示す。実施例と同様にして、転写基材10として用いたフッ素系樹脂フィルム上にアノード用、カソード用触媒インク3を塗布・乾燥し、電極触媒層50をそれぞれ形成した(a) (b) 。
[Comparative example]
FIG. 2 shows, as a comparative example, a method for manufacturing a membrane / electrode assembly using the same material as in the example in the same manner as in Patent Document 2. In the same manner as in the example, the anode and cathode catalyst inks 3 were applied and dried on the fluorine-based resin film used as the transfer substrate 10 to form the electrode catalyst layers 50 (a) and (b).

次に、予め、打ち抜き加工にて、5cm×5cmの正方形の開口部を有する枠状ガスケット材1を作製した後、固体高分子電解質膜4の互いに反対側となる面に、ガスケット材1を、開口の位置が固体高分子電解質膜4の表裏で一致するようにして配置し、粘着層を介して貼合する(c) 。
(b) で得られた電極触媒層50を(c) のガスケット材1の表面に配置し、圧力0.8MPa、温度170℃で10分間平板の熱プレスを行った(d) 。その後、(e) に示すように、転写基材を除去し、両面に触媒層が接合された膜電極接合体5を得た。
Next, after previously forming a frame-shaped gasket material 1 having a 5 cm × 5 cm square opening by punching, the gasket material 1 is placed on the opposite surfaces of the solid polymer electrolyte membrane 4. The openings are arranged so that the positions of the openings coincide with each other on the front and back of the solid polymer electrolyte membrane 4, and are bonded via an adhesive layer (c).
The electrode catalyst layer 50 obtained in (b) was placed on the surface of the gasket material 1 in (c), and a flat plate was hot-pressed at a pressure of 0.8 MPa and a temperature of 170 ° C. for 10 minutes (d). Thereafter, as shown in (e), the transfer substrate was removed, and a membrane electrode assembly 5 having a catalyst layer bonded to both surfaces was obtained.

<膜電極接合体の評価>
このようにして得られた実施例および比較例の膜電極接合体について、触媒層へのガスケット材の乗り上げ部の有無、触媒層の転写不良の有無、電解質膜の露出部の有無、不要な触媒層の転写の有無、膜電極接合体の外観の評価を行った。その結果を表1に示す。

Figure 0006641812
<Evaluation of membrane electrode assembly>
With respect to the membrane electrode assemblies of Examples and Comparative Examples obtained in this manner, the presence / absence of a portion where the gasket material runs onto the catalyst layer, the presence / absence of transfer failure of the catalyst layer, the presence / absence of an exposed portion of the electrolyte membrane, the presence of unnecessary catalyst The transfer of the layer and the appearance of the membrane electrode assembly were evaluated. Table 1 shows the results.
Figure 0006641812

表1に示すように、実施例の及び比較例の方法で得られた膜電極接合体には、触媒層へのガスケット材の乗り上げは発生しなかった。また、実施例では触媒層の転写不良が発生しなかった。しかし、比較例では、枠状のガスケット材によって凹んだ電解質膜に転写しなければならないため、電解質膜部分に圧力が十分に掛からず、電解質膜の際付近で部分的に転写不良が発生した。加えて、比較例でのみ、転写不良による固体高分子電解質膜の露出部ができてしまった。   As shown in Table 1, in the membrane / electrode assembly obtained by the method of the example and the comparative example, the gasket material did not run over the catalyst layer. Further, in the example, transfer failure of the catalyst layer did not occur. However, in the comparative example, since transfer to the electrolyte membrane depressed by the frame-shaped gasket material had to be performed, pressure was not sufficiently applied to the electrolyte membrane portion, and transfer failure occurred partially near the electrolyte membrane. In addition, only in the comparative example, exposed portions of the solid polymer electrolyte membrane were formed due to poor transfer.

また、実施例では所望の形状で触媒層が転写されていたが、比較例では、図2(f)aのように触媒層と固体高分子電解質膜との間に乖離の発生や、図2(f)bのようにガスケット材と触媒層の間に空隙が存在することによるクロスリークの発生、及び図2(f)cのようにガスケット材上に触媒層の部分的な転写が見られた。
更に、実施例で得られた膜電極接合体はシワや歪みの無い平面性が良好な外観であったが、比較例では、ガスケット材に優先的に強い熱と圧力が掛かり、シワによる外観不良が発生していた。
Further, in the example, the catalyst layer was transferred in a desired shape. In the comparative example, however, as shown in FIG. 2 (a), a gap between the catalyst layer and the solid polymer electrolyte membrane was generated. (F) Cross leak occurs due to the presence of a gap between the gasket material and the catalyst layer as shown in (b), and partial transfer of the catalyst layer onto the gasket material is seen as shown in FIG. 2 (f) c. Was.
Furthermore, although the membrane electrode assembly obtained in the example had a good appearance without wrinkles or distortion, the gasket material was preferentially subjected to strong heat and pressure in the comparative example, resulting in poor appearance due to wrinkles. Had occurred.

1 ガスケット材(ガスケット層)
1a 枠状のガスケット材(枠状のガスケット層)
2 プラスチックフィルム(基板)
3 触媒インク
4 固体高分子電解質膜(高分子電解質膜)
5 膜電極接合体
10 転写基材
10a 転写フィルムの転写基材
11 転写フィルム
12 ガスケット基板
13 切り込み線
50 電極触媒層
50a 転写フィルムの電極触媒層
1 Gasket material (gasket layer)
1a Frame-shaped gasket material (frame-shaped gasket layer)
2 Plastic film (substrate)
3 Catalyst ink 4 Solid polymer electrolyte membrane (polymer electrolyte membrane)
Reference Signs List 5 membrane electrode assembly 10 transfer base material 10a transfer base material of transfer film 11 transfer film 12 gasket substrate 13 cut line 50 electrode catalyst layer 50a electrode catalyst layer of transfer film

Claims (4)

高分子電解質膜と、前記高分子電解質膜の互いに反対側となる面に所定の平面形状で形成された電極触媒層と、を有する膜電極接合体の製造方法であって、
基板と、前記基板上に接合されたガスケット層と、前記ガスケット層上に接合された転写基材と、前記転写基材上に形成された電極触媒層と、を有し、前記ガスケット層は、前記平面形状の外形線に一致する切り込み線を前記基板との境界位置まで有し、前記電極触媒層および前記転写基材は、前記切り込み線に一致する外形面を有し、前記平面形状と一致する形状で前記ガスケット層上に存在する転写フィルムを用い、
前記転写フィルムの前記電極触媒層および前記ガスケット層を前記高分子電解質膜の前記面に向けて、前記電極触媒層および前記切り込み線より外側に存在する枠状の前記ガスケット層を前記面に熱圧着した後に、
前記転写基材を前記電極触媒層から剥離し、前記切り込み線より外側に存在する枠状の前記ガスケット層を前記基板から剥離することで、
前記転写フィルムから前記高分子電解質膜の前記面に、前記平面形状の前記電極触媒層と前記枠状のガスケット層を転写する膜電極接合体の製造方法。
A method for producing a membrane electrode assembly, comprising: a polymer electrolyte membrane, and an electrode catalyst layer formed in a predetermined planar shape on surfaces opposite to each other of the polymer electrolyte membrane,
A substrate, a gasket layer bonded on the substrate, a transfer base material bonded on the gasket layer, and an electrode catalyst layer formed on the transfer base material, the gasket layer, The electrode catalyst layer and the transfer base material have a cut line corresponding to the outline of the plane shape up to a boundary position with the substrate, and the electrode catalyst layer and the transfer base material have an outline surface matching the cut line, and match the plane shape. Using a transfer film present on the gasket layer in a shape to
Wherein toward the surface of the electrode catalyst layer and the gasket layer pre-Symbol polymer electrolyte membrane of the transfer film, heat the gasket layer frame-like existing outside from the electrode catalyst layer and the score lines on the surface After crimping,
By peeling the transfer substrate from the electrode catalyst layer, by peeling the frame-shaped gasket layer present outside the cut line from the substrate,
A method for producing a membrane / electrode assembly, wherein the planar electrode catalyst layer and the frame-shaped gasket layer are transferred from the transfer film to the surface of the polymer electrolyte membrane.
前記転写フィルムを、
基板と、前記基板上に接合されたガスケット層と、前記ガスケット層上に接合された転写基材と、前記転写基材上に形成された電極触媒層と、を有し、前記基板、前記ガスケット層、前記転写基材、および前記電極触媒層の平面形状が、前記膜電極接合体に形成する電極触媒層の平面形状より大きい積層体を用い、
前記積層体の前記電極触媒層側から前記ガスケット層の前記基板との境界位置まで、前記膜電極接合体に形成する電極触媒層の平面形状の外形線に一致する切り込み線で断裁した後、前記切り込み線より外側の前記転写基材を前記ガスケット層から剥離することで製造する工程を含む請求項1記載の膜電極接合体の製造方法。
The transfer film,
A substrate, a gasket layer bonded on the substrate, a transfer substrate bonded on the gasket layer, and an electrode catalyst layer formed on the transfer substrate, the substrate, the gasket Layer, the transfer substrate, and a planar shape of the electrode catalyst layer, using a laminate larger than the planar shape of the electrode catalyst layer formed in the membrane electrode assembly,
From the electrode catalyst layer side of the laminate to the boundary position between the gasket layer and the substrate, after cutting at a cut line corresponding to the outline of the planar shape of the electrode catalyst layer formed in the membrane electrode assembly, The method for producing a membrane / electrode assembly according to claim 1, further comprising a step of producing the transfer substrate by peeling the transfer substrate outside the cut line from the gasket layer.
前記積層体の製造は、前記電極触媒層が形成された前記転写基材に対して前記ガスケット層を接合する工程を含む方法で行う請求項2記載の膜電極接合体の製造方法。   The method for producing a membrane / electrode assembly according to claim 2, wherein the production of the laminate is performed by a method including a step of joining the gasket layer to the transfer substrate on which the electrode catalyst layer is formed. 前記積層体の製造は、前記ガスケット層が結合されている前記転写基材上に前記電極触媒層を形成する工程を含む方法で行う請求項2記載の膜電極接合体の製造方法。   The method for producing a membrane electrode assembly according to claim 2, wherein the production of the laminate is performed by a method including a step of forming the electrode catalyst layer on the transfer substrate to which the gasket layer is bonded.
JP2015178730A 2015-09-10 2015-09-10 Manufacturing method of membrane electrode assembly Expired - Fee Related JP6641812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015178730A JP6641812B2 (en) 2015-09-10 2015-09-10 Manufacturing method of membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015178730A JP6641812B2 (en) 2015-09-10 2015-09-10 Manufacturing method of membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2017054727A JP2017054727A (en) 2017-03-16
JP6641812B2 true JP6641812B2 (en) 2020-02-05

Family

ID=58317138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015178730A Expired - Fee Related JP6641812B2 (en) 2015-09-10 2015-09-10 Manufacturing method of membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP6641812B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380064B (en) * 2018-04-14 2022-01-04 无锡先导智能装备股份有限公司 Membrane electrode assembly manufacturing method and apparatus
JP7258683B2 (en) * 2019-07-17 2023-04-17 株式会社Screenホールディングス MEMBRANE ELECTRODE ASSEMBLY WITH SUBGASKET, MANUFACTURING APPARATUS AND SUBGASKET BASE MATERIAL
WO2021054113A1 (en) * 2019-09-18 2021-03-25 Nok株式会社 Method for manufacturing fuel battery cell separator gasket
JP7395370B2 (en) * 2020-01-29 2023-12-11 株式会社Screenホールディングス Manufacturing device and method for membrane electrode assembly with subgasket
US11456475B2 (en) * 2020-03-09 2022-09-27 Cellcentric Gmbh & Co. Kg Method for manufacturing a membrane assembly for a fuel cell with catalyst-free edge to the frame; membrane assembly and fuel cell with membrane assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303627A (en) * 2003-03-31 2004-10-28 Yuasa Corp Manufacturing method of electrolyte membrane-electrode jointed assembly for direct methanol type fuel cell
JP2007141674A (en) * 2005-11-18 2007-06-07 Nissan Motor Co Ltd Manufacturing method of membrane-electrode assembly and method of assembling fuel cell
JP5277740B2 (en) * 2008-06-10 2013-08-28 旭硝子株式会社 Method for forming catalyst layer and method for producing membrane electrode assembly for polymer electrolyte fuel cell
JP2010129435A (en) * 2008-11-28 2010-06-10 Toyota Motor Corp Method of manufacturing membrane electrode assembly for fuel cell
JP6354126B2 (en) * 2013-09-02 2018-07-11 凸版印刷株式会社 Membrane electrode assembly and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017054727A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6641812B2 (en) Manufacturing method of membrane electrode assembly
JP5942982B2 (en) Method and apparatus for producing membrane / electrode assembly for polymer electrolyte fuel cell, polymer electrolyte fuel cell
CN102823040B (en) Method for manufacturing fuel cell membrane electrode assembly and apparatus for manufacturing fuel cell membrane electrode assembly
JP4940575B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2007299551A (en) Manufacturing method of membrane electrode junction for fuel cell
JP7027704B2 (en) Membrane-electrode assembly
JP2007141674A (en) Manufacturing method of membrane-electrode assembly and method of assembling fuel cell
JP2016219179A (en) Membrane electrode structure and solid polymer fuel cell, and manufacturing method of membrane electrode structure
JP5957930B2 (en) Membrane / electrode assembly manufacturing method for polymer electrolyte fuel cell, membrane / electrode assembly manufacturing apparatus for polymer electrolyte fuel cell
JP5359367B2 (en) Method for producing membrane-catalyst layer assembly
JP5273207B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5909961B2 (en) Membrane / electrode assembly manufacturing method, catalyst layer forming substrate, and polymer electrolyte fuel cell
JP2010205652A (en) Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
JP5699348B2 (en) Manufacturing apparatus and manufacturing method for membrane catalyst layer assembly, and manufacturing apparatus and manufacturing method for membrane electrode assembly
JP6550917B2 (en) Membrane-electrode assembly manufacturing method and membrane-electrode assembly
JP5239434B2 (en) Catalyst layer transfer sheet, method for producing electrolyte membrane-catalyst layer assembly using the same, method for producing electrolyte membrane-electrode assembly, method for producing electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell Manufacturing method
JP2016076366A (en) Method of manufacturing fuel battery membrane - electrode assembly, and membrane - electrode assembly
JP5200348B2 (en) Catalyst layer transfer film and catalyst layer-electrolyte membrane laminate
JP6746994B2 (en) Method for manufacturing membrane electrode assembly of fuel cell
JP5403491B2 (en) Membrane electrode assembly and manufacturing method thereof
JP7110961B2 (en) Manufacturing method of membrane electrode gas diffusion layer assembly for fuel cell
JP2016219332A (en) Membrane electrode assembly, manufacturing method of membrane electrode assembly and solid polymer fuel cell
JP6641808B2 (en) Method for manufacturing membrane electrode structure
JP5668817B2 (en) Method for producing membrane-catalyst layer assembly
JP2011198681A (en) Membrane electrode assembly for solid polymer fuel cell, method for manufacturing of membrane electrode assembly, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6641812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees